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Abstract

We study first- and second-order linear transport equations, as well as flows for

ordinary and stochastic di↵erential equations, with irregular velocity fields satis-

fying a one-sided Lipschitz condition. Depending on the time direction, the flows

are either compressive or expansive. In the compressive regime, we characterize

the stable continuous distributional solutions of both the first and second-order

nonconservative transport equations as the unique viscosity solution, and we

also provide new observations and characterizations for the dual, conservative

equations. Our results in the expansive regime complement the theory of Bouchut,

James, and Mancini [25], and we develop a complete theory for both the conser-

vative and nonconservative equations in Lebesgue spaces, as well as proving the

existence, uniqueness, and stability of the regular Lagrangian flow for the asso-

ciated ordinary di↵erential equation. We also provide analogous results in this

context for second order equations with degenerate noise coe�cients that are

constant in the spatial variable, as well as for the related stochastic di↵erential

equation flows.
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1 Introduction

For a fixed, finite time horizon T > 0 and a velocity field b : [0, T ] ⇥ Rd ! Rd, we
study the linear transport equation

@tu+ b(t, x) ·ru = 0 in [0, T ]⇥ Rd
, (1.1)

along with the dual, continuity equation

@tf + div(b(t, x)f) = 0 in [0, T ]⇥ Rd
, (1.2)

and the associated ordinary di↵erential equation (ODE) flow

@t�t,s(x) = b(t,�t,s(x)), (s, t, x) 2 [0, T ]⇥ [0, T ]⇥ Rd
, �s,s = Id . (1.3)

The goal of the paper is to analyze the three problems, and the relations between
them, for vector fields b satisfying the one-sided Lipschitz condition

(
(b(t, x)� b(t, y)) · (x� y) � �C(t)|x� y|2 for a.e. (t, x, y) 2 [0, T ]⇥ Rd ⇥ Rd

for some nonnegative C 2 L
1([0, T ]).

(1.4)
When b is Lipschitz continuous in the space variable, the ODE flow (1.3) admits

a unique global solution, and, through the method of characteristics, (1.1) and (1.2)
are uniquely solved for any given smooth initial or terminal data. Moreover, the flow
is a di↵eomorphism, and therefore the solution operators for either the initial value
problem (IVP) or terminal value problem (TVP) for (1.1) and (1.2) are continuous on
L
p
loc

for any p 2 [1,1].
Under the assumption (1.4), the time direction plays a nontrivial role, and there

is a fundamental di↵erence between the solvability of the flow (1.3) forward versus
backward in time. Indeed, b need not even be continuous, and (1.4) is equivalent to

rb(t, ·) +rb(t, ·)T

2
� �C(t) Id in the sense of distributions.

In particular, the distribution div b is a signed measure that is bounded from below,
but not in general absolutely continuous with respect to Lebesgue measure. Thus,
when t < s, the flow (1.3) is expected to concentrate at sets of Lebesgue measure zero,
while the formation of vacuum is witnessed for t > s.

A general study of transport equations and ODEs with irregular velocity fields,
motivated by nonlinear problems in fluid dynamics, was initiated by DiPerna and the
first author [40], who introduced the notion of renormalized solutions to prove the well-
posedness for (1.1) and (1.2) and the almost-everywhere solvability of the flow (1.3)
for b with Sobolev regularity. The DiPerna-Lions theory was extended to equations
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where only Sym(rb) 2 L
1 [28], to Vlasov equations with BVloc velocity fields [20], and

to two-dimensional problems with a Hamiltonian structure [2–4, 21, 45]. Using deep
results from geometric measure theory, the renormalization property was extended
to the very general case where b 2 BVloc and div b 2 L

1 by Ambrosio [5], who also
provided a new, measure-theoretic viewpoint on the relationship between uniqueness
of nonnegative solutions of (1.2) and the unique solvability of the flow (1.3) through
the idea of superposition. Further developments include equations with velocity fields
having a particular structure allowing for less regularity [31, 50] and velocity fields
belonging to SBD (i.e. Sym(rb) is a signed measure with no singular Cantor-like part)
[12]. Fine regularity properties of DiPerna-Lions flows were established in [13, 36],
and the study of so-called “nearly incompressible flows” [14] led to the resolution by
Bianchini and Bonicatto [19] of Bressan’s compactness conjecture [26, 27]; see also [47]
for related results. For many more details and references, we refer the reader to the
surveys [6–8, 10].

In the majority of these works, the divergence div b is assumed to be bounded,
or at least absolutely continuous with respect to Lebesgue measure. This is not the
case in general for velocity fields satisfying (1.4), and so the equations (1.1) and (1.2)
do not even have a sense as distributions, because the products (div b)u and bf are
ill-defined for general u 2 L

1

loc
or measures f . The DiPerna-Lions theory does not,

therefore, cover this situation. Moreover, the choice of an appropriate function space
of solutions is very sensitive to whether the equations are posed as initial or terminal
value problems.

The problems (1.1)-(1.3) for velocity fields with a one-sided Lipschitz condition
have been approached with a variety of methods [22, 25, 29, 33, 59–61], a primary
motivation being the study of pressureless gases and scalar conservation laws, which,
when posed as nonlinear transport equations, involve velocity fields whose divergence
is not absolutely continuous [23, 24, 43, 44]. Our main purpose is to complement these
works, and in particular the theory of Bouchut, James, and Mancini [25], by providing
complete characterizations of the stable solutions to all three problems in both the
compressive and expansive regimes. We also provide some results on the corresponding
parabolic equations with a degenerate, second-order term, as well as the SDE analogue
of (1.3) for both the velocity field b and �b.

1.1 Main results

We relegate a full description of the results, discussions, and examples to the body
of the paper. Here, we briefly outline the di↵erent sections and the types of results
proved within them, and we compare them to the existing literature.

1.1.1 The compressive regime

In Section 2, we record properties of the backward Filippov flow for (1.3), as well as
for its Jacobian Jt,s(x) := det(r�t,s(x)), which is well-defined in L

1 for a.e. t  s and
x 2 Rd. We employ measure-theoretic arguments to make sense of the right-inverse
of the flow in an almost-everywhere sense, as a preliminary step to understanding the
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forward, regular Lagrangian flow, and prove several properties, the most important of
which is its almost-everywhere continuity.

In Section 3, we turn to the study of the nonconservative equation1

@tu� b(t, x) ·ru = 0 in (0, T )⇥ Rd
, u(T, ·) = uT , (1.5)

for which the uniqueness of continuous distributional solutions fails in general. We
introduce a new PDE characterization of the “good” (stable) solution of (1.5) as the
unique viscosity solution, in the sense of Crandall, Ishii, and the first author [35]. This
is done by proving a comparison principle for sub and supersolutions. The viscosity
solution characterization coincides with the selection of “good” solutions by other
authors in particular settings [22, 25, 33, 59–61], allows for robust stability statements,
and, moreover, generalizes to the setting of degenerate parabolic problems (see the
discussion below).

The “usual” viscosity solution theory must be modified due to the lack of global
continuity of b. In view of the evolution nature of the equations, the L1-dependence in
time does not present a problem, and the equations can be treated with the methods
of [46, 55, 57, 58]. To deal with the discontinuity of b in space, sub and supersolutions
must be defined with appropriate semicontinuous envelopes of b in the space variable.
The direction of the one-sided Lipschitz assumption (1.4) accounts for the beneficial
inequalities in the proof of the comparison principle.

The nonuniqueness of distributional solutions is explored through examples of the
form b(x) = sgnx|x|↵, 0  ↵ < 1. We also introduce further conditions on the velocity
field b and terminal data uT that ensure uniqueness of arbitrary continuous distribu-
tional solutions. In particular, the interplay between the regularity of b and uT plays
an important role: if b 2 C

↵ and uT 2 C
� , then distributional solutions are unique if

↵+ � > 1, while uniqueness may fail in general if ↵+ �  1, as can be seen from our
counterexamples.

The latter half of Section 3 deals with the study of the dual problem to (1.5),
namely

@tf � div(b(t, x)f) = 0 in (0, T )⇥ Rd
, f(0, ·) = f0. (1.6)

Even if f0 2 L
1

loc
, the concentrative nature of the flow causes the measure f(t, ·) to

develop a singular part, and therefore we are led to seek measure-valued solutions.
This prevents the duality solution of (1.6) from being understood in the distributional
sense, due to the lack of continuity of b. Nevertheless, we prove that, if b is continuous,
or if it happens that f(t, ·) is absolutely continuous with respect to Lebesgue measure
on the time interval [0, T ], then the notions of duality and distributional solutions are
equivalent.

An important feature of the continuity equation (1.6) is the failure of renormaliza-
tion; that is, if f is a duality solution, the measure |f | may fail to be a distributional
solution, and may even violate conservation of mass. We once again study examples
of the form b(x) = sgnx|x|↵, 0  ↵ < 1. Note that, for this example, when ↵ > 1, b

1
For a consistent presentation throughout the paper, and in order to emphasize the dual relationship

between the two equations, the transport equation (1.1) will always be posed as a terminal value problem,

and the continuity equation (1.2) as an initial value problem. The compressive and expansive regimes will

be distinguished by the choice of sign in front of the velocity field b.
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has the Sobolev regularity b 2 W
1,p for p < 1/↵, and so our counterexample is con-

structed to ensure that the duality solution f satisfies f 2 L
q only for q outside the

range for which the DiPerna-Lions commutator lemma holds. This contrast with the
DiPerna-Lions theory is a direct consequence of the compressive nature of the back-
ward flow, which can lead to cancellation of the positive and negative parts of f . A
related phenomenon is the nonuniqueness of distributional solutions of the continuity
equation (1.2) with the reverse sign (see below).

1.1.2 The expansive regime

In Section 4, we reverse the sign on the velocity field, and study the corresponding
problems

@tu+ b(t, x) ·ru = 0 in (0, T )⇥ Rd
, u(T, ·) = uT (1.7)

and
@tf + div(b(t, x)f) = 0 in (0, T )⇥ Rd

, f(0, ·) = f0. (1.8)

In view of the lower bound on the divergence of b, we are motivated to seek an L
p-

based theory for both equations, based on a priori estimates, or equivalently, on the
fact that the characteristic flow (the forward ODE (1.3)) does not concentrate on sets
of measure zero.

The initial value problem for the continuity equation (1.8) was studied in [22,
25], where a large part of the analysis is based on the fact that locally integrable
distributional solutions are not unique in general2. The same setting is studied in [29],
where the existence and uniqueness of the forward Filippov flow for (1.3) is established
for a.e. x 2 Rd.

In the first part of Section 4, we identify a unique “good” distributional solution,
and prove that the resulting solution operator is continuous on L

p
loc

for all p 2 [1,1],
and stable with respect to regularizations. This coincides with the notion of reversible
solution in [22, 25].

We then obtain strong stability results for the Bouchut-James-Mancini duality
solutions of the nonconservative problem (1.7) in all Lp-spaces, which allow us to
prove the renormalization property. Moreover, we introduce a PDE characterization of
this duality solution in terms of regularization by ess inf- and ess sup-convolution. An
important ingredient in establishing this characterization is the propagation of almost-
everywhere continuity, which, in turn, follows from the renormalization property and
the almost-everywhere continuity of the forward flow proved in Section 2.

As a consequence of this new characterization, we give a PDE-based proof of
the fact that nonnegative distributional Lp-solutions of (1.8) are unique, which was
established in [29] using the superposition principle. This result, along with the renor-
malization property for (1.7), allows us to establish the existence, uniqueness, and
stability of the forward regular Lagrangian flow for the ODE (1.3) identified in [29]. As
a byproduct, this also provides a full characterization of the Bouchut-James-Mancini
notion of “good” (reversible) solution as the pushforward of f0 by the forward flow.
Moreover, a distributional solution f is a reversible solution if and only if |f | is also a

2
Note that in [25], the velocity field a takes the role of �b in (1.4), while the time-directions of (1.7) and

(1.8) are switched, so their setting corresponds to the expansive regime discussed here.
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distributional solution (cf. [25, Proposition 3.12], which operates under the criterion
that f be a so-called “Jacobian” solution).

1.1.3 SDEs and second order equations

This paper also contains various results regarding second order versions of (1.1) and
(1.2), as well as stochastic di↵erential equation (SDE) flows. SDEs and degenerate
second-order Fokker-Planck equations have been studied from many perspectives,
using both the DiPerna-Lions theory and adaptations of the superposition principle,
by many authors, including Le Bris and Lions [51], Figalli [41], Trevisan [64], and
Champagnat and Jabin [32]; see also the book [52]. Just as in the first-order setting,
the fact that the measure div b may contain a singular part prevents the application
of these theories to the present situation.

In the compressive regime, we extend the viscosity solution theory of Section 3 to
the second order equation

�@tu+ b(t, x) ·ru� tr[a(t, x)r2
u] = 0 in (0, T )⇥ Rd

, u(T, ·) = uT , (1.9)

where b satisfies the one-sided Lipschitz condition (1.4) and a is a regular, but possibly
degenerate, symmetric matrix. This equation, as well as the dual problem

@tf � div(b(t, x)f)�r2 · (a(t, x)f) = 0 in (0, T )⇥ Rd
, f(0, ·) = f0, (1.10)

can be related to the SDE

dt�t,s(x) = �b(t,�t,s(x))dt+ �(t,�t,s(x))dWt, t > s, �s,s(x) = x, (1.11)

which is the SDE analogue of the backward flow for (1.3). Here W is a given Brownian
motion and a = 1

2
��

T . We establish the existence and uniqueness, for every x 2 Rd,
of a strong solution in the Filippov sense, and we show that, with probability one, �t,s

is Hölder continuous for any exponent less than 1.
The situation is more complicated in the expansive regime, namely, for the

equations

�@tu� b(t, x) ·ru� tr[a(t, x)r2
u] = 0 in (0, T )⇥ Rd

, u(T, ·) = uT (1.12)

and

@tf + div(b(t, x)f)�r2 · (a(t, x)f) = 0 in (0, T )⇥ Rd
, f(0, ·) = f0. (1.13)

In the first-order setting, the characterization of the “good” distributional solution of
the continuity equation (1.8) relies on the Lipschitz continuity of the backward ODE
flow. Adapting similar methods for the second order equation (1.13) involves estab-
lishing Lipschitz continuity of a stochastic flow like (1.11) with certain time-reversed
coe�cients (see (4.30) below). While it is well-known that flows of the form (1.11) are
Hölder continuous for any exponent less than 1, even in more general contexts (see
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[62]), it is an open question as to whether it is Lipschitz with probability one. We rel-
egate a general study of (1.12) and (1.13), and of the stochastic regular Lagrangian
flow for

dt�t,s(x) = b(t,�t,s(x))dt+ �(t,�t,s(x))dWt, t > s, �s,s(x) = x, (1.14)

to future work. The exception3 is when � is constant in the Rd-variable. In this case,
we prove that a suitable stochastic flow of the form (1.11) can be inverted, leading, as
in the deterministic case, to the existence and uniqueness of a strong solution to (1.14)
for a.e. x 2 Rd, and a corresponding solution theory for the PDEs (1.12) and (1.13).

1.2 Applications and further study

While interesting in their own right, linear transport equations and ODEs with non-
regular velocity fields arise naturally in several equations in fluid dynamics, in which
the velocity fields depend nonlinearly on various other physical quantities that are cou-
pled with the transported quantity. Since these equations must be posed a priori in a
weak sense, this leads to velocity fields with limited regularity. The DiPerna-Lions and
Ambrosio theories have been successfully applied to a number of such situations; see
[9, 11, 15, 16, 37, 48, 53, 67]. As mentioned above, the one-dimensional Bouchut-James
theory of reversible solutions for transport equations with semi-Lipschitz velocity fields
has been successfully applied in applications to conservation laws and pressureless
gasses; see [23, 24, 43, 44].

Nonlinear transport equations also arise in certain models for large population
dynamics, specifically mean field games (MFG). In [49], the first author and Lasry
introduced a forward-backward system of PDEs modeling a large population of agents
in a state of Nash equilibrium. The evolution of the density f of players is described
by a continuity equation (1.8) (or Fokker-Planck equation (1.13)), where the velocity
field b is given by

b(t, x) = �rpH(t, x,ru(t, x)). (1.15)

Here, H is a convex Hamiltonian, and u is the solution of the terminal value problem

�@tu�tr[a(t, x)r2
u]+H(t, x,ru(t, x)) = F [f(t, ·)] in (0, T )⇥Rd

, u(T, ·) = G[f(t, ·)],
(1.16)

which is a Hamilton-Jacobi-Bellman equation encoding the optimization problem for
a typical agent, and whose influence by the population of agents is described by the
coupling functions F and G. The velocity field (1.15) is the consensus optimal feedback
policy of the population of agents at a Nash equilibrium.

When a is degenerate, or even zero, the function u has limited regularity, and is
no better than semiconcave in the spatial variable in general. Therefore, even if H is
smooth, the velocity field (1.15) may satisfy at most

b 2 BVloc and (div b)� 2 L
1
. (1.17)

3
Another case of interest is when the di↵usion matrix a is nondegenerate in which case very general

results can be obtained even for locally bounded b; see [41].
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This falls just outside the DiPerna-Lions-Ambrosio regime, since the measure (div b)+
may still fail to be absolutely continuous in general. In fact, the well-posedness of a
suitable notion of solution for the transport and ODE problems under the general
assumptions (1.17) remains an open problem.

Many simple but useful MFG models involve a linear-quadratic Hamiltonian of the
form

H(t, x, p) = A(t, x)|p|2 +B(t, x) · p+ C(t, x)

for smooth, real-valued A,B,C with A > 0. In this case, it is easy to see that (1.15)
satisfies the half-Lipschitz condition (1.4). This situation was studied by Cardaliaguet
and Souganidis [29] for first-order, stochastic mean field games systems with com-
mon noise. In particular, it is proved there that the uniqueness of probability density
solutions of (1.7) gives rise, through the superposition principle, to the uniqueness of
optimal trajectories for the probabilistic formulation of the MFG problem, and, more-
over, the solution of the stochastic forward-backward system can be used to construct
approximate Nash equilibria for the N -player game. Our analysis for the Fokker-
Planck equation (1.13) may therefore be expected to yield similar results for stochastic
MFG systems with common noise and degenerate, spatially-homogenous, idiosyncratic
noise, a special case of the equations considered by Cardaliaguet, Souganidis, and the
second author in [30].

The second application of nonlinear transport equations in mean field games is
involved with the master equation for a MFG with a finite state space. These equations
generally take the form

@tu+ b(t, x, u) ·ru = c(t, x, u) in (0, T )⇥ Rd
, (1.18)

where u, b, and c all take values in Rd; coordinate-by-coordinate, (1.18) is written as

@tu
i + b

j(t, x, u)@xju
i = c

i(t, x, u), i = 1, 2, . . . , d.

Therefore, (1.18) is a nonconservative hyperbolic system, whose general well-posedness
is a di�cult question in general; note that, when d = 1, (1.18) becomes a scalar
conservation law.

We do not discuss (1.18) here, but, in the paper [56], we study a particular regime
of equations taking the form (1.18), using a new theory for linear transport equations
with velocity fields b that are increasing coordinate by coordinate, that is, @xj b

i � 0
for i 6= j.

The extension to infinite dimensions, of both the linear problems (1.1)-(1.2), as
well as the nonlinear equation (1.18), remains an interesting question, with numerous
applications, including the study of mean field game master equations on the Hilbert
space of square-integrable random variables. We aim to study these situations in future
work.

1.3 Notation

Given a function space X(Rd), or X(⌦) for an appropriate subdomain of Rd, Xloc

denotes the space of functions (or distributions) f such that �f 2 X for all � 2
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C
1
c (Rd). If X is a normed space, the same is not necessarily true for Xloc, but it

inherits the topology of local X-convergence. For example, limn!1 fn = f in L
p
loc

(Rd)
means that limn!1 kfn � fkLp(BR)

= 0 for all R > 0. We denote by L
p
+
([0, T ]) the

subset of Lp([0, T ]) consisting of nonnegative functions.
Unless otherwise specified, Banach or Fréchet spaces of functions are endowed with

the strong topology. For a function space X, the subscripts Xw and Xw-? indicate the
weak (resp. weak-?) topology.

For 1  p < 1, Pp is the space of Borel probability measures µ, with
R
|x|pµ(dx) <

1, which becomes a complete metric space for the p-Wasserstein distance Wp defined
for µ, ⌫ 2 Pp by

Wp(µ, ⌫) = inf
�2�(µ,⌫)

ZZ

Rd⇥Rd

|x� y|pd�(x, y),

where � is the set of couplings of µ and ⌫, that is, measures � on the product space
Rd ⇥Rd such that �(A⇥Rd) = µ(A) and �(Rd ⇥A) = ⌫(A) for all Borel measurable
A ⇢ Rd.

The transpose of a matrix � is denoted by �T , and, if � is a square matrix, its
symmetric part is denoted by Sym(�) := 1

2
(� + �

T ). The symbol Id stands for either
the identity map or the identity matrix, the precise meaning being clear from context.

2 The ODE flow

This section is focused on the solvability and properties of the flow associated to a
velocity field b satisfying4

8
><

>:

for some C0, C1 2 L
1

+
([0, T ]) and for all t 2 [0, T ] and x, y 2 Rd

,

|b(t, x)|  C0(t)(1 + |x|) and

(b(t, x)� b(t, y)) · (x� y) � �C1(t)|x� y|2.
(2.1)

Because b(t, ·) is not necessarily continuous, the ODE must be interpreted in the
Filippov sense [42], that is, abusing notation, we denote by b(t, x) the convex hull of all
limit points of b(t, y) as y ! x. For s 2 [0, T ], we seek absolutely continuous solutions
t 7! �t,s(x) of the problem

(
@t�t,s(x) 2 b(t,�t,s(x)), t 2 [0, T ],

�s,s(x) = x.
(2.2)

Remark 2.1. If Ẋ(t) 2 b(t,X(t)),

X̃(t) := exp

✓Z t

0

C1(s)ds

◆
X(t) and

4
The linear growth assumption is a standard way to ensure that the a priori estimates for solutions do not

blow up. Otherwise, the results of the paper would need a corresponding local theory, as for example in [17].
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b̃(t, x) := exp

✓Z t

0

C1(s)ds

◆
b

✓
t, exp

✓
�
Z t

0

C1(s)ds

◆
x

◆
,

so that
˙̃
X 2 b̃(t, X̃(t)), then b̃ satisfies (2.1) with C1 ⌘ 0 and a possibly di↵erent C0.

In other words, with a change of variables, one may always assume b is monotone

without loss of generality.

We will use the following characterization and properties of half-Lipschitz maps;
see [25, Lemma 2.2 and Remark 2.4].
Lemma 2.1. A vector field B : Rd ! Rd

satisfies

(B(x)�B(y)) · (x� y) � �C|x� y|2 for some C � 0 and all x, y 2 Rd

if and only if Sym(rB) � �C Id in the sense of distributions. We then also have

B 2 BVloc(Rd), and

Sym(rB)� (trrB) Id  (d� 1)C Id .

The fact that B belongs not only to the space BDloc(Rd) of bounded deformations
(the space of vector fields B : Rd ! Rd such that the symmetric part of the distribution
rB is a locally bounded Radon measure [63]), but more particularly to BVloc(Rd),
is a consequence of the analysis in [1], where we refer the reader for many more fine
geometric properties of (semi-)monotone functions.

We fix a family of regularizations such that

(
(b")">0 ⇢ L

1([0, T ], C0,1(Rd)), lim
"!0

b
" = b a.e. in [0, T ]⇥ Rd

, and

b
" satisfies (2.1) uniformly in " > 0.

(2.3)

For example, we may take b
"(t, ·) = b(t, ·) ⇤ ⇢" for ⇢" = "

�d
⇢(·/"), with ⇢ 2 C

1
+
(Rd),

supp ⇢ 2 B1, and
R
⇢ = 1.

2.1 The backward flow

We begin the analysis with the backward flow, that is, (2.2) for t < s. This is the time-
direction for which the one-sided Lipschitz condition (2.1) yields a unique, Lipschitz
flow. We record its properties here and refer to [33, 42, 59, 60] for the proofs; see
also the work of Dafermos [38] for the connection to generalized characteristics of
conservation laws.
Lemma 2.2. For every (s, x) 2 [0, T ] ⇥ Rd

, there exists a unique solution �t,s(x) of

(2.2) defined for (t, x) 2 [0, s]⇥ Rd
, satisfying the Lipschitz bound

|�t,s(x)� �t,s(y)|  exp

✓Z s

t
C1(r)dr

◆
|x� y| for all 0  t  s  T and x, y 2 Rd

.

(2.4)
Moreover, there exists a constant C > 0 depending only on T and C0 from (2.1) such
that

|�t,s(x)|  C(|x|+ 1) for all 0  t  s  T and x 2 Rd
, (2.5)

11



and 8
><

>:

|�t1,s(x)� �t2,s,x|  C(1 + |x|)|t1 � t2| and

|�t,s1(x)� �t,s2(x)|  C(1 + |x|)|s1 � s2|
for all t1, t2 2 [0, s], s2, s2 2 [t, T ], and x 2 Rd

.

(2.6)

For all 0  r  s  t  T , �r,s � �s,t = �r,t. If (b")">0 are regularizations satisfying

(2.3), then the corresponding backward flows �
"
converge locally uniformly as " ! 0

to �.

Remark 2.2. The a priori local boundedness and time-regularity estimates (2.5) and
(2.6), depending only on C0 and not C1, do not require the half-Lipschitz assumption

on b(t, ·), and are therefore satisfied for any limiting solutions of the ODE when b

satisfies the first condition in (2.1). On the other hand, the half-Lipschitz assumption

is crucial for the Lipschitz continuity of the flow (2.4), as well as the uniqueness of

the solution.

Remark 2.3. Consider the backward flow in R corresponding to b(t, x) = b(x) =
sgnx, which is given, for x 2 R and s < t, by

�s,t(x) =

8
><

>:

x+ (t� s) if x < �t� s,

0 if |x|  t� s, and

x� (t� s) if x > t� s.

(2.7)

This demonstrates that, in general, the trajectories of the backward flow may concen-

trate on sets of measures 0, in particular, where b has jump discontinuities.

We will often consider the examples b(x) = sgnx in subsequent parts of the paper

in order to illustrate certain general phenomena and to present counterexamples. Note

that, by Remark 2.1, one can consider similar examples for arbitrary C1 2 L
1
+
([0, 1]).

2.2 The Jacobian for the backward flow

In view of the Lipschitz regularity (2.4), rx�t,s 2 L
1 for t  s, and so we can define

the Jacobian

Jt,s(x) := det(rx�t,s(x)) for 0  t  s  T and a.e. x 2 Rd
. (2.8)

Lemma 2.3. Let J be defined as in (2.8). Then J � 0,

(
J·,s 2 L

1([0, s]⇥ Rd) \ C([0, s], L1

loc
(Rd)) 8s 2 [0, T ] and

Jt,· 2 L
1([t, T ]⇥ Rd) \ C([t, T ], L1

loc
(Rd)) 8t 2 [0, T ],

(2.9)

kJt,skL1  exp

✓
d

Z s

t
C1(r)dr

◆
for all 0  t  s  T, (2.10)
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and, for all R > 0, there exists a modulus of continuity !R, which depends on b only

through the constants C0 and C1 in (2.1), such that

(
kJt1,s � Jt2,skL1(BR)

 !R(|t1 � t2|) for all t1, t2 2 [0, s] and

kJt,s1 � Jt,s2kL1(BR)
 !R(|s1 � s2|) for all s1, s2 2 [t, T ].

(2.11)

If (b")">0 are as in (2.3), (�")">0 are the corresponding solutions of (2.2), and, for
" > 0, J" = det(rx�

"), then

lim
"!0

J
"
·,s = J·,s weak-? in L

1([0, s]⇥ Rd) and

lim
"!0

J
"
t,· = Jt,· weak-? in L

1([t, T ]⇥ Rd). (2.12)

Proof. It su�ces to prove all statements about J·,s on [0, s]. The arguments are
exactly the same for the other halves using the fact that s 7! �t,s is the forward flow
corresponding to the velocity �b.

The convergence (2.12) goes through by compensated compactness arguments for
determinants; see the Appendix of [25]. The nonnegativity of J now follows, because
J
" � 0 for all ".
For fixed " > 0 and (s, x) 2 [0, T ]⇥ Rd, we have

@tJ
"
t,s(x) = divx b

"(t,�"t,s(x))J
"
t,s(x) for t 2 [0, s].

Then (2.3) implies @tJ"
t,s(x) � �dC1(t)J"

t,s(x), and so

@

@t

⇣
J
"
t,s(x)e

�d
R s
t C1(r)dr

⌘
� 0.

In particular, for t1 < t2  s and R > 0,

Z

BR

|J"
t2,s � J

"
t1,s|  e

R t2
t1

C1(r)dr
Z

BR

J
"
t2,s �

Z

BR

J
"
t1,s +

⇣
e

R t2
t1

C1(r)dr � 1
⌘Z

BR

J
"
t2,s.

Identifying the modulus of continuity !R in the statement of the Lemma then reduces
to proving the uniform-in-" continuity of

[0, s] 3 t 7!
Z

BR

J
"
t,s(x)dx;

note that
R
BR

J
"
s,s(x)dx = |BR|, so this will also imply that

R
BR

J
"
t,s(x)dx is bounded

uniformly in ".
In view of the uniform-in-" L1-boundedness of J", it su�ces to prove the uniform-

in-" continuity in t of
R
f(x)J"

t,s(x)dx for any f 2 Cc(Rd). The change of variables
formula gives Z

f(x)J"
t,s(x)dx =

Z
f(�"s,t(x))dx.
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Note that @t�"s,t(x) = �b
"(t,�"s,t(x)), and the Lipschitz constant in t of �"s,t(x) depends

only on an upper bound for |x| and the constant C0 in (2.1), and, therefore, is
independent of ".

When d = 1, the L
1-weak-? convergence of J" = @x�

" to J can be strengthened
via an Aubin-Lions type compactness result.
Proposition 2.1. Assume d = 1, and let J

"
and J be as in Lemma 2.3. Then

lim
"!0

J
"
·,s = J·,s strongly in L

1

loc
([0, s]⇥ R)

and

lim
"!0

J
"
t,· = Jt,· strongly in L

1

loc
([t, T ]⇥ R).

Proof. Fix t 2 [0, T ] and R > 0. Lemma 2.2 implies that there exists M independent
of " such that |�"t,s(x)|  M for all s 2 [t, T ] and x 2 [�R,R]. Upon redefining b

outside of [0, T ]⇥ [�2R, 2R], we find that �t,s(x), and therefore Jt,s(x), is unchanged,
and therefore, in order to prove the L1-convergence in [t, T ]⇥ [�R,R], we may assume
without loss of generality that b is bounded uniformly. Applying the transformation
�̃t,s(x) = �t,s(x)�

R s
t C(r)dr for an appropriate C 2 L

1
+
([0, T ]) depending on C0 from

(2.1), we may also assume b � 1.
For (s, x) 2 [t, T ]⇥R, set f"(s, x) = J

"
t,s(x). Then f

" solves the continuity equation

@sf
" + @x (b

"(s, x)f") = 0 in [t, T ]⇥ R and f
"(t, ·) = 1.

For a standard mollifier ⇢ 2 C
1
c ([�1, 1]), let ⇢n = n⇢(·/n) and f

",n = ⇢n ⇤t f" be the
mollification of f" only in the time variable. We then have

@sf
",n + @x [⇢n ⇤t (b"f")] = 0 in


t+

1

n
, T

�
⇥ R

and, for any R > 0,

sup
s2[t+1/n,T ]

k@x [⇢n ⇤t (b"f")] (s, ·)kL1([�R,R])

 sup
s2[t+1/n,T ]

k@sf",n(s, ·)kL1([�R,R])
 n k⇢0kL1(R) !R

✓
1

n

◆
,

where !R is as in (2.11). It follows that, for fixed n 2 N, (⇢n⇤t(b"f"))">0 is precompact
in L

1([t, T ]⇥ [�R,R]), and so, because

lim
n!1

⇢n ⇤t (b"f") = bf

in L
1([t, T ] ⇥ [�R,R]), uniformly in ", we conclude that (b"f")">0 is precompact in

L
1([t, T ]⇥ [�R,R]). This implies that, as "! 0, b"f" converges strongly in L

1([t, T ]⇥
[�R,R]) to bf .
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Fix any subsequence ("n)n�0 approaching zero as n ! 1. Then there exists a

further subsequence such that f
"nk b

"nk
k!1����! fb almost everywhere, and therefore

f
"nk

k!1����! f a.e. in [t, T ]⇥ [�R,R] because b � 1 and

f
"(s, x)� f(s, x) =

b(s, x)f"(s, x)� b(s, x)f(s, x)

b(s, x)

=
b
"(s, x)f"(s, x)� b(s, x)f(s, x)

b(s, x)
+

(b(s, x)� b
"(s, x)) f"(s, x)

b(s, x)
.

The convergence of f"nk to f in L
1([t, T ]⇥ [�R,R]), and therefore the convergence of

the full family (f")">0 to f , is a consequence of the Lebesgue dominated convergence
theorem.

Remark 2.4. The one-dimensional structure is important in the proof of Proposition

2.1, in particular, in deducing from the equicontinuity of J
"
in time that (b"J")">0

belongs to a precompact subset of L
1
. It is not immediately clear whether this argument

can be extended to multiple dimensions.

2.3 The forward flow as the right-inverse of the backward flow

We next investigate the solvability of (2.2) forward in time. This is done by analyzing
the Jacobian J from the previous subsection in order to invert the backward flow.
Similar methods are used in [29], and, by including the Jacobian in the analysis, we
obtain additionally the almost-everywhere continuity of the inverse.

We will revisit this topic in Section 4 when we analyze the forward flow, which will
arise from the theory of renormalized solutions of the appropriate transport equation.
Proposition 2.2. For t  s, there exists a set Ats ⇢ Rd

of full measure such that,

for all y 2 Ats, �
�1

t,s ({y}) is a singleton, which we denote by {�s,t(y)}. Moreover, there

exists a version of the map �s,t : Rd ! Rd
such that �s,t is continuous a.e.

As an intermediate step, we first prove the following.
Lemma 2.4. Assume 0  t  s  T and K ⇢ Rd

is nonempty, compact, and

connected. Then �
�1

t,s (K) is nonempty, compact, and connected.

Proof. For r > 0, define Kr :=
S

y2K Br(y). Fix a sequence (bn)n2N satisfying (2.3)5,
and let �nt,s denote the corresponding backward flow from the previous subsections.

We first show that

�
�1

t,s (K) =
\

r>0

[

n2N

\

k�n

(�kt,s)
�1(Kr). (2.13)

Suppose x 2 �
�1

t,s (K). Then y = �t,s(x) 2 K. Setting yn := �
n
t,s(x), we have

limn!1 yn = y by Lemma 2.2, which means that, for all r > 0, there exists n 2 N
such that, for all k � n, �kt,s(x) 2 Br(y) ⇢ Kr. This proves the ⇢ direction of (2.13).

5
That is, we abuse notation and suppose that bn = b"n for (b")">0 satisfying (2.3) and some ("n)n2N

satisfying limn!1 "n = 0.
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Now suppose x belongs to the right-hand side of (2.13). Then, for all r > 0, there
exists n 2 N such that x 2 (�kt,s)

�1(Kr) for all k � n. Set yk := �
k
t,s(x), so that we

have yk ⇢ Kr for all k � n. We have y := limk!1 yk = limk!1 �
k
t,s(x) = �t,s(x) by

Lemma 2.2. On the other hand, we also have y 2 Kr, and so

�t,s(x) ⇢
\

r>0

Kr = K.

Thus, the � direction of (2.13) is established.
The continuity of �t,s and the compactness of K imply that ��1

t,s (K) is closed. We

note also that (�kt,s)
�1 = �

k
s,t satisfies (2.5) uniformly in k, because the bound only

depends on the constant C0 in the linear growth bound of (2.1), which is also satisfied
by �b

k. This along with (2.13) implies that ��1

t,s (K) is bounded, and thus compact.
We now show that �t,s is surjective. Using again the bound (2.5) satisfied uniformly

in k for �ks,t, we set xn := (�nt,s)
�1(y) = �

n
s,t(y) and note that (xn)n2N is bounded.

Passing to a subsequence, we have limk!1 xnk = x for some x 2 Rd, and then
y = �

nk
t,s(xk), so that y = limk!1 �

nk
t,s(xk) = �t,s(x).

Finally, we show �
�1

t,s (K) is connected. For each k 2 N, (�kt,s)�1(Kr) is connected,

and therefore so is the intersection
T

k�n(�
k
t,s)

�1(Kr) for each n. These sets are nested
in n, so taking the union in n 2 N yields a connected set. Taking the intersection over
r > 0 gives the connectedness of ��1

t,s (K).

Remark 2.5. The fact that the approximate backward flows converge uniformly to

�t,s is used in the second-to-last paragraph of the proof, in order to show that �t,s is

surjective.

Proof of Proposition 2.2. We identify the set by

At,s =
n
y 2 Rd : there exists x 2 �

�1

t,s ({y}) such that

�t,s is di↵erentiable at x and Jt,s(x) 6= 0
o
.

We first check that At,s has full measure. Its complement consists of

Rd\Ats =
�
y 2 Rd : Jt,s = 0 at the points of di↵erentiability of �t,s on ��1

t,s ({y})
 

[
�
y 2 Rd : �t,s is not di↵erentiable anywhere in ��1

t,s ({y})
 
.

The fact that �t,s is di↵erentiable a.e. and the change of variables formula then give

|Rd\At,s| =
Z

Rd

1{�t,s(x) 2 Rd\At,s}Jt,s(x)dx = 0.

It remains to show that ��1

t,s ({y}) is a singleton for all y 2 At,s. By Lemma 2.4,

�
�1

t,s ({y}) is nonempty, compact, and connected. Suppose x, x̃ 2 �
�1

t,s ({y}) are such
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that Jt,s(x) 6= 0. A Taylor expansion gives

y = �t,s(x̃) = �t,s(x)+rx�t,s(x)·(x�x̃)+o(|x�x̃|) = y+rx�t,s(x)·(x�x̃)+o(|x�x̃|).

The invertibility of rx�t,s(x) then implies that, if |x̃ � x| is su�ciently small, then
x̃ = x, or, in other words, x is an isolated point. But then the connected set �t,s({y})
must be equal to {x}, and we call x = �s,t(y).

For y 2 At,s, we then have (�t,s � �s,t)(y) = y. Since ��1

t,s ({y}) is nonempty for

any y 2 Rd, we may define a version of �s,t on all of Rd by imposing that �s,t(y) 2
(��1

t,s )({y}) for any y 2 At,s. For this version, we have �t,s � �s,t = Id everywhere on

Rd. Suppose now that y 2 At,s and limn!1 yn = y for some sequence (yn)n2N ⇢ Rd.
Then

lim
n!1

(�t,s � �s,t)(yn) = (�t,s � �s,t)(y).

We have
(�s,t(yn))n2N ⇢

[

n2N
(�t,s)

�1({yn}),

which implies by Lemma 2.4 that (�s,t(yn))n2N is bounded. Letting z be a limit point
of this set, we have, by continuity of the backward flow, that y = limn!1 yn = �t,s(z),
and therefore z = �s,t(y).

Remark 2.6. We shall see in Section 4 that the forward flow is always BV in space.

Therefore, the “forward Jacobian” Jt,s for t > s can only be understood as a measure.

Indeed, returning to the example b(t, x) = sgnx on R, the right inverse �t,s of �s,t

given by (2.7) is �t,s(x) = x+ (sgnx)(t� s) for s  t, which is discontinuous only at

0. The backward Jacobian is given by Js,t(x) = 1 {|x| � t� s}, and the forward one is

Jt,s = 1 + 2(t� s)�0.
Remark 2.7. The formula �s,t � �t,s = Id makes sense a.e. if s < t, because �s,t

is Lipschitz and �t,s is measurable. On the other hand, �t,s is not also a left-inverse,

since the formula �t,s � �s,t does not make sense. In the above example, �s,t(x) is

equal to 0, for |x|  t � s, and 0 is a point of discontinuity for �t,s. In general, the

concentration of �s,t on sets of measure 0 forbids applying �t,s as a left-inverse.

2.4 Compressive stochastic flows

We now fix a matrix-valued map

⌃ 2 L
2([0, T ], C0,1(Rd;Rd⇥m)), (2.14)

and assume that

W : ⌦⇥ [0, T ] ! Rm is a standard Brownian motion

on a given probability space (⌦,F ,P,E). (2.15)

In order to extend the results in the preceding subsections, and, in particular, to
bypass the di�culties of the backward time direction, we consider forward SDEs with

17



drift satisfying the opposite of (2.1), that is,

B : [0, T ]⇥ Rd ! Rd
, �B satisfies (2.1), (2.16)

and consider the flow
(
ds�s,t(x) = B(s,�s,t(x))ds+ ⌃(s,�s,t(x))dWs, s 2 [t, T ],

�t,t(x) = x.
(2.17)

Once again, (2.17) must be understood in the Filippov sense, which means, for s 2
[t, T ],

�s,t(x) = x+

Z s

t
↵rdr +

Z s

t
⌃(r,�r,t(x))dWr, ↵s 2 B(s,�s,t(x)), (2.18)

and we remark that our assumptions will allow us to always consider probabilistically
strong solutions; that is, we solve (2.18) path by path for almost every continuous W
with respect to the Wiener measure. Depending on the context in later sections (in
particular, the time direction of solvability for the transport and continuity equations),
we consider di↵erent examples for B and ⌃ for which these assumptions are satisfied.
Lemma 2.5. For every (t, x) 2 [0, T ]⇥Rd

and P-almost surely, there exists a unique

strong solution �s,t(x) of (2.17) defined on [t, T ] ⇥ Rd
. Moreover, for all p 2 [2,1),

there exists a constant C = Cp > 0 depending only on the assumptions (2.1) and

(2.14) such that

E|�s,t(x)� �s,t(y)|p  C|x� y|p for all 0  t  s  T and x, y 2 Rd
, (2.19)

E|�s,t(x)|p  C(|x|p + 1) for all � 0  t  s  T and x 2 Rd
, (2.20)

and (
E|�s1,t(x)� �s2,t(x)|p  C(1 + |x|)|s1 � s2|p/2

for all t 2 [0, T ], s1, s2 2 [t, T ], and x 2 Rd
.

(2.21)

With probability one, for all 0  r  s  t  T , �t,s � �s,r = �t,r. If (b")">0 are

regularizations satisfying (2.3), then, with probability one, the corresponding stochastic

flows �"
converge locally uniformly as "! 0 to �.

Proof. For " > 0, let B" be the convolution of B in space by a standard mollifier (so
that b" := �B

" satisfies (2.3)), and let �"
t,s denote the corresponding stochastic flow.

Itô’s formula, the one-sided Lipschitz assumption, and the Lipschitz continuity of ⌃
yield, for any p � 2 and some C 2 L

1
+
([0, T ]),

@

@t
E|�"

t,s(x)� �"
t,s(y)|p  C(t)E|�"

t,s(x)� �"
t,s(y)|p,

which, along with Grönwall’s inequality, leads to the first statement. The other two
estimates are proved similarly, with constants independent of " > 0.
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In view of (2.19) and (2.21), the Kolmogorov continuity criterion then yields, for
any R > 0, p � 2 and � 2 (0, 1), a constant C = CR,p,� > 0 such that, for all s 2 [0, T ],
� � 1 and " > 0,

P
 

sup
x,y2BR

sup
r,s2[s,T ]

|�"
t,s(x)� �"

r,s(y)|
|x� y|1�� + |t� s| 12 (1��)

> �

!
 C

�p
.

It follow that the probability measures on C([s, T ] ⇥ Rd;Rd) induced by the random
variables (�"

·,s)">0 are tight with respect to the topology of locally uniform conver-
gence, and therefore converge weakly along a subsequence as " ! 0 to a probability
measure that gives rise to a weak (in the probabilistic sense) solution of (2.17), for
which the estimates in the statement of the lemma continue to hold.

A similar computation to the one above reveals that, for a fixed probability space
and almost every Brownian path W , the solution of (2.17) is unique. The pathwise
uniqueness then implies, by a standard argument due to Yamada and Watanabe [66],
that there is a unique strong solution for every x 2 Rd.

Remark 2.8. It is an open question whether �t,s is Lipschitz continuous, even if B

is Lipschitz. When B is Lipschitz and ⌃ 2 C
1,↵

for some ↵ 2 (0, 1], it turns out the

flow �t,s is C
1,↵0

for any ↵
0 2 (0,↵), but it is not clear how to extend this to the case

where �B satisfies the one-sided Lipschitz bound from below.

As a consequence, an understanding of the Jacobian det(rx�t,s(x)), or of the

stability with respect to regularizations of B, is considerably more complicated in the

stochastic case. The results of Section 4, where we discuss the expansive regime, are

therefore constrained to the first-order case, and we relegate the second-order analysis

to future work. One exception is when ⌃ is independent of the spatial variable, in

which case a change of variables relates the SDE to an ODE of the form (2.2) with a

random b.

2.5 Small noise approximations

We return to the backward flow �t,s, 0  t  s  T , from Lemma 2.2. Recall that the
backward flow also corresponds to the forward flow for �b; that is,

@

@s
�t,s(x) = �b(s,�t,s(x)), s � t, �t,t(x) = x. (2.22)

For " > 0, let �"t,s(x) denote the following stochastic flow

ds�
"
t,s(x) = �b(s,�"t,s(x))ds+ "dWs s � t, �

"
t,t(x) = x, (2.23)

where W is now a d-dimensional Brownian motion. We note that (2.17) falls under the
assumptions of Lemma 2.5, but in fact (2.23) admits a unique strong solution as soon
as b is merely locally bounded [39, 65]. In general, the limiting solutions as "! 0 are
not unique; however, we immediately have the following as a consequence of Lemma
2.5.
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Proposition 2.3. For every " > 0, there exists a unique strong solution of (2.23).
Moreover, as "! 0, �" converges locally uniformly to �.

If J
" = det(rx�

"), then, as " ! 0, J"
converges weak-? in L

1([s, T ] ⇥ Rd) and

weakly in C([s, T ], L1

loc
(Rd)) to J .

2.6 Some bibliographical remarks

We conclude this section by placing the above results in the context of the existing
literature. As has been mentioned, the well-posedness and properties of the backwards
flow in subsection 2.1 are well studied, and date back to at least the work of Filippov
[42]. For the particular properties of the Jacobian stated in subsection 2.2, especially
the weak-? convergence in L

1, we expand on arguments from the Appendix of [25].
Our result on strong convergence when d = 1 relies on arguments as for Aubin-Lions
compactness lemmas [18, 54].

Meanwhile, the forward flow in subsection 4.3 is comparatively less studied. Our
approach to uniquely identifying the forward flow as the right-inverse of the back-
ward flow is similar to that in the appendix of [29], with the argument expanded so
as to prove the almost-everywhere continuity, which was not previously known. As
mentioned, we further expand the properties of the forward flow in Section 4 below.

As in the ODE case, the theory for compressive SDE flows such as those consid-
ered in subsection 2.4 is well-understood. For instance, in [62], this situation is studied
in a still more general setting (the constant C1 in (2.1) is allowed to depend addition-
ally on x and y, with some integrability assumptions), and, similarly as in subsection
3.2 below, this allows for a theory of measure-valued solutions of the Fokker-Planck
equation (3.4). By contrast, degenerate stochastic regular Lagrangian flows and degen-
erate Fokker-Planck equations with (div b)� 2 L

1 and div b /2 L
1 are far less studied,

and, as far as we know, our results in subsection 4.5 below (which rely on the properties
of compressive flows established in this section) are the first in this direction.

3 The compressive regime

In this section, we consider the transport and continuity equations in the so-called
compressive regime. That is, for velocity field b satisfying (2.1), we study the TVP for
the nonconservative equation

�@u
@t

+ b(t, x) ·ru = 0 in (0, T )⇥ Rd and u(T, ·) = uT in Rd
, (3.1)

and the IVP for the conservative equation

@f

@t
� div(b(t, x)f) = 0 in (0, T )⇥ Rd and f(0, ·) = f0. (3.2)

We recall that div b is bounded from below, and therefore, the direction of time for
(3.1) and (3.2) does not allow for a solution theory in Lebesgue spaces, due to the
concentrative nature of the backward flow analyzed in the previous section. The TVP
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(3.1) will be solved in the space of continuous functions, while (3.2) is solved in the
dual space of Radon measures.

We also obtain analogous results for the second-order equations

�@u
@t

� tr[a(t, x)r2
u] + b(t, x) ·ru = 0 in (0, T )⇥ Rd and u(T, ·) = uT (3.3)

and

@f

@t
� div

⇥
div(a(t, x)f)� b(t, x)f

⇤
= 0 in (0, T )⇥ Rd and f(0, ·) = f0, (3.4)

where a = 1

2
��

T for � : [0, T ]⇥ Rd ! Rd⇥m satisfying

sup
x2Rd

|�(·, x)|
1 + |x| + sup

y,z2Rd

|�(·, y)� �(·, z)|
|y � z| 2 L

2([0, T ]). (3.5)

3.1 The nonconservative equation

3.1.1 Representation formula

When interpreting (3.1) in the distributional sense, we are constrained to seek solutions
that are continuous. Indeed, the distribution

b ·ru = div(bu)� (div b)u

pairs the solution u with div b, which is a measure in general. The other motivating
factor is the formal representation formula for the solution of the TVP (3.1), which is
given in terms of the backward flow:

u(t, x) = uT (�t,T (x)) for (t, x) 2 [0, T ]⇥ Rd
. (3.6)

This formula and the Lipschitz continuity of �t,T given in Lemma 2.2 suggest that
the solution operator for (3.1) should preserve continuity. In fact, the formula (3.6)
defines a distributional solution, which is uniquely obtained from limits of natural
regularizations of the equation.
Theorem 3.1. If uT 2 C(Rd), then the function u in (3.6) is a distributional solution

of (3.1). Moreover, if (b")">0 satisfy (2.3) and u
"
is the corresponding solution of

(3.1) with velocity field b
"
, then, as "! 0, u"

converges locally uniformly to u.

Proof. The unique solution u
" for the regularized velocity field is given by u

"(t, ·) =
uT � �"t,T , where �" is the flow corresponding to b

". By Lemma 2.2, as " ! 0, �"

converges locally uniformly to �, and so the local-uniform convergence to u follows
from the continuity of u0.
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Multiplying the equation for u
" by some  2 C

1
c ((0, T ) ⇥ Rd) and integrating by

parts gives

Z T

0

Z

Rd

u
"(t, x) (@t (t, x)� b

"(t, x) ·r (t, x) + (div b"(t, x)) (t, x)) dxdt = 0.

As " ! 0, b
" ! b almost everywhere and div b" * div b weakly in the sense of

measures, and so the fact that u is a distributional solution follows.

Turning next to the second-order equation (3.3), we identify a solution candidate
with the appropriate stochastic flow. We do so by changing the time direction in b and
� and considering the SDE

(
ds�s,t(x) = �b(s,�s,t(x))ds+ �(s,�s,t(x))dWs, s 2 [t, T ],

�t,t = Id,
(3.7)

where W is as in (2.15). Note that (3.7) is of the type in (2.17) and thus falls within
the assumptions of Lemma 2.5. In particular, if uT is continuous, then, in view of
(2.19)-(2.21), the formula

u(t, x) = E[uT (�T,t(x))] (3.8)

defines a continuous function. Moreover, if uT is Lipschitz, then u(t, ·) is Lipschitz for
all t > 0, and 1/2-Hölder continuous in time. Note that, in this case, the distribution
tr[ar2

u] = div(aru) � div a ·ru makes sense, because ru and div a both belong to
L
1.
The following is proved exactly as for Theorem 3.1, with the use of the estimates

in Lemma 2.5.
Theorem 3.2. Let uT 2 C(Rd) be uniformly continuous and define u by (3.8). If

(b")">0 satisfy (2.3) and u
"
is the corresponding solution of (3.3) with velocity b

"
,

then, as "! 0, u"
converges locally uniformly to u. Moreover, if uT 2 C

0,1
, then

sup
(t,x,y)2[0,T ]⇥Rd⇥Rd

|u(t, x)� u(t, y)|
|x� y| + sup

(r,s,z)2[0,T ]⇥Rd

|u(r, z)� u(s, z)|
|r � s|1/2(1 + |z|)

< 1,

and u is a distributional solution of (3.3).
As a special case, we consider, for " > 0, the “viscous” version of (3.1), that is

�@tu" � "
2

2
�u

" + b(t, x) ·ru
" = 0 in (0, T )⇥ Rd

, u
"(T, ·) = uT . (3.9)

This uniformly parabolic equation has a unique classical solution for any uniformly
continuous uT : Rd ! R, which, moreover, is given by u

"(t, x) = E[uT (�"t,T (x))], where
now �

" denotes the solution of the SDE (2.23) from the previous section. Arguing just
as in Theorem 3.1 and invoking Proposition 2.3 immediately gives the following.
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Theorem 3.3. As "! 0, the solution u
"
converges locally uniformly to the function

u given by (3.6).

3.1.2 Viscosity solutions

Although (3.6) and (3.8) are the distributional solutions that arise uniquely through
regularization (either of b or through vanishing viscosity limits), it turns out that
distributional solutions are not unique in general (see subsubsection 3.1.3 below). It is
then a natural question as to whether the “good” solutions can be characterized other
than as limits of regularizations, or by the explicit formulae. For example, this is done
for the one-dimensional problem in [59] by introducing a sort of entropy condition.

We give a di↵erent characterization here using the theory of viscosity solutions [35],
which covers both the first- and second-order problems. We present the results here
only in the second-order case, which includes the first-order equations when a = 0.

We define, for (t, x, p) 2 [0, T ]⇥ Rd ⇥ Rd,

b(t, x, p) = lim inf
z!x

b(t, z) · p and b(t, x, p) = lim sup
z!y

b(t, z) · p.

For fixed (t, x) 2 [0, T ] ⇥ Rd, b(t, x, ·) and b(t, x, ·) are Lipschitz continuous on Rd,
and, for fixed (t, p) 2 [0, T ], b(t, ·, p) and b(t, ·, p) are respectively lower and upper
semicontinuous.

The following definition of viscosity (sup, super) solutions closely resembles the
one in [55].
Definition 3.1. An upper-semicontinuous (resp. lower-semicontinuous) function u is

called a subsolution (resp. supersolution) of (3.3) if, for all  : [0, T ]⇥Rd
that are C

1

in t and C
2
in x, it holds that

� d

dt
max
x2Rd

{u(t, x)�  (t, x)}

 inf
�
tr[a(t, y)r2

 (t, y)]� b(t, y,r (t, y)) : y 2 argmax{u(t, ·)�  (t, ·)}
 

(resp.

� d

dt
min
x2Rd

{u(t, x)�  (t, x)}

� sup
�
tr[a(t, y)r2

 (t, y)]� b(t, y,r (t, y)) : y 2 argmin{u(t, ·)�  (t, ·)}
 ⌘

.

If u 2 C([0, T ]⇥ Rd) is both a sub and supersolution, we say u is a solution.

The comparison principle is proved by doubling the space variable. In particular,
we have the following lemma, which follows exactly by methods as in [34, 57, 58]. For
(t, x, y) 2 [0, T ]⇥ Rd ⇥ Rd, we define the nonnegative matrix

A(t, x, y) :=

✓
�(t, x)
�(t, y)

◆�
�(t, x)T �(t, y)T

�
.
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Lemma 3.1. Assume u and v are respectively a sub and supersolution of (3.3). Then
w(t, x, y) = u(t, x)� v(t, y) is a subsolution of

�@tw � tr[a(t, x, y)r2

(x,y)w] + b(t, x,rxw)� b(t, x,�ryw)  0.

We may now state and prove the comparison principle.
Theorem 3.4. If u and v are respectively a sub and supersolution of (3.3) such that

sup
(t,x)2[0,T ]⇥Rd

u(t, x)

1 + |x| + sup
(s,y)2[0,T ]⇥Rd

�v(s, y)

1 + |y| < 1,

then t 7! supx2Rd {u(t, x)� v(t, x)} is nondecreasing.

Proof. Define w(t, x, y) := u(t, x)� v(t, y), fix �, " > 0, and define ��,"(x, y) =
1

2� |x�
y|2 + 1

2" (|x|
2 + |y|2). In view of the growth of u and v in x, for all t 2 [0, T ], the map

w(t, ·, ·) � ��,"(x, y) attains a maximum on Rd ⇥ Rd. Moreover, standard arguments
from the theory of viscosity solutions (see for instance [35, Lemma 3.1]) imply that
there exist ⇢� > 0 and �" such that lim�!0 ⇢

2

�/� = lim"!0 "�
2
" = 0, and

|x�y|  ⇢� and |x|+|y|  �" for all (x, y) 2 argmax {w(t, ·, ·)� ��,"} , t 2 [0, T ].

Therefore, if t 2 [0, T ] and (x, y) 2 argmax {w(t, ·, ·)� ��,"}, we have, for some C 2
L
1
+
([0, T ]),

tr[a(t, x, y)r2

(x,y)��,"(x, y)]

= tr

✓
1

�

✓
Id � Id
� Id Id

◆
+ "

✓
Id 0
0 Id

◆◆✓
�(t, x)
�(t, y)

◆�
�(t, x)T �(t, y)T

��

 C(t)

✓
⇢
2

�

�
+ "�

2

"

◆

and

�b (t, x,rx��,"(x, y)) + b (t, y,�ry��,"(x, y))

= lim sup
(z,w)!(x,y)

⇢
�b(t, z) ·

✓
x� y

�
+ �x

◆
+ b(t, w) ·

✓
x� y

�
� �y

◆�

= lim sup
(z,w)!(x,y)

⇢
�(b(t, z)� b(t, w)) · z � w

�
� b(t, z) · �z + b(t, w) · �w

�

 C(t)

✓
⇢
2

�

�
+ "+ "�"

◆
.
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It now follows from Definition 3.1 and Lemma 3.1 that, for some C�," 2 L
1
+
([0, T ])

satisfying lim(�,")!(0,0) C�," = 0 in L
1([0, T ]),

t 7! sup
(x,y)2Rd⇥Rd

{w(t, x, y)� ��,"(x, y)}�
Z T

t
C�,"(s)ds

is nondecreasing. The result follows upon sending � and " to 0.

As a consequence of the comparison theorem, the “good” distributional solution
of (3.3) can be uniquely characterized.
Theorem 3.5. Assume uT : Rd ! R is uniformly continuous and uT ·(1+|·|�1) 2 L

1
.

Then (3.8) is the unique viscosity solution of (3.3).

Proof. The fact that (3.8) defines a viscosity solution is due to Theorem 3.2 and the
stability properties of viscosity solutions6. In view of Lemma 2.5 and the growth of
uT , we may appeal to Theorem 3.4 to conclude that (3.8) is the only viscosity solution
of the terminal value problem (3.3).

3.1.3 (Non)equivalence of distributional and viscosity solutions

For x 2 R, set b(t, x) = sgnx and uT (x) = |x|. Using the formula (2.7) for the
backward flow, the solution (3.6) becomes

u(t, x) = (|x|� (T � t))+. (3.10)

However, the Lipschitz function

v(t, x) = |x|� (T � t) (3.11)

is another distributional solution (and in fact satisfies the equation a.e.). It can also
be checked directly that (3.11) does not give a viscosity solution of (3.1). Indeed, note
that v(t, x) � t attains a global minimum at any (t, 0) 2 [0, T ] ⇥ R. Applying the
supersolution definition with �(t, x) = t yields the contradictory �1 � 0.

The uniqueness of distributional solutions fails even if b is continuous. Indeed, if
0 < ↵ < 1 and b(t, x) = sgnx|x|↵ and uT (x) = |x|1�↵, then, arguing similarly as in
the above example,

u(t, x) =
�
|x|1�↵ � (1� ↵)(T � t)

�
+

(3.12)

and
v(t, x) = |x|1�↵ � (1� ↵)(T � t) (3.13)

are two distributional solutions, and (3.12) is the one corresponding to (3.6). Once
again, (3.13) can directly be seen to fail the viscosity supersolution property.

6
Note that smooth solutions of the equation corresponding to b" satisfying (2.3), or of the viscous equation

(3.9), are viscosity solutions in the sense of Definition 3.1.
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In the first example above, uT is Lipschitz while b is discontinuous, and, while b

is continuous in the second example, we take uT to be non-Lipschitz. This should be
compared with the following su�cient criterion for equivalence.
Theorem 3.6. If b 2 C([0, T ] ⇥ Rd) satisfies (2.1) and uT 2 C

0,1(Rd), then there

exists a unique distributional solution u 2 C([0, T ], C0,1(Rd)), and it is given by (3.6).

Proof. Let ⇢ 2 C
1
c be a standard mollifier and, for " > 0, set ⇢"(x) = "

�d
⇢("�1

x).
Let u 2 C([0, T ], C0,1(Rd)) be a distributional solution of (3.1) and define u" = u⇤⇢".
Then

�@tu" + b ·ru" = r" in (0, T )⇥ Rd
, (3.14)

where

r"(t, x) =

Z

Rd

(b(t, y)� b(t, x)) ·ru(t, y)⇢"(x� y)dy.

Note that r" 2 C([0, T ]⇥Rd), and u" solves (3.14) in the sense of viscosity solutions.

Moreover, the continuity of b and boundedness of ru imply that r"
"!0���! 0 locally

uniformly. Standard stability results from the theory of viscosity solutions then imply
that the limit u of u" is the unique viscosity solution of (3.1).

The above result can be extended by studying the interplay between regularity of
b and u.
Theorem 3.7. Suppose that ↵,� 2 (0, 1] satisfy ↵ + � > 1, b satisfies (2.1)
and supt2[0,T ][b(t, ·)]C↵ < 1, and u is a distributional solution of (3.1) such that

supt2[0,T ][u(t, ·)]C� < 1. Then u is the unique viscosity solution of (3.1).
Remark 3.1. The condition on ↵ + �, and, in particular, the strict inequality, is

sharp, as the example above with b(x) = sgnx|x|↵ and uT (x) = |x|1�↵
shows.

Proof of Theorem 3.7. Arguing similarly as for Theorem 3.6, it su�ces to prove that

r" = (b ·ru) ⇤ ⇢" � b ·r(u ⇤ ⇢")
"!0���! 0 locally uniformly,

where ⇢" is a standard mollifier. We note that r" = M"[b(t, ·), u(t, ·)], where the bilinear
operator M" is defined, for su�ciently regular (B,U) : Rd ! Rd ⇥ R, by

M"[B,U ] =

Z

Rd

(B(y)�B(x)) ·rU(y)⇢"(x� y)dy.

Standard interpolation arguments give, for some C > 0 depending on ↵ and �, for all
(B,U) 2 C

↵ ⇥ C
� ,

|M"[B,U ]|  C"
↵+��1[B]C↵ [U ]C� .

Therefore |r"(t, x)|  C[b(t, ·)]C↵ [u(t, ·)]C�"
↵+��1, and we conclude upon sending "!

0.

3.2 The conservative equation

3.2.1 Duality solutions

For either of the two conservative equations (3.2) and (3.4), the tendency of the back-
ward flow to concentrate on sets of Lebesgue measure zero implies that, even if f0
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is absolutely continuous with respect to the Lebesgue measure, f(t, ·) may develop a
singular part for t > 0.

This presents an obstacle in defining solutions in the sense of distributions, since
the product of the discontinuous vector field b with a singular measure f may not be
well-defined. This same issue arose in the works [22, 25], and also in studying the the
nonconservative equation (4.2) in Lebesgue spaces (see Section 4 below). The approach
in these works was to define solutions through duality with the dual equation, for
which particular distributional solutions could be defined in a stable, unique way. In
this compressive regime, we do the same for (3.2), and directly define solutions in
duality with the nonconservative equation.
Definition 3.2. A map f 2 C([0, T ],Mloc,w) is called a solution of (3.2) if, for all

t 2 [0, T ] and g 2 Cc(Rd),

Z
g(x)f(t, dx) =

Z
g(�0,t(x))f0(dx).

Remark 3.2. For g 2 Cc(Rd) and t 2 [0, T ], (s, x) 7! g(�s,t(x)) is the solution of the

transport equation (3.1) in [0, t]⇥Rd
with terminal value g at time t, and, hence, f is

called the duality solution of (3.2). Equivalently, f(t, ·) is the pushforward by �0,t of

the measure f0. When f0 is a probability measure, this means that f(t, ·) is the law at

time t of the stochastic process �0,t(X0), where X0 is a random variable with law f0.

Remark 3.3. The notion of duality solution can be equivalently formulated in relation

to nonconservative equations with a right-hand side
7
, that is, for g 2 L

1([0, T ], C(Rd)),

�@tu+ b(t, x) ·ru = g(t, x) in (0, T )⇥ Rd
. (3.15)

With this perspective, although the object div(bf) does not make sense as a classi-

cal distribution, the equation can still be applied to particular singular test functions,

namely, solutions of equations like (3.15). Then the pairing

Z

Rd

u(T, x)f(T, dx)�
Z

Rd

u(0, x)f0(dx)

+

Z T

0

Z

Rd

[�@tu(t, x) + b(t, x) ·ru(t, x)]| {z }
=g(t,x)

f(t, dx) = 0 (3.16)

has a sense, because the singular terms collapse into a continuous function, which may

be paired with f(t, ·).
Remark 3.4. When d = 1, the theory for (3.2) can be connected to that for the

nonconservative equation (4.2) in Section 4 below, in that (4.2) is (up to a time change

of b) a primitive of (3.2). Using this relationship, Bouchut and James [22, Theorem

4.3.4] are able to give meaning to the distributional product bf (or b@xu in the next

section). More precisely, it is shown that the duality solution in either setting has the

following reformulation: there exists b̂ : [0, T ]⇥R ! R such that b̂ = b a.e., and f (resp.

7
The theory of viscosity solutions of the terminal value problem for (3.15) can be formulated following

the theory of the previous subsection with little change.
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u) is a distributional solution of (3.2) (resp. (4.2)) with b replaced by b̂. Extending

this concept to multiple dimensions, in which case the direct relationship between (3.2)
and (4.2) is not present, seems to be rather di�cult.

Theorem 3.8. There exists a unique duality solution f of (3.2). If, for " > 0, f"
is

the solution corresponding to b
"
as in (2.3), then, as "! 0, f"

converges weakly in the

sense of measures to f . If 1  p < 1, f0, g0 2 Pp, and f and g are the corresponding

duality solutions, then, for some C > 0 depending on p and the constants in (2.1),
Wp(ft, gt)  CWp(f0, g0).

Proof. The existence and uniqueness of duality solutions is a direct consequence of the
definition. Moreover, the duality solution identity implies that, for any R > 0 and for
some C > 0 depending on the constants in (2.1), kf(t, ·)kTV (BR)

 kf0kTV (BR+C)
. For

0  s < t  T and g 2 Cc(Rd), we apply the duality formula with the test function
g � �s,t and obtain the identity

Z

Rd

g(x)f(t, dx) =

Z

Rd

g(�s,t(x))f(s, dx).

Then, by Lemma 2.2, for some modulus of continuity ! depending on the modulus of
continuity for g,

����
Z

Rd

g(x) [f(t, dx)� f(s, dx)]

����  !(|t� s|) kf0kBsupp g+C
,

and we conclude that f 2 C([0, T ],Mloc,w).
For R > 0, define f0,R := f01BR , and denote by fR and f

"
R the duality solutions

of (3.2) with respectively b and b
" and initial condition f0,R. It then su�ces to prove

that, for fixed R > 0 as " ! 0, f"
R * fR in the sense of measures. Then, in view of

Lemma 2.2, for any t 2 [0, T ] and g 2 Cc(Rd) for su�ciently large support,

Z

Rd

g(x)fR(t, dx) =

Z

BR

g(�0,t(x))f0(dx) =

Z

Rd

g(�0,t(x))f0(dx) =

Z

Rd

g(x)f(t, dx),

and similarly for f".
Let then g 2 Cc(Rd) and t 2 (0, T ] be fixed, and assume without loss of generality

that f0 has compact support in BR for some R > 0. Then, for " > 0,

Z

Rd

g(x)f"(t, dx) =

Z
g(�"

0,t(x))f0(dx).

so that kf"kTV  kf0kTV . Moreover, if supp g ⇢ Rd\BR+C for some C > 0 su�ciently
large and independent of " > 0, again by Lemma 2.2,

Z

Rd

g(x)f"(t, dx) = 0.
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We may then take a weakly convergent subsequence of f
", with limit point F 2

L
1([0, T ],M), and, sending " ! 0, we obtain that F satisfies the duality solution

identity, and therefore F = f .
Choose h1, h2 2 Cc(Rd) such that, for all x, y 2 Rd, h1(x)+h2(y)  |x�y|p. Then,

if � is any coupling between f0 and g0, we compute, using the duality identity and
Lemma 2.2,

Z
h1(x)f(t, dx) +

Z
h2(y)g(t, dy) =

ZZ
(h1(�0,t(x)) + h2(�0,t(y))) �(dx, dy)

 C

ZZ
|x� y|p�(dx, dy).

Taking the infimum over such � and supremum over such h1, h2, and using the dual
formulation of the p-Wasserstein distance, we arrive at the estimate for the Wasserstein
distances.

Remark 3.5. The final estimate can also be proved using the characterization of f

and g as laws of certain stochastic processes (see Remark 3.2) and the characterization

of the Wasserstein metric in terms of random variables.

We may repeat the above analysis for the second-order conservative equation (3.4),
the only di↵erence being the lack of a finite speed of propagation. Therefore, all mea-
sures are taken to have finite mass over Rd. Below, �t,0 is the stochastic flow satisfying
(3.7).
Definition 3.3. A map f 2 C([0, T ],Mw) is called a solution of (3.4) if, for all

t 2 [0, T ] and g 2 Cb(Rd),

Z
g(x)f(t, dx) =

Z
E[g(�t,0(x))]f0(dx).

Remark 3.6. Once again, such solutions are called duality solutions because E[g��t,0]
is the solution of (3.3) with terminal value g at time t. If f0 is a probability measure,

then f(t, ·) is the law of the stochastic process �t,0(X0), where X0 is a random variable

with law f0, independent of the Wiener process W .

The following may be proved exactly as for Theorem 3.8, now invoking the
properties of the stochastic flow described by Lemma 2.5.
Theorem 3.9. There exists a unique duality solution f of (3.4). If, for " > 0, f"

is

the solution corresponding to b
"
as in (2.3), then, as "! 0, f"

converges weakly in the

sense of measures to f . If 1  p  1, f0, g0 2 Pp, and f and g are the corresponding

duality solutions, then, for some C > 0 depending on p and the constants in (2.1),
Wp(ft, gt)  CWp(f0, g0).

3.2.2 On the failure of renormalization

In view of the formula (3.6), it is immediate that (viscosity) solutions of (3.1) satisfy
the renormalization property, that is, if u is a viscosity solution and � : R ! R is
smooth, then � � u is also a solution. This is related to the existence and uniqueness
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of the Lipschitz backward flow; indeed, note that, coordinate by coordinate, �t,T (x)
is the unique viscosity solution of (3.1) with terminal value x at time T .

We contrast this with the renormalization property for the forward, conservative
problem (3.2). If b is smooth, then classical computations show that f is a solution if
and only if |f |, f+, and f� are all solutions. Because f(t, ·) is the pushforward by f0

of the flow �0,t, this can be viewed as a generalized form of injectivity for the flow.
For b satisfying (2.1), the backward flow is not guaranteed to be injective, and may in
fact concentrate at null sets. We therefore cannot expect renormalization to hold in
general.

As a concrete example, take again b(x) = sgnx on R, and f0 = 1

2
�1 � 1

2
��1.

Then, for t > 0, f(t, ·) = 1

2
�(1�t)+ � 1

2
��(1�t)+ , which means that f(t, ·) ⌘ 0 for

t � 1. However, the solution F of (3.2) with F0 = |f0| = 1

2
�1 + 1

2
��1 is equal to

F (t, ·) = 1

2
�(1�t)+ + 1

2
��(1�t)+ , so that F (t, ·) = �0 for t � 1. Thus Ft 6= |ft| for t � 1;

indeed, |ft| does not even conserve mass.
The failure of renormalization holds even if we impose f0 2 L

1 \ L
1. For such f0

and for b(x) = sgnx, we have

f(t, dx) = [f0(x+ t)1 {x > 0}+ f0(x� t)1 {x < 0}] dx+

 Z

[�t,t]
f0

!
d�0(x).

Therefore, renormalization fails whenever f0 is nonzero and odd.
We present one more counterexample to renormalization in which b 2 C and

f 2 L
1 (as the previous example shows, even if f0 2 L

1, f(t, ·) may not be absolutely
continuous with respect to Lebesgue measure due to the concentration of the flow).
Take b(t, x) = 2 sgnx|x|1/2. The backward flow is given by �0,t(x) = sgnx(|x|1/2� t)2

+

for (t, x) 2 [0, T ]⇥ R. For f0 2 L
1, the duality solution is given by

f(t, dx) =

 Z

[�t2,t2]
f0

!
�0(dx) + f0

⇣
sgnx(|x|1/2 + t)2

⌘ |x|1/2 + t

|x|1/2
dx.

We then take the odd density f0(x) = sgnx|x|1/21[�1,1](x), and the duality solution
takes values in L

1:

f(t, x) = sgnx
(|x|1/2 + t)2

|x|1/2
1[�(1�t)2+,(1�t)2+](x). (3.17)

On the other hand, |f | is not the duality solution, or even a distributional solution,
since mass is not conserved. The unique duality solution with initial density |f0(x)| =
|x|1/21[�1,1](x) in this case is given by

F (t, dx) =
4t3

3
�0(dx) +

(|x|1/2 + t)2

|x|1/2
1[�(1�t)2+,(1�t)2+](x)dx.

Remark 3.7. One consequence of the commutator lemma of DiPerna and Lions [40,

Lemma II.1] is that, if f 2 L
p
and b 2 W

1,q
with

1

p +
1

q  1, then the renormalization
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property is satisfied. The previous example therefore indicates that these conditions

cannot be weakened in general. Indeed, even though f0 2 L
1 \ L

1
, the solution f(t, ·)

given by (3.17) belongs to L
p
only for p 2 [1, 2) when t > 0, and the same is true for

@xb.

3.2.3 Equivalence of duality and distributional solutions

We finish this section by studying the setting where bf can be understood as a
distribution, and, therefore, distributional solutions of (3.2) can be considered.
Theorem 3.10. Assume either that b is continuous, or that f(t, ·) 2 L

1

loc
for all

t 2 [0, T ]. Then f is a distributional solution of (3.2) if and only if f is the unique

duality solution.

Proof. Suppose f is the unique duality solution. Let (b")">0 be as in (2.3) and let f"

be the corresponding solution of (3.2). For � 2 C
1
c ((0, T ) ⇥ Rd), integrating by parts

yields ZZ

(0,T )⇥Rd

f
"(t, x) (�@t�(t, x) + b

"(t, x) ·r�(t, x)) dtdx = 0.

In the case that b 2 C, we may choose regularizations b
" that converge locally uni-

formly to b. By Theorem 3.8, as "! 0, f" converges weakly in the sense of measures
to f , and so we may take "! 0 above to obtain

ZZ

(0,T )⇥Rd

f(t, dx) (�@t�(t, x) + b(t, x) ·r�(t, x)) dt = 0.

Otherwise, if f 2 L
1

loc
, it follows that f

" converges weakly in L
1

loc
, and therefore the

same is true for b"f" by the dominated convergence theorem. We may then take "! 0
in this case as well.

Assume now that f is an arbitrary distributional solution. We aim to show the
duality equality in Definition 3.2, and, by a density argument, it su�ces to do so for
g 2 Cc(Rd) \ C

0,1(Rd). Let ⇢" be a standard mollifier as before and set f" = f ⇤ ⇢".
Then f" satisfies

@tf" � div(bf") = div r",

where r" = (bf) ⇤ ⇢" � bf". For t 2 (0, T ], let u be the unique Lipschitz viscosity
solution of the terminal value problem

�@su+ b ·ru = 0 in (0, t)⇥ Rd
, u(t, ·) = g.

By the theory in subsection 3.1, u(s, x) = g(�s,t(x)) and is Lipschitz continuous with
compact support. We then compute

@s

Z
f"(s, x)u(s, x)dx = �

Z
r"(s, x) ·ru(s, x)dx,
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so that

Z
f"(t, x)g(x)dx�

Z
(f0 ⇤ ⇢")(x)g(�0,t(x))dx = �

Z t

0

Z

Rd

r"(s, x) ·ru(s, x)dxds.

We may then conclude by proving that r"
"!0���! 0 in L

1

loc
.

If f 2 L
1

loc
, this is immediate because, as " ! 0, both (bf) ⇤ ⇢" and bf" converge

in L
1

loc
to bf . If b 2 C, then, as "! 0, both (bf) ⇤ ⇢" and bf" converge locally in total

variation to bf . It follows that r" converges locally in total variation to 0, but, because
r" 2 L

1 for all " > 0, the convergence in L
1

loc
is established.

Remark 3.8. Even in the context of Theorem 3.10, the renormalization property can

fail. Indeed, this is the case for the final example in the previous subsubsection, where

both b 2 C and f 2 L
1
.

4 The expansive regime

We continue our analysis of transport and continuity equations with vector fields b

satisfying (2.1), and in this section we study the expansive regime. Reversing the sign
appearing in front of the velocity field b, the initial value problem for the continuity
equation becomes

@tf + div(b(t, x)f) = 0 in (0, T )⇥ Rd and f(0, ·) = f0, (4.1)

and the corresponding dual terminal value problem for the non-conservative transport
equation is

@tu+ b(t, x) ·ru = 0 in (0, T )⇥ Rd and u(T, ·) = uT . (4.2)

Equivalently, we are studying the time-reversed versions of (3.1) and (3.2) (in this
case, b is replaced with b(T � t, ·)). As such, the relevant direction of the flow (2.2)
changes in this context: whereas in the previous section, the compressive, backward
flow gave rise to the dual solution spaces C and M, here, the expansive, forward flow
allows to develop a theory for both (4.1) and (4.2) in Lebesgue spaces. This can also
be seen from formal a priori Lp estimates for (4.1) and (4.2), which follow immediately
from the lower bound on div b.

The regime for these equations matches those studied by Bouchut, James, and
Mancini [25], in which emphasis is placed on the fact that distributional solutions
f 2 C([0, T ], L1

w-?(Rd)) of (4.1) are not unique in general. Our approach to these
equations is similar, in that we use a particular solution of (4.1) to study, by duality,
the transport equation (4.2) and the forward ODE flow to (2.2). We extend the results
of [25] by identifying a “good” solution (reversible solution, in the terminology of [25])
of (4.2) for any f0 2 L

p
loc

, where the continuous solution operator on L
p is stable under

regularizations in the weak topology of C([0, T ], Lp
loc

(Rd)).
The terminal value problem (4.2) is then understood both in the dual sense and

through the lens of renormalization theory. It is this theory that allows, as in [40], to
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make sense of the forward ODE flow (2.17) as the right-inverse of the backward flow,
completing the program initiated in Section 2. As a consequence, we then also obtain
the uniqueness of nonnegative distributional solutions of (4.1), and, by extension, a
characterization of the reversible solution of [25].

We finish the section by making some remarks about the second-order analogues
of (4.1) and (4.2). Unlike in the previous section, we do not have a full solution theory
for general second-order equations, unless the ellipticity matrix is uniformly positive
(the case which has already been covered by Figalli in [41]) or is degenerate but
independent of the space variable.

4.1 The conservative equation

The starting point for the study of the conservative equation (4.1) is that solutions
in the sense of distributions are not unique (see also [22], [25, Section 6]). We revisit
the example, when d = 1, b(t, x) = sgnx. Then f(t, x) := sgnx1|x|t is a nontrivial
distributional solution of (4.1) belonging to L

1 \L
1 with f(0, ·) = 0. The uniqueness

can be seen as a consequence of the compressive nature of the backward flow (2.2),
which allows for positive and negative mass to be “cancelled” at time 0, only to
appear immediately for t > 0. The same phenomenon is what leads to the failure of
renormalization for the compressive regime for the continuity equation in subsection
3.2. In either case, we remark that this particular b belongs to BV (R), while @xb is
not absolutely continuous with respect to Lebesgue measure, and so the condition in
the work of Ambrosio [5] that div b 2 L

1

loc
cannot indeed be weakened in general, if

one is to hope for renormalization or uniqueness for the continuity equation.
One strategy is to define solutions of (4.1) by duality with the transport equation

(3.1) from the compressive setting. With the theory of Section 3, for g 2 C
0,1
c (Rd), we

may define a Lipschitz viscosity solution of the initial value problem

@tv + b(t, x) ·rv = 0 in (0, T )⇥ Rd
, v(0, ·) = g

(because ṽ(t, x) := v(T � t, x) solves the corresponding terminal value problem (3.1)
with velocity b̃(t, x) = b(T � t, x)), and then, formally, for t > 0,

R
f(t, x)v(t, x)dx =R

f0(x)g(x)dx.
The main problem with this approach is that duality does not define unique solu-

tions, again due to the concentration e↵ect of the backward flow. Taking once more
b(t, x) = sgnx, we have, by (3.6),

v(t, x) =

(
g(x� (sgnx)t), |x| � t,

g(0), |x|  t.

Therefore, the duality equality fails to give su�cient information to identify f in
the cone {|x|  t}, in which v is always constant, regardless of the initial data g.
Indeed, the two distributional solutions f ⌘ 0 and f(t, x) = sgnx1{|x|  t} di↵er in
exactly this cone, in which the Jacobian of the backward flow vanishes. It is exactly
this observation that lead to the notion of “exceptional” solutions of (3.1) and the
exceptional set in [25].
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Inspired by the work of [25], we instead identify a “good” solution operator acting
on all f0 2 L

p
loc

, 1  p  1, by extending the solution formula in the smooth case,
which depends on the backward flow studied in Section 2, as well as the corresponding
Jacobian. In particular, the “good solution” is distinguished by vanishing whenever
the Jacobian does. Though our notion of solution turns out to be equivalent to the
reversible solutions, our approach di↵ers slightly from that of [25], who work with
a general class of “transport flows” that generalize the backward ODE flow. One
advantage of our analysis is that we can directly appeal to the various topological
properties of the backward flow proved in Section 2. Let us also draw analogy with
the approach of Crippa and De Lellis [36], in which the regular Lagrangian flow and
its properties are studied directly, leading to information about the associated PDEs,
although in our setting, we still require PDE techniques to glean further properties of
the ODE flow.

4.1.1 Representation formula

If b is Lipschitz, then the solution of (4.1) is given by

f(t, x) = f0(�0,t(x))J0,t(x), (4.3)

where �0,t(x) is the reverse flow defined in Section 2 and J0,t(x) = det(rx�0,t(x)) is the
corresponding Jacobian. One way to derive this formula is through the Feynman-Kac
formula for the reversed time equation

�@tf̃ + b(T � t, x) ·rf̃ + divx b(T � t, x)f̃ = 0 in (0, T )⇥ Rd
, f̃(T, ·) = f0,

which gives

f(t, x) = f̃(T � t, x) = f0(�0,t(x)) exp

✓
�
Z t

0

div b(s,�0,s(x)ds

◆
, (4.4)

and then J0,t(x) = exp
�
�
R s
0
div b(s,�0,s(x)ds

�
.

In the general case where b satisfies (2.1), the formula (4.3) makes sense for arbi-
trary f0 2 L

p
loc

, 1  p  1. We may then use the various results in Section 2 to
analyze the stability properties of the solution operator defined by the formula (3.6).
We remark in particular that the stability results of Lemma 2.3 depend on the deter-
minant structure of the Jacobian, which is somewhat disguised by the exponential
expression in (4.4).
Theorem 4.1. Let 1  p  1, assume that f0 2 L

p
loc

(Rd), and define f by (4.3).
Then f is a distributional solution of (4.1). If 1  p < 1, f 2 C([0, T ], Lp(Rd)), and
if p = 1, f 2 C([0, T ], L1

w-?(Rd)). There exists a constant C > 0 depending only on

the assumptions in (2.1) such that, for all R > 0,

kf(t, ·)kLp(BR)
 C kf0kLp(BR+C)

. (4.5)
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If (b")">0 are as in (2.3) and (f")">0 are the corresponding solutions of (4.1), then,
as "! 0, f" converges to f weakly in C([0, T ], Lp

loc
(Rd)) if 1  p < 1, and weak-? in

L
1

if p = 1.

Proof. When p = 1, the bound (4.5) follows from the L
1 bounds for the flow and

Jacobian in Lemmas 2.2 and 2.3. We prove the bound when p < 1 for the solutions
f" of the equation with b" as in (2.3), for a constant independent of ", and then the
estimate for f follows after proving the weak convergence result.

For a constant C > 0 independent of ", by Lemmas 2.2 and 2.3, we have |J"
0,t|  C

and |�"
0,t(x)|  R+ C for |x|  R. Then

Z

BR

|f"(t, x)|pdx =

Z

Rd

|f0(�"0,t(x))|pJ"
0,t(x)

p
dx

 kJ0,tkp�1

1

Z

BR

|f0(�"0,t(x))|pJ"
0,t(x)dx  C

Z

BR+C

|f0(x)|pdx.

It su�ces to prove the weak convergence of f" when p < 1 for f0 2 Cc. In the
general case, if f̃0 is continuous with compact support and we let f̃

" be the solution
with b

" and f̃0, we have

���f" � f̃
"
���
C([0,T ],Lp(BR))

 C

���f0 � f̃0

���
Lp(BR+C)

,

and we may then choose f̃0 arbitrarily close to f0 in L
p
loc

.
By Lemma 2.2, as "! 0, �" ! � uniformly in [0, T ]⇥Rd, and therefore f0 � �"0,t)

converges uniformly to f0 � �0,t. In view of Lemma 2.3, f" converges weakly in the
sense of distributions (and therefore, in the sense of locally bounded Borel measures)
to f . Since f

" is bounded in L
1([0, T ], Lp

loc
(Rd)), the convergence is actually weak in

L
1([0, T ], Lp

loc
(Rd)).

If p = 1, then, in particular, f" 2 C([0, T ], Lp
loc

(Rd)) for p < 1, uniformly in ",
and we have the convergence as "! 0 in the sense of distributions to f . In this case,
f 2 L

1
loc

([0, T ]⇥ Rd), and so the convergence is weak-? in L
1
loc

.
Given g 2 C

1
c ((0, T )⇥ Rd), integrating by parts gives

ZZ

[0,T ]⇥Rd

f
"(t, x) [@t�(t, x) + b

"(t, x) ·r�(t, x)] dxdt = 0.

As "! 0, the bracketed expression converges a.e. to @t�(t, x) + b(t, x) ·r�(t, x), and
so converges weakly in L

q for all 1  q < 1 by the dominated convergence theorem.
We may therefore send " ! 0, using the weak convergence of f", to deduce that f

is a distributional solution. This implies in particular that f 2 C([0, T ], Lp
w
(Rd)), or

C([0, T ], L1
w-?(Rd)) if p = 1.

To show that f 2 C([0, T ], Lp(Rd)) when p < 1, we may again consider
f0 2 Cc(Rd)) without loss of generality. Then f0 � �0,· 2 C([0, T ] ⇥ Rd), while
J0,· 2 C([0, T ], L1

loc
(Rd)) by Lemma 2.3, and the result follows.
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Remark 4.1. In view of the stability results of Theorem 4.1 above, this “good” solution

coincides with the notion of reversible solutions in [22, 25]. We refer to it in the sequel

as the BJM solution.

The following is immediate from the formula (4.3).
Corollary 4.1. If f is a BJM solution of (4.1), then so is |f |.

Corollary 4.1 is in direct contrast to the continuity equation in the compressive
setting of the previous section, where renormalization fails. Its proof depends on the
formula for the BJM solution; indeed, despite the weak stability result in Theorem 4.1,
this renormalization property cannot be proved by regularization, since we only have
the weak convergence as " ! 0 of f" to f . At present, we do not know whether the
convergence is strong in L

p. This turns out to be equivalent to the strong convergence
in L

1

loc
of the Jacobians, and therefore, in view of Proposition 2.1, we have the following

when d = 1.
Theorem 4.2. Assume d = 1, f0 2 L

p
loc

(R) for p < 1, (b")">0 is as in (2.3), and
f
"
is the corresponding solution of (4.1). Then, as " ! 0, f"

converges strongly in

C([0, T ], Lp
loc

(R)) to f .

Proof. Just as in the proof of Theorem 4.1, we may assume without loss of generality
that f0 2 Cc(R). In that case, f" is bounded in L

1 and L
1, and so the strong L

p

convergence reduces to the strong convergence of J"
0,· to J0,· in L

1

loc
([0, T ] ⇥ R) from

Proposition 2.1.

4.1.2 Vanishing viscosity approximation

The BJM solution above also arises from vanishing viscosity limits, that is, the limit
as "! 0 of solutions of

@tf
" � "

2

2
�f

" + div(b(t, x)f") = 0 in [0, T ]⇥ Rd and f
"(0, ·) = f0, (4.6)

which has as its unique solution

f
"(t, x) := E[f0(�"0,t(x))J"

0,t(x)], (4.7)

where now �
" and J

" denote respectively the stochastic flow and Jacobian from (2.23),
corresponding to Proposition 2.3.

The proof of the following result follows from Proposition 2.3, and is proved almost
exactly as for Theorem 4.1.
Theorem 4.3. The function f

"
defined by (4.6) belongs to C([0, T ], Lp

loc
(Rd)) if 1 

p < 1 and C([0, T ], L1
w-?(Rd)) if p = 1, and, as "! 0, f"

converges weakly in those

spaces to f .

4.2 The nonconservative equation

The next step is the study of the terminal value problem (4.2). Unlike the transport
equation (3.1) with velocity �b, which was solved in the space of continuous functions,
we cannot define L

p solutions in the distributional sense, as the product b · ru =
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div(bu) � (div b)u does not make sense when div b is merely a measure. Instead, we
initially characterize solutions by duality with (4.1), which can be seen as a way of
restricting the class of test functions to deal with the singularities in b (see Remark
3.3).

4.2.1 Lp
and BV estimates

We will first prove a priori Lp and BV estimates for the solution of (4.2), assuming
all the data and solutions are smooth. The BV estimates in particular are crucial to
establishing the strong convergence in L

p of regularized solutions to a unique limit,
which will be the duality solution, adjoint to the equation (4.1). The BV estimate
appears already in [25, Lemma 4.4]. We present an alternate proof here, which is
similar to the one for second-order equations we prove later.
Lemma 4.1. Assume b is smooth and satisfies (2.1), and let u be a smooth solution

of (4.2). Then, for all 1  p  1, there exist C = Cp,R 2 L
1
+
([0, T ]) and CR > 0

depending only on the bounds in (2.1) such that, for all 0  t  T ,

ku(t, ·)kLp(BR)
 exp

✓Z t

0

C(s)ds

◆
kuT kLp(BR+C)

and

ku(t, ·)kBV (BR)
 exp

✓Z t

0

C(s)ds

◆
kuT kBV (BR+C)

.

Proof. We assume that uT has compact support, and, therefore, in view of the finite
speed of propagation property, so does u. The general result for L

p
loc

and BVloc is
proved similarly.

The L1 bound is a consequence of the maximum principle. For p < 1, we compute

@

@t

Z

Rd

|u(t, x)|pdx =

Z

Rd

div b(t, x)|u(t, x)|pdx � �C0(t)d

Z

Rd

|u(t, x)|pdx,

and the L
p bound follows from Grönwall’s inequality.

Now, for t  T and x, z 2 Rd, set w(t, x, z) = ru(t, x) · z. Then w satisfies

�@tw + b ·rxw + (z ·r)b ·rzw = 0.

Since b and w are smooth, the renormalization property holds for this transport
equation, and so a simple regularization argument shows, in the sense of distributions,

@t|w|+ b ·rx|w|+ (z ·r)b ·rz|w| = 0.

Define �(z) = e
�|z|2 . Then

ZZ

Rd⇥Rd

�(z)b(t, x) ·rx|w(t, x, z)|dxdz = �
ZZ

Rd⇥Rd

�(z) div b(t, x)|w(t, x, z)|dxdz
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and
ZZ

Rd⇥Rd

�(z)(z ·r)b(t, x) ·rz|w(t, x, z)|dxdz

= �
ZZ

Rd⇥Rd

[r�(z) · (z ·rb(t, x)) + �(z) div b(t, x)] |w(t, x, z)|dxdz.

Therefore, by Lemma 2.1,

@t

ZZ

Rd⇥Rd

|w(t, x, z)|�(z)dxdz

=

ZZ

Rd⇥Rd

[r�(z) · (z ·rb(t, x)) + 2�(z) div b(t, x)] |w(t, x, z)|dxdz

=

ZZ

Rd⇥Rd

2e�|z|2 [div b(t, x)�rb(t, x)z · z] dxdz

� �2(d� 1)C0(t)

ZZ

Rd⇥Rd

e
�|z|2 |w(t, x, z)|dxdz.

The result follows from Grönwall’s lemma and the fact that
ZZ

Rd⇥Rd

e
�|z|2 |w(t, x, z)|dxdz = c0

Z

Rd

|ru(t, x)|dx,

where the constant c0 =
R
Rd e

�|z|2 |⌫ · z|dz is independent of the choice of |⌫| = 1 by
rotational invariance.

4.2.2 Duality solutions

Proceeding by duality with the conservative forward equation, and using the BV -
estimates above, then gives the following.
Theorem 4.4. Assume 1  p  1 and uT 2 L

p
loc

. Then there exists a unique function

u 2 C([0, T ], Lp
loc

(Rd)) (or in C([0, T ], L1
w-?(Rd)) if p = 1) such that, if (b")">0 is

as in (2.3) and u
"
denotes the corresponding solution of (4.2), then, as " ! 0, u"

converges strongly in C([0, T ], Lp(Rd)) for p < 1 and weak-? in L
1

to u. Moreover,

the solution map uT 7! u is linear, order-preserving, and continuous in L
p
loc

(Rd)). If

s 2 [0, T ), fs 2 L
p0
(Rd) and f 2 C([s, T ], Lp0

(Rd)) (or C([s, T ], L1
w-?(Rd)) if p = 1) is

the BJM solution of (4.1) with initial data f(s, ·) = fs, then

Z

Rd

u(s, x)fs(x)dx =

Z

Rd

uT (x)f(T, x)dx.

Remark 4.2. The function u corresponds with the notion of duality solution presented

in [25] whenever uT (and therefore u(t, ·) for t < T ) belongs to BVloc.

Proof. By Lemma 4.1, (u")">0 is bounded uniformly in C([0, T ], Lp
loc

(Rd)), and so,
along a subsequence, converges weakly as "! 0 to some u satisfying the same bounds.
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In order to see that the convergence is strong, note that it su�ces, by the L
p-

boundedness of solution operator implied by Lemma 4.1, to assume that uT 2 Cc(Rd).
We then have u

" bounded in L
1([0, T ], BV (Rd)) independently of ". The identity

@tu
" = �b

" ·ru
" then implies that, for any t1 < t2  T and R > 0,

ku"(t1, ·)� u
"(t2, ·)kL1(BR)

 kbkL1(BR)
sup

t2[0,T ]

kru
"kL1(BR)

|t1 � t2|.

This, along with the uniform BV estimates, implies that (u")">0 is precom-
pact in C([0, T ], L1

loc
(Rd)), and, because of the uniform L

1-bound, precompact in
C([0, T ], Lp

loc
(Rd)) for any p 2 [1,1). It therefore follows that any weakly convergent

subsequence actually converges strongly.
If f" is the solution of (4.1) with f

"(s, ·) = fs, then classical computations involving
integration by parts give

Z

Rd

u
"(s, x)fs(x)dx =

Z

Rd

uT (x)f
"(T, x)dx.

Sending "! 0 along a subsequence and using the weak convergence of f" and strong
convergence of u" shows that any limit point u must satisfy the duality identity with
f , and is therefore unique. We conclude that the full sequence converges strongly. As
before, when p = 1, we obtain the same result since then also u 2 C([0, T ], Lp

loc
(Rd))

for any p < 1.

Remark 4.3. If uT 2 BVloc, then the duality solution u of (4.2) satisfies ru 2
L
1([0, T ],Mloc(Rd)). Note, however, that this is still not enough to make sense of u

as a distributional solution, unless b is continuous; see also Remark 3.4.

4.2.3 Renormalization

In Section 3, the renormalization property for solutions of the transport equation
(3.1) followed from the formula (3.6). We prove a similar renormalization property for
the transport equation (4.2) in the expansive regime. Here, it depends on the strong
convergence in L

p of regularizations.
Theorem 4.5. Let 1  p  1 and uT 2 L

p
loc

(Rd), and let u 2 C([0, T ], Lp
loc

(Rd))
be the duality solution of (4.2). Assume � : R ! R is smooth and satisfies |�(r)| 
C(1+ |r|↵) for some C,↵ > 0. Then � �u = C([0, T ], Lp/↵

loc
(Rd)) is the duality solution

of (4.2) with terminal value �(u(T, ·)) = � � uT .

Proof. The proof is an easy consequence of regularization of b as in (2.3), and the
passage to the limit follows from the strong convergence of u" to u.

4.3 The forward ODE flow

We finally return to the study of the flow (2.2), in particular for the forward direction.
A candidate for the object �t,s(x), t > s, a.e. x was already identified in Proposi-
tion 2.2 as the right inverse of the backward flow—note that the full measure set of
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x 2 Rd depends on s and t. We now connect this right-inverse with the transport
equation (4.2), and exploit the renormalization property to identify �t,s(x) as a regu-
lar Lagrangian flow, that is, for a.e. x 2 Rd, an absolutely continuous solution of the
integral equation for (2.2) with control on the compressibility.

4.3.1 Properties of the right inverse

We first record more properties of the right-inverse of the backward flow identified in
Proposition 2.2. From now on, for 0  s  t  T , we always denote by �t,s the version
of the right-inverse of �s,t which is continuous almost everywhere (such a version is
guaranteed to exist by Proposition 2.2).
Theorem 4.6. For any t 2 (0, T ], [0, t] ⇥ Rd 3 (s, x) 7! �t,s(x) is (coordinate-

by-coordinate) the duality solution of (4.2) with terminal value x at time t. For all

1  p < 1,

�·,s 2 C([s, T ], Lp
loc

(Rd)) and �t,· 2 C([0, t], Lp
loc

(Rd)),

and there exists a constant C > 0 such that, for all 0  s  t  T and x 2 Rd
,

|�t,s(x)|  C(1 + |x|) and k�t,skBVloc
 C.

Finally, if (b")">0 is as in (2.3) and �
"
t,s is the corresponding forward flow, then, for

all 1  p < 1,

lim
"!0

�
"
·,s = �·,s strongly in C([s, T ], Lp

loc
(Rd))

and

lim
"!0

�
"
t,· = �t,· strongly in C([0, t], Lp

loc
(Rd)),

and the convergence also holds in the weak-? sense in L
1
loc

.

Proof. For " > 0 and (b")">0 as in (2.3), it is standard that, for t 2 (0, T ], the
vector-valued solution of

@u
"

@s
+ b

" ·ru
" = 0 in (0, t)⇥ Rd

, u
"(t, x) = x

is given by u
"(s, x) = �

"
t,s(x) for s 2 [0, t], where �" is the flow corresponding to b

".
By Theorem 4.4, we have the given convergence statements, as " ! 0, of �" to the
vector valued duality solution u of (4.2) in [0, t]⇥ Rd with terminal value u(t, ·) = x.

The flow property for smooth b
" yields, for 0  s  t  T and x 2 Rd, �"s,t(�

"
t,s(x)).

By Lemma 2.2 and the above strong L
p-convergence statement, we may take "! 0 to

obtain �s,t(u(s, x)) = x, and then, by Proposition 2.2, we must have u(s, x) = �t,s(x).
The other statements now follow immediately in view of Theorem 4.4. Note that we
are using that, for s 2 [0, T ), the map [s, T ] ⇥ Rd 3 (t, x) 7! �t,s(x) is the duality
solution of the initial value problem

@ũ

@t
� b(t, x) ·rũ = 0 in [s, T ]⇥ Rd

, ũ(s, x) = x,
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whose theory can be treated exactly as for (4.2).

4.3.2 The regular Lagrange property

We now observe that there is a representation formula for the duality solution of the
transport equation (4.2).
Theorem 4.7. Let 1  p  1. Then there exists a constant C > 0 depending only on

p and the constant in (2.1) such that, for all F 2 L
p
loc

\C, R > 0, and 0  s  t  T ,

kF � �t,skLp(BR)
 C kFkLp(BR+C)

. (4.8)

In particular, for any A ⇢ Rd
with finite Lebesgue measure,

|{x : �t,s(x) 2 A}|  C|A|. (4.9)

If uT 2 L
p
loc

(Rd), then the duality solution of (4.2) is given by

u(t, x) = uT (�T,t(x)). (4.10)

If uT has a version which is continuous almost everywhere, then, for t < T , u(t, ·)
also has a version that is continuous almost everywhere.

Remark 4.4. When uT is not continuous, then (4.10) must be interpreted as the

continuous extension of the operator uT 7! uT ��T,t to uT 2 L
p
loc

, which is well-defined

in view of the estimate (4.8).
Remark 4.5. The estimate (4.9) is called the regular Lagrange property. It reinforces

the fact that �t,s does not concentrate in sets of measure zero.

Remark 4.6. The propagation of almost-everywhere continuity is a consequence of

the same property for the forward flow (Proposition 2.2). Note that it is not true in

general that a function u 2 BVloc(Rd) is continuous almost everywhere, unless d = 1.

Proof of Theorem 4.7. For continuous uT , the representation formula is an immedi-
ate consequence of the renormalization property Theorem 4.5 and Theorem 4.6. The
estimate (4.8) then follows from Theorem 4.4, and (4.9) is obtained by taking p = 1
and F = 1A.

For the claim about almost everywhere continuity, define

A :=
�
y 2 Rd : uT is not continuous at y

 
.

Then |A| = 0, and then (4.9) gives, for 0  t < T ,

���x 2 Rd : uT is not continuous at �T,t(x)
 �� = 0.

It follows that uT is continuous at �T,t(x) for a.e. x. By Proposition 2.2, �T,t is
continuous almost everywhere, and the result follows.
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Recalling the duality relationship between (4.1) and (4.2) from Theorem 4.4, we
then have the following.
Corollary 4.2. For any 1  p  1 and f0 2 L

p
loc

(Rd), the BJM reversible solution

f of (4.1) is given at time t > 0 by �
#

t,0f0.

Remark 4.7. The regular Lagrange property says that the measure �
#

t,0f0 is well-

defined and absolutely continuous with respect to Lebesgue measure, with a density in

L
p
loc

. If f0 is the density for a probability measure, that is, f0 2 L
1
+
(Rd) and

R
f0 = 1,

then f(t, ·) is the law at time t of the stochastic process �t,0(X), where X is a random

variable with density f0.

A consequence of renormalization and the regular Lagrange property is the fact
that the forward flow �t,s solves the ODE (2.2) for a.e. initial x 2 Rd. A first step is
the following lemma.
Lemma 4.2. For all p 2 [1,1) and s 2 [0, T ), {(t, x) 7! b(t,�t,s(x))} 2
L
1([0, T ], Lp

loc
(Rd)). If (b")">0 is as in (2.3) and (�")">0 is the corresponding flow,

then, for all R > 0,

lim
"!0

Z T

s

��b"(t,�"t,s)� b(t,�t,s)
��
Lp(BR)

dt = 0.

Proof. The first claim follows from (4.8): there exists C > 0 independent of s and R

such that, for all t 2 [0, T ], kb(t,�t,s)kLp(BR)
 C kb(t, ·)kLp(BR+C)

.
For � > 0 and 0  s  t  T , we write

��b"(t,�"t,s)� b(t,�t,s)
��
Lp(BR)


��b"(t,�"t,s)� b

�(t,�"t,s
��
Lp(BR)

+
��b�(t,�"t,s)� b

�(t,�t,s
��
Lp(BR)

+
��b�(t,�t,s)� b(t,�t,s

��
Lp(BR)

.

By (4.8), for some C > 0 independent of �, ", s, and t,

��b"(t,�"t,s)� b
�(t,�"t,s)

��
Lp(BR)

 C
��b"(t, ·)� b

�(t, ·)
��
Lp(BR+C)

and ��b�(t,�t,s)� b(t,�t,s)
��
Lp(BR)

 C
��b�(t, ·)� b(t, ·)

��
Lp(BR+C)

.

The smoothness of b� implies that, for all t 2 [s, T ], as "! 0, b�(t,�"t,s) converges a.e.

to b
�(t,�t,s). Sending "! 0 and using dominated convergence, we thus have

lim sup
"!0

Z T

s

��b"(t,�"t,s)� b(t,�t,s)
��
Lp(BR)

dt  C

Z T

s

��b�(t, ·)� b(t, ·)
��
Lp(BR+C)

dt.

The proof of the claim is finished upon sending � ! 0 and again using dominated
convergence.

Theorem 4.8. Fix 1  p < 1 and s 2 [0, T ). Then

{(t, x) 7! �t,s(x)} 2 L
p
loc

(Rd
,W

1,1([0, T ])),
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and, for a.e. x 2 Rd
, [s, T ] 3 t 7! �t,s(x) is an absolutely continuous solution of

�t,s(x) = x+

Z t

s
b(r,�r,s(x))dr.

If (b")">0 satisfy (2.3) and �" is the corresponding flow, then, for all R > 0,

lim
"!0

���"·,s � �·,s
��
Lp(BR,W 1,1([s,T ])

= 0.

For all 0  r  s  t  T , �t,r = �t,s � �s,r a.e.

Remark 4.8. The fact that @t�t,· 2 L
1
is due to the fact that we are assuming the

weakest possible integrability of b in the time variable. If b 2 L
q
for some q > 1, then

the forward flow belongs to W
1,p

for any p  q.

Remark 4.9. The composition �t,s � �s,r is made sense of due to (4.8) and the fact

that the forward flow takes values in L
p
loc

(Rd).

Proof of Theorem 4.8. For " > 0, we have @t�"t,s(x) = b
"(t,�"t,s(x)). By Lemma 4.2,

sending " ! 0, we see that the distribution @t�t,s(x) satisfies, in the distributional
sense, @t�t,s(x) = b(t,�t,s(x)), and therefore, for all R > 0,

�����

Z T

s
|�t,s|dt

�����
Lp(BR)


Z T

s
k�t,skLp(BR)

dt < 1.

The convergence claim and the solvability of the ODE follow immediately in view of
the fact that �"s,s(x) = �s,s(x) = x for all " > 0 and x 2 Rd.

To prove the last claim, we note that the equality �r,t ��t,r = Id holds as functions
in L

p
loc

, and, in view of the flow property of the backward flow,

�r,t � (�t,s � �s,r) = �r,s � �s,t � �t,s � �s,r = �r,s � �s,r = Id .

It follows from Proposition 2.2 that �t,r = �t,s � �s,r a.e., as desired.

We recall that Proposition 2.2 implies that any right-inverse of the backward flow
is determined uniquely almost everywhere. We remark here that this property actually
follows from the duality between the transport and continuity equations.
Theorem 4.9. Assume  2 C([0, t], Lp

loc
(Rd)) satisfies �s,t( s(x)) = x for all s 2

[0, t], for a.e. x 2 Rd
. Then  = �t,·.

Proof. It su�ces to show that u(t, x) =  s(x) is the unique (vector-valued) duality
solution of (4.2) with terminal data equal to x at time t.

Fix g 2 Cc(Rd). For a.e. x 2 Rd, if y =  t(x), we have �s,t(y) = x by assumption.
Therefore, the change of variables formula yields

Z

Rd

g(x) t(x)dx =

Z

Rd

g(�s,t(y))yJs,t(y)dy =

Z

Rd

f(t, y)ydy,
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where f is the BJM solution of the forward continuity equation with initial condition
g at time s.

Remark 4.10. A corresponding result characterizing �·,s on [s, T ] follows in exactly

the same way, by considering the duality between the IVP and TVP for, respectively,

an appropriate transport and continuity equation.

Remark 4.11. The uniqueness result above demonstrates that the right-inverse prop-

erty is a crucial property of the forward flow. In other words, it implies that �t,s solves

the ODE, that it solves the transport PDE in the duality sense, and that it has the

regularity properties laid out in Theorems 4.7 and 4.8.

4.4 Characterizations

We now present alternative ways to characterize the solutions of the forward continuity
and backward transport equations identified above. Although the PDE (4.2) does not
make sense as a distribution, we nevertheless can characterize solutions in a PDE sense
through the use of sup- and inf-convolutions. The propagation of almost-everywhere
continuity proved in Theorem 4.7 is a crucial ingredient.

By using this characterization in duality with the conservative equation, we then
show that nonnegative distributional solutions of (4.1) are unique, and therefore equal
to the solution identified by the formula (4.3). As a consequence, we finally conclude
with the uniqueness of regular Lagrangian flows, forward in time, of the ODE (2.2).

4.4.1 The nonconservative equation: sup and inf convolutions

We now identify those regularizations that will lead to a PDE characterization for
solutions of the equation (4.2). Given � > 0 and u 2 L

1(Rd), we define the sup- and
inf-convolutions

u
�(x) := ess sup

y2Rd

⇢
u(y)� 1

2�
|x� y|2

�

and

u�(x) := ess inf
y2Rd

⇢
u(y) +

1

2�
|x� y|2

�
.

These regularizations are common in the theory of viscosity solutions, or generally
for equations satisfying a maximum principle in spaces of continuous functions. The
supremum and infimummust be essential, because u is only defined almost everywhere.
Lemma 4.3. Assume that u 2 L

1(Rd) is continuous almost everywhere. Then, for

all � > 0, u�, u
�
are globally Lipschitz with constant

(ess supu� ess inf u)1/2��1/2
,

and

u�  u  u
�

a.e.

As � ! 0, u�
decreases to u and u� increases to u a.e. Finally, the ess sup and ess inf

in the definitions of u
�
and u� can be restricted to respectively y 2 BR�(x)(x) and

BR�(x)(x), where

R
�(x) = 2(u2�(x)� u

�(x))1/2�1/2
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and

R�(x) = 2(u�(x)� u2�(x))
1/2
�
1/2

.

Proof. Fix x 2 Rd and r > 0. We thus have

u
�(x) � ess sup

y2Br(x)
u(y)� r

2

2�
.

Sending r ! 0, we see that u�(x) � u(x) whenever u is continuous at x, and therefore
u
� � u a.e. Similarly, u�  u a.e.
We now observe that, if R > (ess supu� ess inf u)1/2, then, for a.e. y /2 BR�1/2 ,

u(y)� |x� y|2

2�
 ess supu�R

2
< ess inf u  u

�(x).

By also using a similar argument for u�, we see that

u
�(x) := ess sup

|y�x|R�1/2

⇢
u(y)� 1

2�
|x� y|2

�

and

u�(x) := ess inf
|y�x|R�1/2

⇢
u(y) +

1

2�
|x� y|2

�
.

It is then straightforward to see that u� and u� are respectively decreasing and increas-
ing pointwise as � decreases to 0, and converge whenever u is continuous at x (and
thus a.e.) to u(x).

For fixed x 2 Rd, � > 0, and ⌘ > 0, define

A�,⌘(x) :=

⇢
y 2 BR�1/2(x) : u(y)�

|x� y|2

2�
> u

�(x)� ⌘

�
.

Then, by definition, A�,⌘(x) is nonempty, and in fact has nonzero Lebesgue measure.
Therefore, for any x

0 2 Rd and y 2 A�,⌘(x), we have

u
�(x)� u

�(x0)  |x0 � y|2

2�
� |x� y|2

2�
+ ⌘  R

�1/2
|x0 � x|+ |x0 � x|2

�
+ ⌘.

Switching the roles of x and x
0 and using the fact that ⌘ was arbitrary, we see that,

for all x 2 Rd,

lim sup
x0!x

|u�(x0)� u
�(x)|

|x0 � x|  R

�1/2
.

We may then let R decrease down to (ess supu� ess inf u)1/2, and the same proof for
u� holds.

For any ⌘ > 0 and a.e. y 2 A
⌘
� ,

u
2�(x) � u(y)� |x� y|2

4�
> u

�(x) +
|x� y|2

2�
� ⌘,
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and so
|y � x|  2(u2�(x)� u

�(x) + ⌘)1/2�1/2.

Therefore, for a.e. y such that |y � x| > R
�(x), we must have u(y) � |x�y|2

2� < u
�(x),

and the statement about restricting the ess sup follows. The corresponding result for
u� is proved in the same way.

A formal calculation using the one-sided Lipschitz condition on b suggests that,
if u solves (4.2), then the sup- and inf-convolutions of u in the spatial variable are
approximate sub- and supersolutions of (4.2). The following result not only establishes
this property rigorously, but also proves that it in fact characterizes the unique duality
solution of (4.2). The result is proved by using the duality property in relation to a
nonnegative distributional solution of (4.1), and we use exactly the same methods to
prove the uniqueness of nonnegative distributional solutions in Theorem 4.11 below.
Theorem 4.10. Assume u 2 C([0, T ], L1

loc
(Rd))\L1([0, T ]⇥Rd) is continuous almost

everywhere and u(T, ·) = uT 2 L
1(Rd). Then u is the duality solution of (4.2) if and

only if there exist r
�
, r� 2 L

1

loc
([0, T ] ⇥ Rd)) such that lim�!0 r

� = lim�!0 r� = 0 in

L
1

loc
, and the sup- and inf-convolutions

u
�(t, x) := ess sup

y2Rd

⇢
u(t, y)� 1

2�
|x� y|2

�

and

u�(t, x) := ess inf
y2Rd

⇢
u(t, y) +

1

2�
|x� y|2

�

satisfy in the sense of distributions on [0, T ]⇥ Rd
the inequalities

@u
�

@t
+ b(t, x) ·ru

�  r
�(t, x) and

@u�

@t
+ b(t, x) ·ru� � �r�(t, x).

Proof. Assume first that the sup- and inf-convolutions have the stated properties. For
standard mollifiers (⇢⌘)⌘>0 on R, define u

�
⌘(t, x) = (u�(·, x) ⇤t ⇢⌘)(t) and u�,⌘(t, x) =

(u�(·, x)⇤t⇢⌘)(t). Then, by Lemma 4.3, u�
⌘ and u�,⌘ are Lipschitz continuous on [0, T ]⇥

Rd, and satisfy a.e. in [0, T ]⇥ Rd

@u
�
⌘

@t
+ b(t, x) ·ru

�
⌘  r

�
⌘(t, x) and

@u�,⌘

@t
+ b(t, x) ·ru�,⌘ � �r�,⌘(t, x),

where

r
�
⌘(t, x) = (r�(·, x) ⇤t ⇢⌘)(t) +

Z

R
(b(t, x)� b(s, x)) ·ru

�(s, x)⇢⌘(s� t)ds

and

r�,⌘(t, x) = (r�(·, x) ⇤t ⇢⌘)(t) +
Z

R
(b(t, x)� b(s, x)) ·ru�(s, x)⇢⌘(s� t)ds.
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The (local) boundedness of b, ru�, and ru
� then allows us to invoke the dominated

convergence theorem to say that, for fixed �, lim⌘!0 r
�
⌘ = r

� and lim⌘!0 r�,⌘ = r� in
L
1

loc
.
Now let f0 2 Cc(Rd) be nonnegative and let f be the BJM solution of (4.1). In

view of the nonnegativity of J , f given by (4.3) is nonnegative on [0, T ] ⇥ Rd, and
the bounds for the backward flow in Lemma 2.2 imply that f has compact support in
[0, T ]⇥ Rd. By Theorem 4.1, f is a distributional solution, and therefore

Z

Rd

f(T, x)u�
⌘(T, x)dx�

Z

Rd

f0(x)u
�
⌘(0, x)dx

=

Z T

0

Z

Rd

f(t, x)
⇥
@tu

�,⌘(t, x) + b(t, x) ·ru
�,⌘(t, x)

⇤
dxdt


Z T

0

Z

Rd

f(t, x)r�⌘(t, x)dxdt.

Sending first ⌘ ! 0 and then � ! 0, using Lemma 4.3 and the dominated convergence
theorem, we conclude that

Z

Rd

f(T, x)uT (x)dx 
Z

Rd

f0(x)u(0, x)dx.

Arguing similarly with u�,⌘ as a test function, we achieve the opposite inequality. By
linearity, the duality identity holds for any f0 2 L

1 with bounded support, and we
conclude that u is the unique duality solution.

Assume now conversely that u is the duality solution. Let (b")">0 be as in (2.3),
let u" be the corresponding solution, and define

u
",�(t, x) := sup

y2Rd

⇢
u
"(t, y)� 1

2�
|x� y|2

�

and

u
"
�(t, x) := inf

y2Rd

⇢
u
"(t, y) +

1

2�
|x� y|2

�
.

By Lemma 4.3, for fixed � > 0, u",� and u
"
� are Lipschitz continuous in the space

variable, uniformly over [0, T ]⇥Rd and " > 0. Moreover, the sup and inf are actually
a max and min, and may be restricted to

|y � x|  (maxu0 �minu0)
1/2
�
1/2

(note that we have used the maximum principle for the transport equation to control
the maximum and minimum of u" and u"). We may alternatively restrict the y for
which the maximum in the definition of u",�(t, x) is attained to satisfy

|y � x|  2(u",2�(t, x)� u
",�(t, x))1/2�1/2, (4.11)
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and the minimum in the definition of u"
� is attained by y satisfying

|y � x|  2(u"
�(t, x)� u

"
2�(t, x))

1/2
�
1/2

. (4.12)

Standard properties of envelopes then give the identities, for any (t, x) 2 [0, T ]⇥ Rd,

@u
",�

@t
(t, x) =

@u
"

@t
(t, y) and ru

",�(t, x) = ru
"(t, y) =

y � x

�

for some y satisfying (4.11). Therefore

@tu
",�(t, x) = �b

"(t, y) ·ru
",�(t, x),

from which we deduce that u",� is uniformly Lipschitz continuous in the time variable
over [0, T ] ⇥ BR for any R > 0, independently of ". Further developing the equality
gives

@u
",�

@t
(t, x) + b

"(t, x) ·ru
",�(t, x) =

@u
"

@t
(t, y) + b

"(t, x) ·ru
"(t, y)

= �(b"(t, x)� b
"(t, y)) · x� y

�

 C0(t)
|x� y|2

�
 4C0(t)(u

",2�(t, x)� u
",�(t, x)).

(4.13)

We similarly have that u"
� is Lipschitz continuous in the time variable, locally in space,

uniformly over " > 0, and

@u
"
�

@t
(t, x) + b

"(t, x) ·ru
"
�(t, x) � �4C0(t)(u

"
�(t, x)� u

"
2�(t, x)). (4.14)

We now claim that, as " ! 0, u",� and u
"
� converge pointwise to respectively u

�

and u�, and then, by the uniform-in-" Lipschitz regularity, the convergence is locally
uniform. To see this, fix x 2 Rd and ⌘ > 0, and let A ⇢ Rd be a set of positive measure
such that

u
�(t, x)  u(t, y)� |x� y|2

2�
+ ⌘.

We then have, for all y 2 A,

u
�,"(t, x) � u

"(t, y)� |x� y|2

2�
.

For at least one such y, we then have u
"(t, y)

"!0���! u(t, y), and we thus have

lim sup
"!0

�
u
�(t, x)� u

�,"(t, x)
�
 ⌘.
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It follows that lim sup"!0

�
u
�(t, x)� u

�,"(t, x)
�
 0 since ⌘ was arbitrary.

Now, there exists a full measure set B ⇢ Rd such that, for all y 2 B,

u
�(t, x) � u(t, y)� |x� y|2

2�
and lim

"!0

u
"(t, y) = u(t, y).

In view of the continuity of u"(t, ·), there exists a bounded (independently ") sequence
(yn)n2N ⇢ B such that

⇢n := u
�,"(t, x)�

⇢
u
"(t, yn)�

|x� yn|2

2�

�

satisfies limn!1 ⇢n = 0. Therefore, for all n,

u
�,"(t, x)� u

�(t, x)  u
"(t, yn)� u(t, yn) + ⇢n.

Sending "! 0 gives lim sup"!0(u
�,"(t, x)� u

�(t, x))  ⇢n, and the proof of pointwise
convergence is finished upon sending n ! 1. The exact same argument can be used
for the pointwise convergence of u"

� to u�.
It then follows that, for fixed �, as " ! 0, ru

",� and ru
"
� converge weak-? in L

1

to ru
� and ru� respectively, while b" converges in L

1

loc
to b. We may then take "! 0

in (4.13) and (4.14) to obtain the distributional inequalities

@u
�

@t
(t, x) + b(t, x) ·ru

�(t, x)  4C0(t)(u
2�(t, x)� u

�(t, x)) =: r�(t, x)

and

@u�

@t
(t, x) + b(t, x) ·ru�(t, x) � �4C0(t)(u�(t, x)� u2�(t, x)) =: �r�(t, x).

By Lemma 4.3 and the almost-everywhere continuity of u, the right-hand sides of both
inequalities converge a.e. to 0 as � ! 0, and, by the uniform boundedness in � of u�

and u� and the dominated convergence theorem, r� and r� both converge in L
1

loc
to 0

as � ! 0.

4.4.2 The conservative equation: uniqueness of nonnegative

solutions

We observe that, in the first implication in the proof of Theorem 4.10, it was proved
that u was a duality solution by proving the duality identity relative to a “good” non-
negative solution, i.e. the reversible BJM solution we have been working with above.
However, it was only explicitly used that f was a distributional solution. Therefore,
after having proved the equivalence in Theorem 4.10, we arrive at the following.
Theorem 4.11. Suppose that f 2 C([0, T ], Lp

loc
(Rd)) is a distributional solution of

(4.1) and f � 0. Then f(t, x) = f(0,�0,t(x))J0,t(x).
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Proof. Fix t > 0 and v 2 Cc(Rd), and let u 2 C([0, t], L1

loc
(Rd)) \ L

1([0, t] ⇥ Rd) be
the duality solution of (4.2) with terminal data v at time t. Then, by Theorem 4.7, u
is continuous almost everywhere in [0, t] ⇥ Rd. Arguing exactly as in the first part of
Theorem 4.10, using the nonnegativity of f , we arrive at the equality

Z

Rd

f(t, x)v(x)dx =

Z

Rd

f(0, x)u(0, x)dx.

Since v was arbitrary, it follows from the definition of duality solutions that f(t, x)
must be given by (4.3).

We then have the following corollary about characterizing the BJM solution even
when f is signed:
Corollary 4.3. A function f 2 C([0, T ], Lp

loc
(Rd)) is the unique reversible solution

of (4.1) in the sense of [25] if and only if f and |f | are both solutions in the sense of

distributions.

Proof. That this property is satisfied by the good solution was already pointed out
(Corollary 4.1). Suppose now that f and |f | are both distributional solutions. It follows
that f+ = 1

2
(f + |f |) and f� = 1

2
(|f | � f) are distributional solutions, and, since

f+ � 0 and f� � 0, they are both BJM reversible solutions. Therefore f = f+ � f� is
a reversible solution by linearity.

4.4.3 Uniqueness of regular Lagrangian flows

We can finally establish the uniqueness for the forward flows of the ODE (2.2)
Theorem 4.12. For every s 2 [0, T ] and almost every x 2 Rd

, �t,s(x) is the unique

absolutely continuous solution of (2.2).

Proof. This is a consequence of Theorem 4.11 and the superposition principle of
Ambrosio [6, Theorem 3.1].

4.5 Some remarks for second order equations

We next investigate the second-order analogues of (4.1) and (4.2). As mentioned ear-
lier, we are not able to treat the most general case in which � is a regular function of x.
This is due to the fact that Lemma 2.5 only gives regularity of the backward stochas-
tic flow in C

0,1�" for 0 < " < 1. As a consequence, defining the Jacobian and using
it to analyze the right-inverse of the flow is not possible at present with our methods.
Our results in this case are limited to stochastic flows for which the coe�cient � in
front of the Wiener process is constant in the space variable. The generalization to
regular but nonconstant � will be the subject of future work.

4.5.1 The expansive stochastic flow with constant noise coe�cient

The stochastic analogue of the forward flow (2.2) is

dt�t,s(x) = b(t,�t,s(x))dt+ �(t,�t,s(x))dWt, t 2 [s, T ], �s,s(x) = x, (4.15)
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where � : [0, T ]⇥Rd ! Rd⇥m is some matrix-valued map. As we shall see, this general
setting is out of the reach at the moment, and we thus assume

� 2 L
2([0, T ],Rd⇥m) (4.16)

is constant in the space variable. We then consider the forward stochastic flow

d�t,s(x) = b(t,�t,s(x))dt+ �tdWt, t 2 [s, T ], �s,s(x) = x. (4.17)

Formally defining

�̃t,s(x) := �t,s(x)�
Z t

s
�rdWr

| {z }
:=Mt�Ms

leads to the random ODE

@t�̃t,s(x) = b

⇣
t, �̃t,s(x) +Mt �Ms

⌘
, t 2 [s, T ], �̃s,s(x) = x. (4.18)

We now invoke the theory of the previous subsections to obtain the following:
Theorem 4.13. For every s 2 [0, T ), with probability one, there exists a unique

�·,s 2 C([s, T ], Lp
loc

(Rd)) \ L
p
loc

(Rd
, C([s, T ])) such that, for a.e. x 2 Rd

,

�t,s(x) = x+

Z t

s
b(r,�r,s(x))dr +

Z t

s
�rdWr.

If (b")">0 are as in (2.3) and �"
is the unique stochastic flow solving (4.17) with drift

b
"
, then, with probability one, as " ! 0, �"

converges in C([s, T ], Lp
loc

(Rd)) and in

L
p
loc

(Rd
, C([s, T ])) to �.

Proof. This follows upon applying the results of Theorems 4.8 and 4.12 to the random
ODE (4.18).

4.5.2 A priori estimates for the second-order nonconservative

equation

We next relate the forward stochastic flow from the previous subsection to the terminal
value problem for a certain second-order, nonconservative equation. This will be done
with the use of a priori Lp and BV estimates, which lead to useful compactness results,
just as for the first order case.

We begin with the more general problem

�@tu� tr[a(t, x)r2
u] + b(t, x) ·ru = 0 in (0, T )⇥ Rd

, u(T, ·) = uT , (4.19)

where

a(t, x) =
1

2
�(t, x)�(t, x)T , � 2 L

2([0, T ], C1,1(Rd
,Rd⇥m)); (4.20)

notice that, although we allow � to be nonconstant here, we require more regularity
for � than in Section 3.

51



Lemma 4.4. There exists C 2 L
1
+
([0, T ]) depending only on the C

1,1
norm of � such

that, if u is a smooth solution of

�@tu� tr[a(t, x)r2
u] = 0 in (0, T )⇥ Rd

, u(T, ·) = uT ,

then

ku(t, ·)kBV (Rd)
 exp

 Z T

t
C(s)ds

!
kuT kBV (Rd)

.

Proof. For (t, x, z) 2 [0, T ]⇥ Rd ⇥ Rd, set w(t, x, z) = ru(t, x) · z. Then w solves the
parabolic PDE

@w

@t
� tr[A(t, x, z)r2

(x,z)w] = 0 in (0, T )⇥ R2d
,

where

A(t, x, z) =
1

2

✓
�(t, x)

z ·r�(t, x)

◆�
�(t, x)T z ·r�(t, x)T

�
.

After a routine regularization argument, using the convexity of w 7! |w|, we find that

@|w|
@t

� tr[A(t, x, z)r2

(x,z)|w|]  0 in (0, T )⇥ Rd ⇥ Rd
. (4.21)

For some m > d+ 1, let � 2 C
1
+
([0,1)) be such that, for some universal C > 0,

�(r) =
1

rm
for r � 1 and r|�0(r)|+ r

2|�00(r)|  C�(r) for all r � 0. (4.22)

We multiply (4.21) by �(|z|) and integrate in (x, z) 2 Rd⇥Rd. Then (4.20) and (4.22)
imply that for some C 2 L

1
+
([0, T ]),

� d

dt

ZZ

Rd⇥Rd

|w(t, x, z)|�(|z|)dxdz  C(t)

ZZ

Rd⇥Rd

|w(t, x, z)|�(|z|)dxdz.

The proof is then finished by Grönwall’s lemma and the fact that

ZZ

Rd⇥Rd

|w(t, x, z)|�(z)dxdz = c0

Z

Rd

|ru(t, x)|dx,

where c0 :=
R
Rd |⌫ · z|�(|z|)dz is finite and independent of |⌫| = 1.

We have already proved an exponential propagation of the BV bounds when a = 0
in Lemma 4.1. It is a classical fact for evolution PDEs that, upon using a splitting
scheme, that these estimates can be combined, and we immediately have the following:
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Lemma 4.5. There exists a constant C 2 L
1
+
([0, T ]) depending only on the constants

in (2.1) and (4.20) such that, if u is a smooth solution of (4.19), then

ku(t, ·)kLp  exp

✓Z t

0

C(s)ds

◆
kuT kLp

and

ku(t, ·)kBV  exp

✓Z t

0

C(s)ds

◆
kuT kBV .

Just as in the first-order case, it is not possible to define Lp-distributional solutions
of (4.19), and the utility of Lemma 4.5 is that it allows to obtain strongly convergent
subsequences in C([0, T ], Lp(Rd)) after regularizing the velocity field b.

The main question is whether such limiting solutions are unique. This uniqueness
was achieved in the first-order case through duality with the conservative equation,
and the solution was further characterized with a formula involving the forward flow.
In the second-order case, we are constrained to work with constant noise coe�cients:

�@tu� tr[a(t)r2
u] + b(t, x) ·ru = 0 in (0, T )⇥ Rd

, u(T, ·) = uT , (4.23)

where a = 1

2
��

T as before.
Theorem 4.14. For 1 < p < 1 and t 2 [0, T ], the map

Cc(Rd) 3 uT 7! E[uT � �T,t]

extends to a continuous, linear, order-preserving map on L
p(Rd), and the function

u(t, x) := E[uT (�T,t(x))] (t, x) 2 [0, T ]⇥ Rd (4.24)

belongs to C([0, T ], Lp(Rd)), and, if uT 2 BV (Rd), then u 2 L
1([0, T ], BV (Rd)).

If (b")">0 is as in (2.3) and u
"
is the corresponding solution of (4.23), then, as

"! 0, u"
converges strongly to u in C([0, T ], Lp(Rd)).

Proof. Assume that uT 2 C
2(Rd) \ Cc(Rd). For b

" and u
" as in the statement of

the theorem, we have the standard representation formula u
"(t, x) = E[uT (�"

T,t(x))],
where �" corresponds to the flow (4.17) with drift b

". By Theorem 4.13, for any
t 2 [0, T ], with probability one, uT ��"

T,t ! uT ��T,t a.e. in Rd. On the other hand, by

Lemma 4.5, (u")">0 is precompact in C([0, T ], Lp(Rd)), and therefore the full sequence
converges to u given by (4.24). The Lp-bounds and the extension to uT 2 L

p(Rd) now
follow from the L

p a priori estimates in Lemma 4.5.

4.5.3 Representation formula for the Fokker-Planck equation

We turn next to the Fokker-Planck equation

@tf �r2 · (a(t, x)f) + div(b(t, x)f) = 0 in (0, T )⇥ Rd
, f(0, ·) = f0, (4.25)

where once again a = 1

2
��

T with � as in (4.20).
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The existence of solutions in C([0, T ], Lp(Rd)) is straightforward; we include the
proof for convenience.
Theorem 4.15. For any f0 2 L

p(Rd), 1  p  1, there exists a distributional solu-

tion f 2 C([0, T ], Lp
w
(Rd)) if 1  p < 1, or f 2 L

1
if p = 1. Moreover, there exists

C 2 L
1
+
([0, T ]) depending only on p, C0(t) from (2.1) and the L

2([0, T ], C1,1(Rd))
norm of a

8
such that

kf(t, ·)kLp  exp

✓Z t

0

C(s)ds

◆
kfkLp .

Proof. We do this with the use of a priori estimates, assuming all the data is smooth.
The computations may be made rigorous by regularizing b, adding a small ellipticity
to a, and extracting weakly convergent subsequences.

We then compute

@t|f |p �r2 · (a(t, x)|f |p) + div(b(t, x)|f |p)  (p� 1)
�
r2 · a(t, x)� div b(t, x)

�
|f |p,

and so @t
R
|f(t, ·)|p  C(t)

R
|f(t, ·)p for some C as in the statement of the Theorem.

The result now follows from Grönwall’s lemma.

We now explore the possibility of obtaining a formula for the solution, similar to
(4.3) for the first order equation (4.1). To do so, it is convenient to reverse time and
consider, for fixed t 2 (0, T ], the equation satisfied by g

(t)(s, x) := f(t� s, x):

�@sg(t)�r2 · (a(t� s, x)g(t))+div(b(t� s, x)g(t)) = 0 in (0, t)⇥Rd
, g

(t)(t, ·) = f0.

For (s, x, ⇠) 2 [0, t]⇥ Rd ⇥ R, define G
(t)(s, x, ⇠) = g

(t)(s, x)⇠. Then

8
>><

>>:

� @sG
(t) � tr[A(t)(s, x, ⇠)r2

x,⇠G
(t)]

�B
(t)(s, x) ·rG

(t) � C
(t)(s, x)⇠@⇠G

(t) = 0 in (0, t)⇥ Rd+1
,

G
(t)(t, x, ⇠) = f0(x)⇠,

(4.26)

where

8
>>>>>>><

>>>>>>>:

A
(t)(s, x, ⇠) =

1

2
⌃(t)(s, x, ⇠)⌃(t)(s, x, ⇠)T , ⌃(t)(s, x, ⇠) =

✓
�

⇠ div �

◆
,

B
(t)(s, x) = �b+ (� ·r)�T

, and

C
(t)(s, x) = � div (b� div a)

= � div b+ tr[(� ·r)(r · �)] + 1

2
| div �|2 + 1

2
tr[r�r�T ];

(4.27)

for brevity, we have suppressed the arguments for a, �, and b, which are all (t� s, x).

8
In fact, only an upper bound for r2 · a = @ijaij is needed.
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For an m-dimensional Wiener process W on [0, t] and a fixed s 2 [0, t], we are led
to consider the SDE, for r 2 [s, t],

8
>>>>>>><

>>>>>>>:

dr

 
�(t)

r,s(x, ⇠)

⌅(t)
r,s(x, ⇠)

!
=

 
B

(t)(r,�(t)
r,s(x, ⇠))

C
(t)(r,�(t)

r,s(x, ⇠))⌅
(t)
r,s(x, ⇠)

!
dr

+ ⌃(t)(r,�(t)
r,s(x, ⇠),⌅

(t)
r,s(x, ⇠))dWr, 

�(t)
s,s(x, ⇠)

⌅(t)
s,s(x, ⇠)

!
=

✓
x

⇠

◆
.

(4.28)

Itô’s formula, (4.26), and (4.28) then yield that, for any (s, x, ⇠) 2 [0, t)⇥ Rd ⇥ R,

r 7! G
(t)(r,�(t)

r,s(x, ⇠),⌅
(t)
r,s(x, ⇠))

is a martingale on [s, t] with respect to the filtration (Fr)r2[0,t] generated by the
Wiener process W , and so, for all r 2 [s, t],

E
h
G

(t)(r,�(t)
r,s(x, ⇠),⌅

(t)
r,s(x, ⇠)) | Fs

i
= G

(t)(s, x, ⇠). (4.29)

Observe that �(t)
r,s is independent of ⇠, while ⌅

(t)
r,s can be written as ⌅(t)

r,s(x, ⇠) = J
(t)
r,s(x)⇠

for some scalar quantity J
(t)
r,s(x), and so (4.28) reduces to the two SDEs

8
<

:
dr�

(t)
r,s(x) = �

h
b(t� r,�(t)

r,s(x))� (� ·r)�T (t� r,�(t)
r,s(x))

i
dt+ �(t� r,�(t)

r,s(x))dWr, r 2 [s, t],

�(t)
s,s(x) = x

(4.30)
and 8

>>>>>>>>>><

>>>>>>>>>>:

drJ
(t)
r,s(x) =

"
� div b+ tr[(� ·r)(r · �)] + 1

2
| div �|2

+
1

2
tr[r�r�T ]

#
(t� r,�(t)

r,s(x))J
(t)
r,s(x)dr

+ div �(t� r,�(t)
r,s(x))J

(t)
r,s(x)dWr, r 2 [s, t],

J
(t)
s,s(x) = 1.

(4.31)

Standard but tedious computations involving Itô’s formula reveal that J
(t)
r,s(x) =

detrx�
(t)
r,s(x).

Taking r = t and ⇠ = 1 in (4.29), we thus arrive at

E
h
f0(�

(t)
t,s(x))J

(t)
t,s (x) | Fs

i
= g(s, x),
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and so, because g(0, x) = f(t, x), we obtain the representation for solutions of (4.25):

f(t, x) = E
h
f0(�

(t)
t,0(x))J

(t)
t,0 (x)

i
. (4.32)

Let us note that �(t)
t,0 has the same law as (�t,0)�1, where �t,s is the stochastic flow

from (4.15). We can see this by duality with the nonconservative equation. Indeed, if
u is the solution of (4.19) with u(t, ·) = g for some given g, then

Z
f0(x)u(0, x)dx =

Z
f(t, x)g(x)dx.

On the other hand, by (4.24) and (4.32),

Z
f0(x)u(0, x)dx = E

Z
f0(x)g(�t,0(x))dx

and Z
f(t, x)g(x)dx = E

Z
f0(�

(t)
t,0(x))g(x)J

(t)
t,0 (x)dx,

so, using the change of variables formula and the fact that f0 is arbitrary, we have

E[g(�t,0(x))] = E[g([�(t)
t,0]

�1(x))] for all g : Rd ! R and x 2 Rd.
We now note that the SDE (4.30) falls under the assumptions of Lemma 2.5, and

therefore, for every 0  s < t  T , there exists a unique solution �(t)
·,s with the

properties laid out by that result. However, the main di�culty is that we do not know

whether �(t)
t,0 is Lipschitz continuous on Rd (see Remark 2.8). This prevents us from

bounding J
(t)
t,0 uniformly in L

1 and passing to weak distributional limits. This is a
major obstacle in using the formula (4.32) to identify the unique limiting distributional
solution of (4.25), as we did for the first order equation (4.1).

The exception is when � is independent of x. In that case, (4.30) and (4.31) become

dr�
(t)
r,s(x) = �b(t� r,�(t)

r,s(x))dr + �(t� r)dWr, r 2 [s, t], �(t)
s,s(x) = x (4.33)

and

@rJ
(t)
r,s(x) = � div b(t� r,�(t)

r,s(x))J
(t)
r,s(x), r 2 [s, t], J

(t)
s,s(x) = 1. (4.34)

The SDE (4.34) is in fact an ODE with random coe�cients. In particular, J (t)
·,s has a

deterministic bound.
We then characterize uniquely the limiting distributional solution of

@tf �r2 · (a(t)f) + div(b(t, x)f) = 0 in (0, T )⇥ Rd
, f(0, ·) = f0. (4.35)

Theorem 4.16. For 1  p < 1, the formula (4.32), where �(t)
·,s and J

(t)
·,s are specified

by respectively (4.33) and (4.34), extends continuously to any f0 2 L
p(Rd). If f0 2
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L
p(Rd) and (b")">0 are as in (2.3) and f

"
is the corresponding solution of (4.35),

then, as " ! 0, f"
converges weakly in C([0, T ], Lp

w
(Rd)) to f . If f0 � 0, then there

exists a unique nonnegative distributional solution of (4.35), which is given by (4.32).

Proof. Let (b")">0 and f
" be as in the statement of the theorem, and assume f0 2

C
2
c (Rd). Let u

" be the solution of (4.23) with velocity b
" and with terminal data

u(t, ·) = g 2 C
2
c (Rd) for some fixed t 2 [0, T ]. Then integration by parts yields

Z
f
"(t, x)g(x)dx =

Z
f0(x)u

"(0, x)dx.

By Theorem 4.14, as "! 0, u" converges strongly in L
p0
(Rd) to the function u defined

uniquely by u(s, x) = g(�t,s(x)). Therefore, any C([0, T ], Lp
w
(Rd))-weak limit f of f"

as "! 0 must satisfy

Z
f(t, x)g(x)dx =

Z
f0(x)u(0, x)dx,

and it follows that there is a unique such limiting function f .
On the other hand, for " > 0,

f
"(t, x) = E

h
f0

⇣
�(t),"

t,0 (x)
⌘
J
(t),"
t,0 (x)

i
,

where �(t),"
·,s and J

(t),"
·,s are as in respectively (4.33) and (4.34) with b replaced every-

where by b
". For fixed t 2 [0, T ], uniformly in ", �(t),"

t,0 is Lipschitz continuous on Rd,

and so J
(t),"
t,0 = detrx�

(t),"
t,0 is bounded in L

1. By exactly the same arguments as

in Lemma 2.3 and Theorem 4.1, we see that, as " ! 0, Ef0
⇣
�(t),"

t,0

⌘
J
(t),"
t,0 converges

weakly in L
p to Ef0

⇣
�(t)

t,0

⌘
J
(t)
t,0 . It follows that f must be given by (4.32). The fact

that the formula extends to arbitrary f0 2 L
p(Rd) now follows from the a priori Lp

bounds in Theorem 4.15.
The uniqueness of nonnegative distributional solutions is then a consequence of

the uniqueness of the forward flow established in Theorem 4.13, as well as the gen-
eralization of superposition to second-order Fokker-Planck equations (see Figalli [41,
Lemma 2.3]).
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