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Abstract

Ocean metabolism constitutes a complex, multiscale ensemble of biochem-
ical reaction networks harbored within and between the boundaries of a
myriad of organisms. Gaining a quantitative understanding of how these
networks operate requires mathematical tools capable of solving in silico
the resource allocation problem each cell faces in real life. Toward this goal,
stoichiometric modeling of metabolism, such as flux balance analysis, has
emerged as a powerful computational tool for unraveling the intricacies
of metabolic processes in microbes, microbial communities, and multicel-
lular organisms. Here, we provide an overview of this approach and its
applications, future prospects, and practical considerations in the context
of marine sciences. We explore how flux balance analysis has been em-
ployed to study marine organisms, help elucidate nutrient cycling, and
predict metabolic capabilities within diverse marine environments, and
highlight future prospects for this field in advancing our knowledge of
marine ecosystems and their sustainability.
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Metabolic flux:
the rate of a

biochemical reaction,
in units of millimoles
of metabolite per gram
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TOWARD MECHANISTIC PREDICTIONS OF METABOLIC FLUXES
IN MARINE ENVIRONMENTS

Metabolic fluxes describe the transformation of molecules along reactions and pathways. They
capture the dynamic nature of living systems and the flow of energy and nutrients necessary
to maintain life at all scales (Falkowski et al. 2008, Goldenfeld & Woese 2011, Morowitz 1979,
Nielsen 2003). In marine science, metabolic fluxes are of interest in a number of contexts, ranging
from metabolic engineering to biogeochemical cycles (Figure 1).

Metabolism is typically considered a cellular or organismal phenomenon, as every organism
needs to harness energy and produce building blocks (Inomura et al. 2020, Maarleveld et al.
2013, Nielsen 2003). Yet the exchange of metabolites across cells and organisms connects indi-
vidual metabolic networks with each other (Du et al. 2022, Giannari et al. 2021, Goldford et al.
2018, Lipsman et al. 2024, Nadell et al. 2016, Pacheco et al. 2019, Roth-Rosenberg et al. 2020,
van Hoek & Merks 2017). For example, when microbes exchange or compete for metabolites,
metabolic fluxes orchestrate ecological interactions that shape community dynamics and functions
(Harcombe et al. 2014, Khandelwal et al. 2013), with potential implications at the planetary scale
(e.g., biogeochemical cycles).
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Figure 1

Schematic visualization depicting how the study of cellular metabolic fluxes can help address different
questions in ocean science. The generic cell shown here (which could represent an autotrophic or
heterotrophic organism) contains a metabolic network, whose intracellular fluxes are coupled with several
exchange fluxes that are relevant for different applications. Fluxes of CO; production (respiration) or
absorption (photosynthesis) can have important consequences for atmospheric carbon balance. The flux
representing biomass production (i.e., growth) can be used to understand community (e.g., microbiome)
assembly and dynamics. Exudation and cell death release metabolites that can affect other organisms and
mediate symbiosis. Extracellular enzymes can degrade macromolecules, including plastic. Modified
metabolic networks can lead to organisms with increased fluxes for the production of specific byproducts,
which have applications in metabolic engineering.
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Given the complexity of metabolic networks and the multiscale nature of metabolism, address-
ing questions about marine metabolism requires mathematical representations and computational
models. Data-driven approaches, including artificial intelligence (AI) and machine learning (ML),
could be used to generate predictions of metabolic phenotypes (Ma et al. 2018, Zhang et al. 2020).
However, mechanistic models are still uniquely suited to provide a fundamental understanding
of metabolic processes and their causal relationships. For example, systems of ordinary differen-
tial equations based on chemical kinetics have been used to model specific pathways (Kotte et al.
2010) or even whole cells (Agmon et al. 2022, Karr et al. 2012). These models generally require
many empirically derived kinetic parameters. Alternative approaches limit the number of param-
eters needed by coarse-graining biological processes, e.g., by focusing on macromolecular pools
(Inomura et al. 2020); representing organisms in terms of their input-output relationship, as in
consumer-resource models (Marsland et al. 2020); or capturing multiple complex biological pro-
cesses in a reduced number of variables and parameters, as in biogeochemical models (Follows
et al. 2007, Kim et al. 2023). An alternative way of limiting parameters without sacrificing com-
pleteness is to make simplifying assumptions about intracellular metabolic dynamics and focus
entirely on predicting fluxes based on the stoichiometry of the metabolic reactions. This approach
is at the core of flux balance analysis (FBA), which we use here as an umbrella term equivalent to
constraint-based modeling, constraint-based reconstruction and analysis (COBRA), stoichiomet-
ric modeling, or genome-scale modeling. Many of these modeling techniques can, in principle,
be applied to populations of cells or to individual cells, as in agent- or individual-based models
(Bauer et al. 2017, Borer et al. 2019, Hellweger et al. 2016).

FBA was initially developed for metabolic engineering (Papoutsakis 1984, Varma et al. 1993)
and has since been used in multiple fields, including evolutionary biology (Harcombe et al.
2013, Ibarra et al. 2002, Papp et al. 2004), ecology (Henry et al. 2016, Klitgord & Segre 2010a,
Zomorrodi & Maranas 2012), and synthetic biology (Wang et al. 2017). FBA modeling requires
two distinct but synergistic tasks: generating a formal representation of the metabolic network for
the organism (metabolic network reconstruction) and predicting the fluxes through the metabolic
network under certain conditions (phenotype prediction). In this article, we review FBA and
its previous applications to ocean science, and we highlight current limitations and promising
future directions. Note that in addition to marine organisms, we occasionally refer to freshwater
phytoplankton as valuable examples.

GENOME-SCALE METABOLIC MODELS ARE FORMAL
REPRESENTATIONS OF ORGANISMAL METABOLISM

Metabolic network reconstruction is the process of creating a formal representation of metabolism
for the goal of computationally generating phenotype predictions (Thiele & Palsson 2010).
When this process is completed for the entire known metabolic network of an organism, the
reconstruction results in a genome-scale metabolic model (GEM).

The list of metabolic reactions to be included in a GEM is derived from the set of genes anno-
tated as metabolic enzymes in the organism’s genome (Aziz et al. 2008, Feist et al. 2009, Jing et al.
2014, Labena et al. 2018, Seemann 2014, Wang et al. 2017). Using standard nomenclature (e.g.,
Enzyme Commission numbers; McDonald et al. 2009), databases such as the Kyoto Encyclopedia
of Genes and Genomes (Kanehisa et al. 2016), MetaCyc (Caspi et al. 2020), BiGG (Schellenberger
et al. 2010), and ModelSEED (Arkin et al. 2018, Seaver et al. 2021) can help extract the detailed
stoichiometry for each reaction to form the stoichiometric matrix (Figure 2c).

The relationship between genes and reactions can be quite complex. A given enzyme may
catalyze distinct reactions (multifunctional enzyme) (Bekiaris & Klamt 2020), while a given
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Figure 2 (Figure appears on preceding page)

Formulation of FBA for a toy model of a cell that captures some realistic features of metabolism. (#) A map of the metabolic network,
annotated with details necessary for performing FBA calculations. The network includes some realistic metabolites (e.g., glucose as
GLC and pyruvate as PYR) and some fictitious ones (A and B) meant to represent building blocks (e.g., amino acids) to be used for the
production of biomass (whose flux is the growth rate). Some reactions in the network are coarse-grained representations of real
metabolic pathways (e.g., VGLC-to-PYR for glycolysis and Vpyr-to-co, for the citric acid cycle). The exchange reaction EXg1 ¢ is
highlighted to illustrate an increasingly standard convention for how to define and use exchange reactions to enable balancing of
uptake/secretion of metabolites across the cell boundary. This reaction is defined in the direction of metabolite secretion, implying that
metabolite uptake is associated with a negative flux. The Vpyr-to-co, reaction is highlighted to exemplify a gene—protein—reaction rule.
For example, this fictional reaction can be catalyzed either by a complex of proteins X; and X or by a single enzyme Y, and the
gene—protein rule would be the Boolean expression (G[X;1] AND G[X;]) OR G[Y], where G[P] is a Boolean variable indicating the
presence of the gene coding for a protein P. () The mathematical formulation of FBA, using matrix and vector notations that make it
easy to solve the problem using existing tools, borrowed from the field of linear programming. The main idea is that the space of
possible solutions is gradually restricted by imposing linear constraints, followed by an optimization step that identifies a set of fluxes
that maximize (or minimize) a given objective function. Here, Z is the objective function, c is the vector of objective function
coefficients, v is the vector of fluxes, S is the stoichiometric matrix, and LB, and UB; are the lower and upper bounds, respectively, for a
given flux, v;. (¢) The steady-state constraint of FBA, Sv = 0, displayed in detailed matrix form. Each row in S is associated with a
metabolite, and each column corresponds to a reaction. Matrix element S;; represents the stoichiometric coefficient of metabolite 7 in
reaction j. Setting Sv = 0 is equivalent to requiring a mass balance (or flux balance) equation for each metabolite. This can be verified
by multiplying each row of S by the flux vector. (d) The objective function (Z). The objective function is defined by a vector of
coefficients ¢, which define the weight of each reaction in the objective function, i.e., Z = c¢Tv. A common objective function for FBA is
the maximization of biomass production flux. This is represented by coefficients of 0 for every reaction other than the biomass reaction,
which has a coefficient of 1. (¢) Visualization of FBA solutions for this network under three different environmental conditions and
objective functions. Solid arrows visualize the actual direction of each reaction, with color reflecting the intensity of the flux, from low
(purple) to high (red). The left simulation sets lower bounds for the glucose and oxygen exchange reactions to represent aerobic growth
with glucose as the sole carbon source and optimizes for growth. Under these conditions, the biomass flux is 5.341. The center
simulation only changes the bounds for EX0,, leading to anaerobic growth. Under these conditions, PYR is secreted (fermentation),
and the biomass flux decreases to 1.73. The right simulation represents a metabolic engineering strategy where a cell is grown
aerobically on glucose to produce molecule A. Maximization of the production of A provides the theoretical maximum production flux
of A, which is 8.76 mmol gDW~! h™!. The flux visualization was done using Escher (King et al. 2015). A full description of this model
and the corresponding Python code are available in the Supplemental Material and at https://github.com/segrelab/learn-fba.

Abbreviations: FBA, flux balance analysis; gDW, grams of dry weight; LB, lower bound; UB upper bound.

reaction may be catalyzed by multiple enzymes (isoenzymes) (Bernstein et al. 2023) or multimeric
proteins. This mapping, encoded in the form of Boolean functions called gene—protein-reaction
rules (Thiele & Palsson 2010) (Figure 24, right), represents a fundamental bridge between
biochemistry and genomics and is particularly important when models are used to predict the
effects of genetic modifications (e.g., deletions), as one needs to know what reaction would be
impacted by the modulation or loss of that gene.

Reactions of high importance to ocean modeling include photon fluxes and light harvesting
for photosynthesis, which are part of GEMs for phototrophs (Baroukh et al. 2015, Chang et al.
2011). Photons of different wavelengths can be explicitly encoded (Broddrick et al. 2016), enabling
simulations of different spectral distributions of incoming light and cellular absorbance.

In addition to enzymatic reactions, GEMs include the production of biomass from precursors
(including amino acids, nucleotides, lipids, and cofactors) in known proportions. This reaction rep-
resents cellular growth. Accurate organism-specific biomass compositions are difficult to obtain
but can contribute to more complete and predictive models. Marine organisms may include unique
biomass components, such as osmolytes, that provide resistance to high salinity (Iffland-Stettner
et al. 2023). The biomass compositions for some marine organisms have been determined exper-
imentally, including for cyanobacteria (Ahmad et al. 2020a, Casey et al. 2016, Gardner & Boyle
2017, Saha et al. 2012, Vu et al. 2012), microalgae (Levering et al. 2016), heterotrophic bacteria
(Iffland-Stettner et al. 2023), and sponges (Watson et al. 2014).
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GEM:s generally also include a reaction that accounts for non-growth-associated maintenance
(Maarleveld et al. 2013, Pramanik & Keasling 1997, Varma et al. 1993), i.e., expenditure of ATP
that relates to nonmetabolic processes, such as protein turnover and flagellar motility. Some main-
tenance fluxes have been measured for marine bacteria (e.g., Iffland-Stettner et al. 2023), but the
systematic measurement of maintenance across species and conditions remains an important and
challenging task.

In spite of all efforts to carefully construct and test GEMs from genomes, incomplete or
incorrect annotations pose significant challenges (Bernstein et al. 2021). Missing or erroneous an-
notations of reactions and transporters can strongly impact a model’s predictive capabilities (Ren
etal. 2004). This problem is increasingly addressed by automated gap-filling algorithms (Machado
& Herrgird 2014, Seaver et al. 2021, Wang et al. 2018), which leverage metabolic knowledge
across the tree of life and experimental growth phenotype data to identify critical gaps that pre-
vent a metabolic network from producing all biomass components (Orth & Palsson 2010). The
products of these automated workflows may still require laborious manual curation for reliable
performance (Seif & Palsson 2021). GEMs are now available for many marine organisms, includ-
ing prokaryotic phytoplankton (Ahmad et al. 2020a, Casey et al. 2016), eukaryotic phytoplankton
(Ahmad et al. 2020Db, J. Kim et al. 2016, Lavoie et al. 2020, Levering et al. 2016, Shah et al. 2017),
heterotrophic bacteria (Du et al. 2022, Fondi et al. 2015), archaea (Du et al. 2022, Li et al. 2018,
Vailionis et al. 2023), protists (Shene et al. 2020), and multicellular eukaryotes (Gao et al. 2021,
Zakhartsev et al. 2022).

FLUX BALANCE ANALYSIS IS A MATHEMATICAL APPROACH
FOR PREDICTING METABOLIC PHENOTYPES

FBA is a mathematical approach to generate phenotypic predictions from a metabolic network
reconstruction (e.g., a GEM) (O’Brien et al. 2015, Orth & Palsson 2010) (Figure 2). Key input
variables to FBA include the metabolic network stoichiometry (the S matrix; Figure 2¢) and the
lower and upper bounds to each flux. These bounds are used to define the extracellular environ-
ment (e.g., the availability of carbon sources, nutrients, and light). The main output is a set of
putative rates, or fluxes, for all reactions in the network (Figure 2c,e), including uptake and secre-
tion, as well as the biomass production flux, representing the growth rate (in units h™!). Fluxes are
expressed per unit of biomass, i.e., millimoles of transformed metabolite per gram of dry weight
of biomass per hour (mmol gDW~! h~1).

A simplifying assumption at the core of FBA’s capabilities is that the metabolic network is at
steady state (Figure 2a—c). This assumption is equivalent to requiring that the fluxes producing
each metabolite be balanced by the fluxes utilizing that metabolite so that the concentration of
the metabolite does not change. Fluxes thus become the main variables, related to each other
through linear relationships. These linear relationships have a geometrical interpretation that,
in low-dimensional cases, can be directly visualized (Figure 3; for an interactive graph, see the
Supplemental Material). The steady-state assumption is reasonable for cell populations ob-
served over a certain period of time, under slowly changing environments. One should be cautious,
though, when approaching single-cell levels or fast processes.

The second assumption often used in FBA is that metabolism operates close to a mathemat-
ically predictable optimum, represented through an objective function (Figure 2d). A common
objective function is maximization of the growth flux, reflecting evolutionary adaptation for
efficient use of resources toward growth (Ibarra et al. 2002, Segre et al. 2002). However, different
objectives could be explored and hypothesized, including for different tissues in multicellular
organisms (Mori et al. 2019, Schuetz et al. 2012, Segre et al. 2002). The linearity of the flux
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Geometrical interpretation of FBA using an ultrasimplified metabolic network with only three reactions. (#) The network, which has
three reactions: vc, the transport of carbon into the cell; v, the transport of nitrogen into the cell; and vg, the biomass-producing
reaction that combines 10 carbons and 1 nitrogen into one unit of biomass, which is removed from the system. There are bounds on the
flux of v, so the flux must be between 0 and 10. The objective of this system is to grow as much as possible, which is equivalent to
maximizing the value of vg. The schematic also shows the mass balance equations for each metabolite. (b)) A graphical representation of
the FBA procedure to predict flux. The four planes represent the four constraints on fluxes (shown as equations in panel #). The two
parallel vertical planes represent the bounds on the value of vc. The dark blue diagonal plane represents the mass balance constraint on
carbon, and the orange plane represents the same for nitrogen. The intersection of the two mass balance planes (black line) represents
solutions that satisty both mass balance constraints. The solutions along this black line and between the two vertical vc-bound planes
are feasible solutions to the FBA problem. The feasible solution with the highest vp is the optimal solution. A full description of this
model and the corresponding Python code are available in the Supplemental Material and at https://github.com/segrelab/

learn-fba. Abbreviation: FBA, flux balance analysis.

constraints and of the objective function makes it possible to solve basic FBA problems in a
fraction of a second, using efficient linear programming libraries.

Dedicated tools [e.g., COBRA Toolbox for MATLAB (Heirendt et al. 2019), COBRApy
(Ebrahim etal. 2013), KBase (Arkin et al. 2018), and Escher-FBA (Rowe et al. 2018)] can be used to
easily perform FBA calculations. However, it is useful to remember (and valuable for educational
purposes) that FBA can be coded from scratch, as shown in two simple examples associated with
Figures 2 and 3 (see the Supplemental Material and https://github.com/segrelab/learn-fba).

Testing and Validation of Flux Balance Analysis

Predictions of fluxes and growth phenotypes generated with FBA can be tested through compar-
ison with corresponding experimental measurements. Mismatches can be used to refine models
and their assumptions. For example, FBA-predicted growth capabilities can be compared with
experimentally measured phenotypes (growth/no growth) on different carbon sources or light
conditions (Coppens etal. 2023, Ong et al. 2014, Tec-Campos et al. 2023) or with measured growth
rates (Broddrick et al. 2019, Coppens et al. 2023, Iffland-Stettner et al. 2023, Pinchuk et al. 2010).
In some cases, mismatches can be reconciled by adding missing transport or exchange reactions
to a GEM (Pinchuk et al. 2010). Comparisons between experimental and in silico gene knockout
phenotypes have also been explored extensively, yielding relatively high accuracy for manually
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curated model organisms (Bernstein et al. 2023) and variable outcomes for marine or freshwater
organisms (Broddrick et al. 2016, Coppens et al. 2023, Santos-Merino et al. 2023). Disagreements
between predicted and expected gene essentiality provide valuable insights into the functioning
of metabolic networks. For example, in cyanobacteria, disagreements in gene essentiality predic-
tions revealed modifications to the canonical tricarboxylic acid (T'CA) cycle (Broddrick et al. 2016,
Chapman et al. 2015).

Deeper testing of FBA predictions can be obtained by measuring uptake/secretion fluxes or
intracellular ones. Uptake and secretion fluxes can be assessed experimentally by probing extracel-
lular metabolites (exometabolites; e.g., Brisson et al. 2021) at multiple time points. Measurements
of intracellular fluxes require the much more laborious handling of isotopically labeled metabo-
lites, e.g., as performed in > C-metabolic flux analysis (Harcombe et al. 2013, Kaste & Shachar-Hill
2024, Long & Antoniewicz 2019, Qian et al. 2017, Schuetz et al. 2012, Schulze et al. 2022). Similar
techniques with isotopes of nitrogen and hydrogen, in addition to carbon, have been used to study
fluxes in marine or freshwater cyanobacteria (Roth-Rosenberg et al. 2020, 2021; Schulze et al.
2022) and may help validate FBA-predicted fluxes (Broddrick et al. 2019, Coppens et al. 2023,
Qian et al. 2017).

It is important to note that true validation of the predictive power of a GEM requires com-
paring predictions with data that were not used during the network reconstruction process. For
example, one should test model predictions on carbon sources that were not used for gap filling,
as was done recently for Vibrio splendidus 1A101 (Iffland-Stettner et al. 2023).

Limitations of Flux Balance Analysis

A key consequence of the steady-state assumption and of the way FBA is formulated is that fluxes
become the only variables in the model, while concentrations are absent. A major implication
of this is that standard FBA cannot predict the effects of allosteric regulation of enzymes or
metabolite-mediated transcriptional regulation. Note that flux through a metabolite cannot be
used as a proxy for the concentration of that metabolite in the cell, as there is no reason for the
two to correlate (e.g., flow through a highly abundant metabolite may be very slow). In addition
to affecting metabolic engineering applications (where an intermediate metabolite could alloster-
ically block a flux), the lack of explicit concentrations in FBA may impact predictions of functions
in marine ecosystems (e.g., by failing to account for carbon-concentrating mechanisms in carbon
fixation in diatoms; Roberts et al. 2007).

While in FBA it is usually convenient to use a single objective function to predict fluxes,
true biological objectives may be hard to define or may change under different conditions
(Mahadevan & Schilling 2003, Schuetz et al. 2012, Shoval et al. 2012). Even when biomass
maximization is a reasonable fixed objective, the composition of biomass itself may be condition
dependent (Pramanik & Keasling 1997), as has been explored for cyanobacteria at different light
intensities (Qian et al. 2017, Saha et al. 2012). An elegant alternative to the use of an objective
function is sampling the space of possible flux solutions (Herrmann et al. 2019, Ofaim et al. 2021,
Santos-Merino et al. 2023, Vailionis et al. 2023), giving rise to distributions of flux states instead
of individual values. This approach may help explicitly incorporate uncertainty (Bernstein et al.
2021) and could shed light on phenotypic diversification in clonal populations.

Incorporating Gene Expression Data in Flux Balance Analysis

One goal that the FBA modeling community has long struggled with is the integration of FBA-
based flux predictions with gene expression data. Transcriptomic and proteomic data can point
to highly expressed enzyme genes and associated reaction fluxes. In the study of multicellular
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organisms (e.g., fish; Molversmyr et al. 2023), gene expression data have been used to generate
tissue-specific models, where silenced genes translate into zero flux through the corresponding
reactions (de Oliveira Dal’Molin et al. 2010, Li et al. 2010, Martins Conde et al. 2016). A similar
approach has been applied to marine microbes that display discrete phenotypic states (Gardner &
Boyle 2017).

More broadly, researchers have used gene expression-based constraints on fluxes in several
ways to try to improve flux predictions, often encountering significant challenges (Machado &
Herrgard 2014). Any approach for the integration of gene expression in FBA should be approached
with caution: Posttranscriptional regulation, posttranslational modifications, allosteric regulation,
enzyme inhibition, and lack of substrate can drastically modulate the flux through a reaction, even
if the enzyme is highly expressed (Blazier & Papin 2012). It is likely that substantially new ways of
posing the problem (e.g., integration between mechanistic and Al approaches) will be necessary
for a leap in this direction.

APPLICATIONS OF FLUX BALANCE ANALYSIS TO ADDRESS
QUESTIONS IN MARINE BIOLOGY

Some fundamental questions about marine metabolism can be addressed using FBA and its ex-
tensions and variants. For simplicity, we organize these questions into four categories: metabolic
efficiency, environmental dependence, genetic perturbations, and microbial communities and
multicellular systems.

Metabolic Efficiency

Metabolic efficiency, often defined by the yield of biomass or a specific product of interest, can
depend on two intertwined but distinct properties of metabolism. The first is the stoichiometry
itself. For example, stoichiometry may dictate how many of the carbon atoms from a sugar end
up in the biomass versus in secreted CO; or byproducts, or how a cell could manage mismatches
between biomass and environmental carbon/nitrogen ratios (Pacheco et al. 2019). The second
property that affects efficiency is the investment needed to produce and maintain the enzymes
necessary for operating a given metabolic pathway (proteome allocation) (Hui et al. 2015, Mori
etal. 2016). A pathway stoichiometrically capable of producing more molecules of ATP per glucose
may be overall less efficient if it requires a lot of building blocks and ATP investment for enzyme
production (Flamholz et al. 2013). Standard FBA only includes the stoichiometry of metabolism,
but there are extensions of FBA that can partially incorporate the protein cost.

FBA solutions can be used to estimate different metabolic efficiency metrics, equivalent to
yield coefficients in metabolic engineering (Stephanopoulos et al. 1998). A yield coefficient can
be calculated as the ratio between the flux producing a given metabolite of interest and the flux of
production or consumption of a specific resource, often the carbon source or biomass (e.g., moles
of lysine produced per mole of glucose consumed, or grams of lysine produced per gram of biomass
produced). In some metabolic engineering efforts focused on marine or freshwater microalgae
(e.g., Chlamydomonas reinbardtii), FBA has been used to guide strain design by predicting the yield
of interest in silico before moving to laboratory experiments (Imam et al. 2015, Japhalekar et al.
2022, Vuetal. 2013, Yoshikawa et al. 2017). Building upon this type of calculation, several advanced
optimization methods have been constructed to suggest specific genetic modifications and up- or
downregulation strategies likely to increase desired yields (Burgard et al. 2003, Pharkya et al.
2004, Ranganathan et al. 2010, Zomorrodi & Maranas 2012), which have possible applications in
metabolic engineering of phytoplankton.

A specific yield that is important in microbial ecology is the growth yield, defined as the
amount of biomass produced relative to the amount of substrate consumed (e.g., grams of
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biomass produced per gram of glucose consumed) (Stephanopoulos et al. 1998, Westerhoff et al.
1983, Wilken et al. 2021). A long-standing question in microbiology and microbial ecology is
whether fundamental trade-offs exist between rate and yield (Mori et al. 2019, Novak et al. 2006,
Pfeiffer et al. 2001, Westerhoff et al. 1983, Wilken et al. 2021). FBA-predicted growth yields for
marine organisms have been used to study how these trade-offs enable a bacterium to thrive in ex-
tremely saline environments where growth occurs in blooms (Gonzalez et al. 2008) and uncovered
the optimality behind seemingly wasteful processes, such as photorespiration (Knoop et al. 2010).
Studies about growth yield have also guided the industrial cultivation of phytoplankton (Boyle &
Morgan 2009, He et al. 2015). While the use of FBA to estimate efficiency is generally focused on
microbes, metabolic models of salmon (Zakhartsev et al. 2022) and shrimp (Gao et al. 2021) have
been used to evaluate growth yield on different substrates to evaluate the best feeds to be used in
aquaculture.

In the ecological context, the ratio of carbon remaining in a system to the carbon that enters
that system, known as carbon use efficiency (CUE), is particularly relevant for the study of carbon
storage and the carbon cycle, in both terrestrial and marine environments (Domeignoz-Horta
et al. 2020, Manzoni et al. 2018, Saifuddin et al. 2019). CUE has been calculated from FBA solu-
tions for soil bacteria (Saifuddin et al. 2019), and the same could be done for marine organisms and
extended to predict the CUE of communities and ecosystems. FBA-predicted CUE could be used
to predict the effects of environmental change on carbon storage in the ocean, including through
incorporation in ocean biogeochemical models.

As mentioned above, the efficiency of a given metabolic process depends not only on the stoi-
chiometry itself but also on the cost of operating the corresponding set of enzymes. This cost,
which is related mainly to protein production, can play a significant role in physiological and
evolutionary processes (Dekel & Alon 2005). In FBA, a broadly used strategy to incorporate an
approximate notion of limited internal resources (including proteins) is to impose an upper bound
on the total metabolic flux an organism can support. For example, an upper bound on a weighted
sum of all fluxes (on top of standard FBA constraints) has been used to recapitulate proteome
allocation, induced by limited cellular space (Beg et al. 2007).

A more recent approach, constrained allocation FBA (Mori et al. 2016), specifically addresses
the proteome allocation by separately evaluating the cost of different functional categories, or
sectors (ribosomal, transport, biosynthetic, and housekeeping) (Hui et al. 2015). As before, an
additional constraint is imposed on the weighted sum of all fluxes, but in this case, the proportion
of the proteome allocated to different sectors changes as a function of the growth rate, reflecting
the fact that a higher growth rate will require a larger fraction of ribosomal proteins.

A related but simpler notion of frugal use of resources is at the core of parsimonious FBA (Lewis
et al. 2010). This method, now broadly used, including in salmon (Molversmyr et al. 2023) and
freshwater cyanobacteria (Broddrick et al. 2019), performs a secondary optimization to identify,
among flux solutions with equivalent growth rates, those that minimize total flux.

A completely different avenue for taking into account protein cost in FBA is through the in-
corporation of thermodynamic constraints (Beard et al. 2002, Flamholz et al. 2013, Pandey et al.
2019). This strategy is based on the fundamental notion that a metabolic flux can only proceed
in the direction that dissipates free energy and that reactions close to equilibrium will require in-
creased amounts of protein to support higher flux (Beard et al. 2002). Thermodynamic FBA has
been used successfully (Pandey et al. 2019, Salvy et al. 2019) but has not been broadly adopted
due to the challenge of obtaining free energy differences for each metabolic reaction and to the
elaborate technical implementation. However, it is an exciting area for future development and
a promising strategy for the integration of proteomic and metabolomic data in stoichiometric
models.
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In summary, metabolic efficiency is hugely important to marine metabolism. Practically, effi-
ciency determines yields of biotechnological and aquaculture products, and ecologically, it is one
determinant of carbon storage in the ocean. We anticipate that FBA will continue to be a valuable
tool to advance the understanding of metabolic efficiency.

Environmental Dependence

Many experiments on metabolic processes are conducted in the laboratory under relatively sim-
ple conditions. Natural environments, however, are molecularly complex, variable in time, and
spatially structured. Bridging the gap between these two scenarios constitutes an interesting chal-
lenge and opportunity for flux balance modeling. A key question in marine ecosystems is how an
organism will respond to changes in its environment, including changes in resource availability.
Studying marine organisms’ responses to environmental perturbations is crucial for making more
realistic predictions about the ecological effects of changing ocean conditions (Boyd et al. 2018,
Cavicchioli et al. 2019, Moran et al. 2022, Nguyen et al. 2022). FBA simulations can be used to see
how metabolic fluxes are rewired in response to key environmental parameters such as the sources
and concentrations of inorganic and organic carbon, oxygen, and light.

One notable aspect of CO, and light as environmental sources of energy and carbon is that
phototrophs may not be able to easily control their influx, setting them apart from other envi-
ronmental inputs (e.g., sugars). To address this, Ofaim et al. (2021) imposed specific uptake fluxes
(pushed fluxes) and explored the consequences of these forced environmental inputs for carbon
storage and exudation strategies. These pushed fluxes recapitulated overflow metabolism better
than standard FBA.

For marine organisms, several studies have used FBA to compare growth rates on different
organic carbon sources (e.g., Dufault-Thompson et al. 2017), nitrogen sources (e.g., Goyal et al.
2014), oxygen concentrations (e.g., Shene et al. 2020), and light intensities (e.g., Qian et al. 2017,
Vu et al. 2012). Such studies have been used to address biological questions with relevance to
ecological processes. For example, Dufault-Thompson et al. (2017) used growth rates on different
carbon sources to investigate the metabolic flexibility of the heterotrophic bacterium Shewanella
piezotolerans and highlight the bacterium’s adaptation to the fluctuating organic carbon availability
in the deep sea.

FBA-predicted responses to environmental change can also have ocean-scale implications. For
example, Casey et al. (2022) used variants of FBA to accurately predict metabolic variations in
Prochlorococcus ecotypes along an oceanic transect. They represented each individual strain with a
unique GEM and acclimated the strains to the environmental conditions (temperature, nutrient
concentration, and light spectra) at each transect location by adjusting the cell size, nutrient trans-
porters, pigments, biochemical composition, and metabolic fluxes. The growth rates of the strains
predicted by the GEMs were correlated with the observed abundances of the different strains
along the transect, showing a link from metabolic processes to global-scale processes.

Since conditions are dynamic in natural environments, metabolism must be constantly rewired
and fluxes redirected as needed. One highly studied example of a dynamic environment for ma-
rine organisms is the diel cycle of light availability and its effect on phytoplankton. Saha et al.
(2012) were able to model the diel cycle of Cyanothece 51142 by separately modeling steady states
during light and dark phases. Knies et al. (2015) used a similar approach, handled through opti-
mization over the entire day-night cycle, to model the transfer of storage metabolites in Emziliania
buxleyi. Sarkar et al. (2019) obtained a finer resolution of this cycle by curating 12 time-point-
specific models of the freshwater cyanobacterium Synechocystis PCC 6803 and allowing for the
flow of metabolites across time points, and Reimers et al. (2017) were able to create models along
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Figure 4

Extensions of FBA capable of modeling dynamic and heterogeneous environments. (#) dFBA extends FBA to
estimate environmental changes in biomass and metabolite abundances, while still assuming intracellular
steady state. At every time step, bounds for all uptake fluxes are recalculated using Michaelis—-Menten
equations (applied to the current extracellular metabolite concentrations). Using these bounds, an FBA
calculation is performed to predict metabolite uptake/secretion and biomass fluxes, which in turn are used to
estimate the next expected variation in extracellular molecular concentration. () dFBA has been used to
model the diel cycle of phytoplankton growth, by implementing periodic boundary conditions for light
availability and dynamically tunable storage of glycogen. (¢) Spatiotemporal FBA can simulate a
heterogeneous environment by discretizing the environment into small grid cells that are treated as having a
homogeneous environment inside of them. The concentrations of biomass and metabolites within each grid
cell are calculated using dFBA, and metabolites and biomass can move between grid cells due to diffusion.
Spatiotemporal FBA (e.g., implemented through the COMETS framework) could be used for spatially
explicit simulations of multiple bacteria engaging in cross-feeding (e.g., for microbial communities on a
particle). Abbreviations: COMETS, Computation of Microbial Ecosystems in Time and Space; dFBA,
dynamic flux balance analysis; FBA, flux balance analysis; gDW, grams of dry weight.

a continuous diurnal cycle by explicitly modeling the capacity for catalytic macromolecules (e.g.,
enzymes and ribosomes).

"To perform de novo simulations of dynamic environments, one can use an extension of FBA
called dynamic FBA (dFBA) (Mahadevan etal. 2002). In dFBA, FBA is solved over small time steps,
updating environmental metabolites dynamically based on uptake/secretion fluxes (Figure 44).
This approach is also at the core of Computation of Microbial Ecosystems in Time and Space
(COMETS) (Harcombe et al. 2014), discussed in more detail below. Several studies (Baroukh et al.
2016, Ofaim et al. 2021, Smith et al. 2019, van Tol & Armbrust 2021) have used dFBA to model
phytoplankton metabolism over the diel cycle by modulating the flow of incoming photons over
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time (Figure 4b). One should note that in general, dFBA requires knowledge of kinetic parameters
for uptake reactions in order to translate extracellular concentrations into rates (Figure 44).

The dynamics of metabolism can often depend on the spatial structure of the environment
and modify it (Chacén et al. 2018, Lipsman et al. 2024, Nadell et al. 2016, Pfeiffer et al. 2001).
Some extensions of dFBA have incorporated spatial structure through a discretized space where
dFBA updates the concentrations of metabolites and biomass in each location, and numerical
solutions of partial differential equations are used to model diffusion (Harcombe et al. 2014).
Variants of this approach have been used to study location-dependent interspecies interactions in
synthetic communities (Harcombe et al. 2014), spatial structure of microbial biofilms (Phalak et al.
2016), and microbial diversity in the human gut (van Hoek & Merks 2017). Since its inception as
a framework for spatially structured dFBA, COMETS has continued growing as a collaborative
project that integrates multiple modules, including complex boundary conditions, evolutionary
dynamics, and nonlinear diffusivity (Dukovski et al. 2021). Other approaches to spatially structured
FBA focus instead on agent-based frameworks (Bauer etal. 2017, Borer et al. 2019, Hellweger et al.
2016), offering the opportunity to connect to single-cell experiments but at the same time limiting
the scalability to large populations.

While spatiotemporal FBA has not been explored in much detail for marine organisms, we
envisage that it could have valuable applications in studying particle-associated communities
(Figure 4c) as well as gradients of nutrients in the water column. In the future, the application of
FBA and its extensions in marine ecosystems is poised to tackle more complex scenarios involving
nutrient mixes and spatial structures.

Genetic Perturbations

Genetic perturbations are frequently used to understand how living systems work. Because GEMs
typically include information that ties reactions in the metabolic network to genes, FBA can be
used to study how an organism responds to genetic perturbations. In metabolic engineering, gene
deletions can be prioritized based on FBA phenotype predictions (e.g., OptKnock; Burgard et al.
2003) to help increase yield by rerouting flux toward the production pathways. In phytoplankton
(mostly freshwater species), similar efforts have focused mainly on the production of biodiesel
from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. For example,
Yoshikawa et al. (2015) identified gene deletion targets to maximize the production of ethanol in
Arthrospira platensis NIES-39, and Santos-Merino et al. (2023) did the same for the production of
a-linolenic acid in a freshwater Synechococcus strain. In silico gene knockouts are also a valuable
tool for answering basic research questions about the role of specific genes (Ofaim et al. 2021).
FBA makes it computationally feasible to perform all single-gene deletions in a given organism.
Ahmad et al. (2020a) looked at the distribution of essential genes across the different pathways
of Synechococcus and found that when the bacteria were growing phototrophically, close to half of
all reactions were essential. Klanchui et al. (2012) predicted that TCA cycle genes are essential in
Arthrospira only during phototrophic growth.

When the knockouts across the genome are looked at as a whole, they can also be used to
quantify an organism’s robustness and ask questions about evolutionary adaptation. Casey et al.
(2016) used the lethality of all single-gene deletions to determine that Prochlorococcus marinus
MED#4 has an extremely high proportion of essential metabolic genes, reinforcing the adaptive
gene loss hypothesis for Prochlorococcus. Lavoie et al. (2020) computed all gene knockouts using a
variant of FBA specifically meant to capture the imperfect response to gene deletions [minimiza-
tion of the metabolic adjustment (MOMA); Segre et al. 2002] and showed that a polar diatom
was highly robust to genetic perturbations, likely contributing to the organism’s success in polar
environments.
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Microbial Communities and Multicellular Systems

Metabolism does not end at the cellular membrane but extends to connect each cell to other mem-
bers of a community. FBA approaches have been extended to predict metabolism in a community,
enabling research about community composition and function (Figure 5).

To scale from modeling single microbial species to a microbial community, FBA can be mod-
ified in several ways. The soup-of-enzymes approach combines the metabolic networks for all
community members into a single model, treating the community as a supraorganism (Frioux
et al. 2020, Henry et al. 2016, Klitgord & Segre 2010b) (Figure 5#). This approach can be use-
ful for analyzing environmental interactions and can scale up to complex communities, but it can
obscure individual contributions, and decompartmentalization may affect certain metabolic func-
tions (Klitgord & Segre 2010b). To preserve the identity of each species in a consortium, one
can alternatively combine multiple metabolic networks into a multicompartment model (Henry
et al. 2016, Klitgord & Segre 2010b, Rajala et al. 2022, Stolyar et al. 2007, Zuiiiga et al. 2020)
(Figure 5b). Initial applications of this approach included a model of archaeal-bacterial symbiosis
that mediates the anaerobic oxidation of methane (Stolyar et al. 2007) and a systematic analysis
of many pairs of microbes demonstrating how nutrients could induce and modulate cross-feeding
(Klitgord & Segre 2010a). A detailed comparison of single- and multicompartment approaches
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has been done using a simple marine community with a cyanobacterium and a heterotrophic bac-
terium (Henry et al. 2016). While standard multicompartment approaches do not lend themselves
to predicting taxonomic abundances and ecological dynamics, variants have been proposed to ef-
fectively address this limitation, e.g., by using multilevel optimization (e.g., OptCom) (Zomorrodi
& Maranas 2012) or nonlinear optimization (community FBA) (Khandelwal et al. 2013).

dFBA (Figure 5¢) offers an opportunity to simultaneously address the issues of abundance pre-
diction and ecosystem-level objectives in a straightforward and elegant way. Because dFBA updates
the external metabolite concentrations, it allows for multiple organisms to exchange metabolites
via a shared external environment, and it provides insight into the specific molecules expected to
mediate competition or cross-feeding (Harcombe et al. 2014). Moreover, in a dFBA simulation of
a community, one can assume that multiple species are all concurrently pursuing their own ob-
jective function, and ecosystem-level behavior is an emergent property of the multiple individual
strategies pursued by individual players. Previous studies have highlighted the ability of dFBA to
study community dynamics for artificial (Harcombe et al. 2014) and environmental communi-
ties (Zhuang et al. 2011). This approach has also been applied in marine communities to predict
the relative populations of diazotrophic and phototrophic subtypes of Trichodesmium erythraeum
within a population (Gardner & Boyle 2017). The fact that dFBA can be embedded in three-
dimensional physical space also paves the way for dynamical models of multispecies metabolism
in complex structured environments.

Another ecological question where community-level FBA simulations have the potential to
provide valuable insight is unculturability (Vartoukian et al. 2010). It is important to mention that,
especially when it comes to uncultivated organisms with limited genomic information and poorly
annotated genomes, FBA predictions should be interpreted with extra caution. An interesting
emerging frontier is the reconstruction of GEMs for communities, where gap filling is achieved
for a multicompartment consortium model (Giannari et al. 2021). The mathematical framework
of stoichiometry also offers avenues to address questions related to how community metabolism
supports organisms that cannot survive in axenic cultures, including, e.g., the producibility of
different metabolites from imperfect (non-gap-filled) metabolic reconstructions (including previ-
ously uncultivated TM?7 taxa) (Bernstein et al. 2019), which can be extended to marine bacteria.
An optimization algorithm designed to identify possible strategies for division of labor (Thommes
etal. 2019) could be used to generate hypotheses about the pathway modifications that cause obli-
gate mutualism. Using this algorithm to limit the number of allowed reactions (a form of proteome
cost constraint) in Escherichia coli resulted in a prediction that multiple interacting substrains may
emerge. In some solutions, the resulting metabolic networks displayed incomplete TCA cycles,
similar to what is observed in some marine microbes, notably cyanobacteria (Zhang & Bryant
2011). The interplay between ecology and evolution in shaping cross-feeding can also be ad-
dressed by integrating FBA with game theory, e.g., to ask what rates of exudation may support
evolutionarily stable states (Zomorrodi & Segre 2017).

Justlike a microbial community, the individual cells of a multicellular organism can have differ-
ent metabolic capabilities and interact to support one another. FBA has been abundantly employed
to study metabolism in multicellular eukaryotes, with significant challenges but also exciting op-
portunities for discovery. While in microbial communities it is often assumed that all community
members have an individual objective to grow efficiently, the aim of a cell type or tissue within a
larger organism is not uncontrolled growth (unless it is in a proliferating state). Martins Conde
etal. (2016) reviewed the modeling techniques used for multicellular organisms; for marine organ-
isms, there are generic or tissue-specific models for cod (Hanna et al. 2020), salmon (Molversmyr
et al. 2023, Zakhartsev et al. 2022), and shrimp (Gao et al. 2021), and there has been progress
on a model of a sponge (Watson et al. 2014). These models have been used to optimize feeding
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for aquaculture (Gao et al. 2021, Zakhartsev et al. 2022), and models of organisms such as corals,
sponges, or mangroves and their associated microbiomes could aid ecosystem restoration efforts.

THE FUTURE OF FLUX BALANCE ANALYSIS AND HOW IT WILL
IMPACT OCEAN SCIENCE

FBA and related methods for metabolic network reconstruction and flux prediction constitute
a rich and constantly expanding field. Genome-scale reconstructions of metabolic networks
will likely continue playing an important role as a mathematically tractable formalization of
organism-specific biochemical knowledge, and novel phenotype prediction methods are bound
to be developed. It is unclear exactly what the future of FBA modeling may look like, as new
algorithms and techniques may come from unexpected directions and research fields, including
physics, economics, and data science.

An obvious question moving forward is what role mechanistic models like FBA will play in
a world that is increasingly swept by data-driven approaches, such as AI/ML. We expect that
both will be important for modeling metabolism and that the two paradigms will display in-
creased synergy in the future. In certain circumstances, data-driven statistical models may be
extremely powerful and practically useful. For example, harmful algal blooms were successfully
predicted using ML models based on water temperature, nitrogen, phosphorus, nutrients, or ocean
color as input features (Hill et al. 2020). However, it is not obvious how such statistical models
would perform when the conditions are significantly different from the data that were used to
train the model, including upon extreme environmental perturbations or newly arising pollutants
and invading species. Conversely, mechanistic models use biologically interpretable mathematical
formulations of the understood cause-and-effect relationships, enabling extrapolation to new con-
ditions. For example, mechanistic (FBA) models of harmful algal bloom metabolism could help
us understand interactions between community members and predict the effects of possible inter-
vention strategies. Because of these advantages, we expect that mechanistic models of metabolism,
like FBA, will continue to be useful for many applications.

However, it is also likely that exciting opportunities will arise from combinations of FBA with
AI/ML approaches, which may take several shapes and be advantageous in different research areas.
One part of the FBA modeling pipeline where AI/ML approaches will likely have a large effect
in the near future is in the creation and curation of GEMs. Metabolic network reconstruction is
currently a laborious process, with many steps, each of which loses information. Potential future
advances in network reconstruction may include the use of Bayesian approaches able to explicitly
incorporate uncertainty into each of these steps (Bernstein et al. 2021), increased usage of high-
throughput phenotype measurements in parallel to the genome, or the use of Al approaches to
infer metabolic networks from genomes in a single step (Figure 64). Until these stages are reached,
however, manual curation is still likely to play an important role, especially in efforts where high
accuracy of an individual model is required.

AI/ML approaches may also be used to augment the phenotype prediction capabilities of FBA-
related algorithms. Recent work has started to explore different avenues to integrate FBA and
ML (reviewed in Sahu et al. 2021). For example, ML could be used to translate regulatory data
or environmental cues (e.g., through a neural network) into lower and upper bounds to exchange
or intracellular fluxes as an input to FBA (M. Kim et al. 2016) (Figure 6b), to help explore large
spaces of environmental conditions and organism assortments for microbial consortium engineer-
ing (Pacheco & Segre 2021), or to extract features from FBA simulation results (Vijayakumar et al.
2020). It is conceivable that increased availability of flux measurements across different microbial
species will gradually enable the rise of hybrid models that can learn patterns of metabolic activities
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Figure 6 (Figure appears on preceding page)

Possible future directions for the field of FBA modeling. (#) Metabolic network reconstruction is currently a
multistep process (gray arrows). In the future, network reconstruction could be further developed by
incorporating uncertainty into each step of the process, resulting in ensembles of GEMs and flux predictions
as well as better integration of high-throughput phenotype data. This integration could include the use of Al
techniques (such as large language models) to generate a GEM from a genome and phenotype data or from
the genome alone. () FBA can be integrated with AI/ML techniques to create hybrid models (e.g., using
neural networks to set reaction bounds). (¢) FBA is integrated with other mechanistic models to create
multiscale models. FBA may be connected to processes occurring at a smaller scale (e.g., detailed models of
single reactions and their regulation) or at a larger scale (e.g., ocean biogeochemical models, where FBA
could replace the parameterizations of microbial behavior). (d) While FBA models are generally built at
genome-scale detail, ongoing efforts to apply the models to larger communities may require the creation of
coarse-grained networks that only capture fundamental effective fluxes, sacrificing complete mechanistic
details for feasibility. With their simple input—output relationship (right subpanel) consumer-resource models
can be viewed as drastically coarse-grained but highly scalable versions of microbial metabolic dynamics.
Abbreviations: Al, artificial intelligence; EC, Enzyme Commission; FBA, flux balance analysis; GEM,
genome-scale metabolic model; ML, machine learning.

under different conditions, while taking into account the unavoidable constraints of stoichiometry
(Faure et al. 2023).

We anticipate that FBA will also continue to evolve to address more complex and ecologically
relevant questions in marine environments. Toward this goal, it will be beneficial to connect FBA
to other modeling techniques, creating multiscale models that can extend the scope of simula-
tions to either finer details or larger scales (Figure 6c¢). This type of integration would require
methods to interface the inputs and outputs of the different modeling techniques to allow them
to communicate with each other (Agmon et al. 2022). For ocean scientists, future multiscale
ocean biogeochemical models could call specific mechanistic models to obtain relevant microbial
metabolic rates rather than using parameterizations of microbial function.

Multiscale modeling will be particularly important for understanding the role of microbial
metabolism in large ecosystems. For these applications, it may become necessary to coarse-grain
metabolic models of microbial communities to effectively capture metabolic diversity without
having to know and simulate all details of each individual species (Figure 64). Finding the cor-
rect level of coarse-graining will be important to balance model accuracy with model feasibility
(Lennon etal. 2024). Some potential strategies for coarse-graining would be to group related taxa
or capture only the metabolic processes that are essential for larger scale cycling. An interesting
avenue might be to explore the continuum of detail between dFBA and consumer—resource mod-
els (Figure 5d). Conceptually, consumer-resource models are very similar to dFBA, except that
different species are defined by fixed input-output relationships encoded in a matrix rather than
by full metabolic networks (Goldford et al. 2018, Marsland et al. 2020). Possible intermediate lev-
els between FBA/dFBA and consumer-resource models, such as mechanistic microbial ecosystem
models (Mayerhofer et al. 2021), have barely been explored and may serve as valuable effective
models for future environmental applications.

The field of metabolic network modeling and many of the variants and extensions of FBA
are rapidly evolving and finding applications in multiple research areas, including marine biology
and ecology. Some of the tools and examples mentioned above demonstrate the applicability
of metabolic modeling for understanding and responding to challenges in sustainable ocean
management. As shown in Table 1, FBA techniques can be directly relevant to the critical ocean
management challenges defined by the United Nations Decade of Ocean Science for Sustainable
Development for 2021-2030 (UNESCO-IOC 2021). The practical usability of models for
accurate forecasts and informed decision-making at the ecosystem level will require increased
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Table 1 Published and potential uses of FBA relevant to the United Nations Decade of Ocean Science for Sustainable

Development Challenges

# Challenge Published and potential uses of FBA
1 Understand and beat marine Guide metabolic engineering efforts in microbes for plastic degradation (Lewis et al.
pollution 2020) and bioplastic production (Pardelha et al. 2012, Testa et al. 2021)
Assess the effectiveness of bioremediation strategies on pollutants accumulated in
higher-trophic-level organisms by coupling FBA of a bioremediating microorganism
with a food web bioaccumulation model (Taffi et al. 2014)
2 Protect and restore ecosystems Profile the metabolic interactions of microbes in mangrove sediments (Du et al. 2022)
and biodiversity Characterize the effects of microbial communities and their biophysical
microenvironments on the attachment and metamorphosis of coral larvae
Develop bioremediation techniques that can prevent or ameliorate dead zones
3 Sustainably feed the global Determine sustainable commercial feeds for salmon aquaculture that supplement
population amino acids in plant- and insect-based feeds (Zakhartsev et al. 2022)
Discover vaccine targets for Piscirickettsia salmonis (a pathogen affecting farmed
salmon) (Fuentealba et al. 2017)
Analyze the nutritional requirements of commercial shrimp varieties and suggest
modifications to feed to increase growth yield (Gao et al. 2021)
Guide cost-effective drug targeting and discovery against Vibrio vulnificus (a human
pathogen causing skin infections and foodborne illness) (Kim et al. 2011)
4 Develop a sustainable and Guide metabolic engineering efforts for the production of native and heterologous
equitable ocean economy products in marine and freshwater phytoplankton (Ahmad et al. 2020a; He et al. 2015;
Japhalekar et al. 2022; Vu et al. 2013; Yoshikawa et al. 2015, 2017)
Model microbially induced corrosion of steel in the deep sea (Rajala et al. 2022)
Elucidate the metabolic pathways of microorganisms that contribute to biocorrosion
and rationally engineer protective biofilms that can prevent corrosion
Predict how mining might disrupt essential metabolic processes of microbial
communities present at deep-sea mining sites
5 Unlock ocean-based solutions Probe the carbon storage capabilities and ecological effects of macroalgae cultivation
to climate change and deep ocean sinking
Probe the carbon storage capabilities and ecological effects of iron fertilization
6 Increase community resilience Develop better harmful algal bloom forecasts and mitigation strategies based on a
to ocean hazards mechanistic understanding of bloom-causing organisms
7 Expand the Global Ocean Identify critical metabolic pathways for monitoring
Observing System Use flux predictions across large spatial and temporal scales to guide path planning
and adaptive sampling of biological observations
8 Create a digital representation Analyze how gradients of nutritional constraints modulate metabolic reactions for
of the ocean phytoplankton across the global ocean (Regimbeau et al. 2023)
Enhance the representation of biological processes in ocean and Earth system models
by using FBA to predict key biological rates within a multiscale model
9 Skills, knowledge, and Ensure that core tools for metabolic modeling are free and open source
technology for all Ensure that previously reconstructed and curated GEMs are findable and accessible
via databases (e.g., BiIGG and KBase)
Develop more free and accessible materials to train those who are interested in FBA
10 Change humanity’s relationship Use metabolic modeling to help scientists, policymakers, and citizens appreciate the

with the ocean

role of cellular metabolism and quantitative science in restoring and maintaining
ocean health

Abbreviations: FBA, flux balance analysis; GEM, genome-scale metabolic model.
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efforts toward the advancement of new frontiers, including hybrid mechanistic/statistical learning
approaches and integrated multiscale simulations, catalyzed by continued collaborations between
experimental and theoretical scientists.

1. Improvements are needed in automated curation and testing of genome-scale metabolic
models based on phenotypic data under diverse environments and perturbations. This
will benefit from improved standardization and accessibility of datasets.

2. Multiscale models should be generated that assume steady state, as in flux balance analysis
(FBA), but incorporate elements of kinetics, e.g., when regulation of specific enzymes
is essential for accurate prediction or when cell numbers are small and environmental
fluctuations matter.

3. FBA models should be connected to larger-scale models, particularly Earth system
models. Multiscale models, in this case, could solve ordinary differential equations for
large-scale processes and call specific FBA models to obtain relevant microbial metabolic
rates.

4. FBA and dynamic FBA models should be augmented with specific metabolic pro-
cesses that happen extracellularly, including microbial death and degradation of biomass,
extracellular enzyme activity, generation, decay, and metabolization of organic matter.

5. Variants of FBA should be explored that are able to incorporate the effects of
environmental conditions such as temperature and pH on metabolic flux.

6. Artificial intelligence and machine learning, as well as available datasets, should be
used to complement knowledge missing from FBA. This knowledge could range from
regulatory interactions to protein structure and sensing/signaling networks.
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