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Beam-displacement measurements are widely used in optical sensing and communications; however,

their performance is affected by numerous intrinsic and extrinsic factors, including beam profile, propa-

gation loss, and receiver architecture. Here we present a framework for designing a classically optimal

beam-displacement transceiver, using quantum estimation theory. We consider the canonical task of

estimating the position of a diffraction-limited laser beam after passing through an apertured volume char-

acterized by Fresnel-number product DF. As a rule of thumb, higher-order Gaussian modes provide more

information about beam displacement, but are more sensitive to loss. Applying quantum Fisher informa-

tion, we design mode combinations that optimally leverage this trade-off, and show that a greater than

tenfold improvement in precision is possible, relative to the fundamental mode, for a practically relevant

DF = 100. We also show that this improvement is realizable with a variety of practical receiver archi-

tectures. Our findings extend previous works on lossless transceivers, may have immediate impact on

applications, such as atomic force microscopy and near-field optical communication, and pave the way

towards globally optimal transceivers using nonclassical laser fields.

DOI: 10.1103/PhysRevApplied.22.L041004

Introduction. Estimating the transverse displacement

of a laser beam is a key task in a broad range

of commercial and scientific applications, from atomic

force microscopy [1] and single-molecule tracking [2] to

pointing-acquisition-tracking for free-space optical com-

munications [3] and telescope stabilization [4]. Extensive

theoretical and experimental work has been dedicated

to realizing improved transceiver designs. In most of

these studies, the transmitter is the fundamental Hermite-

Gaussian mode, HG00—both in the classical regime, where

the laser is in a coherent state, and in quantum-enhanced

schemes (e.g., by mixing a HG00 coherent state with

phase-inverted HG00 squeezed vacuum [5–7]). Common

receiver architectures include the split photodetector [5–7],

lateral effect photodiode [8], and homodyne interferom-

eters employing phase-inversion [9] or structured local

oscillators [10–12].

In designing beam-position transceivers that move

beyond conventional HG00 transmitters, a key insight is

that higher-order Gaussian modes provide more infor-

mation about beam position (via their high spatial fre-

quency content) [10–13], albeit at the price of higher

sensitivity to loss [14]. Transceivers employing high-order

Hermite-Gaussian (HG) modes have been experimentally

*Contact author: whe1@arizona.edu

studied [10–12], but only for a single higher-order mode.

Classically optimal transmitters employing single higher-

order HG modes have also been theoretically considered

[12,13] using single parameter estimation theory [15];

however, as simplifying assumptions, both diffraction and

loss in these studies were ignored.

Here, we present a framework for designing a classi-

cally optimal beam-displacement transceiver that allows

for diffraction, loss, and arbitrary spatial modeshape, based

on quantum estimation theory. The enabling tool for our

study is quantum Fisher information (QFI) [15,16], which

allows the spatial mode to be optimized, for a given laser

(probe) state, over all possible receivers. Thus we are able

to model the generic problem illustrated in Fig. 1(a), in

which a Gaussian laser beam passes through an apertured

(at the transmitter and receiver plane) volume character-

ized by Fresnel number product DF. After identifying an

(in general, nonunique) optimal spatial mode, the corre-

sponding optimal receiver can then be found using classi-

cal Fisher information (CFI), a procedure that also yields a

variety of options.

As a practical illustration [17–20], we confine our

attention to coherent state transmitters and soft Gaussian

apertures, relevant to common beam-displacement

transceivers, such as the optical lever [Fig. 1(b)]. For

practically relevant Fresnel-number product DF < 100

(approximately the number of HG modes that will survive
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FIG. 1. (a) Transceiver model for optical beam-displacement

sensing. Diffractive loss is introduced via the finite aperture of the

transmitter and receiver planes, characterized by Fresnel-number

product DF. A transverse intensity pattern that maximizes the

quantum Fisher information for DF = 90 is shown, assuming a

coherent state with a specific energy. (b) Application to measur-

ing the angular displacement of a reflective landscape (an optical

lever measurement).

propagation through the system), we “discover” a class

of two-peaked transmission modes as shown in Fig. 1(a),

which represent the transverse intensity (and phase) distri-

bution that optimally weights the trade-off between spatial

derivative and diffraction loss. For DF = 100, we predict

that such a mode can outperform the HG00 mode by an

order of magnitude, using a variety of standard receivers.

The starting point for our analysis is an abstract Fish-

erian description of beam-displacement sensing. For a

given Fresnel-number product DF, transmitter mode, and

receiver architecture, the CFI, J (d), upper bounds the

inverse of the minimum uncertainty with which the laser

beam displacement d can be estimated [15,21]. The QFI,

K(d), is similarly related to d, but optimized over all pos-

sible receivers [15,16], and therefore a property of the

transmitter state and DF alone, viz.

1

�d
≤

√

J (d) ≤
√

K(d). (1)

We thus adopt a mechanistic approach whereby K(d) is

first optimized, yielding a subspace of optimal transmitter

modes. The subset of optimal receiver architectures is then

inferred by inspection, appealing to the upper bound set by

Eq. (1).

To compute K(d), we seek an expression for the multi-

mode coherent state |�a(d)〉 at the receiver, and use the fact

that

K(d) = −2 lim
ε→0

∂2F

∂ε2
, (2)

where

F(ε) = |〈�a(d)|�a(d + ε)〉|2, (3)

is the fidelity [22] between states with different dis-

placements. Following a standard approach, |�a(d)〉
can be represented as a vector of mean values

{〈q̂0〉, 〈q̂1〉, . . . 〈p̂0〉, 〈p̂1〉, . . .}, where ân, q̂n = ân + â
†
n and

p̂n = −i(ân − â
†
n) are the annihilation, position and

momentum operators for field at the receiver, decomposed

into an orthonormal basis of spatial modes [23]. It thus suf-

fices to determine the modal decomposition of the laser

field at the receiver and its functional dependence on d.

We consider a coherent state of mean photon num-

ber N , and choose as our orthonormal basis the HG

modes—�n(x)�m(y) at the transmitter and φn(x)φm(y) at

the receiver (Fig. 1)—as they form a singular value decom-

position of the soft-aperture propagation kernel [14,24].

Noting that only �n(x) is sensitive to displacement and

�0(y) is least sensitive to diffraction loss, an optimal

transmitted field can be expressed as

�(x, y) =
√

N

Ms−1
∑

n=0

cneiθn�n(x)�0(y), (4)

with expansion coefficients cn, θn ∈ 	 satisfying
∑

n

c2
n = 1.

The beam is now allowed to propagate through the opti-

cal system, whose loss we model by placing soft Gaussian

apertures of radius rT and rR at the transmitter and receiver,

respectively, separated by a distance L. The net loss is char-

acterized by Fresnel number product DF = (krTrR/4L)2,

which approximates the number of HG modes that can pass

through the optical system with negligible loss. If the beam

undergoes a transverse displacement d 
 rR during prop-

agation, then the field beyond the receiver aperture can be

expressed as

ψ(x + d, y) ≈
√

N

Ms−1
∑

m,n=0

Qmn(d̃)
√

ηn+1cneiθnφm(x)φ0(y),

(5)

where

η = 1 + 2DF − √
1 + 4DF

2DF

(6)

is the transmissivity of the HG00 mode, Qmn(d̃) is a cross-

talk matrix characterizing spatial-mode coupling, and for

convenience we define the normalized displacement d̃ ≡
d/rR [24].

Equation (5) implies that for a given transmitter mode,

all information about displacement is encoded in the cross-

talk matrix Qmn(d̃), and that information in higher-order
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modes must be leveraged against transmission loss ηn+1.

Our main result is to formalize this statement, viz, com-

bining Eqs. (2)–(6) and the cross-talk matrix derived in the

Supplemental Material, and noting that

〈q̂m〉 = 2Re

{

√
N

m+1
∑

n=m−1

Qmn(d̃)
√

ηn+1cneiθn

}

,

〈p̂m〉 = 2Im

{

√
N

m+1
∑

n=m−1

Qmn(d̃)
√

ηn+1cneiθn

}

,

(7)

we arrive at the following QFI assuming rT = rR ≡ r0,

K(d̃) = 16ηN

⎛

⎝

Ms−1
∑

j =0

(j + (2j + 1) DF (1 − η)) ηj c2
j

−η

Ms−3
∑

j =0

√

4 (j + 1) (j + 2) DFη
j cj cj +2 sin

(

θj − θj +2

)

⎞

⎠ ,

(8)

where Ms is the highest mode order allowed.

In Fig. 2, we use Eq. (8) to visualize the landscape of

classically optimal spatial modes for beam-displacement

sensing, and their performance as a function of the Fresnel-

number product DF of the optical system. Intuitively,

larger DF allows for a larger spatial mode support Ms,

which in turn gives access to higher displacement sensi-

tivity, using an optimal receiver. This reasoning is borne

out in Figs. 2(a) and 2(b), in which the QFI per photon

K/N is plotted versus Ms and DF, under the constraint
Ms−1
∑

n=0

c2
n = 1. As shown in Fig. 2(a), for a fixed DF, QFI

increases with Ms up to a saturation value of M max
s ≈√

2DF (see Ref. [25]). Beyond this value, as visualized in

Fig. 2(b) (dashed blue), the maximum QFI scales roughly

as Kmax ≈ 13.2D1.1
F for DF ∈ (0, 100], corresponding to a

(normalized) displacement imprecision lower bound of

�d̃ �
1

3.6

√

D1.1
F N

. (9)

The bound in Eq. (9) is the quantum Cramér-Rao bound

[15] (QCRB) for transverse beam-displacement sensing

through a matched pair of Gaussian apertures. For com-

parison, inserting (c0, θ0) = (1, 0) into Eq. (8) yields the

optimum displacement precision for a conventional HG00

coherent state transmitter

�d̃00 ≥
√

DF/2
√

(
√

1 + 4DF − 1)3N
≈ 1

4

√

D0.5
F N

. (10)
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FIG. 2. (a) Displacement QFI (K) versus modal support (Ms)

for optical systems with different Fresnel-number product (DF),

normalized to the mean photon number N of the transmitter. (b)

QFI versus DF for a transmitter in the fundamental HG00 mode

(dashed red) and an optimum spatial mode (solid red). Green

is the CFI for the array-based transceiver in Table I. Blue is a

power-law fit, 13.2D1.1
F . (c) Even Zeven (Ms ∈ 2Z) and odd Zodd

optimal modes for different DF. Any optimal mode can be written

as superposition of Zeven and Zodd.

Evidently �d̃00/�d̃ ≈ D0.3
F for DF ∈ (0, 100], which

implies that a tenfold reduction in mean squared error is

possible, by mode-shape engineering, at DF = 100.

In order to take advantage of the scaling in Eq. (9),

it is necessary to use an optimal spatial mode shape and

receiver. In Fig. 2(c), we present classically optimal trans-

mitter spatial modes Z(x, y) for various DF, determined by

maximizing Eq. (8) over {cn, θn} for a modal support Ms

high enough to saturate the QFI, as shown in Fig. 2(a).

Evidently Z exhibits a bimodal intensity distribution along

the displacement (x) direction, whose root-mean-square

distance from the optical axis increases with the aper-

ture size r0. Not shown is the phase profile of the mode,

which exhibits rapid oscillations within the intensity enve-

lope with a period approximately r0/
√

DF. These oscilla-

tions account for the high spatial frequency content of the

modeshape, and are practical considerations for receiver

architectures at high DF, as discussed below.

We now turn our attention to the identification of opti-

mal receivers, using CFI (J ) as a figure of merit. Formally,

for a specific measurement applied to a displaced laser

beam

J (d̃) =
∫

(

∂P( �γ ; d̃)

∂ d̃

)2
1

P( �γ ; d̃)
d �γ , (11)

where P( �γ ; d̃) is the probability of measurement outcome

�γ given normalized displacement d̃. To identify an opti-

mal receiver for a given transmitter mode, we demand
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that it satisfy the upper bound J (d̃) = K(d̃) in Eq. (1),

which corresponds to an optimal displacement imprecision

�d̃ = 1/
√

J (d̃) saturating the QCRB given in Eq. (9). (We

note that for single parameter estimation, the existence of

such an optimal receiver is assured [15].)

We focus on optimal receiver designs for a coherent

state transmitter in an odd-ordered optimal spatial mode

Z(x, y) (subscript omitted), shown in Fig. 2(c). After prop-

agation, it is convenient to express the received field in the

form

ψ =
√

N
√

ηZζ0(x + d, y)Ad(x, y)

≈
√

N

(

Ms/2−1
∑

n=0

α2n+1η
n+1einπ/2φ2n+1(x),

+ d̃

Ms/2
∑

n=0

β2nei(ϑ2n+ϑ0)φ2n(x)

)

φ0(y),

≡
√

N
√

ηZ

(

ζ0(x, y) +
√

βd̃ζ1(x, y)

)

, (12)

where {ζ0, ζ1} form an orthonormal principal component

basis for the receiver and Ad = e(d2+2xd)/r2
R is a correction

factor for the displaced receiver aperture, and αn and βn

are expansion coefficients that optimize Eq. (8) [24]. If

there is no displacement, photons in transmitter mode Z

will occupy mode ζ0 at the receiver, with a transmissivity

ηZ . Displacement will cause photons to populate mode ζ1

with coupling strength β. (In the Supplemental Material

[24] we show that ηZβ = ∑Ms/2

n=0 β2
2n, which, as shown in

Fig. 2, can be approximated as ηZβ ≈ 3.3D1.1
F .)

For sufficiently small beam displacement d, Eq. (12)

implies that d is fully encoded in the complex amplitude

of mode ζ1, and that, therefore, the optimal receiver design

is independent of the magnitude of d. Since d is encoded in

a phase-space displacement of ζ1 [23], it can be shown that

a homodyne receiver with its local oscillator (LO) in the

ζ1 mode is optimal [31]. When only the absolute displace-

ment magnitude |d| is of interest, then phase-insensitive

mode-sorting-based receivers are also optimal. In general,

homodyne and SPADE are examples of a broader class

of optimal receivers whose defining characteristic is the

ability to resolve ζ1 from ζ0.

In Fig. 3 we illustrate the concept of spatial-mode

demultiplexing (SPADE) and “structured-LO” homodyn-

ing, representing two broad classes of optimal coherent

state receivers for transverse beam displacement. A more

detailed list is given in Table I, together with the tradi-

tional, suboptimal approach based on direct detection with

a pixel array (DD-ARRAY). Below, we elaborate on the

CFI analysis of SPADE, structured homodyne, and DD-

ARRAY receivers, and under what circumstances they can

be optimal.

(a)

(b)

d

d

FIG. 3. Two optimal receivers for transverse beam displace-

ment: (a) a spatial mode sorter, which has been configured

to distill the optimal transmitter mode Z from its orthogonal

complement, and (b) a homodyne interferometer with a local

oscillator in the ζ1 mode.

For simplicity, we first consider the structured homo-

dyne receiver illustrated in Fig. 3(b). By interfering the

received field with a LO in the information-carrying ζ1

mode, an appropriate LO phase yields a (real) quadra-

ture estimate with mean 〈q̂〉 = √
4ηZNβd̃ and variance

〈�q̂〉 = 1 [23], corresponding to

Jhom(d̃) = 4ηZNβ. (13)

Rewriting Eq. (8) in the principal-component basis {ζ0, ζ1},
it is straightforward to show that J (d̃) = K(d̃) [24], imply-

ing that structured homodyne is indeed an optimal receiver.

For the SPADE receiver [Fig. 3(a)], the displaced

beam is passed through a series of phase plates that sort

principal-component modes ζ0 and ζ1 into different paths.

(Mode sorting in the HG and other orthonormal bases has

been widely realized [26–28]; we here consider a recon-

figurable mode sorter [29].) Direct photon counting is then

carried out in the ζ1 beam path. The set of possible counts

{n1} follows a Poisson distribution with mean value N1 =
ηZNβd̃2, yielding a CFI

JSPADE(d̃) =
∞

∑

n1=0

(

∂P(n1; d̃)

∂ d̃

)2
1

P
=

(

∂N1

∂ d̃

)2
1

N1

, (14)

TABLE I. Classical transceiver designs and their optimality.

Transmitter Receiver QFI attaining?

Z(x)�0(y) HGSPADE-DD [26–28] Yes

Z(x)�0(y) ζ -SPADE-DD [29] Yes

Z(x)�0(y) HGSPADE-homodyne [12] Yes

Z(x)�0(y) ζ -homodyne [24] Yes

�0(x)�0(y) HGSPADE-DD [26–28] Yes

�0(x)�0(y) ARRAY-DD [30] No
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where P(n1; d̃) is the conditional probability of n1 counts.

It follows from the right-hand side of Eq. (14) that

JSPADE(d̃) = 4ηZNβ, (15)

implying that SPADE in the {ζ0, ζ1} basis, together with

direct photon counting of the ζ1-sorted light, is also an opti-

mal receiver. In Ref. [24], we show that SPADE in the HG

mode basis, followed by direct photon counting or homo-

dyne of each output, is also optimal (HGSPADE-DD and

HGSPADE-homodyne in Table I, respectively).

Finally, as an example of a nonideal receiver, we con-

sider a traditional pixel array detector together with pho-

ton counting at each pixel. Pixel array detectors have

been studied extensively for transverse beam-displacement

sensing with both classical and squeezed light [5–8,30,32]

(including split photodetection, which corresponds to a

1 × 2 pixel array [5–8]). Following the typical case, we

assume the transmitter is a coherent state in the HG00

mode. For simplicity, we also assume that the pixels

are infinitesimally small with 100% fill factor [30,32].

The output of this receiver is an infinite set of Poisson

distributed random variables with mean σN (x, y, d̃)dxdy,

where

σN (x, y, d̃) = Nη|φ0(x + d̃rR)φ0(y)Ad(x, y)|2 (16)

is the mean count density. Generalizing Eq. (14) then

yields

Jarray(d̃)=
∫∫ (

∂σN

∂ d̃

)2
1

σN

dxdy =4ηN
(
√

1 + 4DF − 1)2

√
1 + 4DF

,

(17)

where the integral is over all space.

We conclude by discussing the dynamic range of the

receivers in Table I, particularly those employing an opti-

mal transmitter mode Z with large modal support Ms � 1,

whose characteristic length scale, approximately r0/Ms,

can be much smaller than the receiver aperture (cf. Fig. 3).

In this case, the small displacement approximation d̃ 
 1

underpinning Eq. (12) may be inappropriate, manifesting

as a receiver-specific bias error �d̃bias that increases the

total measurement error to

�d̃tot =
√

�d̃2 + �d̃2
bias. (18)

In Fig. 4, we present Monte Carlo simulations of total error

�d̃tot for transceivers employing pixel array and SPADE

receivers with HG00 and Z-mode coherent state trans-

mitters. (Homodyne and SPADE suffer similar dynamic

range limitations; we focus on SPADE because of its sim-

pler extension to different mode bases.) Specifically, we

compare the canonical two-pixel split photodiode (SD)

�
d to

t

107           108            109            1010          1011

N

10–2

10–3

10–4

10–5

10–6

10–7

d = 0.1

d 0.01

10–1(b)
   

0.001 0.01 0.1

d̃

�
d to

t
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10–1
(a)

Փ0Փ0, SD

Փ0Փ0, HG-SPADE

ZՓ0,   HG-SPADE

ZՓ0,   ζ-SPADE

(Non)linear
(  )
(  )
(  )
(  )

bias�d

1/√KZՓ0

1/√KՓ0Փ0

FIG. 4. (a) Simulated total measurement error versus actual

displacement for various transceiver architectures, using linear

and nonlinear estimators. (b) Simulated total measurement error

versus photon number in the shot noise (dashed) and bias (solid)

limited regime.

receiver to SPADE receivers employing an HG mode

sorter [28] and a reconfigurable mode sorter in the {ζ0, ζ1}
basis, for a system with DF = 90. Based on the stan-

dard maximum-likelihood estimator, we devise a linear

and nonlinear estimator for processing the receiver output

(see the Supplemental Material [24]). As expected, we find

that Z-mode transceivers have smaller imprecision �d̃ and

higher bias error �d̃bias than HG00 transceivers; however,

the bias error can be reduced using a nonlinear estimator

(at the expense of computational overhead) yielding a total

error that approaches the QCRB for d̃ ≤ 0.01, indicated

by the black dashed lines in Fig. 4(a). We emphasize that

the dynamic range—the displacement d̃ at which �d̃bias =
�d̃—depends on both the measurement strength N and the

estimation strategy, and can, in principle, be extended for

more optimal estimators, as well as by active stabilization

of the beam position.

In summary, we have used quantum Fisher informa-

tion to design an optimal transceiver for laser beam-

displacement sensing. Assuming the probe is in a coherent

state and modeling propagation loss as a pair of Gaus-

sian apertures at the transmitter (laser) and receiver, we

find that the optimal spatial mode is a bimodal distribution

(Fig. 2) that balances the trade-off between maximizing
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spatial frequency content and minimizing aperture loss.

We emphasize that this spatial mode is optimized over

all degrees of freedom of an optical system, including

possible receivers, and is parameterized only by the sys-

tem’s Fresnel-number product DF. Its mean-squared error

relative to the traditional fundamental Gaussian mode

transceiver scales as approximately D0.6
F , yielding a ten-

fold improvement for practically relevant DF ∼ 100. We

also studied various receiver architectures, using classical

Fisher information as a metric, and showed that homodyne

and SPADE receivers can each extract maximal informa-

tion (CFI = QFI) about beam displacement when appro-

priately tailored to the transmitter mode (Fig. 3), while

traditional pixel array receivers cannot. Finally, we con-

sidered the dynamic range of SPADE and two-pixel (split

detector) receivers, and showed that the increased bias

error inherent to the optimal spatial mode can, in principle,

be reduced with a nonlinear estimator (Fig. 4).

Looking forward, we emphasize that our results are both

practically relevant, given recent rapid advances in struc-

tured light preparation [17], and extensible to nonclassical

probe states, such as squeezed light. Combining these two

resources—spatial mode structuring and squeezing—can

provide access to Heisenberg scaling �d ∼ 1/N [33,34]

for beam-displacement measurements and related imaging

tasks (such as deflectometry), and has close connections

to recent work in entanglement-enhanced distributed sens-

ing [35,36], albeit with a fundamentally different set of

challenges and applications related to the spatial-mode

entanglement encoding.
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