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ABSTRACT: Several new methods are proposed that can diagnose the interscale transfer (or spectral flux) of kinetic en-
ergy (KE) and other properties in oceanic and broader geophysical systems, using integrals of advective structure functions
and Bessel functions (herein “Bessel methods”). The utility of the Bessel methods is evaluated using simulations of aniso-
tropic flow within two-dimensional (2D), surface quasigeostrophic (SQG), and two-layer QG systems. The Bessel methods
diagnose various spectral fluxes within all of these systems, even under strong anisotropy and complex dynamics (e.g., mul-
tiple cascaded variables, coincident and opposing spectral fluxes, and nonstationary systems). In 2D turbulence, the Bessel
methods capture the inverse KE cascade at large scales and the downscale enstrophy cascade (and associated downscale
energy flux) at small scales. In SQG turbulence, the Bessel methods capture the downscale buoyancy variance cascade and
the coincident upscale wavenumber-dependent KE flux. In QG turbulence, the Bessel methods capture the upscale kinetic
energy flux. It is shown that these Bessel methods can be applied to data with limited extent or resolution, provided the
scales of interest are captured by the range of separation distances. The Bessel methods are shown to have several advan-
tages over other flux-estimation methods, including the ability to diagnose downscale energy cascades and to identify sharp
transition scales. Analogous Bessel methods are also discussed for third-order structure functions, along with some caveats
due to boundary terms.

SIGNIFICANCE STATEMENT: Big ocean eddies play an important role in Earth’s energy cycle by moving energy
to both larger and smaller scales, but it is difficult to measure these “eddy energy fluxes” from oceanic observations.
We develop a new method to estimate eddy energy fluxes that utilizes spatial differences between pairs of points and
can be applied to various ocean data. This new method accurately diagnoses key eddy energy flux properties, as we
demonstrate using idealized numerical simulations of various large-scale ocean systems.
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1. Introduction that mesoscale turbulence could move energy to both larger
and smaller scales (Balwada et al. 2022).

The primary goal of this manuscript’s work is to better esti-
mate 2D spectral fluxes of energy IT at different scales, in ad-
dition to the fluxes of other scalar halved variances Hi:

Various processes supply energy to the ocean and much
of this energy passes through mesoscale (10-500 km) eddies,
which are quasi-two-dimensional (quasi-2D) turbulent mo-
tions ubiquitous across the global ocean (Chelton et al.
2011). The energy cycle, which describes how energy moves
between scales (via spectral fluxes) or locations (via spatial
fluxes), and the resultant fate of the ocean’s energy have im-
plications for the large-scale circulation and Earth’s broader
climate (Klein et al. 2019; Hewitt et al. 2022). Recent and
future technological advances will enable us to explore
ocean mesoscale dynamics and the energy cycle at an un-
precedented scale through in situ measurements (Johnson
et al. 2022), remote sensing (Morrow et al. 2023), and meso-
scale-resolving numerical models (Silvestri et al. 2025).
However, it is generally not possible to directly measure
mesoscale spectral fluxes of energy fluxes from observa-
tions. Theoretically, quasi-2D turbulence is characterized
by an inverse cascade of kinetic energy to larger scales
(Boffetta and Ecke 2012), but recent observations suggest

I = —ﬁKZKReru‘* -u- Vuldkdl,
me = - j%ngKRef(;*u Vb]dkdl. 1)

Here, k = (k, [) is the 2D wavenumber vector; k = Vk? + 2 is
the wavenumber magnitude; u is the 2D velocity vector; ¢ is a
generic scalar field; the hat and * symbols denote a Fourier
transform and complex conjugate, respectively; and K is the
wavenumber (scale) at which the calculated flux is occurring.
The challenges of calculating the above flux and associated
Fourier transforms from realistic or complex datasets, due to ir-
regular or nonperiodic data, have led to the development of
other statistical tools to estimate these fluxes from oceanographic
and geophysical data. These methods include coarse graining
(Aluie et al. 2018), temporal spectral analysis (Arbic et al. 2012),
and structure functions (Kolmogorov 1941; Lindborg 1999).
Here, we will focus on structure functions, which are constructed
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SF; ;1 = W’ ?2)
SFLuu = m7 (3)
SF,, = u(du- du), ()
SF ,, = u-S8A,, where A, = (u-V)u. (5)

Here, 8¢ = [¢p(x + r) — ¢(x)] represents the spatial differ-
ence in ¢, r represents the separation vector, u, =u-r is the
longitudinal velocity component withr = r/[r|, and the over-
line represents an average over positions X, time, and/or en-
semble. The first three relations [Egs. (2)-(4)] define several
types of third-order velocity structure functions that have
been used to study turbulent flows (Lindborg 1999; Deusebio
et al. 2014; Pearson et al. 2020; Balwada et al. 2022). The final
relation [Eq. (5)] defines the advective velocity structure func-
tion SF ,, introduced by Pearson et al. (2021). In contrast to
the other structure functions above, SF ,, is a second-order
structure function (SF) (it only contains two & terms) and it
contains a local derivative of the flow field. As a result, SF ,,
provides statistical benefits and poses diagnostic challenges
compared to the other SFs (Pearson et al. 2021).

Estimates of Il from third-order velocity structure func-
tions typically use “inertial-range (IR) methods” which as-
sume the generic form:

SFr"

I ~ > (©)

where a and n are constants that depend on the specific struc-
ture function being utilized. For example, [T} ~ SF, Lr_l/2 or
% ~ SF, , ;¥ 1/(3/2) (Lindborg 1999). This form can be in-
ferred from the properties of the Navier-Stokes equations,
but its derivation requires assumptions including, as IR termi-
nology suggests, the presence of an inertial cascade (i.e., Ik is
the constant across a wide-enough range of scales around
r = |r|) and isotropy of the turbulent flow. The IR method
fails to estimate Iy accurately when turbulence is anisotropic
(Pearson et al. 2021).

The advective velocity structure function SF ,, can also be
used to estimate ITy in 2D turbulence through the IR method
(ITg ~ SF ,,/2), even when the flow is highly anisotropic
(Pearson et al. 2021). Pearson et al. (2021) demonstrated sev-
eral statistical and practical advantages of advective structure
functions, over their third-order counterparts, for estimating
the upscale flux of kinetic energy Il% and the downscale flux
of enstrophy Iy in anisotropic 2D turbulence, using the IR
method. However, these advective structure function methods
are still not able to quantify several important aspects of
quasi-2D flows as we will demonstrate.

Xie and Biihler (2018) proposed an alternative method to re-
late ITy and third-order structure functions through the integra-
tion of structure functions and Bessel functions. This method
has been used to infer information about IT%, from ocean drifter
data (Balwada et al. 2022) and within simulated 2D magnetohy-
drodynamical turbulence with upscale and downscale energy
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transfer (Xie and Biihler 2019). In this study, we present a new
“Bessel method” for diagnosing spectral fluxes in quasi-2D tur-
bulence through integration of advective structure functions
and Bessel functions. We demonstrate the utility of this Bessel
method for several anisotropic quasi-2D systems relevant to
large-scale ocean dynamics, spanning 2D, surface quasigeo-
strophic (SQG), and multilayer QG turbulence, and contrast
against other common flux-estimation methods.

2. Methods
a. Geophysical (quasi-2D) turbulence

In this study, numerical simulations of three distinct quasi-
2D systems are used to explore a new method for diagnosing
various spectral fluxes in geophysical turbulence. These sys-
tems are 2D turbulence, SQG turbulence, and two-layer QG
turbulence. In all of these systems, there is an incompressible
velocity field w = (1, v) = (—d,, ) described by a stream-
function ¢, and the evolution of the system is described
through a prognostic equation for a single, dynamically im-
portant scalar that is also a function of the streamfunction (in
the QG case, there is one scalar for each layer). All these sys-
tems also include a 3 effect to create anisotropic dynamics,
forcing F to supply energy, and damping D to remove energy.
Here, we summarize the governing dynamics of the three sys-
tems to set up the new methods. The details of the simulation
parameters are described in section 2f:

The 2D system is simulated by evolving vorticity w =
V2 =7-(V X u),

9
£+u-Vw+vl32d=D2d+F2d. @)

In this system, an “inverse” cascade of energy to larger
scales and a “downscale” cascade of enstrophy (1 = w?*/2) to
smaller scales are expected (Kraichnan 1967; Boffetta and

Ecke 2012).
The SQG system is simulated by evolving a surface buoy-
ancy field b = —d ¢ under the assumption of zero interior po-

tential vorticity (¢ = o + 8% = 0):

ab
S Wb =D+ F ®)

In this system, we expect a downscale cascade of buoyancy
variance to smaller scales, alongside an upscale flux of energy
that increases at larger scales (Capet et al. 2008).

The two-layer QG system is simulated by evolving the po-
tential vorticity of each layer (Salmon 1980; Smith and Vallis
2002):

%-i-u,-Vq.-i-u.B =D .+F . O]
ot i i iPqg qgi qgi

Here, the potential vorticity of the top (i = 1) and bottom
(i = 2) layers is given by g1, = w12 + I'12(¥21 — ¢12), where
I'; is described in section 2f. In this system, the total energy is
conserved (Vallis 2006), but this energy can be transferred be-
tween kinetic energy and potential energy through variations
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in the layer interface height. In the following analyses, we will
explore spectral fluxes of dynamical quantities: kinetic energy,
potential enstrophy (¢*/2), and enstrophy (w?>/2).

The momentum and the above evolved variables are re-
lated through the streamfunction, with distinct relations for
the 2D, SQG, and QG systems. However, in all these systems,
the momentum budget takes the form:

ou .

o + (u- V)u = other physics, (10)
where momentum is advected in space, and there are addi-
tional physics that vary between systems (e.g., Vallis 2006;
Capet et al. 2008; Boffetta and Ecke 2012). The presence of
the advective term in Eq. (10) [and Egs. (7)—(9)] enables the
use of advective structure functions to diagnose spectral fluxes
of kinetic energy (and scalar variances) in all of these systems,
as we discuss in the next section.

b. Diagnosing spectral fluxes from structure functions
SPECTRAL FLUXES OF KINETIC ENERGY

The budget for the two-dimensional kinetic energy spec-
trum (E, = Tl*/2) at a particular wavenumber k| = K follows
from the momentum budget [Eq. (10)] for the 2D, SQG, and
QG systems as

oE, l,\ au 1 8u* P .
K = = + U — = — < (u- +
o TR T Re{u - (u-V)u} + other physics,

Ty

(1)

where the other physics details do not matter for the following
derivations but can include sinks of energy (dissipation), sour-
ces of energy (forcing), and transfers between energy reser-
voirs (in the SQG and QG systems).

The first term on the right-hand side of Eq. (11) is often
called the transfer function Tk, and it describes how energy
is moved between wavenumbers by nonlinear dynamics.
It can be related to the spectral flux of energy via
i = [[ _ (T.dkdl = =[] _ T.dkdl (Boffetta and Ecke 2012;
Pearson et al. 2021; Zhang et al. 2024). The transfer function is
also related to structure functions via the Karman-Howarth—
Monin (KHM) equation which allows us to express

1 —

Ty = ESFAM =-V-SF,_. (12)

where the first equivalence mirrors the advective term that

provides the source of Tk, while the second equivalence fol-
lows under incompressible conditions (Frisch 1995).

The above transfer function relations allow the spectral
flux to be expressed via an integral of the advective struc-
ture function over the smallest wavenumbers (k < K) or
equivalently an integral over all wavenumbers of the prod-
uct between the advective structure function and the Heavi-
side function H:

. = —%J SF, H(K — w)dkdl. (13)
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Using the Plancherel theorem, this can be converted to an ex-
pression relating the energy flux to a real-space integral in-
volving the advective structure function and a Bessel function
of the first kind (see appendix A for derivation):

K~
m = ——>
K 47 J()

where J, represents the nth Bessel function of the first kind,
and we introduce a short-hand notation for the angle-averaged
advective structure function at each separation distance

SFAu Au (}’) FAu(r)dG/Z‘IT .

Eq. (14), there is no need to assume isotropy of the flow or its

2
. SF ,,(r)d6é

K ("=
- L SF ./, (Kr)dr

(14)

J,(Kr)dr =

Importantly, in deriving

statistics [e.g., we did not assume SF,, (r) = Au(r) for all sepa-
ration directions]. Similar angle-averaged third-order structure
functions have been considered previously (e.g., Lindborg 1996;
Nie and Tanveer 1999). Pearson et al. (2021) demonstrated that
advective structure functions show less angular variation than
third-order structure functions in anisotropic 2D turbulence,
suggesting that data from a single (or limited) direction may still
be useful for this method.

This angular invariance of the advective structure functions
was attributed to its flux-estimate derivation not requiring an
assumption of isotropy, in contrast to analogous third-order
relations. Another source of statistical isotropy could be com-
pensation between the variations of velocity gradients within
SF,,,, which was shown to reduce the temporal intermittency
of SF,, in 2D turbulence (Pearson et al. 2021). Although tur-
bulent velocity gradients display intermittency, the different
gradients and their fluctuations are coupled through incom-
pressibility and vorticity constraints in 2D turbulence (Pearson
et al. 2021). The isotropy of SF,, could be system dependent
and may change, for example, if there is 2D compressibility
(SQG) or potential vorticity dynamics (two-layer QG).

As we will show in the present paper, this new relation
can be used to diagnose the spectral flux IT} from measure-
ments of the advective structure function, even when fluid
flow is anisotropic and Il varies with K. Equation (14) for
the advective velocity structure function is analogous to two
relations presented by Xie and Biihler (2018) for the third-
order velocity structure functions SF;,,, and SF;;; in 2D
turbulence under the assumption of isotropic flow statistics
and incompressibility:

(15)

uul.

Iy = ——J SFLWJ (Kr)dr — ¢

(16)

K" =
= ﬁﬁjo SE, 1 J5(Knyrdr = &, = &1
where ¢ terms represent the functions that arise from integration
by parts (see appendix B for details). The Xie and Biihler (2018)
relations neglect the ¢ terms in Egs. (15) and (16), although these
terms typically do not vanish and can result in noisy estimates of
IT%, even in idealized simulations (appendix B). Relations for
SF; .. analogous to Eq. (15) have been used to estimate energy
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flux rates within the upper ocean using drifter observations
(Balwada et al. 2022).

c. Spectral fluxes of enstrophy

In 2D turbulence, there is also a downscale cascade of ens-
trophy 1 = (1/2)w?. Following Eq. (7), an equation for the
enstrophy power spectrum can be derived that is analogous to
Eq. (11). Similarly, the spectral flux of enstrophy Il can be
expressed in terms of the advective vorticity structure func-
tion SF, = dwd A (where A =u-Vo):

e = —?L SF ,J, (Kr)dr. 17)

Integrating by parts and using relations between structure
functions SF, = V-SF = —~V2SF . (Where both relations
require horizontal incompressibility), we also find

3 e
m = EJ SF | 5(Kn) — iJZ(Kr)]dr +&,. (18)
2 Jo o Kr "
K (" =~
== SF . ,(Krdr — & .., (19)

where the £” terms are analogous to the £ terms introduced in
Egs. (15) and (16).

d. Spectral fluxes in quasigeostrophic systems

In quasigeostrophic flows, kinetic energy cycles are still im-
portant, but other important cascades can also develop. Gen-
erally, we can construct relations between spectral fluxes and
advective structure functions for any advected flow property,
but we will focus on the governing variables in each system,
surface buoyancy [SQG; Eq. (8)], and potential vorticity [QG;
Eq. (9)]. These relations are direct analogies to the energy
and enstrophy relations [Egs. (14) and (17)], but we shall state
them below for clarity.

In SQG turbulence, surface buoyancy variance (divided by
two, for consistency with energy and enstrophy) is cascaded to
small scales by a spectral flux (H],’() which can be diagnosed by

K ("=
Iy = -3 L SF ,,J,(Kr)dr. (20)
In QG turbulence, there is a downscale cascade of potential
enstrophy (¢*/2; where ¢ is the potential vorticity). The spec-
tral flux of potential enstrophy can be estimated as

q K ("=
= — L SF ,,J, (Kn)dr. 1)

It is common to only measure dynamical information at the
ocean surface, in which case g cannot be diagnosed since it de-
pends on the streamfunction in multiple layers. In this case, it
is still useful to explore the vorticity (w), and the associated
spectral flux of enstrophy (IIg) which could be estimated
through Egs. (17) and (18), analogous to 2D turbulence. Note
that it is also common to use the terms enstrophy [(1/2)¢?] and
relative enstrophy [(1/2)w?] in QG turbulence (e.g., Vallis 2006),
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but here we use the terms potential enstrophy [(1/2)¢?] and ens-
trophy [(1/2)w?] to draw parallels with 2D turbulence and to
avoid confusion.

e. Implications for IR methods of structure
function analysis

Traditionally, structure functions (defined in r space) have
been used to estimate spectral fluxes (defined in K space)
through IR methods that use proportionality relations. The
Bessel method relations between structure functions and
spectral fluxes derived above can provide some insight into
the appropriate remapping from r space to K space for the
structure function proportionality methods. Note that the fol-
lowing discussion does not present an exact or direct remap-
ping, since the Bessel method relies on integrals of products,
but is intended to provide insight into the appropriate ways to
contrast and interpret information from IR methods using dif-
ferent structure functions.

The new Bessel methods in Eqgs. (14)-(21) involve integrals
of the product of structure functions and Bessel functions.
These Bessel functions are oscillatory and decay (Fig. A1), so
the integrals at a given wavenumber K provide the greatest
weight to the structure function located at the first peak of the
Bessel function (rpeak = Zpeax/K). The location of this maxi-
mum value moves to larger z (or Kr) for higher-order Bessel
functions, which indicates that the factor used in r —» K re-
mapping should depend on the structure function being used
and the flux being diagnosed, since these affect the convolved
Bessel function. Specifically, the maxima of J,(z), J(z), and
J3(z) occur at approximately Zpeak = Krpeak = 2, 3.1, and 4.3,
respectively (Fig. Al). This suggests that IR method relations
utilizing J; should map as SF(r) — Flux(K =~ 2/r) (energy flux
from SF , ; enstrophy flux from SF, ; etc.). Similarly, rela-
tions using J, should map as SF(r) - Flux(K ~ 3.1/r) (energy
flux from SF,,;; enstrophy flux from SF,,;; etc.), and rela-
tions using r/5(r) should map as SF(r) — Flux(K ~ 4.6/r) (en-
ergy flux from SF;;;). Similar relations can be derived for
more general functions, such as that in Eq. (18) which results
in SF(r) —» Flux(K =~ 1.5/r). Analogous mapping relations
have been discussed previously, for example, in section 6 of
Davidson (2004).

It is also interesting to note the contrast between Bessel
functions, which decay as (Kr)~'? as Kr — « (Abramowitz
and Stegun 1948), and cosine transforms, which are global
(they do not decay for large values). This distinction suggests
that structure—function relations for two-dimensional datasets
[which utilize Bessel functions; Egs. (14)—(21)] are relatively
local compared to the cosine-transform-based relations that
arise for one-dimensional datasets [e.g., Webb (1964) or ap-
pendix A of McCaffrey et al. (2015)].

f- Simulation details

All the following simulations were conducted with Geophysi-
calFlows (Constantinou et al. 2021), a Julia-based package for
simulating various idealized geophysical systems via pseudo-
spectral methods. All simulations were conducted in periodic
square domains of width 27 (all variables are nondimensional),
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Vorticity Buoyancy Potential Vorticity

FIG. 1. Flow field from the final snapshot of each simulation. (left) Vorticity w in 2D turbulence. (center) Buoyancy b in SQG turbulence.
(right) QG potential vorticity g in the upper layer of two-layer QG turbulence.

with either 2048 X 2048 (2D) or 512 X 512 (QG and SQG)
evenly spaced grid points, and are made anisotropic through
the inclusion of B terms representing the background vorticity
gradient (2D and QG turbulence) or background buoyancy
gradient (SQG turbulence).

The simulated 2D turbulence creates a turbulent flow with
zonal jets of alternating-signed vorticity (Fig. 1a). This simula-
tion is forced within a narrow wavenumber band centered at
K; = 100, and dissipated via hyperviscosity at small scale, and
by hypoviscosity at large scales (Drg = — vVio + uV 2w,
where v = 1072 and w = 0.044). This creates an inverse en-
ergy cascade below Ky and a downscale enstrophy cascade
above Ky (see Fig. 3). The anisotropy of the simulation is cre-
ated through B,q = 10. The presence of B,4 essentially makes
this 2D system geophysically equivalent to a QG system with
an infinite deformation radius. The analysis below utilizes 60
flow snapshots spread over several eddy turnover times once
the system reaches forced-dissipative equilibrium. The 2D sim-
ulations are described in more detail in Pearson et al. (2021).

The simulated SQG turbulence also shows strong anisot-
ropy through the creation of zonal jets, with alternating-signed
buoyancy fluctuations (Fig. 1b). This simulation mimics the isotro-
pic system that was simulated and detailed in Capet et al. (2008),
although here we simulate a strongly anisotropic system through
the inclusion of a large-scale buoyancy gradient via By, = 0.5
(Smith et al. 2002; Lapeyre 2017). The forcing is narrowly
centered at wavenumber K; = 7, with hyper- and hypoviscosity
(Dsgg = — vV + uV %b, where v = 107" and u = 0.005).
This produces a turbulent flow that cascades buoyancy variance
to wavenumbers greater than K, with a constant flux, while also
transferring kinetic energy (KE) upscale with a flux that in-
creases with decreasing wavenumber. The SQG system reaches
a forced-dissipative equilibrium, and the analysis utilizes 62 dis-
tinct flow snapshots.

The simulated QG turbulence utilizes a two-layer QG sys-
tem governed by Eq. (9). This simulation creates large eddies
(Fig. 1c) that periodically collapse, reenergizing the flow with
small-scale turbulence which then reorganizes into large eddies
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(Fig. 5). While the snapshot does not look strongly anisotropic,
the flow evolution (not shown) demonstrates that eddy advec-
tion and the flow collapse are anisotropic processes. The inter-
action between the two layers is mediated by the coefficients:

H
r=——. 22
o @2)
Here, (H;, H,) = (0.2, 0.8) are the layer depths, H = H, + H, = 1
is the total depth, and L, = 0.35 is the deformation radius of this
system (Vallis 2006).

The QG simulation has no explicit vorticity forcing (Fge; = 0),
but there is an imposed horizontal velocity jump between the
upper layer (i = 1) and the lower layer (i = 2) which drives bar-
oclinic instability. This velocity jump is imposed through a
mean zonal velocity/streamfunction in each layer s, = U,y with
U, = 0.5 and U, = 0, which also contributes to a mean meridio-
nal potential vorticity gradient in each layer, e.g., I'j|(U; — U,).
Since U; and the gradient of Q; are orthogonal, the mean flow
advection is linear. This introduces anisotropy by mean advec-
tion of the turbulent potential vorticity ¢q; =g, — Q; and
through advection of the mean vorticity gradient by turbulent
velocities. Anisotropy is also induced by a background plane-
tary vorticity gradient 84, = 0.5, resulting in a total mean po-
tential vorticity gradient of, e.g., ale = qu +I',(U, — U,).
Damping is applied through a linear drag within the bottom
layer (Dqg1 = 0 and Dy, = — V). The following analysis
of the QG simulation uses only the fluctuating fields g; and
synthesizes data from 81 distinct flow snapshots following the
initial spinup (Fig. 5a). Note that the QG simulation is con-
ducted for a relatively short nondimensional time duration
[100 vs 3000 (2D) and 30000 (SQG)], which corresponds to its
relatively large (nondimensional) flow speeds.

g Calculating structure functions, spectral fluxes, and
Bessel method integrals

Structure functions and spectral fluxes are calculated through
a combination of FluidSF (Wagner et al. 2024), which is an
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FIG. 2. Directional variation (anisotropy) of the advective velocity SF (SF ,,) in the SQG simulation. (a) 2D maps
of SF,,, time averaged across all snapshots and (b) a comparison between the angle-averaged version SF,, and
SFs calculated in four specific separation directions. The zonal, meridional, and diagonal lines in (a) correspond

to the SFs plotted in (b).

open-source Python package for calculating spatial structure
functions in 1D, 2D, and 3D systems (Wagner et al. 2025, manu-
script submitted to J. Open Source Software), alongside in-
house code (Pearson 2025). For each simulation, spectral
fluxes and structure functions are calculated for several
evenly spaced snapshots of the flow field. In the following
analyses, we compare the time-averaged spectral fluxes
against the fluxes estimated from time-averaged structure
functions.

The new relations presented above [Egs. (14), (17), (18),
(21), and (20)] rely on angle-averaged structure functions
(e.g., Sa‘). However, it is computationally expensive to cal-
culate all possible r orientations in large datasets, and this in-
formation is often not available from oceanic data. In
anisotropic flows, the structure functions are also anisotropic,
as seen in the SQG simulation (Fig. 2a) where the structure
functions are zonally elongated, analogous to the jets that
form in the SQG system (Fig. 1b). This means that using a sin-
gle separation direction to calculate SF,, may not provide an
accurate estimate of SF,, or the spectral fluxes. In the follow-
ing analyses, four distinct structure functions are calculated
for every dataset, each using a different separation (or sam-
pling) direction: x-oriented r = (r, 0), y-oriented r = (0, r),
and two diagonals r = (+/V2, *r/\2), analogous to the 2D
analysis of Pearson et al. (2021). The spectral flux estimates
are averaged over the four sampling directions to approxi-
mate the angle-averaged structure function result, while
avoiding the computationally expensive calculations that arise
from consideration of all possible r orientations. This unidi-
rectional sampling within anisotropic flows also allows us to
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explore how sampling direction affects spectral flux estimates,
which is an important consideration for ocean observations
that are often along specific tracks. In the following analyses,
we show spectral flux estimates derived from the mean of
these four time-averaged structure functions, in addition to
their standard deviation (see, e.g., Fig. 3).

There are also several numerical considerations that are im-
portant for the spatial gradient, spectral flux, and integral
computations. All the numerical simulations use pseudospec-
tral methods, where variables are evolved in Fourier space
and are then Fourier transformed to provide a spatially
gridded dataset. The spectral flux computations [Eq. (1)] are
performed in the natural Fourier space of the system. The
structure functions are computed using the spatial fields. For
advective structure functions, spatial gradients are computed
using a centered difference with a three-point stencil that in-
corporates the closest adjacent grid points. This introduces a
source of numerical error in these calculated gradients, as the
centered difference truncates high-order terms from the pre-
cise, spectrally defined gradients. On a related topic, Pearson
et al. (2021) used the IR method to explore the sensitivity of
advective structure function-based flux estimates to the stencil
width, emulating data that do not resolve the smallest scales
of the turbulent flow. They found that increased stencil width
(lower effective resolution) did not significantly affect the flux
estimates at scales above the new effective resolution. The Bes-
sel method integrations are performed using the cumulative
trapezoidal method, creating another source of numerical error
through the neglect of high-order terms. These numerical sour-
ces of error, combined with the directional subsampling and
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FIG. 3. Estimating spectral fluxes of (left) KE IT} and (right) enstrophy IT% in anisotropic 2D turbulence. Compari-
son of the actual fluxes (black lines), flux estimates derived from the new Bessel methods [other solid lines; Egs. (14),
(17), and (18)], and flux estimates derived from IR methods [dashed lines; Egs. (25) and (26)] or coarse graining
[dotted lines; Egs. (23) and (24)]. The shading around the Bessel method lines shows the standard deviation
across the four sampled separation directions (i.e., uncertainty due to anisotropy of statistics), following the
method described in section 2g. The IR method line here uses a single sampling direction, but all data are shown
in appendix B. The forcing wavenumber is denoted by the vertical dashed black line.

averaging, crudely emulate typical oceanic datasets that sample
a subset of flow field data and contain uncertainties. For this
reason, we do not expect the mathematically precise relation
such as Eq. (14) to hold perfectly in the following analyses. Fu-
ture practice will surely improve on the numerical choices made
here.

h. Coarse graining

To contrast the utility of the new SF methods against other
existing methods, spectral fluxes are also estimated using
coarse graining which is a method that is frequently used to
estimate fluxes from gridded oceanic datasets (e.g., Aluie et al.
2018; Aluie 2019; Garabato et al. 2022; Storer et al. 2022;
Contreras et al. 2023; Storer and Aluie 2023; Delpech et al.
2024). This method relies on the calculation of coarse-grained
scalar fields [generically f,(x)], defined as the convolution of
the original field f and a low-pass filtering kernel G, which in
our case is a top-hat function of width /. Following Aluie et al.
(2018), the downscale flux of energy through the length scale
¢ is then estimated from the correlation between strain and
subfilter stress tensors:

Flux',(6) = —(uul, — ) 2 — ([uv], - um)(ﬂ + aﬂ)

s ax ax  dy
v
- ([UU]/j - Uzvy)a_;- (23)

The coarse-graining method is also used to estimate fluxes
of scalar variances in analogy with the enstrophy flux
method of Rivera et al. (2014) where we can replace o with
b or q:

Fluxg’g(é) = —([uw], - ulw(,)(% = ([vw], — v[w‘,)lm. (24)

ay
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All of the coarse-grained fluxes are a function of length
scale ¢ associated with the filtering kernel. The coarse-
grained fluxes are calculated for 25 length scales ¢, which
are mapped to wavenumber space using a nominal conver-
sion Fluxg’g(é) - H&(K = 71/f). Note we choose not to use
the standard space-to-wavenumber conversion [(27/() — K]
for coarse-graining fluxes to provide the best match with the
Fourier-estimated fluxes, but unlike for structure function
conversions (section 2g), we do not propose a physical justi-
fication for the coarse-graining conversion factor here.

It is important to note that the coarse-graining flux is not
identical to the spectral flux, since coarse graining uses a ker-
nel that is localized in real space, while the spectral flux effec-
tively uses a kernel that is localized in Fourier space (Aluie
et al. 2018). However, given the complete flow data available
in these numerical simulations with doubly periodic boundary
conditions, we anticipate that the coarse-graining and spectral
fluxes should have comparable relative magnitudes and signs
(flux directions) at a given scale. The approximate real-to-
Fourier space remapping means the location of peaks and flux
direction changes may not be perfectly aligned.

3. Results

a. Two-dimensional (2D) turbulence: Spectral fluxes of
energy and enstrophy

In the 2D turbulence simulation, there are several interest-
ing spectral fluxes. At the largest scales or smallest wavenum-
bers (K < Ky = 100), there is an inverse energy cascade
where II% <0 moves energy to larger scales (Fig. 3a). At
smaller scales or larger wavenumbers (K > Kj), there is a
downscale enstrophy cascade where Iy moves enstrophy to
smaller scales (K > Kj; Fig. 3b) and a coincident subdominant
spectral flux of energy to smaller scales (Fig. 3a).
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Equations (14), (17), and (18) accurately capture all of the
fluxes in the 2D turbulence simulation, including the sharp
flux transition at the forcing wavenumber Ky and the down-
scale energy flux at the highest wavenumbers. The enstrophy
cascade can be diagnosed from both the velocity-based advec-
tive structure functions, in addition to its vorticity-based coun-
terpart [Egs. (17) and (18)]. This could be beneficial for
datasets where taking additional gradients of the flow fields is
not desired.

The new Bessel methods [Egs. (14), (17), and (18)] are also
contrasted against IR methods proposed in Pearson et al.
(2021) to estimate fluxes of energy Il and enstrophy ITg:

Il ~ —SF ,./2, (25)
w | —SF /2.
M ~ {251: Wl (26)

in addition to the coarse-graining flux estimates. The Bessel
methods [Egs. (14), (17), and (18)] diagnose the dominant
cascades more accurately than proportional relationships
[Egs. (25) and (26)] and coarse graining [Egs. (23) and (24)].
The Bessel methods also have the benefit that they uniquely
capture the subdominant flux (downscale energy at K > Kj)
and the sharp transition of spectral fluxes at the forcing scale.
It is notable that the Bessel method captures the downscale
(positive) flux at high wavenumbers, despite the advective
structure function being single signed across the wavenumber
range spanning downscale and inverse energy fluxes, as seen
by the IR method (red dashed line in Fig. 3a) being negative
for K > 10. This suggests that the Bessel method integral at
large K is being dominated by the contributions from negative
lobes of the Bessel function for Kr > 1 (Fig. Al), where
SF ,, is increasing with r or equivalently the IR method be-
comes more negative as K decreases.

b. SOG turbulence: Spectral fluxes of kinetic energy and
buoyancy variance

The SQG system has several properties that make it an inter-
esting test for the methods proposed in Egs. (14) and (20). In
SQG turbulence, the power spectrum of kinetic energy E is iden-
tical to the power spectrum of buoyancy variance E% = |’b\|2/2,
which also means the second-order structure functions of ve-
locity du- du and buoyancy 8b8b are identical. However, the
momentum and buoyancy fields, and their tendency equations,
are not identical. The spectral fluxes of the two power spectra
are also different, as seen in their budgets (Capet et al. 2008):

883} — _Re{@(u-V)b}. @
0Lk _ —Re{u (u-V)u} — Re{%} ) (28)
i ———— 0z

I} —related term
Ageostrophic term

where we have neglected forcing, dissipation, and B4, terms
for simplicity. Given that Ef = E x in the SQG system, it
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follows that the right-hand sides of Egs. (27) and (28) must be
identical. Both systems include advection by the surface ve-
locity field u, which creates the spectral fluxes IT% and 1% that
Egs. (14) and (20) aim to diagnose. However, the kinetic en-
ergy budget [Eq. (28)] also contains a term that depends on
the vertical velocity w gradient. In this system, the fluid is in-
compressible and u = (-, i) is a geostrophic (nondiver-
gent) velocity field, so this new term represents the effects of
a horizontally divergent ageostrophic flow. This ageostrophic
flow arises from the vertical derivatives of the streamfunction
via the buoyancy definition and the constraint of zero interior
potential vorticity, and within the SQG system, it only affects
the momentum budget. The ageostrophic term moves kinetic
energy between scales and is comparable in magnitude to the
spectral fluxes, which means that IT% and 1% can be different
(see Fig. 4) despite the equivalence of their underlying power
spectra.

In the SQG simulation, there is a downscale cascade of
(surface) buoyancy variance below the forcing scale (Fig. 4b)
and a coincident upscale flux of kinetic energy toward the
forcing scale that increases closer to the forcing scale
(Fig. 4a). At the smallest scales, there is also a subdomi-
nant downscale flux of energy. The new methods pro-
posed in Egs. (14) and (20) capture the spectral fluxes of
both kinetic energy and buoyancy variance in this system,
including the upscale-to-downscale transition of the ki-
netic energy flux at small scales. These methods are con-
trasted against proportional relationships for the fluxes of
kinetic energy [Eq. (25)] and of buoyancy variance:

Iy ~ —SF /2, (29)
in addition to coarse-graining flux estimates. The propor-
tional relationships and coarse graining provide reasonable
estimates of the spectral fluxes but with less accuracy (mag-
nitude and wavenumber resolution) than the Bessel meth-
ods and without capturing the downscale energy flux at high
wavenumbers.

¢. OG turbulence: Spectral fluxes of kinetic energy,
potential enstrophy, and enstrophy

The QG simulation does not reach a steady equilibrium
state (Fig. 5). The simulation spends most of its time in a state
of decaying kinetic energy, where large-scale, coherent eddies
exist in a sea of small-scale turbulence (e.g., Fig. 5¢). How-
ever, the system periodically collapses into a state of small-
scale turbulence without large, coherent eddies (e.g., Fig. 5b),
followed by a rapid reenergization of the system. This pro-
vides a test of whether the Bessel methods [Egs. (14), (21),
and (17)] can diagnose time-mean spectral fluxes in a tran-
sient/nonstationary system, which is critical for measuring the
time-averaged energy cycle/budgets. In the following analy-
ses, we will compare time-averaged fluxes with estimates from
time-averaged structure functions, and we will confine our
analysis to the top layer of the model, which is analogous to
the systems we are likely to observe at the ocean surface
where most observations are located.
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FIG. 4. Estimating spectral fluxes of (left) KE IIj and (right) buoyancy H’,’< in anisotropic SQG turbulence.
Analogous to Fig. 3 with actual fluxes, flux estimates derived from the new Bessel methods [Egs. (14) and (20)]
and flux estimates derived from IR methods [Egs. (25) and (29)] or coarse graining [Egs. (23) and (24)]. The
forcing wavenumber is denoted by the vertical dashed black line.

At scales larger than the deformation radius (K < k), there
is a spectral flux of kinetic energy to larger scales (Fig. 6a),
while at scales smaller than the deformation radius (K < k),
there is a downscale spectral flux of enstrophy (Fig. 6¢) along-
side a smaller downscale flux of kinetic energy (Fig. 6a). At all
wavenumbers, there is a flux of potential enstrophy I1% to
smaller scales (Fig. 6b). The large-scale (small-K) potential
enstrophy flux is driven by the layer interaction component of
g1 = w; + Ti(y — ), while the smaller-scale I1% is domi-
nated by the enstrophy dynamics based on the similarity of
Figs. 6b and 6c for K >> K, = 27/L,.

The Bessel methods proposed in Egs. (14), (21), (17), and
(18) generally capture the spectral fluxes of kinetic energy,
potential enstrophy, and enstrophy in the QG system. The
main differences are that the potential enstrophy estimates
are slightly larger than the actual flux I1%, and the enstrophy
flux estimate from SF Ao Underestimates the small-scale extent
of the spectral flux of enstrophy IT¢. Both estimates of II%
also erroneously predict a small downscale spectral flux at

3000 [

ot -
——— Upper layer KE
Lower Layer KE

2500 |

— N
a Q
=} S
S =}

Energy per unit depth
g
°

large scales. We compare these methods to the proportional
relations for kinetic energy [Eq. (25)], enstrophy [Eq. (26)],
and potential enstrophy:

1% ~ —SF /2, (30)

in addition to coarse-graining flux estimates. Consistent with
the SQG results, the proportional relationships and coarse
graining provide reasonable estimates of the spectral fluxes in
QG turbulence but with less accuracy (magnitude and wave-
number resolution) than the Bessel methods and without cap-
turing the downscale energy flux at small scales. The exception
is that coarse graining more accurately captures the magnitude
of the downscale potential enstrophy flux, which is overesti-
mated by the structure function-based methods.

Both the Bessel method and the IR method overestimate the
downscale potential enstrophy flux in Fig. 6b. To identify poten-
tial causes of this flux overestimation, the distinct structure func-
tion characteristics and dynamics of potential enstrophy in the
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500 |

-3000
0 Potential Vorticity

-2000  -1000

1
1
1
1
1
1
0

60 80 1
Time

0 i 27
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FIG. 5. Visualizing the nonstationarity of the QG system. (left) Depth-normalized KE within each layer as a function of time, with
dashed lines indicating (center),(right) the time of the potential enstrophy snapshots. The vertical dotted line indicates the earliest snap-

shot used for SF and spectral flux calculations for the QG system.
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FIG. 6. Estimating spectral fluxes of (left) KE Iy, (center) QG potential enstrophy I1%, and (right) enstrophy Il in anisotropic two-
layer QG turbulence. Analogous to Fig. 3 with actual fluxes, flux estimates derived from the new Bessel methods [Egs. (14), (17), (18),
and (21)] and flux estimates derived from IR methods [Egs. (25), (26), and (30)] or coarse graining [Eqs. (23) and (24)]. The deformation

wavenumber K, = 2m/L, is denoted by the vertical dashed black line.

QG system must be discussed and contrasted against the scalar
fluxes in 2D and SQG turbulence which do not show this issue.
First, the potential enstrophy advective structure function is
large at both the small- and large-scale extents of the data (red
dashed line in Fig. 6b). This structure function signal could be
due to the numerical computation of gradients or the pres-
ence of large-scale imposed gradients through B terms. This
behavior is seen at either the small or large scales (but not
both) for the scalars across all systems using the IR method
(red dashed lines): vorticity in 2D turbulence (Fig. 3b)
and buoyancy in SQG turbulence (Fig. 4b). Second, the po-
tential vorticity is a combination of both relative vorticity
and stretching terms in ¢; = o, + I'1(Y» — ), which results
in additional dynamics versus other scalars investigated
through the associated layer interaction and vertical fluxes
that are not explored here. Finally, the extent of the poten-
tial enstrophy spectral flux spans all wavenumbers in con-
trast to the buoyancy and (relative) vorticity fluxes studied
here, which are confined to the smallest scales or largest
wavenumbers in each system.

We hypothesize that the above factors combine in this sim-
ulated QG turbulence to create advective structure functions
with an additional background factor which is observed at
small-K plateau of SF, that estimates Iy ~5 X 10* (red
dashed line in Fig. 6¢) despite no vorticity flux at these scales,
and in the large-K stretching-associated advective structure
function (SFAq —SF,,), not shown but inferrable from
Figs. 6b,c) which estimates (I}, — IIg) ~ 7 X 10* despite the
flux being entirely driven by relative vorticity at these scales
(cf. black lines in Figs. 6b,c). A more detailed investigation
of the potential enstrophy dynamics of multilayer B-affected
QG turbulence and the implications for potential vorticity
flux estimation is left to a future study.

d. Effects of limited sampling range or resolution

Estimating spectral fluxes through Egs. (14), (17), (18),
(20), and (21) requires integration of functions over all possi-
ble separation distances. In reality, structure functions have a
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limited range and resolution, so these spectral estimates
would take the form

max

H;~£ FK, dr, 31)

where rp;, and ryax represent the smallest and largest calcula-
ble separation distances, respectively, and the form of f(K, r)
depends on the flux being estimated and the structure func-
tion being used [e.g., Egs. (14), (15), (17), or (18)]. In the
above analyses, i, = A was the resolution of the simulation
grid A, while #™** = L/2 was half the domain extent L. In dou-
bly periodic systems, this range of r encompasses all the dy-
namics of the system.

To investigate how a limited range of separation distances
affects spectral flux estimates, we recompute the spectral flux
estimates using Eq. (31) with artificial limits on either separa-
tion distance extent 7y, Or resolution 7y,;,. To capture the ef-
fects of range limits that occur at scales with differing turbulent
dynamics (i.e., located in different cascades), we explore the ef-
fects of Lirmax = (8, 16, 32, 64) and ry,in/A = (2, 4, 8, 16). Flux
estimates from truncated datasets are compared against
the Fourier-estimated fluxes using the full datasets, but a
crude dimensional estimate that does not account for the
nonlocality of real-to-Fourier-space conversion would
suggest that in a best-case scenario the truncated data
would likely provide information only about wavenumbers
27 max < K < /¥ min-

Spectral flux estimates are affected by changes in the mini-
mum resolved separation distance ry, but these effects
are confined to the smallest scales or highest wavenumbers
(Fig. 7). For each value of r.,;,, dashed vertical lines show the
corresponding maximum resolved wavenumber K., estimated
from the Bessel function peak (see section 2e for details), and
structure functions are only shown for wavenumbers below
Kmax- In general, changing r,,;, only impacts the flux estimates
from roughly K./2 — Kpnax Estimates of energy, enstrophy,
and buoyancy variance fluxes outside this range are accurate in
all the systems, indicating that fluxes can be measured provided
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FIG. 7. Impact of limited separation distance resolution rp,;, on spectral flux estimates in 2D, SQG, and multilayer QG turbulence.

the spatial resolution of data is several times smaller than the
scale at which the flux of interest is occurring.

Spectral flux estimates are also affected by changes in the
maximum measured separation distance 7.y, but in many
cases these effects do not change flux estimates at the smallest
length scales or highest wavenumbers (Fig. 8). For each value
of rmax, dashed vertical lines show the corresponding mini-
mum resolved wavenumber K,;, estimated from the Bessel
function peak (see section 2e for details), and structure func-
tions are only shown for wavenumbers above K,,. In gen-
eral, reducing rp,.y introduces oscillatory behavior in the flux
estimates. Despite these oscillations, advective velocity struc-
ture functions are still able to diagnose inverse energy fluxes
even when r,, lies within this inverse flux region. In the two-
layer QG system, estimates of the potential enstrophy flux are
also affected by ripin and rmax (not shown), showing similar be-
havior to the energy fluxes with oscillations near ryax O Kpnin
and a rolloff near rp;, or K ax.

The downscale fluxes of enstrophy (2D and QG systems)
and buoyancy variance (SQG system) can also be diagnosed
from their respective advective structure functions, even when
Fmax 1S small (i.e., you do not need to resolve large-scale dy-
namics to measure small-scale fluxes). The biggest impact of

Brought to you by OREGON STATE UNIVERSITY | Unauthenticated | Downloaded 09/01/25 04:44 AM UTC

limited 7y is through the small-scale (large-K) oscillations of
flux estimates based on the advective velocity structure func-
tion. This manifests in the SF , estimates of the enstrophy cas-
cade and to a lesser extent the downscale energy cascade of
2D turbulence. This is consistent with SF ,  having the largest
magnitude at large scales or small wavenumbers (e.g., dashed
lines on left panels of Figs. 3, 4, and 6), so missing this signifi-
cant component of the SF , signal when large scales are omit-
ted degrades the accuracy of its derived flux estimates.

e. Comparing advective and third-order structure
function methods for flux estimation

The present study also provides an opportunity to contrast
flux-estimation methods that utilize recently proposed advec-
tive structure functions against analogous methods that utilize
third-order structure functions, which have been applied in
previous studies. Appendix B presents Bessel method rela-
tions for estimating energy fluxes using third-order structure
functions of velocity [SF, .., Eq. (B3); SF..,, Eq. (B4)] and
for estimating scalar-variance fluxes such as enstrophy from
their third-order structure functions [SF; ., Eq. (B9)]. The
IR method for estimating energy and scalar variances from
third-order structure functions is summarized in Table 1 of



1346 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 55
%1078 2D Turbulence %107 SQG Turbulence QG Turbulence
1 T 1 . 200 [
[ m— KE Flux 1 1 1 1 1 1
1 1 SFAu: Largest fnax 05 1 1 1 100 1 1 1
I I ———SF, :Smallestr, | I ! ! I ! !
05 [ A e [ 0 L
[ 0 e [ ] 1
[ I 1 100 1 1 1
0 —t - 1 1
1 -0.5 [
2y I e L€ 200 [
A\ U B 1
-05 ! -300
1 -1.5 1 U
1 1 -400 1
-1 [ 1 1 1 1 1
o -2 ) N -500 1 I
[ [ 1 1 1
15 L1 25 L1 1 600 L1 1
10° 10° 102 103 10° 10’ 102 10° 10 102
Wavenumber K
-6 5
042 P 8 X 10 . 5 X 10
wm Enstrophy Flux = (.5*Buoy. Var. Flux| ; wmm Enstrophy Flux
0.1 SF A Largestr 6 SF Ao Largestr |y 4 SF A Largestr
SF,: Largestr . I SF,: Largestr
0.08 — 4 oAl
1 [ 3 1
1 1 1
0.06 1 2 1 1
3x ! ax ! ! 3x¢ z !
£° 004 ' 40 - Y I
1 \J [ A\ 1 1
0.02 ! 2 b
1 Voo
. [ | 0 .
0 LI — -4 1 1 1 1 1
[ [ 1 1
-0.02 [ 6 [ -1 [
[ [ 1 1
-0.04 L1 -8 [ 2 L A
10° 10’ 102 10° 10° 10' 102 10° 10 102

Wavenumber K

Wavenumber K

Wavenumber K

FIG. 8. Impact of limited separation distance extent r,,,x on spectral flux estimates in 2D, SQG, and multilayer QG turbulence.

Pearson et al. (2021). Figures B1-B3 contrast the various
methods for estimating energy and scalar-variance fluxes
(black lines) in all the simulated systems using different struc-
ture functions and using Bessel methods (red lines) or IR
methods (blue lines). These comparisons will be discussed in
the remainder of this section, but the figures are located
within the appendix due to their high information density.

For energy flux estimation, the advective structure func-
tions are more isotropic than third-order structure functions
(Figs. B1-B3, upper panels). Third-order velocity structure
functions show significant dependence on the separation direc-
tion being sampled, while advective velocity structure func-
tions are relatively agnostic to sampling direction (blue lines).
This anisotropy also propagates to the Bessel method energy
flux estimates (red lines). For the Bessel method flux estimates,
there is also an increase in noise for methods that require
higher-order Bessel functions and additional integration by part
terms, with the lowest noise for SF ,, and a very large amount
of noise for SF;; ;. None of the third-order velocity structure
function methods capture the small downscale energy transfer
at the highest wavenumbers in the three systems consistently
across sampling directions.

The enstrophy flux estimates in 2D and two-layer QG tur-
bulence (Figs. B1 and B3, lower panels) show a similar behav-
ior to the energy flux estimates. The IR and Bessel methods
based on the third-order vorticity structure function SF;,,,

Brought to you

produce enstrophy flux estimates that are more anisotropic
than the analogous advective structure function methods us-
ing SF,, or SF, . Within SQG turbulence, both advective
and third-order structure functions produce accurate and an-
isotropic estimates of the downscale flux of buoyancy variance
(Fig. B2, lower panels). The noise increase that was present in
the energy flux estimates from advective to third-order struc-
ture function methods is not present for enstrophy and buoy-
ancy variance flux estimates, suggesting that the accuracy of
different-order Bessel function methods may depend on the
type, direction, and/or dominant scales of the spectral flux be-
ing diagnosed. We leave a more rigorous investigation of
these properties to future work.

4. Conclusions

Several new methods were proposed to estimate spectral
fluxes in quasi-2D systems such as large-scale ocean or geo-
physical dynamics [Egs. (14), (17), (18), (20), and (21)]. These
Bessel methods integrate the product of advective structure
functions and Bessel functions to estimate spectral fluxes of
dynamically important quantities. This method was validated
in a range of numerically simulated strongly anisotropic geo-
physical turbulence, including nonstationary dynamics and
other complex systems. The present analyses emulate realistic
datasets with errors and subsampling (section 2g), providing a
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robustness test for the theoretically exact Bessel methods re-
lating structure functions and angle-averaged advective struc-
ture functions computed from complete flow fields [e.g., Eq.
(14)]. The new methods were shown to have several benefits
over other common flux-estimation methods (coarse-graining
and inertial-range methods based on structure function pro-
portionality relations). An analogous integration method was
proposed to estimate the inverse energy cascade in 2D turbu-
lence using third-order velocity-based structure functions
(Xie and Biihler 2018), but the advective structure function
integration methods are less noisy and less impacted by flow
anisotropy than the third-order structure function integration
methods (appendix B). The present analysis of doubly periodic
systems allows direct computation of spectral fluxes alongside
flux-estimation methods. These flux-estimation methods are
critical tools for inferring fluxes in more complex datasets where
spectral fluxes cannot be calculated.

The new Bessel methods diagnosed spectral fluxes of en-
ergy to larger and smaller scales (validated in 2D, QG, and
SQG systems) in addition to the downscale fluxes of enstro-
phy (2D) and buoyancy variance (SQG). The new method
provides more accurate estimates of the upscale spectral
fluxes of energy and the abovementioned downscale fluxes
when compared to existing structure function methods and
coarse graining. The new method is also unique in its ability
to diagnose downscale energy fluxes at small scales in 2D,
SQG, and QG turbulence, scale-varying fluxes such as the ki-
netic energy fluxes in QG and SQG turbulence (which be-
come larger at smaller wavenumbers), and flux-transition
scales that are associated with forcing or instability scales.
These properties are critical to quantify the contribution of
mesoscale dynamics to the oceanic energy cycle, where flow is
dynamically complex and energy is anticipated to be trans-
ferred to both larger (gyre) scales and smaller (submesoscale)
motions (Balwada et al. 2022). Although the analysis here
was conducted using reduced-dynamics models, these dynam-
ics apply over a range of scales spanning the mesoscale to the
submesoscale. As a result, the new diagnostic methods can be
applied to general data at these scales (e.g., mesoscale obser-
vations or primitive equation models). The Bessel method
overestimates the downscale flux of potential enstrophy in
QG turbulence, although the cause of this difference is still an
open question.

The Bessel methods theoretically require integrals over
separation distances 0 = r = o, which is not practical for real
data. Sensitivity studies indicate that even with a limited range
of measured scales (r), spectral fluxes can be diagnosed at
wavenumbers within the span of separation distances mea-
sured, provided an appropriate inversion from distance to
wavenumber is used (K o« r~1: see section 2¢). Limited mea-
surement range can induce oscillatory behavior in spectral
flux estimates, particularly at high wavenumbers in methods
using the advective velocity structure function and higher-
order Bessel functions.

Advective structure functions require measurement of local
gradients of flow fields. This information can be gleaned from
two-dimensional field measurements (i.e., radar, modern sat-
ellite altimeters, simulation output), but this method may also
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be applicable to Lagrangian or in situ observations if methods
are developed to estimate the advection operator (e.g., from
Lagrangian acceleration or standing eddy hypotheses, respec-
tively). However, even in situations where flow fields are mea-
sured but local advection cannot be estimated, it may still be
possible to calculate traditional third-order structure functions
and apply analogous Bessel methods such as those detailed in
appendix B and in Xie and Biihler (2018, 2019). Datasets that
are amenable to advective structure function analysis to esti-
mate spectral fluxes are also likely to be suited for coarse-
graining analysis. As we have shown, coarse-graining inferred
fluxes often capture the inverse energy cascade across systems
but do not capture the downscale transfer of energy at the
small scales of these simulated systems that spectral fluxes and
Bessel methods capture.
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APPENDIX A

Heaviside Transformation in Two Dimensions
The relations presented in this work rely on applying the
Plancherel theorem, relating products of real-space func-
tions to the product of their wavenumber-space functions:

[ rwgwas= [ Fwgwa, @

where g* denotes the complex conjugate of g. This theorem gen-
eralizes to n-dimensional space and is used to convert the exact
relation between the spectral flux and (Fourier-transformed) ad-
vective structure function,

=3[ [ SFHK - ok, a2)

into a relation between the spectral flux and the real-space ad-
vective structure function:

Iy = —%J; L SF , Fdxdy, (A3)

where F is the inverse Fourier transform of the Heaviside
function F = H(K — k). Note we also used the property that
the Heaviside function and its transform are real functions
(see below).

In this appendix, we derive F in a two-dimensional sys-
tem. We start from the inverse transform relation:
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10 15 20
z

FIG. Al. Plots of the first-, second-, and third-order Bessel
functions of the first kind.

F= ﬁj J Fe didl, (A4)
) J—o J—x

where k = (k, [) is the wavenumber vector. Transforming to
polar coordinates in wavenumber space (k, ) = (kcos6,
k sin@) and real space (x, y) = (rcos¢, rsing), we find

F= 1 S Jw JZﬂ?Keixr(coso cosp+sinf Si“‘b)deK
@2m)~Jo Jo

1 K 2 .
— (2 )2 J I kel " cos(97d>)dedK,
v 0 JO

where we also now apply the Heaviside function as a con-
straint on the integral limits. Utilizing the Jacobi-Anger ex-
pansion e st = _i"] (z)e"?,

n=—o

(AS)

w©

1 K 27 . .
F= )ZI J K Z i"Jn(Kr)e’""e”""’
0 Jo [n=-=

— dodk.
2

(A6)

This expression can be noted that all integer n # 0 terms
vanish when the angular integral is evaluated:

1
@m)?

K 2w 1 K
f i, (kr)d6dx = —I WIy(kdi.  (AT)
0 Jo 27 Jo

Finally, a change in variables { = kr, and noting the Bes-
sel function property d[{1(0)])/dx = ¢Jo(0),

1 Kr

F:W 0 {]0(§)d§

= # 2,01,
= %Jl(Kr). (A8)

Now that we have an expression for F, we can substitute
this into Eq. (A3) to find
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J,(Kr)

PR
M= L SE,, dxdy. (A9)

The first-order Bessel function is zero when K, = 0, positive for
small Kr, and after reaching a maximum at Kr ~ 2 (Fig. Al),
the function is oscillatory and as (Kr)"? for large Kr (Abramowitz
and Stegun 1948).

APPENDIX B

Derivation of Relations between Third-Order Structure
Functions and Spectral Fluxes

In the main text, relations between spectral fluxes and ad-
vective structure function were presented. In this appendix,
we derive the analogous relations between spectral fluxes and
third-order structure functions. It has previously been shown
that, in incompressible turbulence, the spectral flux of energy
IT through a specific wavenumber K is related to the third-
order velocity structure function [SF,,; Eq. (4)] through an
integral transform (Frisch 1995):

I = [ SELHK — ikt @)

where H() is the Heaviside function and k = Vk2 + 2. Using
Plancherel’s theorem, this can be converted to a real-space in-
tegral (Xie and Biihler 2018):

M= - ”(v (P ) o J, (Kr)dxdy =

)

K (130SF,,,
ZJ‘;TJI(Kr)dr, (B2)

where J; is a first-order Bessel function of the first kind
and r=+/x2+y? is the separation distance of the two
points. The second relation relies on a polar coordinate
transform and an assumption of isotropic flow statistics,
that is, V - SF,,., = " '0,(rSF,,,.). It can be seen in Figs. B1-B3
that in anisotropic flows, structure functions are also anisotropic
and third-order structure functions are typically more aniso-
tropic than advective structure functions, consistent with the 2D
turbulence results of Pearson et al. (2021).

In two-dimensional systems, this can be integrated by
parts to create an integral of the structure function, rather
than its (noisier) derivative (Xie and Biihler 2018),

K ((rSF )[1 ]
w o T Luu’ |~
Tk 7 Jiar rJI(Kr) dr

K [~ K -

-2 L SE, KI,(Kn)dr = [SF,,,J, (KD
K2~

== | sFLnEnar (B3)

where we have utilized the property that d,(x "J,,)) = —xJ,,+1.

Note that the final result is only true if the first term of the
second line converges to zero as r — o, which requires SF,
has a slope shallower than 7'’ at the largest scales.
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FIG. B1. Spectral energy flux IT; and enstrophy flux ITg estimates in simulated anisotropic 2D turbulence from advective and third-
order SFs. Shown are the diagnosed fluxes (black lines) and flux estimates from SFs via the new Bessel transform method (red lines) and
IR methods (blue lines). Energy flux estimates are shown using the (top left) advective velocity SF, (top center) third-order velocity SF,
and (top right) third-order longitudinal SF. Enstrophy flux estimates are shown using (bottom left) the advective vorticity SF, (bottom cen-
ter) the advective velocity SF, and (bottom right) SF, . Flux estimates show four lines, each representing a different orientation for the
SF separation vector (across- and along-isotropy axis and two diagonals; as shown in Fig. 2). For IR methods, we map SF(r) — II(K) using
K = B/r,where B = (2,3.1,4.3,2, 1.5, 3.1) for the respective panels following Bessel function arguments (see text).

[ KE Flux
—Bessel Method
IR method

0 0
o3 X
-1t -t -t
/
SF,-based /SF,-based
2! l'[; estimates 2! H: estimates | 2! l'l; estimates
10° 10 10? 10° 10’ 10? 10° 10’ 10?
Wavenumber K Wavenumber K Wavenumber K
%10 x10°
?
5 5

T estimates I} estimates

50 =57

10° 10' 102 10° 10’ 102
Wavenumber K Wavenumber K
FIG. B2. Spectral KE flux IT% and buoyancy variance flux 1% estimates in simulated anisotropic SQG turbulence from advective and
third-order SFs. KE flux estimates are shown using (top left) advective velocity SF, (top center) third-order velocity SF, and (top right)

third-order longitudinal SF. Buoyancy variance flux estimates are shown using the (bottom left) advective buoyancy SF and (bottom right)
third-order longitudinal buoyancy SF. IR methods are mapped using B = (2, 3.1, 4.3, 2, 3.1), respectively. See Fig. B1 for line descriptions.
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FIG. B3. Estimates of top-layer spectral fluxes in simulated anisotropic two-layer QG turbulence from advective and third-order SFs. Panels
show estimates of the (top) energy flux Iy, (bottom left) potential enstrophy flux I1%, and (bottom center),(bottom right) enstrophy I1. Esti-
mates are made using the (top left) advective velocity SF, (top center) third-order total velocity SF, (top right) third-order longitudinal velocity
SF, (bottom left) advective potential vorticity SF, (bottom center) advective vorticity SF, and (bottom right) third-order vorticity SF. IR meth-
ods are mapped using B = (2,3.1,4.3,2,2,3.1), respectively. See Fig. B1 for line descriptions.

This can also be reframed in terms of SF;,; by using
the relation SF, = (1/3/)[0(’SF,,,)or] (Xie and Biihler
2018). Then,

Luu

K

KZ
Iy =  SFLLut(Knrdr = 5 iSFy  J5(Kr) + 3SF

Luw

(B4)

These SF;,,, and SF;;; methods for estimating spectral kinetic
energy fluxes have significant noise and directional variability
in a 2D system (Fig. B1) in an SQG system (Fig. B2) and in a
two-layer QG system (Fig. B3).

More generally, an equivalent relation to Eq. (B2) can
be derived by noting the interchangeability of advective
and third-order structure functions in incompressible flow
SF,, = 8A, - 6u = (1/2)V - |dul* du:

1(f——— 1 K
I = — H (SEy)H(K — k)dkdl = —— J SFy, —J,(Kndxdy

- —%Js‘f: o (Kr)dr. (BS)

For any advected scalar (nominally vorticity w), and the spec-
tral flux of its halved variance (nominally II%, the flux of ens-
trophy n = w?/2), we can follow steps analogous to the above
energy derivation to arrive at a set of relations between I
and both the vorticity and velocity advective structure func-
tions [noting that SF , = V2(SF )l
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Evaluating this relationship leads to the following relation-
ship for the advective velocity structure function:

(B6)

J4(Kr) — %Jz(Kr) dr

I =7J SF .
0

(B7)

dé‘l:{‘Au
SF 4,5 (Kr) + K— A4, (Kr)]r_0

Under the assumption that SF ,, — 0 at small scales and has no
slope at large scales, the nonintegral part of this relation disap-
pears. This would allow the diagnosis of the enstrophy flux via

. K= 2
HK = TJ\() SFAu EJZ(Kr)]dr

K ("= 2
= 7[0 SF.AM[E‘]Z(Kr) -J;

Ty (Kr) —

(Kr)]dr, (B8)
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where we have utilized Bessel function properties to write ex-
pressions in terms of different-order Bessel functions. Fur-
thermore, it follows from Eq. (17) that

R K — .
My = — L SF o) (Kr)dr = 7 [SF L, J (KDT;. (BY)

Low’

This SF, = du; Svdw method for estimating spectral ens-
trophy fluxes has significant directional variability in 2D
turbulence (Fig. B1) and QG turbulence (Fig. B3), while
the analogous SF; ,, method for estimating the spectral flux
of buoyancy variance produces reasonable estimates in
SQG turbulence (Fig. B2).
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