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Beam-displacement measurements are widely used in optical sensing and communications; however,
their performance is affected by numerous intrinsic and extrinsic factors, including beam profile, propa-
gation loss, and receiver architecture. Here we present a framework for designing a classically optimal
beam-displacement transceiver, using quantum estimation theory. We consider the canonical task of
estimating the position of a diffraction-limited laser beam after passing through an apertured volume char-
acterized by Fresnel-number product Dg. As a rule of thumb, higher-order Gaussian modes provide more
information about beam displacement, but are more sensitive to loss. Applying quantum Fisher informa-
tion, we design mode combinations that optimally leverage this trade-off, and show that a greater than
tenfold improvement in precision is possible, relative to the fundamental mode, for a practically relevant
Dg = 100. We also show that this improvement is realizable with a variety of practical receiver archi-
tectures. Our findings extend previous works on lossless transceivers, may have immediate impact on
applications, such as atomic force microscopy and near-field optical communication, and pave the way

towards globally optimal transceivers using nonclassical laser fields.
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Introduction. Estimating the transverse displacement
of a laser beam is a key task in a broad range
of commercial and scientific applications, from atomic
force microscopy [1] and single-molecule tracking [2] to
pointing-acquisition-tracking for free-space optical com-
munications [3] and telescope stabilization [4]. Extensive
theoretical and experimental work has been dedicated
to realizing improved transceiver designs. In most of
these studies, the transmitter is the fundamental Hermite-
Gaussian mode, HGo;—both in the classical regime, where
the laser is in a coherent state, and in quantum-enhanced
schemes (e.g., by mixing a HGyy coherent state with
phase-inverted HGyy squeezed vacuum [5—7]). Common
receiver architectures include the split photodetector [5—7],
lateral effect photodiode [8], and homodyne interferom-
eters employing phase-inversion [9] or structured local
oscillators [10—12].

In designing beam-position transceivers that move
beyond conventional HGyqy transmitters, a key insight is
that higher-order Gaussian modes provide more infor-
mation about beam position (via their high spatial fre-
quency content) [10—13], albeit at the price of higher
sensitivity to loss [14]. Transceivers employing high-order
Hermite-Gaussian (HG) modes have been experimentally
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studied [10—12], but only for a single higher-order mode.
Classically optimal transmitters employing single higher-
order HG modes have also been theoretically considered
[12,13] using single parameter estimation theory [15];
however, as simplifying assumptions, both diffraction and
loss in these studies were ignored.

Here, we present a framework for designing a classi-
cally optimal beam-displacement transceiver that allows
for diffraction, loss, and arbitrary spatial modeshape, based
on quantum estimation theory. The enabling tool for our
study is quantum Fisher information (QFI) [15,16], which
allows the spatial mode to be optimized, for a given laser
(probe) state, over all possible receivers. Thus we are able
to model the generic problem illustrated in Fig. 1(a), in
which a Gaussian laser beam passes through an apertured
(at the transmitter and receiver plane) volume character-
ized by Fresnel number product Dg. After identifying an
(in general, nonunique) optimal spatial mode, the corre-
sponding optimal receiver can then be found using classi-
cal Fisher information (CFI), a procedure that also yields a
variety of options.

As a practical illustration [17-20], we confine our
attention to coherent state transmitters and soft Gaussian
apertures, relevant to common beam-displacement
transceivers, such as the optical lever [Fig. 1(b)]. For
practically relevant Fresnel-number product Dy < 100
(approximately the number of HG modes that will survive
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FIG. 1. (a) Transceiver model for optical beam-displacement
sensing. Diffractive loss is introduced via the finite aperture of the
transmitter and receiver planes, characterized by Fresnel-number
product Dg. A transverse intensity pattern that maximizes the
quantum Fisher information for Dy = 90 is shown, assuming a
coherent state with a specific energy. (b) Application to measur-
ing the angular displacement of a reflective landscape (an optical
lever measurement).

propagation through the system), we “discover” a class
of two-peaked transmission modes as shown in Fig. 1(a),
which represent the transverse intensity (and phase) distri-
bution that optimally weights the trade-off between spatial
derivative and diffraction loss. For Dy = 100, we predict
that such a mode can outperform the HGyy mode by an
order of magnitude, using a variety of standard receivers.

The starting point for our analysis is an abstract Fish-
erian description of beam-displacement sensing. For a
given Fresnel-number product Dy, transmitter mode, and
receiver architecture, the CFI, J(d), upper bounds the
inverse of the minimum uncertainty with which the laser
beam displacement d can be estimated [15,21]. The QFI,
K(d), is similarly related to d, but optimized over all pos-
sible receivers [15,16], and therefore a property of the
transmitter state and Dr alone, viz.

1
L i@ < JK@. 1)

Ad

We thus adopt a mechanistic approach whereby K(d) is
first optimized, yielding a subspace of optimal transmitter
modes. The subset of optimal receiver architectures is then
inferred by inspection, appealing to the upper bound set by
Eq. (1).

To compute K (d), we seek an expression for the multi-
mode coherent state |a(d)) at the receiver, and use the fact
that

K(d) = —2 lim Gl (2)
e—0 0¢&

where
F(e) = [a(d|ad + &), 3)

is the fidelity [22] between states with different dis-
placements. Following a standard approach, |a(d))
can be represented as a vector of mean values

{(@0), @), - (Po)s (1), -}, Where @y, G, = ay + @) and
pn = —ia, — &Z) are the annihilation, position and
momentum operators for field at the receiver, decomposed
into an orthonormal basis of spatial modes [23]. It thus suf-
fices to determine the modal decomposition of the laser
field at the receiver and its functional dependence on d.

We consider a coherent state of mean photon num-
ber N, and choose as our orthonormal basis the HG
modes—®,,(x)d,,(y) at the transmitter and ¢, (x)¢,, () at
the receiver (Fig. 1)—as they form a singular value decom-
position of the soft-aperture propagation kernel [14,24].
Noting that only &, (x) is sensitive to displacement and
dy(y) is least sensitive to diffraction loss, an optimal
transmitted field can be expressed as

Ms—1

W(x,y) = VN Y ¢, ®,(x) (), 4)
n=0

v&;ith 1expansion coefficients ¢,,0, € R satisfying ),
c, =1

The beam is now allowed to propagate through the opti-
cal system, whose loss we model by placing soft Gaussian
apertures of radius 71 and rg at the transmitter and receiver,
respectively, separated by a distance L. The net loss is char-
acterized by Fresnel number product Dy = (krrrg/4L)?%,
which approximates the number of HG modes that can pass
through the optical system with negligible loss. If the beam
undergoes a transverse displacement d < rg during prop-
agation, then the field beyond the receiver aperture can be
expressed as

Ms—1
Y@ +dy) = VN Y Oy ene™ g () (0),
m,n=0
(5)
where
1 + 2D — /T + 4Dy
n= (6)

2Dg

is the transmissivity of the HGyg mode, O, (gl) 1S a cross-
talk matrix characterizing spatial-mode coupling, and for
convenience we define the normalized displacement d =
d/rg [24].

Equation (5) implies that for a given transmitter mode,
all information about displacement is encoded in the cross-
talk matrix Q,,,(d), and that information in higher-order
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modes must be leveraged against transmission loss n"*!.
Our main result is to formalize this statement, viz, com-
bining Egs. (2)(6) and the cross-talk matrix derived in the
Supplemental Material, and noting that

m+1
(Gm) = 2Re {Jﬁ > an@wnnﬂcne"@n} ,
n=m—1

(7)
m+1
(Pm) = 2Im {Jﬁ > an@wn"“cnel’@"} ,

n=m—1
we arrive at the following QFI assuming rt = rgp = ry,

Ms—1

K@ =16N [ > G + @ + DDs (1 =)' c
j=0

Ms—3

—n > V4G + 1D (G +2)De ¢eipasin (6 — 6,12) |
j=0

)

where M; is the highest mode order allowed.

In Fig. 2, we use Eq. (8) to visualize the landscape of
classically optimal spatial modes for beam-displacement
sensing, and their performance as a function of the Fresnel-
number product Dg of the optical system. Intuitively,
larger Dg allows for a larger spatial mode support M,
which in turn gives access to higher displacement sensi-
tivity, using an optimal receiver. This reasoning is borne
out in Figs. 2(a) and 2(b), in which the QFI per photon

K/N is plotted versus M and Dg, under the constraint
Ms—1
3" ¢ = 1. As shown in Fig. 2(a), for a fixed Dy, QFI
n=0
increases with Mg up to a saturation value of M =~

2Dk (see Ref. [25]). Beyond this value, as visualized in
Fig. 2(b) (dashed blue), the maximum QFI scales roughly
as Kmax ~ 13.2DL! for Dy € (0,100], corresponding to a
(normalized) displacement imprecision lower bound of

1
3.6,/DL'N

The bound in Eq. (9) is the quantum Cramér-Rao bound
[15] (QCRB) for transverse beam-displacement sensing
through a matched pair of Gaussian apertures. For com-
parison, inserting (cg, 6p) = (1,0) into Eq. (8) yields the
optimum displacement precision for a conventional HGgo
coherent state transmitter

VD)2 N
VWTHD = 1°N 4 [ppsn

Ad 2 9)

Ady > (10)

\ i
.

D=10 D=20 D=40 D=60 D.=80

FIG. 2. (a) Displacement QFI (K) versus modal support (M)
for optical systems with different Fresnel-number product (Dp),
normalized to the mean photon number N of the transmitter. (b)
QFI versus Dy for a transmitter in the fundamental HGyy mode
(dashed red) and an optimum spatial mode (solid red). Green
is the CFI for the array-based transceiver in Table 1. Blue is a
power-law fit, 13.2D}!. (c) Even Zeyen (Ms € 27) and odd Zogq
optimal modes for different Dr. Any optimal mode can be written
as superposition of Zeyen and Zoqq.

Evidently Adgy/Ad ~ D% for Dg € (0,100], which
implies that a tenfold reduction in mean squared error is
possible, by mode-shape engineering, at Dr = 100.

In order to take advantage of the scaling in Eq. (9),
it is necessary to use an optimal spatial mode shape and
receiver. In Fig. 2(c), we present classically optimal trans-
mitter spatial modes Z(x,y) for various Df, determined by
maximizing Eq. (8) over {c,,8,} for a modal support M;
high enough to saturate the QFI, as shown in Fig. 2(a).
Evidently Z exhibits a bimodal intensity distribution along
the displacement (x) direction, whose root-mean-square
distance from the optical axis increases with the aper-
ture size ry. Not shown is the phase profile of the mode,
which exhibits rapid oscillations within the intensity enve-
lope with a period approximately 7/+/Dr. These oscilla-
tions account for the high spatial frequency content of the
modeshape, and are practical considerations for receiver
architectures at high Dg, as discussed below.

We now turn our attention to the identification of opti-
mal receivers, using CFI (J) as a figure of merit. Formally,
for a specific measurement applied to a displaced laser

beam
N\ 2
~ OP(y;d) 1 -
J(d) = - —dy,
@ /( od ) P(y;d) 4

where P(7;d) is the probability of measurement outcome
y given normalized displacement d. To identify an opti-
mal receiver for a given transmitter mode, we demand

an
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that it satisfy the upper bound J(d) = K(d) in Eq. (1),
which corresponds to an optimal displacement imprecision
Ad = 1//J (d) saturating the QCRB given in Eq. (9). (We
note that for single parameter estimation, the existence of
such an optimal receiver is assured [15].)

We focus on optimal receiver designs for a coherent
state transmitter in an odd-ordered optimal spatial mode
Z(x,y) (subscript omitted), shown in Fig. 2(c). After prop-
agation, it is convenient to express the received field in the
form

¥ = VN ynz6o(x + d,y)Aa(x,y)
Mg/2—1
~ ﬁ( Z a1 e 2 (X)),
n=0
M2
+ d Z ﬂZnei(ﬁszrﬁo)QbZn (x)) ¢0(y)5
n=0

= «/ﬁﬂ({o(x,y) +\//§a§1(x=y))s (12)

where {¢o, {1} form an orthonormal principal component

basis for the receiver and Ay = e @+2D/7% is 3 correction
factor for the displaced receiver aperture, and o, and 8,
are expansion coefficients that optimize Eq. (8) [24]. If
there is no displacement, photons in transmitter mode Z
will occupy mode ¢ at the receiver, with a transmissivity
nz. Displacement will cause photons to populate mode ¢;
with coupling strength 8. (In the Supplemental Material
[24] we show that 178 = 224:5(/)2 2 . which, as shown in
Fig. 2, can be approximated as nzf ~ 3.3D}'1.)

For sufficiently small beam displacement d, Eq. (12)
implies that d is fully encoded in the complex amplitude
of mode ¢, and that, therefore, the optimal receiver design
is independent of the magnitude of d. Since d is encoded in
a phase-space displacement of ¢; [23], it can be shown that
a homodyne receiver with its local oscillator (LO) in the
¢1 mode is optimal [31]. When only the absolute displace-
ment magnitude |d| is of interest, then phase-insensitive
mode-sorting-based receivers are also optimal. In general,
homodyne and SPADE are examples of a broader class
of optimal receivers whose defining characteristic is the
ability to resolve ¢; from &p.

In Fig. 3 we illustrate the concept of spatial-mode
demultiplexing (SPADE) and “structured-LO” homodyn-
ing, representing two broad classes of optimal coherent
state receivers for transverse beam displacement. A more
detailed list is given in Table I, together with the tradi-
tional, suboptimal approach based on direct detection with
a pixel array (DD-ARRAY). Below, we elaborate on the
CFI analysis of SPADE, structured homodyne, and DD-
ARRAY receivers, and under what circumstances they can
be optimal.

FIG. 3. Two optimal receivers for transverse beam displace-
ment: (a) a spatial mode sorter, which has been configured
to distill the optimal transmitter mode Z from its orthogonal
complement, and (b) a homodyne interferometer with a local
oscillator in the ¢; mode.

For simplicity, we first consider the structured homo-
dyne receiver illustrated in Fig. 3(b). By interfering the
received field with a LO in the information-carrying ¢;
mode, an appropriate LO phase yields a (real) quadra-
ture estimate with mean (g) = /4nzN ,851’ and variance
(Ag) = 1[23], corresponding to

Jhom(d) = dnzNB. (13)

Rewriting Eq. (8) in the principal-component basis {Zo, 1},
it is straightforward to show that J (d) = K(d) [24], imply-
ing that structured homodyne is indeed an optimal receiver.

For the SPADE receiver [Fig. 3(a)], the displaced
beam is passed through a series of phase plates that sort
principal-component modes ¢, and ¢; into different paths.
(Mode sorting in the HG and other orthonormal bases has
been widely realized [26—28]; we here consider a recon-
figurable mode sorter [29].) Direct photon counting is then
carried out in the {; beam path. The set of possible counts
{n1} follows a Poisson distribution with mean value N; =
nzN Bd?, yielding a CFI

~ 2
- © (aP(n;d)\ 1 AN\ 1
Jspape(d) = Z <—~) - = (—~) —, (14)
o’ dd P ad ) Ni

TABLE I. Classical transceiver designs and their optimality.

Transmitter Receiver QFI attaining?
Z(x)Do(y) HGSPADE-DD [26-28] Yes
Z(x)®o(y) ¢-SPADE-DD [29] Yes
Z(x)Po(y) HGSPADE-homodyne [12] Yes
Z(x)Do(y) ¢-homodyne [24] Yes
Dy(x)Do(») HGSPADE-DD [26-28] Yes
Dy(x)Do(») ARRAY-DD [30] No
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where P(n; gl) is the conditional probability of #; counts.
It follows from the right-hand side of Eq. (14) that

Jspape(d) = 4nzN B, (15)

implying that SPADE in the {{, ¢;} basis, together with
direct photon counting of the ¢;-sorted light, is also an opti-
mal receiver. In Ref. [24], we show that SPADE in the HG
mode basis, followed by direct photon counting or homo-
dyne of each output, is also optimal (HGSPADE-DD and
HGSPADE-homodyne in Table I, respectively).

Finally, as an example of a nonideal receiver, we con-
sider a traditional pixel array detector together with pho-
ton counting at each pixel. Pixel array detectors have
been studied extensively for transverse beam-displacement
sensing with both classical and squeezed light [5—8,30,32]
(including split photodetection, which corresponds to a
1 x 2 pixel array [5-8]). Following the typical case, we
assume the transmitter is a coherent state in the HGqg
mode. For simplicity, we also assume that the pixels
are infinitesimally small with 100% fill factor [30,32].
The output of this receiver is an infinite set of Poisson
distributed random variables with mean oy (x,y, d)dxdy,
where

on(x,y,d) = Nlgo(x + dre)po()Aa(x,y)>  (16)

is the mean count density. Generalizing Eq. (14) then
yields

- don \? 1 VT +4Dp — 1)?

me(d):// (ﬂ) L dedy zagy YLD Z D7
od oN 1+ 4Dk

(17)

where the integral is over all space.

We conclude by discussing the dynamic range of the
receivers in Table I, particularly those employing an opti-
mal transmitter mode Z with large modal support Mg > 1,
whose characteristic length scale, approximately r/Ms,
can be much smaller than the receiver aperture (cf. Fig. 3).
In this case, the small displacement approximation d < 1
underpinning Eq. (12) may be inappropriate, manifesting
as a receiver-specific bias error Adyias that increases the
total measurement error to

Adig =\ A + Ad2,... (18)

In Fig. 4, we present Monte Carlo simulations of total error
Ady for transceivers employing pixel array and SPADE
receivers with HGyy and Z-mode coherent state trans-
mitters. (Homodyne and SPADE suffer similar dynamic
range limitations; we focus on SPADE because of its sim-
pler extension to different mode bases.) Specifically, we
compare the canonical two-pixel split photodiode (SD)

C i
107"r ®oto, SD ('\ég; )I<I>near
10-2} ®oo, HG-SPADE (u) @ o
Z®o, HG-SPADE (m) e
103} Zo. (-SPADE () @ ® .
 oanal 1Kz, .
2 107 Ak . ."f
< 10_5 | [ ] .0. ~
® _ge*  |Ad,
10° 5 é . ; ;DDDDD Dlas =) §
107 e e
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T — —
= = = &
10_2 | m = ! o al
103+ |
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FIG. 4. (a) Simulated total measurement error versus actual

displacement for various transceiver architectures, using linear
and nonlinear estimators. (b) Simulated total measurement error
versus photon number in the shot noise (dashed) and bias (solid)
limited regime.

receiver to SPADE receivers employing an HG mode
sorter [28] and a reconfigurable mode sorter in the {o, {1}
basis, for a system with D = 90. Based on the stan-
dard maximum-likelihood estimator, we devise a linear
and nonlinear estimator for processing the receiver output
(see the Supplemental Material [24]). As expected, we find
that Z-mode transceivers have smaller imprecision Ad and
higher bias error Adyi,s than HGyy transceivers; however,
the bias error can be reduced using a nonlinear estimator
(at the expense of computational overhead) yielding a total
error that approaches the QCRB for d < 0.01, indicated
by the black dashed lines in Fig. 4(a). We emphasize that
the dynamic range—the displacement d at which Ady,s =
Ad—depends on both the measurement strength N and the
estimation strategy, and can, in principle, be extended for
more optimal estimators, as well as by active stabilization
of the beam position.

In summary, we have used quantum Fisher informa-
tion to design an optimal transceiver for laser beam-
displacement sensing. Assuming the probe is in a coherent
state and modeling propagation loss as a pair of Gaus-
sian apertures at the transmitter (laser) and receiver, we
find that the optimal spatial mode is a bimodal distribution
(Fig. 2) that balances the trade-off between maximizing
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spatial frequency content and minimizing aperture loss.
We emphasize that this spatial mode is optimized over
all degrees of freedom of an optical system, including
possible receivers, and is parameterized only by the sys-
tem’s Fresnel-number product Dg. Its mean-squared error
relative to the traditional fundamental Gaussian mode
transceiver scales as approximately DS, yielding a ten-
fold improvement for practically relevant Dg ~ 100. We
also studied various receiver architectures, using classical
Fisher information as a metric, and showed that homodyne
and SPADE receivers can each extract maximal informa-
tion (CFI = QFI) about beam displacement when appro-
priately tailored to the transmitter mode (Fig. 3), while
traditional pixel array receivers cannot. Finally, we con-
sidered the dynamic range of SPADE and two-pixel (split
detector) receivers, and showed that the increased bias
error inherent to the optimal spatial mode can, in principle,
be reduced with a nonlinear estimator (Fig. 4).

Looking forward, we emphasize that our results are both
practically relevant, given recent rapid advances in struc-
tured light preparation [17], and extensible to nonclassical
probe states, such as squeezed light. Combining these two
resources—spatial mode structuring and squeezing—can
provide access to Heisenberg scaling Ad ~ 1/N [33,34]
for beam-displacement measurements and related imaging
tasks (such as deflectometry), and has close connections
to recent work in entanglement-enhanced distributed sens-
ing [35,36], albeit with a fundamentally different set of
challenges and applications related to the spatial-mode
entanglement encoding.
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