L))

Check for
Updates

Derivative-Guided Symbolic Execution

YONGWEI YUAN, Purdue University, USA

ZHE ZHOU, Purdue University, USA

JULIA BELYAKOVA, Purdue University, USA
SURESH JAGANNATHAN, Purdue University, USA

We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact
with effectful, opaque libraries. Our procedure allows specifications of libraries and abstract data type (ADT)
methods that are expressed in Linear Temporal Logic over Finite Traces (LTL), interpreting them as symbolic
finite automata (SFAs) to enable intelligent specification-guided path exploration in this setting. We apply
our technique to facilitate the falsification of complex data structure safety properties in terms of effectful
operations made by ADT methods on underlying opaque representation type(s). Specifications naturally
characterize admissible traces of temporally-ordered events that ADT methods (and the library methods
they depend upon) are allowed to perform. We show how to use these specifications to construct feasible
symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of
this formalism. More importantly, we incorporate the notion of symbolic derivatives, a mechanism that allows
the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on
the automata structures latent in the provided specifications and the safety property that is to be falsified.
Intuitively, derivatives enable symbolic execution to exploit temporal constraints defined by trace-based
specifications to quickly prune unproductive paths and discover feasible error states. Experimental results on
a wide-range of challenging ADT implementations demonstrate the effectiveness of our approach.

CCS Concepts: « Theory of computation — Regular languages; Automated reasoning; Modal and
temporal logics; « Software and its engineering — Automated static analysis.

Additional Key Words and Phrases: symbolic execution, regular expression derivatives

ACM Reference Format:
Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan. 2025. Derivative-Guided Symbolic Execu-
tion. Proc. ACM Program. Lang. 9, POPL, Article 50 (January 2025), 31 pages. https://doi.org/10.1145/3704886

1 Introduction

Symbolic execution [Baldoni et al. 2018; Cadar and Sen 2013] (SE) is a well-studied program analysis
technique whose goal is to statically explore a bounded set of (symbolic) program executions in
search of one that yields a symbolic state inconsistent with a given safety property. The states
generated during the course of these executions consist of a set of path constraints; a violation is
identified if the conjunction of these constraints with the negation of the safety property is logically
satisfiable. By knowing the prestate under which a method may be invoked, SE can be performed on
individual methods in a compositional fashion. Oftentimes, however, the program being analyzed
interacts with libraries whose implementations are unavailable for analysis. In this case, we can

Authors’ Contact Information: Yongwei Yuan, Purdue University, West Lafayette, USA, yuan311@purdue.edu; Zhe Zhou,
Purdue University, West Lafayette, USA, zhou956@purdue.edu; Julia Belyakova, Purdue University, West Lafayette, USA,
julbinb@gmail.com; Suresh Jagannathan, Purdue University, West Lafayette, USA, suresh@cs.purdue.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART50

https://doi.org/10.1145/3704886

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0002-2619-2288
HTTPS://ORCID.ORG/0000-0003-3900-7501
HTTPS://ORCID.ORG/0000-0002-7490-8500
HTTPS://ORCID.ORG/0000-0001-6871-2424
https://doi.org/10.1145/3704886
https://orcid.org/0000-0002-2619-2288
https://orcid.org/0000-0003-3900-7501
https://orcid.org/0000-0002-7490-8500
https://orcid.org/0000-0001-6871-2424
https://doi.org/10.1145/3704886
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704886&domain=pdf&date_stamp=2025-01-09

50:2 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

augment the SE procedure to interpret models [Chipounov et al. 2011] or specifications [Tobin-
Hochstadt and Van Horn 2012; Xu et al. 2009] attached to library methods that describe the intended
behavior of their implementation in a form suitable for symbolic reasoning,.

In this paper, we consider the design of an SE procedure for functional programs that interface
with effectful, opaque libraries. Since we cannot express the behavior of library methods directly
in terms of how they manipulate their hidden state (since their implementations are opaque), we
instead reason about the interaction of clients with these methods in terms of traces, sequences of
method invocations and return values that constrain the shape of allowed symbolic states that the
symbolic interpreter needs to consider. Our primary contribution is a formalization of symbolic
execution in this setting that directly leverages the temporal ordering constraints latent in these
traces to intelligently guide path exploration.

A particular useful setting in which this style of symbolic reasoning is likely to be effective are
abstract data type (ADT) implementations whose specifications and safety properties are often
couched in terms of temporal modalities that constrain how datatype instances can be constructed
and used. For example, to establish that an implementation of a functional Set datatype, imple-
mented using an effectful list representation, correctly respects the semantics of a mathematical set
(e.g., |S U{x}| =S| if x € S) necessitates showing that any element added to its list representation
is different from any previously added element. Because the list implementation is potentially
effectful, but does not expose the state it manages to its clients, we can only reason about the Set
ADT methods that use it behaviorally, in terms of how inputs to the list type’s setters affect the
values returned by its getters that are subsequently consumed.

In our running example, the representation type List, defined as a library, may provide a number
of operations on a list instance, some of which are pure like mem that checks for list membership,
and others of which are effectful, such as append! that destructively appends its argument to its
instance. The Set ADT might provide methods like in that simply uses the mem method from List
to check if an element is included in a set instance, or insert that adds a new element to the
set using append!. Suppose insert’s implementation incorrectly adds a new element by simply
invoking append!, without first checking if the element is already present. Constructing a set using
this implementation would violate our desired safety property, namely that every element in the
set is unique. Our goal is to use symbolic execution to identify such errors.

Given the availability of specifications on ADT and representation-type methods, symbolic
execution of an ADT then involves: (1) the generation of feasible (aka constructible) precondition
states for an ADT method being analyzed in the form of symbolic traces of method calls (and return
values) on the representation type that is nonetheless consistent with the ADT’s specification, and
(2) devising an effective search procedure from this precondition state that identifies a feasible
execution path, again expressed as a symbolic trace over symbolic invocations of methods on the
representation type, whose final state violates the safety property.

In this work, we develop an SE procedure for a class of behavioral specifications that can be
concisely expressed in linear temporal logic (LTL; [Bansal et al. 2023; De Giacomo and Vardi 2013,
2015]); these specifications correspond to symbolic finite automata (SFA [D’Antoni and Veanes 2014,
2017; Veanes 2013]), in which automata transitions represent effectful and opaque operations made
by the ADT on its representation type(s). Our SE procedure exploits the latent SFA structure through
symbolic derivatives. By computing the residual language after consuming a prefix, Brzozowski
derivatives simplify membership checking of regular and context-free languages [Might et al. 2011].
In our setting, symbolic derivatives compute the residual specification after observing a sequence
of ADT operations, enabling both the extraction of admissible temporally ordered symbolic events
(i.e., method invocations and returns expressed in terms of symbolic variants of program variables)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:3

of the ADT’s representation type and the prediction of future admissible events by progressively
refining the space of safe behaviors.

When equipped with such derivatives, our SE procedure is capable of (1) generating precondition
traces whose interpretation yields a prestate consistent with method specifications, (2) correlating
pre- and post-invocation events with the safety property, and (3) guiding exploration along paths
likely to lead to a falsification of the safety property. By viewing the set of traces prior to and
after method invocations from the lens of the safety property we wish to falsify, our SE procedure
intelligently performs path exploration. In the case of Set ADT, our SE procedure may, in the
presence of a past append! event, actively look for another append! of the identical element, in an
attempt to accelerate the falsification of the unique-element property. As a result, we oftentimes
observe many orders-of-magnitude improvement in path enumeration times, enabling it to scale
favorably with specification complexity.

In summary, this paper makes the following contributions:

(1) We formalize an SE framework suitable for falsifying safety properties of effectful ADT
implementations that manage hidden states. Specifications are expressed as LTL; formulae
and capture temporal dependencies over a history of interactions between an ADT imple-
mentation and its underlying representation type(s).

(2) We identify the latent SFA structures within these specifications and treat them as executable
representations that enable the formalization of an SE procedure in terms of the traces
characterized by these automata.

(3) We propose to integrate a notion of symbolic derivatives as part of our SE procedure that
intelligently underapproximates trace-based symbolic states and accelerates the search for a
falsification witness.

(4) We describe an implementation of these ideas in OCaml and show its effectiveness on a
challenging set of data structure programs.

The remainder of the paper is organized as follows. Motivation and informal explanation of our
ideas is provided in the next section. Section 3 provides preliminaries and details about LTLy,
SFAs, and derivatives. The syntax of a core language and a naive (derivative-free) semantics is
given in Section 4. The semantics of deriviative-based execution is provided in Section 5. We
show how to translate the declarative semantics of derivatives into an efficient algorithm in
Section 6. Implementation details and evaluation results are provided in Section 7. Related work
and conclusions are given in Section 8 and 9, resp.

2 Motivation

To motivate our ideas, consider the program shown in Fig. 1. The function remove is a method in a
linked-list ADT that uses two effectful key-value stores as its representation type, one to maintain
an ordering relation among nodes in the list (named Nxt), and the other to record the elements
associated with these nodes (named Val). The implementation of the store is opaque to the ADT.
Given a node curr in a linked-list instance containing argument value v, remove removes curr
from the list by first initializing its successor field to null (given as the shaded statement at Line
18), and then adjusting the link from its predecessor prev to point to its successor next.

2.1 Specifications

The specification associated with remove is expressed as LTL¢ [De Giacomo and Vardi 2013]"
formulae given in the comment above its definition. Informally, we can think of such formulae as
characterizing a set of admissible traces, event sequences defined in terms of method invocations

!Linear temporal logic over finite sequences.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:4 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

module type KVStore 1module Nxt = KVStore (Node) (Node)
(K: Key) (V: Value) : T = 2module Val = KVStore (Node) (Elem)
sig 3
(x* (k: K.t) = (v: V.t) 4(** (hd:Node.t) — (v:Elem.t) — Node.t
ghost (v': V.t) 5 ghost (a: Node.t), (b: Node.t)
context stored(T,k, ") 6 context stored(Nxt,a,b)
effect (get k o) 7 effect ~(Nxtput /d bYW (Nxt.put a }f} *)
ensure v=0 %) slet remove (hd: Node.t) (elem: Elem.t) =
val get : K.t > V.t 9 if hd = null then hd
10 else if Val.get hd = elem then
(x*x (k:K.t) = (v:V.t) — unit 1 Nxt.get hd
effect (put k v) *) 12 else
val put : K.t -> V.t —> unit 13 let rec loop prev =
end 14 let curr = Nxt.get prev in
module type Node = sig 15 if curr = null then ()
type t 16 else if Val.get curr = elem then
val null : t ... 17 let next = Nxt.get curr in
end 18 fN_xjc ._p_u_t_ curr ﬁu_l_l_;}
module type Elem = sig 19 I\Ix_t_.BJt__pr:e_v_ next
type t ... 20 else loop curr
end 21 in loop hd; hd

Fig. 1. An implementation of a node remove operation in a linked-list ADT using two key-value stores.

and results. The specification has several elements. In the case of remove, it introduces ghost
variables a and b; these variables represent an arbitrary pair of nodes in the list, constrained by the
method’s precondition (identified by the keyword context) and postcondition (identified by the
keyword effect). The precondition characterizes all traces that construct a linked-list in terms of
the underlying key-value store representation type, identifying an arbitrary consecutive pair of
nodes using the introduced ghost variables a and b; it uses the following definition:

stored(Store, k,v) = F((Store.put k v) A XG—(Store.put k _))

The postcondition reflects the actions performed by the method: it specifies that node b can be
linked to a predecessor other than a (as denoted by ¢) only after a is linked to a successor other
than b (as denoted by J). Both the pre- and post-condition use LTL modalities. The precondition
uses the finally modality (F) to represent the eventual establishment of a link between a and b in
a trace, and next (X) and global (G) modalities to prevent subsequent actions in the trace from
modifying that link; similarly, the postcondition uses the weak-until (W) modality to specify a
conditional action, namely that b can be linked to a predecessor other than a only after a is no
longer b’s predecessor.

The specification for the key-value stores used by the linked-list ADT is given in the left of
Fig. 1. As before, we capture the effectful behavior of these methods using LTL specifications.
The precondition for get requires that it be invoked in a state constructed from a sequence of
actions that include a put operation which associates key k to value v’; it leverages the definition of
stored defined above, except using the key-value store instance in which the get is performed. The
method’s postcondition ensures that this property holds upon return. Additionally, the specification
establishes an equality constraint, using the ensure annotation, between the value returned (v)
and the value previously put on key k (v”). Note that specifications used in this way constrain
the set of precondition states that a symbolic execution engine should consider; in particular, the
specification ignores any state that does not contain a binding for k. The specification for put

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:5

~(Nxt.put a b)

(Nxt.put a}f)
start — .
start —

(Nxt.put a}{) (Nxt.put a b) (Nxt.put a b)
(Nxt‘put%b) V(Nxt.put yf}f)
Ve (Nxt.put)
~(Nxt.put a}{) *
(a) Admissible traces prior to remove. (b) New actions allowed from remove.

Fig. 2. The SFA representation of remove’s trace-based specification.

imposes no structure on the store that must hold before it can execute, and only guarantees that
the put action is performed upon return.

Trace Specification as Safety Property. To reiterate, specifications written in this way characterize
admissible execution traces whose effects determine the context in which a function can execute as
well as the behavior manifested by the function upon return from a call, allowing us to reason about
the behavior of the ADT without having to expose implementation details about its underlying
representation type. Together, a pair of such pre- and post-condition traces captures a safety
property against which the function must be checked. In the case of remove, an execution under
the specified context (precondition trace) that does not satisfy the post-condition trace serves as a
witness of a violation of the predecessor uniqueness safety property.

SFA Representation of Trace Specifications. The set of traces characterized by LTLs specifica-
tions can be naturally represented by (symbolic) finite automata [Veanes 2013] (SFA) structures
whose labels are events representing ADT method invocations and their return values, and whose
transitions reflect control dependencies over these actions, defined by modalities used in the speci-
fication. Fig. 2 shows how the LTL specifications given in Fig. 1 can be represented as SFAs. The
automaton in Fig. 2a captures the precondition for remove. The start state qo admits traces which
contain an arbitrary number of get or put operations, not involving put operations with key
a or value b; it allows such traces to be augmented with put operations that store a binding of
a to b, thus establishing the required shape of lists to which remove can be applied. The store
can be subsequently updated with the effects of other put operations on key a that bind the key
to nodes other than b, leading to a transition that exits the accepting state g;. Traces accepted
by the precondition automaton encapsulate program states that can be used as the basis for a
successful symbolic execution run of remove. The postcondition for remove can be represented
as the automaton shown in Fig. 2b. Here, the initial state of the postcondition g, presumes the
precondition, namely ghost nodes a and b such that a is the predecessor of b in the list. A safe
implementation of remove is allowed to repeatedly (re)link a to b ((Nxt.put a b)), link other nodes
besides a to b ((Nxt.put ¢ b)), or perform get operations (~(Nxt.put)). An event that links another
node to b without first removing the link from a results in a violation of the safety property, however,
depicted by the error state with a red circle containing 0. State g5 represents another accepting state
corresponding to a linked-list in which node a no longer points to b. The traces admitted by these
automata correspond to the hidden states constructible by method invocations to the underlying
Nxt and Val store instances.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:6 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

Symbolic Derivatives and SFAs. To reveal the latent SFA representations of trace specifications
that qualify over symbolic variables, we propose to compute a variant of Brzozowski derivatives
[Brzozowski 1964], dubbed a symbolic derivative. Let’s revisit the postcondition for remove in
connection with its SFA representations in Fig. 2b: its LTL ; formula « (Nxt.put ¢ b) W (Nxt.put a)
admits (1) action (Nxt.put a b), (Nxt.put yi}f), or «~(Nxt.put), followed by traces admissible by the
formula itself (g, — g), or (2) action (Nxt.put a By followed by any trace of actions (g, — g3). Addi-
tionally, it does not admit (Nxt.put ¢ b) regardless of the following actions (g, — 0). The symbolic
derivatives of the postcondition over (Nxt.put a b) V (Nxt.put /dlf) V «(Nxt.put), (Nxt.put a §),
and (Nxt.put ¢ b) corresponds to states go, g3, and @ respectively. Such derivatives allow symbolic
execution to, as we will discuss in Section 2.3, “execute” trace specifications following their latent
SFA representations and make the put operation at Line 19 a witness of the action (Nxt.put ¢ b)
that leads to the dead state 0.

2.2 Trace-Based Symbolic Execution

Expressing Hidden States as Traces. While our specification language can express a rich set of
behaviors that can be exhibited by the ADT, it is not immediately obvious how to incorporate such
specifications as part of an efficient symbolic execution procedure. Yet, it is clear that remove’s
specification naturally entails the uniqueness property that we wish to check, albeit in terms of
traces over the representation type’s operations, rather than directly in terms of the method’s
implementation.

Conventionally, symbolic execution explores symbolic states along a program’s CFG to find a
reachable path that ends at an erroneous state; however, in our setting, the linked list maintained by
the key-value stores Nxt and Val does not have an explicit state representation that can be trivially
constructed from the program; it is instead manifested by traces extracted from SFAs associated
with the ADT’s specification. We will show shortly in Section 2.3 how to precisely relate the trace
structure described by the specification with the execution paths explored by symbolic execution
to manifest these hidden states. Establishing this relation via the use of symbolic derivatives, which
will also be described shortly, enables a novel form of property-directed exploration that can be
exploited by a symbolic execution procedure to avoid searching over unproductive execution paths.

A relatively straightforward approach is to encapsulate symbolic states into a set of traces that
records the temporally ordered events produced along the current execution path being explored.
Such a set of traces, like our specifications, has a natural representation in SFA. Take the precondition
of remove as an example; stored(Nxt, a, b) encapsulates a symbolic state Sy as follows:

So
a

b

HE

Since a and b are two symbolic variables denoting two arbitrary nodes as long as the former
is the predecessor of the latter, the path condition is T initially. Before symbolically executing
remove, we introduce two additional symbolic variables ny and u as the arguments passed to
remove, respectively denoting the first node in the input linked-list, and the element that the node
to be removed stores. Since the precondition of remove places no constraint on these variables,
the path condition is T initially. Substituting n, for hd (and u for elem) in the body of remove,
symbolic execution may choose to enter the first branch at Line 9, augment the path condition
with ng = null, and return ny. An empty symbolic trace (of length zero) is produced from this
execution and ghost nodes a and node b are left untouched in the symbolic state. Therefore, the
execution complies with the predecessor uniqueness safety property as specified by the method’s
postcondition.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:7

Conventionally, symbolic states are constrained by path conditions whose satisfiability directly
manifests the reachability of the respective state. In this setting, however, events executed along the
path may also quantify over symbolic variables like path conditions and thus may impose additional
constraints on the associated symbolic state. Take Sy as an example: the SFA representation of
stored(Nxt, a, b), as shown in Fig. 2a, admits the traces of executed events allowed upon entering
remove. Transitions labeled by (Nxt.put a §) admit event Nxt.put key val only if key = a A val # b
holds. As a result, path condition T and the SFA synergistically encapsulate the symbolic state Sy,
reflecting the conditions necessary for the execution paths that lead to remove to be feasible.

Refinement of Trace-Based Symbolic States. We further illustrate this synergy by considering
other feasible execution paths in remove along which symbolic states are refined. A symbolic
execution procedure may also assume that the linked list is not empty, i.e., ny # null, and can
thus take the branch at Line 10 where a symbolic method invocation Val.get takes place with ny
as its argument. Just as path conditions are refined by branching conditions, SFAs are refined by
the effectful operations performed along execution paths, consistent with the constraints given
by the preconditions of executed operations. Here, the precondition of Val.get, when applied
to ny, is stored(Val, ng, ug), where uy is a fresh symbolic variable representing the result of the
invocation. That is, uy is the element stored at ngy. Noticing that ng is not even mentioned in Sy, ng
may be a, b, or some other node not explicitly specified in Sy. The refined SFA representation, as
denoted by stored(Nxt, a, b) Astored(Val, ny, uy), encapsulates the prestate of the method invocation
(up«—Val.get ng), which can be cleanly dissected into the following three states:

a=ny 51 b=ny 52 ny a b 53

W[| tedul] | el et

Augmenting the path condition with uy = u as we enter Line 11, symbolically executing the invoca-
tion of Nxt.get with ng first introduces a new symbolic variable n; denoting the successor of ny, and
then further refines the traces of executed events to be ((stored(Nxt, a, b) A stored(Val, ng, up)) -
(up«—Val.get ng)) A stored(Nxt, ng, n1), where -(ug«Val.get ny) records the previous method invo-
cation. Within the refined state, similarly, node n; could be a, b, some other node, or even ny. Three
ordinary cases are depicted below:

S S S
a=nyp b:nl 4 a b:no nq 5 no a=ny b 6

e} 27 | (eled e} +212) | [w]o o2 lo 2]

where S4, S5 and S¢ refines the above dissected states S1, Sz, and Ss respectively. Then, node n; is
returned at (Line 11). Although the symbolic state is refined, node a and node b are still left intact
to comply with the constraints defined by the method’s specification. Since the safety property
holds over all these possible symbolic states, this execution path is also deemed to satisfy the
postcondition.

The violation of the postcondition may happen within the loop (Line 13) if we do not execute the
shaded operation at (Line 18). Substituting n, for prev in the loop body, the invocation of Nxt.get
with ng then takes us to the same symbolic states, S4, Ss, and S¢, generated in the earlier explored
branch. If we continue the execution from S up until Line 17, one possible symbolic state that
holds after the invocation of Val.get and Nxt.get with n; would be:

S
no a=nq b=n2 7

[o o2 2]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:8 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

where u; and n;, are fresh symbolic variables that denotes the element stored in n; and the successor
of ny respectively. Without executing Line 18, the invocation of Nxt.put at Line 19 makes node b
(i.e., ny) the successor of both ny and a (i.e., n;):

S
no a=n; b=n,

[Tl (w2]7]

This symbolic state (Sg), among other possible states that we omit here, happens to manifest a
violation of the method’s safety property because Sg with path condition ny # null Aug # u An; #
null A u; = u is obviously reachable and it is obvious from the above illustration that any trace of
events encapsulated in S is rejected by the method’s postcondition.

2.3 Symbolic Execution with Symbolic Derivatives

Efficiency is a serious problem that must be considered by any symbolic execution procedure.
Conventional techniques can prune infeasible paths [Baldoni et al. 2018] by leveraging the control
structure in programs along with provided preconditions to consider an underapproximation of
program behavior that follows a single execution path at a time. For example, if a precondition
requires the input list to be not empty, path exploration can ignore paths that contradict this
constraint (e.g., Line 9 in Fig. 1). A trace-aware symbolic execution procedure can additionally
discover the shape of linked-lists automatically from the SFA structures latent in specifications
that induce these traces, and thus can introduce new opportunities for pruning unproductive paths.
For example, as currently described, although the precondition of (ug«Val.get ny) refines Sy, the
refined symbolic state does not specify whether ny is equal to a, b, or some other node. More
notably, when the symbolic method invocation (n;«Nxt.get ny) is made, the SFA encapsulating
the symbolic state after the invocation includes contradicting paths not depicted among Sy, Ss, and
S, in which ng can be both equal to and not equal to a. Explicitly leveraging the control structure
latent in SFAs would enable us to correlate traces (and the hidden states they induce) to specific
program paths, exposing new pruning opportunities that would otherwise not be possible. We
propose to compute symbolic derivatives over the specifications to explore and exploit the latent
SFA structures within the trace-based specifications.

Derivative-Guided Path Exploration. Our symbolic execution procedure employs symbolic deriva-
tives to explore the SFA structures latent in the specifications and intelligently enumerate admissible
traces that encapsulate prestates along execution paths, lowering the cost of path feasibility check
and enabling effective path pruning. In our running example, the initial symbolic state S, of remove
requires that some node a is the predecessor of some node b but does not specify when b is made
the successor of a via Nxt.put. Recall the precondition automaton (Fig. 2), which denotes the traces
encapsulating Sp: the relevant Nxt.put operation may be performed (g0 — ¢1) after some indefinite
number of irrelevant actions (qo — ¢qo), or after a previously executed (Nxt.put a b) is invalidated
(q1 = qo)- A symbolic derivative computation helps explore this automaton structure by sampling
paths from the start state g to the accepting state g;. In the case of remove, its behavior happens to
be invariant to when the call (Nxt.put a b) is performed. Therefore, in order to reach the erroneous
symbolic state Sg, it is sufficient to begin the symbolic execution of remove with a precondition
trace that consists of (Nxt.put a b) followed by actions that do not invalidate this operation.

Our symbolic execution procedure further exploits the latent SFA structures to make informed
decisions in choosing the precondition trace that favors the efficient exploration of feasible execu-
tion paths. To minimize the complexity of reasoning about the behavior of method invocations
performed, one straightforward strategy is to choose the “simplest” symbolic state based on the
length of the corresponding trace induced from the precondition automaton. For example, remove

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:9

Y N

[So g2 | L9: return nOT/;{SO q2 | L10: uy < Val.get noj

S3 |92 | L11: ny < Nxt.get n
Se |92 | L11: return ny

L14: ny < Nxt.get no}

[S(, g2 | L21: return ng

L16: u; «— Val.get nlJ

q2 | L17: ny < Nxt.get n;
Sy g2 | L19: Nxt.put ny ny
Ss |0 | L21: return ng

S

Fig. 3. Derivative-guided symbolic execution of remove.

may be invoked under a state encapsulated by the singleton trace (Nxt.put a b). This trace, however,
cannot be refined to admit a Val.put event, which is required by the invocation of Val.get at Line 10
in Fig. 1, thus failing to reach the error state Sg. As we proceed to consider longer precondition
traces, the simplicity criteria soon becomes insufficient to distinguish between precondition traces.
Here are two traces of four symbolic events that can be induced from the precondition automaton
and thus equally encapsulate a valid prestate of remove:

(Nxt.put a b)(~(Nxt.put a §))® (repeated 3 times)

(Nxt.put a b)(Nxt.put a B)(Nxt.put a b)(~(Nxt.put a p))

We know from before that the erroneous execution path leading to Sg requires at least two Val.put
events but the later trace can only admit one Val.put event. In this case, symbolic derivatives
guide SE to first consider the former trace when executing remove. This behavior arises from
symbolic derivatives’ tendency to maximize “progress” when inducing traces from the precondition
automaton. As symbolic derivatives facilitate the exploration within the latent SFA structures of
precondition automata, this tendency manifests in several ways: (1) consistently select the states
closer to the accepting state; (2) avoid unnecessarily transiting back to non-accepting states, and;
(3) steer clear of generating the stagnation pattern of "setting”, "unsetting", and "resetting". In the
case of the precondition automaton shown in Fig. 2a, the execution tends to move from ¢, to q;
via (Nxt.put a b) and stays at ¢;. Intuitively, the former trace induced in the described fashion
encapsulates a relatively more permissive state that potentially leads to more interesting feasible
paths being explored, including the one that leads to the error state Sg.

Derivative-Guided Falsification. In addition to intelligently enumerating precondition traces,
symbolic derivatives can guide the symbolic execution of remove itself, by again exploiting the
latent SFA structure of the specification. Specifically, they allow our symbolic execution to relate
method invocations in remove to the transitions in the postcondition automaton (Fig. 2b). Consider

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:10 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

the symbolic execution tree of remove in terms of operations over symbolic variables, as depicted in
Fig. 3. Each program point is associated with a state in the postcondition automaton that effectively
determines the set of future traces (i.e., sequences of future actions) that are (un)safe to explore.
The symbolic execution of remove begins with the initial state g, of the postcondition automaton
because it admits all traces of actions that remove is safe to perform. As remove traverses the input
linked list via repetitive get invocations before unsafely invoking Nxt.put, symbolic derivatives
intelligently determine that the future safe traces after those get invocations are also represented
by q.. This is because g2 — ¢ is the only outgoing transition from g, that is compatible with
get actions. Recall the frontier state S; before the unsafe invocation of Nxt.put from before: the
past traces of actions already determine ny # a and ny = b. Then our SE procedure can indeed
determine that (Nxt.put ng ny) is unsafe because it is compatible with the transition g, — 0, which
happens to be the only compatible outgoing transition from q,. Note that even if remove continues
traversing the linked list after removing the first found element via a recursive call to loop, the
symbolic derivatives guide SE to avoid unprofitably unrolling the 1oop because any future action is
unsafe. In contrast, the naive trace-based SE described in Section 2.2 would wastefully relate each
explored execution path of remove with traces in the postcondition automaton.

To conclude this section, the main contribution of this paper is a new symbolic execution
procedure that computes such symbolic derivatives as symbolic execution proceeds to maintain a
trace of symbolic events that witness the current execution path and its relationship with the safety
property, in an attempt to accelerate the search for a feasible execution that violates the property.

3 Preliminaries

The SFA representations of specifications expressed in LTLy [De Giacomo and Vardi 2013] facilitate
the discussion in Section 2. To properly formulate the relationship between traces admissible by
LTLf formulae and SFAs (see Section 5), however, we need to introduce regular expressions. The
language of regular expressions (RE) is strictly more expressive for representing traces than LTLy
and enjoys an important closure property under the classic derivative computation [Brzozowski
1964]. In this section, we present symbolic regular expressions (SREs) whose atoms are predicates,
show how to express common temporal modalities from LTL in terms of RE operations, and relate
classic derivatives with states in finite state automata.

Effective Boolean Algebras. Tuple (3, ¥, [_], L, T, V, A, =) defines Effective Boolean Algebra (EBA
[Veanes 2013]) where ¥ is a set of domain elements and ¥ is a set of predicates, closed under the
Boolean connectives with 1, T € ¥. The denotation of ¢,/ € ¥ are provided by [_]:¥ — 2% where

[LI=0 [TI=2 l¢vyl=[] vyl [6 Ayl =81 N[¥I [-¢] = =/14]

Traces. Finite sequences of elements «, § from domain ¥ are called traces 7. Let € be the empty
trace and ; - 5 be the associative concatenation of 7; and m,. We write 7y, for 7y - 7, when it
is clear from the context that juxtaposition stands for concatenation. Following the convention,
we further denote that (0 = {e}, 2**) = 3. 3% for k > 0, and T* = sz 2F), where
Ly - Ly ={mm | m € Ly, 7, € Ly} for L; € ¥ and L, C X*. Lastly, we write L* for the closure of L
under concatenation when it is clear from the context that L C X*.

Symbolic Regular Expressions. We define Symbolic Regular Expressions (SRE) modulo Boolean
Algebra (2, %, [_], L, e, 1, M, ~) such that SREs use literals £ from ¥ as predicates over these char-
acters, i.e, [¢] C %, and accept traces of characters from alphabet 3. The top literal is denoted by e
following the convention of regular expressions. Note that, to avoid later confusion with boolean
predicates, we adopt a different set of notations for the boolean connectives. The syntax of SREs
is then defined by the following operations: empty set (&), null (¢), literals (£), Kleene Star (R"),

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:11

concatenation (R; - Rz), negation (=R), conjunction (R; A R;), and disjunction (R; V Ry).
R u= @le|t|R IR -Re| " RIRIAR2| R VR,
Abusing the notation [_], the denotation of SREs, [R] C =7, is recursively defined as:
[e] = {} [e] = {e} [R*] = [RI" [Ri-Re] = [Ri] - [Re]
[-R] =2\ [R] [Ri ARa] = [Ri] N [Re] [Ri Vv Ra] = [Ri] U[R:]
Following the denotation of SREs, we write R; = R, for [R;1] C [Rz] and R; = R, for [R:1] = [R:].

Conversion from LTLy to SRE. Interestingly, common temporal modalities from LTLf can be
expressed in SRE. As the leaf nodes in LTLy formulae are literals £, which is expressible in SRE,
we provide the translation semantics of common temporal operators, assuming that the operands
have already been converted to SREs, as follows:

R=e-R UR=("-R FR=e"-R GCGR==(e"-=R) WR==(e"-R)V (£ R)
That is, XR (next) holds if R accepts the trace starting from the next position; £UR (until) holds
if there exists such a position that R accepts the following trace and ¢ holds until that position;

R (finally) holds if there exists such a position that R accepts the following trace; GR holds if
there does not exist such a position that R rejects the following trace, and; #WR (weak until) holds
if either there does not exist such a position that R accepts the following trace, or ¢ holds until
such a position. For simplicity, we limit the first operand of U and W to be a single literal ¢ , which
suffices for common cases found in the ADT specifications we consider, including the modalities
used in our evaluation (Section 7). We directly use SRE in the rest of the paper.

Derivatives of SRE. A derivative is a notion from language theory. Given a language, say defined
by an SRE R, and a string s, the derivative operation returns a new language accepting all strings
that are accepted by R when appended to 7, which can be thought of as a prefix to those strings.

[4.R] = (' | 7 7' € [R]}
Following the literature on derivatives of regular expressions [Antimirov 1995; Berry and Sethi
1986; Brzozowski 1964], we first inductively define a nullable predicate v(R) that determines if R
accepts the empty string. That is, v(R) iff € € [R].

vie)=v(R) =T v(@)=v(f)=1 v(=R) = =v(R)
V(R1 - Rz) = v(Ri ARz) = v(Ri) Av(Rz) V(R1 VRz) = v(R1) V v(Rz)
Then the derivatives of SREs follow and can be computed recursively via the following rules:
d:R=R derR =d;d,R de@ =dae =@ dg (R") =d,R-R”
b= € %fa € [€] dy (R, - Ry) = (dgR1 - R2) V dgR; ?f v(R1)
o ifaé¢lf] deR1 - Ry if =v(Ry)
dg (=R) = ~d,R de (R1 AR2) = daRy A deRo de (R1VR2) =deR; VdaRs,

Computing the derivative of a regular expression is a well-known technique for constructing
an automaton that accepts the same language as the given regular expression. The construction
closely follows a property of regular expressions — every SRE R can be written in the form of a
disjunction as follows:

Ruullable V \/ ad,R where Ruujaple is € if v(R), @ otherwise.

aex
Informally, starting with the initial state, each disjunct ad,R denotes a transition to a new state

with label . If v(R), then we mark the current state as an accepting state. Iteratively, we repeat the
same procedure on the new states with the corresponding derivative d,R until no new state can
be added. Intuitively, each state gq; in the constructed automaton is denoted by a derivative (also in
SRE) of the original R- the derivative accepts the same language as the constructed automaton

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:12 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

with its initial state set to g;. This can be manifested by a different disjunctive form V ,c5: 7d,R.
For each disjunct zd,R, if d,R is not empty, then 7 denotes a path from the accepting state to the
state denoted by d,R. Hence, whether d,R denotes an accepting state determines if R accepts x:
7 € [R] iff v(d,R)

However, X often contains a large if not infinite number of symbols and thus enumerating over all
symbols to build an automata is inefficient at best, and impossible in the general case. Mintermization
solves this problem by constructing a finite set of equivalence classes over the infinite domain >
such that all literals ¢ can be mapped to elements in this finite set ([D’Antoni and Veanes 2014;
Veanes et al. 2010]). Then, following a similar procedure of constructing automata from regular
expressions, one may construct an equivalent SFA where transtitions between states are labeled
by equivalence classes. We will present the characterization of symbolic derivatives in Section 5
as a device to exploit SREs’ latent SFA structures without upfront mintermization and later its
computation in Section 6.

4 Trace-Based Symbolic Execution

Variable x,y,... Symbolic Variable X7, gr,... Data Constructor d
Primitive Operator op Effectful API of Representation Type f,ge A

Simple Type T w= unit | bool | int |...|XT|+dr

Constant c = ()|B|Z]...|(c)|dc

Symbolic First-Order Value ¢ s= c|lx|x|(q)|dq|opq

Boolean Formula PP == q|L|T|-PloAP|ldpVe

Symbolic Event t 5= (xret «— fXarg | @) | ~C|eMe|eULL

Symbolic Value v x= x|q| ()| funx.e| fix f.funx.e

Symbolic Expression e w= 0| 2| | assume ¢ | admit R | append R

| letx=vovine|letx=eine|e®e

eq; e =letx=¢e;ine; for fresh x
assert¢ = (assume —¢;) ® assume ¢
affirmR = (admit —-R;) @ admit R

Fig. 4. Syntax of the core language.

We first introduce a naive variant of our symbolic execution framework for falsifying functional
ADT implementations that interact with an underlying effectful representation type. Symbolic
execution is defined on a core functional language with explicit constructs for generating symbolic
values and expressing specifications of two kinds: formulae ® from decidable theories amenable to
SMT solving, which are standard for symbolic execution techniques, and trace-based specifications
R expressed as symbolic regular expressions, which is the novelty of our framework. Fig. 4 presents
the syntax of our core language, where the expression e is expressed in monadic normal form
(MNF) [Hatcliff and Danvy 1994], a variant of A-normal form (ANF) [Flanagan et al. 1993] that
permits nested let-bindings. Recursive functions take the form of fix f. fun x. e using an explicit
fixpoint construction, and control flow is modeled by nondeterministic choice ® together with an
assume construct. The symbolic constructs in this language, including assume, will be discussed
throughout the rest of the section. Fig. 5 formalizes the naive symbolic execution of the core
language as a small-step, substitution-based operational semantics over symbolic states (@, R, e).
In this section, we first introduce symbolic execution of pure functional programs and then extend
it with the capability to reason over traces that interact with an ADT’s underlying representation

type.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:13

Symbolic State S == (O, R,e)

fresh x,
GENSYM ABORTPROP
(®,R,?2;) — (®,R, %) (?, R, je) — (O, R,)
ASSUME ADMIT
(®, R,assume @) — (P AP, R, ()) (®, R, admit R") — (&, RAR’,())

APPEND LETVAL

(@, R, append Resf) — (O, R - Resf, () (®,R,letx=0vine) — (O, R, e[x — v])

D, R, — (@', R, e i=1,2
(e) = { il LETExP ! CHOICE
(&, R, let x = ey iney) — (', R, let x = e] in e;) (D, R, e1 ®ey) — (&, R, e;)

op =funx.e
LETAPPFUN

(©.R.let y=vfviney) — (O, R, let y=e [x > v] iney)

op = fix f. funx. e v’fzfunf.el[va]
LeTAPPFIX

(@, R, let y = oF v in e) — (CID, R, let y = v’f of in 62)

Fig. 5. Naive trace-augmented semantics.

To enable symbolic reasoning, the language supports symbolic variables x;, which stand for
constants c of type 7. In contrast to program variables x, symbolic variables are internal to symbolic
execution: they are never written by developers but are generated by the ?; construct during
symbolic execution (Rule GENSYM). The 7 subscript can be omitted whenever it is clear from
the context; 7 denotes simple types (primitive types, e.g., unit and int, product types X 7, and
user-defined data types + d 7) but not function types. Variables, symbolic variables, and constants,
when composed by tuple constructors (...), data constructors d, and primitive operators op , build
up to symbolic (first-order) values. Then, Boolean symbolic values, when composed by logical
connectives, build up to Boolean formulae . Since primitive operators are drawn from decidable
first-order theories, e.g., arithmetic operators, or uninterpreted functions with user-provided axioms,
the satisfiability of Boolean formulae can be straightforwardly discharged to SMT queries.

Definition 4.1 (Denotation of Boolean Formulae). Let ¢ denote an interpretation of symbolic
variables as constants and o(®) denote the Boolean formula ® with its symbolic variables substituted
for constants according to . Then, the denotation of a closed Boolean formula ®, where all variables
are symbolic, is the set of interpretations ¢ such that ¢(®) holds, i.e., [®] = {o | o(®)}.

Now, we may introduce the symbolic execution of pure functional programs, in which case
each symbolic state (®, e) consists of a closed Boolean formula ® representing the current path
condition, and a closed expression e — all variables are bound by let, fun, or fix. The path condition
collects all the conditions that need to be satisfied for the symbolic state to be reachable, i.e., have a
corresponding concrete state. The initial path condition is true, denoted by T. Let e be the expression
to be reduced. Then the initial symbolic state is (T, €). The reduction rules between symbolic states
are described in Fig. 5 if we omit rules related to R. Rule AssuME describes the augmentation of the
current path condition with the argument of assume, which is also a Boolean formula ¢. In contrast
to path conditions, we use ¢ for Boolean formulae that may involve program variables bound in
expressions, which will be substituted for closed symbolic values via Rule LETVAL. Each assume
along an execution path further restricts the state space represented by the path condition. Suppose
a path condition @ is satisfiable, i.e., there exists ¢ € [®]. Then, a sequence of reductions from (T, e)
to (O,), where represents a failure in execution, witnesses a feasible execution path of
e that leads to a failure. In practice, is rarely written by developers and can be expressed

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:14 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

using assert, which is defined as syntactic sugar (Fig. 4). Whether a path condition ® passes an
assertion assert ¢ is effectively determined by the satisfiability of ® A —¢.

To reason about an ADT’s interaction with underlying representation types, we equip symbolic
execution with the capability to model such interactions extensionally, by recording the history
of calls to the representation type’s methods, along with their argument and return values. In
particular, interactions are captured in symbolic regular expressions (SRE) R whose literals denote
sets of such API calls to the representation types. Recall in Section 3, such literals are elements
from EBA (3, %, [_], L, ®,1I,M,). Here, 3 stands for the domain of events, denoted by ¢et «— f Cargs
and ¥ includes all the symbolic events ¢, each denoting set of events, according to the syntax shown
in Fig. 4. An atomic symbolic event (xre; < f Xarg | ¢) denotes the calls to f such that the arguments
Carg and the return value c; satisfy the qualifier ¢:

[eret — f:3Trg | d))H = {cret f@ | [xarg = Cargs Xret Cret] P}

The boolean connectives have standard denotation as shown in Section 3. Notice that the scope
of Xarg and Xt is limited to the qualifier ¢ of the symbolic event. We omit such variables local to
the symbolic event when they are either obvious from or irrelevant to the context. For example,
we always use key and val to denote keys and values of the calls to put and get from key-value
stores, with the result of put omitted. And similar to Section 2, we write (put k 4) for (put key val |
key = k Aval = %) and (put]?z)) for (put key val | key # k Aval =). An atomic symbolic event
is closed if all variables in its qualifier are either symbolic or local to the event; a symbolic event
¢ is closed if all its atomic symbolic events are, and; an SRE is closed if all its symbolic events are.
The denotation does not apply to all closed SREs but only those SREs without symbolic variables.
For SREs that reference symbolic variables, we can only interpret them after interpreting these
symbolic variables in a way consistent with the path condition if any.

By augmenting symbolic states with SRE R, to represent the events that have happened, we
define a reduction semantics over (®, Reyrr, €) as shown in Fig. 5. We refer to such an SRE Ry,
as the current context of the execution from the associated symbolic state. In addition, we refer to
SREs as contexts or effects of a method (ADT’s or representation type’s) depending on whether they
describe admissible traces prior to calling the method or traces the method is supposed to produce.
Similar to path conditions, the SREs that represent the current context of symbolic states are always
closed. Definition 4.2 gives the reachability of a symbolic state S based on the satisfiability of its
path condition ® and its current context Ryy;.

Definition 4.2 (Reachability). isSat (@, R.y,) iff there exists o € [®] such that [o(Reur)] # 0.

Henceforth, we omit the carat (") on symbolic variables ¥ and assume all variables are symbolic
except for those variables bound in expressions.

For a symbolic state (®, Reyr, €), its path condition ® effectively captures the history of pure
computation up to this state while its current context R, captures the history of effectful compu-
tation. Because the events in R are qualified with reference to the symbolic variables in ®, both
structures synergyistically enable the recording of a sufficient condition that allows a computation
to reach the symbolic state.

Example 4.3. The remove method from Fig. 1 can be rewritten in our core language, with the
conditional expression represented by a combination of assume and choice operation ®, as follows:
eremove = fun hd. fun elem. (assume hd = null; hd) ® (assume hd # null; ...)

Recall that the specification in Fig. 1 requires remove to be called in a symbolic state where node a
is linked to node b as its successor. Its precondition can be written as an SRE thus:

Ra~p = o - (Nxt.put a b) - («(Nxt.puta _))*

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:15

This context admits traces in which a call to Nxt.put is made on key a and value b, followed by
subsequent events that do not include calls to Nxt.put with key a. Hence, the context encapsulates
the intended requirement on symbolic states prior to calling remove.

The specification in Fig. 1 also requires that remove, when called under the specified context,
can link a new node other than a to b only when b has been unlinked from a. The postcondition
can be written as an SRE parameterized by a and b thus:

Raceb = ((~(Nxt.put ¢ b))* - (Nxt.put a §) - ") v (~(Nxt.put a p))*
The effect of remove admits traces where no node other than a is linked to b (via —~(Nxt.put ¢ b))
before a is unlinked from b (via (Nxt.put a §)), or a is never unlinked from b (via —~(Nxt.put a p)). If
an execution of remove produces traces not admissible to R .., then we conclude that some node,
as witnessed by b, may unexpectedly have two predecessors at some point during the execution. O

Similar to how path conditions are augmented by assume constructs, the current contexts of
executions are augmented by two constructs, admit Rp,st and append Rf. The former, admit,
combines the current context Ry, and its argument Rp,s¢ With conjunction, as described by Rule
Apwmrr; thus, it restricts the traces of past events in Rc, to only those admissible by Rpast. In
contrast, append concatenates the current context R, with the argument R, as described by
Rule APPEND; thus it records new events produced during symbolic execution. The initial context
before starting the symbolic execution is ¢, indicating that no event has happened yet.

Now, we illustrate that a pair of append and affirm constructs the translation of the specification
attached to an ADT method, capturing the safety property. Recall from Fig. 1 that the specification
includes three key components, ghost variables, required context (context), and expected effect
(effect). Intuitively, the specification states that when being executed in a required context (with
possible reference to both ghost variables and method parameters), the method with the specification
attached should produce events in compliance with the expected effect. The append helps set up
this required context while the affirm is responsible for affirming that the context upon exiting
the method complies with its argument Ros; by conjoining the context Ry, with =Rpost. The
satisfiability of Reurr A ~Rpost then witnesses a violation of R in the execution manifested by
Reurr- To falsify the implementation of the ADT method against its specification, we construct a
harness epqrness’ that wraps a call to the ADT method with such a pair of append and affirm.

Example 4.4. Continuing from Example 4.3, the specification of Charness =

remove is converted into a harness epgypess. First, symbolic variables let a,b = ?nodes ?node 1N

a and b are generated (by “?” with the same name as the program let hd, u = ?noge, Zelen 1N
variables) to denote two arbitrary nodes. Second, symbolic variables
hd and u are generated (again by “?”) to denote the input to remove.
Third, the required context R,., of remove is appended to the

initial context ¢. Lastly, after calling remove, the postcondition of affirm Ro—~p - Racsp
the harness is affirmed to check for any violation during the execution of the harness. Notably, the

postcondition prepends the required context R, to the expected effect R,p. O

append R, .p;
remove hd u;

In contrast, pair(s) of admit and append construct the translation of the specifications attached to
APIs of representation types, providing an extensional and underapproximate model for their be-
havior. And the admit relates the context require by the API with the current context by conjoining
them while the following append records the expected traces of events produced by the API.

Example 4.5. Taking the same form as the required context R, ., of remove from Example 4.3,
the required context of Nxt.get is R, admitting traces where node s (the argument) is linked to

2See supplementary material for details on the translation of source language expressions to core language ones.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:16 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

node t (the return value). And the expected effect of the Nxt.get is a symbolic event (¢ < Nxt.get s).
And thus, calls to Nxt.get can be replaced by a function enytget defined as follows:

enxtget = funs.let t = ?yo4e in admit Rs;; append (¢ « Nxt.get s); ¢

Similarly, let R,,.,, = " - (Val.put n u) - (~(Val.put n _))* denote the required context of Val.get,
where node n (the argument) stores an element u (the return value). Correspondingly, calls to
Val.get are replaced by a function ey, get defined as follows:

evalget = fun n.let u = ?1en in admit R,,; append (u < Val.get n); u

Here, the calls to get always succeed because our goal is to falsify the implementation of remove
with respect to the specified safety property. O

By replacing API calls in the direct translation of the ADT method, e.g., eremove from Example 4.3,
with symbolic expressions that augment the context of execution using admit and append, we now
have an implementation e,¢pmoye 0f the ADT method remove that is ready to be plugged in epg,pess
for symbolic execution.

Example 4.6. By substituting the call to remove for eremove (Example 4.3) with Val.get and Nxt.get
respectively substituted for ey, get and enxt.get (Example 4.5), the harness epgrness (Example 4.4) is
closed and ready for symbolic execution. Initially, the symbolic state is (T, &, epgrness)- The required
context R, .p of remove is first appended to ¢. Following the second branch, ny # null augments
the path condition. As Val.get is called on ng, ng substitutes n in the body of eva gt and a fresh
symbolic variable u, is generated to represent the element stored in ny. The symbolic state becomes

(no # null, R, p, let v’ = admit Ry, .,; append (ug«Val.get ng); up in ...)

As uy is returned to the top level and substitutes u’, the current context becomes R, —~.p A Rpguy -
(up«—Val.get ng) (A binds SREs tighter than -). Following the nested second branch, the path
condition becomes ny # null A uy # u. As we enter the loop and follow the execution path
illustrated in Section 2.2, we (1) get the successor of ng, ny, (2) get the element stored in ny, u;,
(3) assume uy = u, (4) get the successor of ny, n,, and (5) remove n; by linking ng to n,. The symbolic
state becomes (®pad, Rpad, affirm R, ~p - Rawp), where

ng#null Aug #uAny #null Auy =u and
((((Rap ARy - (Uo—Val.get ng)) ARy —n, - (n1¢—Nxt.get ng))
ARy - (Ure=Val.get n1)) ARy, ~n, - (n2e—Nxt.get ny)) - (Nxt.put ng nz)

Dpad
Rbad

Rbad denotes the traces that can be produced following the execution path. To show that the
affirmation may fail, it is sufficient to find an interpretation for the symbolic variables such that
the path condition ®},,4 holds and there exists a trace included in Rp,q but excluded from the
postcondition of the harness, i.e., isSat (®pad, Rbad A 7 (Rab - Raid))-)

As illustrated in Example 4.6, the size of the SRE that represents the current context of the execution
quickly blows up during symbolic execution. This in turn makes the symbolic affirmation check at
the end of each execution path potentially very expensive as we quantify in Section 7.

To conclude this section, we lift the affirm check at the end of the harness progress and regard it
as a falsification query on the harness program without the affirm statement. Then Definition 4.7
describes a falsification problem in terms of this trace-based symbolic execution framework.

Definition 4.7 (Naive Falsification). Given a safety property Rpost. If (T, ,€) —* (P, Reurr, v) and
isSat (@, Reurr A =Rpost) then this execution of e is falsified with respect to Rpost.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:17

5 Symbolic Execution with Symbolic Derivatives

The inefficiency of the naive semantics stems from its failure to recognize regularity — the capacity
of specifications to be represented as automata structures — during symbolic execution. We can
exploit this regularity by underapproximating the required context or the expected effect of method
calls. This approximation facilitates a derivative computation, effectively emulating state transitions
in the SFAs associated with SREs. Specifically, the underapproximation takes the form of symbolic
traces I1, where only a subset of operations from the SRE (with the same denotation) are allowed:
empty trace (¢), symbolic event (£), and concatenation (II; - IT). Then, a derivative-based notion
of symbolic state Sy that underapproximates a symbolic state S, besides the expression e under
execution, is given by (i) ® and II to encapsulate the execution path that leads to Sp; along with
(if) Reont that predicts the traces allowed to be produced in the continuation of the execution in
compliance with the safety property, dubbed continuation effect.

Symbolic Trace IT == ¢| ¢ |II-1I Derivative-Based Symbolic State Spp ::= (@, II, Reont, €)
In this section, we present (1) symbolic derivatives that allow us to effectively explore and thus exploit
the automata structures of specifications, without appealing to their calculation (see Section 6), and
(2) a derivative-based semantics that leverages this notion to facilitate symbolic execution over Sy
as well as the falsification of a given safety property that is both sound and complete with respect
to the naive semantics given in the previous section.

5.1 Symbolic Derivatives

SREs that represent the context of the current execution or the arguments to admit and append may
refer to symbolic variables that are also constrained by path conditions, as discussed in Section 4.
In what follows, we first revisit notions on SREs from Section 3 with such symbolic variables
left uninterpreted, i.e., treating symbolic variables as abstract symbols whose interpretation is
unknown. We then define symbolic derivatives of such SREs, which may also refer to symbolic
variables involved in those SREs.

First, the inclusion and equivalence relationship between two SREs R; and R, is given by
Definition 5.1 and Definition 5.2 such that the relationship holds under any interpretation of
symbolic variables involved in R; and R,.

Definition 5.1 (Inclusion). R; = Ry iff [o(R1)] € [o(R2)] for all o.

Definition 5.2 (Equivalence). R; = R, iff [c(R)] = [c(R>)] for all 0.

Second, the nullable operation v defined over SREs in Section 3, when applied to any symbolic
event £, returns false irrespective of ¢ ’s qualifiers and any symbolic variables involved. Hence, the

nullable operation v(R) determines if R accepts the empty trace € regardless of the interpretation
of its symbolic variables (Lemma 5.3).

Lemma 5.3. v(R) iff v(c(R)) for all ¢.3

Third, we need to revisit the notion of prefixes of SREs. Recall in Section 3, for an SRE R that
does not involve symbolic variables, any concrete trace & can be a prefix of R since the derivative
d,R, which contains all concrete traces that are accepted by R when appended to 7, is always
well-defined. To account for symbolic variables involved in R, we consider symbolic traces IT, which
may also involve these symbolic variables, as a consolidated form of prefixes of R. Definition 5.4
gives the criteria that a valid prefix IT of R has to meet.

Definition 5.4. II is a prefix of R iff there exists R’ s.t. d,0(R)=c(R’) for all n€[o(II)] for all o.

3All proofs are deferred to the full version of this paper [Yuan et al. 2024b].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:18 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

Intuitively, IT qualifies as a prefix of R if it represents a collection of partial runs of an SFA associated
with R. These partial runs must begin with the SFA’s start state and end at any arbitrary state.
Notably, the ending state does not need to be accepting and may even be a dead state, from which
no accepting state is accessible. For example, recall the postcondition automaton from Fig. 2:
(Nxt.put a B) and (Nxt.put ¢ b) are both valid prefixes but their disjunction is not because some
runs end at g; while the others end at the dead state denoted by @. We dub such singleton prefixes
as next events.
Following the definition of prefixes, we introduce symbolic derivatives in Definition 5.5.

Definition 5.5 (Symbolic Derivative). DR = R’ iff d,0(R) = o(R’) for all = € [o(I)] for all 6.

In contrast to conventional derivatives discussed in Section 3, symbolic derivatives of R are well
defined only over its prefixes (Definition 5.4) but not arbitrary symbolic traces. And the property of
prefixes ensures that symbolic derivatives can still be succinctly expressed as SREs with references
to symbolic variables if any. Notably, R, its prefix II, and its symbolic derivative R’ over II shall
interpret any referenced symbolic variables in a consistent way; Definition 5.5 serves as a guard
against inconsistent interpretations.

Since each valid prefix IT of R establishes an equivalence class where all 7 denoted by II produce
the same derivative, a symbolic derivative DR is not only a quotient but also a residual of R
with respect to II. As noted by [Pratt 1991], the quotient of R contains traces that are accepted
by R when appended to some 7 denoted by prefix II, while the residual of R contains traces that
are accepted by R when appended to any 7 denoted by prefix II. This residuality is manisfest by
Corollary 5.6, i.e., the concatenation of prefix IT and DR is included in R itself.

Corollary 5.6 (Residuality). Let R” = DpR. ThenII - R’ = R.

Example 5.7. Consider the expected effect R,..,, of remove from Example 4.3, admitting traces
where either no node other than a may be linked to b before b is unlinked from a, or a is linked
to b during the course of execution. Its next events include (Nxt.put a §), (Nxt.put 4 b), and
(Nxt.put a b) LI (Nxt.put yf}f} L~ (Nxt.put). Their symbolic derivatives are defined as follows, with
their respective residuality manifested: (1) D (Nxtput @ ;;)Ra,,,b =e* because any event is allowed
once b is unlinked from q; (2) D (nxt.put ¢ b>‘RaHh =@ because it is unsafe to link node other than
a to b with a linked to b, and; (3) D<NxtPut @ bYU(Nstput ¢ ﬁ)m(Nxt.put)Ra“b =R b because linking
a to b again, linking nodes other than a and b, or get calls have no effect on subsequent traces
admissible by Ry.p. o

Recall that the nullablility of derivative d,R determines if a concrete trace r is accepted by R.
Given a prefix IT of an SRE R, the nullability of symbolic derivative DR determines, as established
by Corollary 5.8, whether the symbolic trace II is included in R, i.e., all runs of IT in R end at an
accepting state irrespective of the interpretation of symbolic variables.

Corollary 5.8. Let R = DpR. Then (1) IT = R iff v(R’) and (2) II & =R iff =v(R’).

Therefore, by enumerating prefixes of R, we may sample symbolic traces included in R.
Example 5.9. Consider the required context R, of remove from Example 4.3, admitting traces
where a is linked to b and stays pointing to b. The prefixes of R, include (Nxt.put a b) -

(~(Nxt.put a))" and (Nxt.put a b) - (Nxt.put a p) - (Nxt.put a b) - (~(Nxt.put a p))" for any
number n of repetitions, which all lead to the same symbolic derivative:

(~(Nxt.put a §))* v ((Nxt.put a B) - Ra—p)
admitting traces where either no subsequent event invalidates the link between a and b, or a is
linked to b again after being unlinked. The symbolic derivative is nullable because its first disjunct
is a Kleene Star. Therefore, all these prefixes are included in R, ;. m]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:19

Hpast = Rpast H/ =1 A Hpast
((I), IT, Reont, admit Rpast) —op (&, IT', Reont, 0)
Hefr = Resr Mnew = Tefr A I_Iprefix

DAbpMIT

DAPPEND
((I), I, Rcont; append Reff) —9D (CI)’ IT- I_Inew’ DHp,efix'Rcont’ ())

Fig. 6. Selected rules of derivatve-based semantics.

5.2 Derivative-Based Semantics

Now, we facilitate symbolic execution with symbolic derivatives. As admit R, and append R are
the only two constructs that augment contexts in symbolic states, we only present their reduction
rules in Fig. 6, exhibiting the complete set of rules in the supplementary material. In contrast to the
naive semantics, a derivative-based semantics begins symbolic execution with the postcondition,
denoted by Rost- Recall from Section 4, R,ost is the concatenation of the required context and
the expected effect attached to the ADT method to be falsified. Effectively, R,ost predicts that the
context will be set up before calling the method, and the execution of the method complies with its
specified effect. During symbolic execution, we maintain the continuation effect Reont such that it
precisely predicts the safe traces to be produced as execution continues.

Example 5.10. Consider the harness program epgypness from Example 4.4. Regarding the trailing
affirm as a postcondition to be affirmed upon finishing each execution path, we assume some
symbolic variables a and b and discharge affirm from epgpness as part of the symbolic state. In a
derivative-based semantics, the initial symbolic state is

(T,6,Ra~p - Raub, Let hd, u = 2 0de, Telem 1N append R, —p; remove hd u)

where hd and u will then immediately be replaced by symbolic variables with the same name for
demonstration’s purposes. O

Rule DADMIT describes the semantics of admit Rp,s. Given a symbolic trace II, a sequence of
symbolic events, as an underapproximation of what has happened so far following the current
execution, admit R.s; imposes constraint on II, also in an underapproximated fashion. The un-
derapproximation of Rp,st can be found by sampling symbolic traces IIp.st = Rpast via symbolic
derivatives. Then the execution is forked on each ITs; and its conjunction IT" with II. Intuitively,
the conjunction IT’ is the pairwise conjunction of events in IT and IIp.: (see Section 6 for details).
A straightforward pruning strategy then is to discard II,.s; with (1) a different number of events
than IT or (2) an event associated with a different effectful function than the corresponding event
in IL. In both cases, the conjunction I1’ trivially denotes an empty set. We describe such I, as
incompatible with I1. Note that we deliberately exclude from the compatibility check the consistency
check between qualifiers of paired symbolic events to avoid generating an excessive number of
SMT queries.

Example 5.11. Consider the naive symbolic state prior to calling Val.get on ny from Example 4.6,
(ng #null, R, p, let ' = admit Ry,.,; append (up«—Val.get ng); up in ...). A derivative-based
symbolic state that underapproximates this naive state is (ng # null,II,.p, Rgups - - .), Where
II,.p = (Nxt.put a b) - (~(Nxt.put a B))? = R, p as shown in Example 5.9, and R, is the
continuation effect prior to the call as we will discuss shortly in Example 5.12. The admit R,;,.y,
operation enforces the required context of the call to Val.get. A symbolic trace that underap-
proximates Ry, ., and is compatible with the current context I1,.p is I1,, .0, = —~(Val.put ng up) -

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:20 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

(Val.put ng ug) - (~(Val.put ng ug))?. Augmented by I1,,.,,, the context in the symbolic state then
becomes (Nxt.put a b) - (Val.put ng ug) - (~(Val.put ny ug) M~ (Nxt.put a By)2. O

Rule DAPPEND describes the semantics of append R, where new events are to be appended to
the current symbolic trace II. First, we underapproximate events to be produced by append R,
again by sampling symbolic traces Ileff = Refr. Second, we enumerate prefixes Iprefix of Reont
that are compatible with IT.¢, along with the symbolic derivative anrefichont' The execution can
be forked for each pair of Il and I, efix. Recall that Reon: imposes constraints on the events
produced during symbolic execution, including those produced by append. As long as the behavior
of append, in this case, the underapproximation Il.¢, complies with the constraints imposed by
Mprefixs DHpreﬁchont represents the constraint on events to be produced after append and thus can
safely replace Rcont in the next symbolic state. To enforce this compliance, we take the conjunction
of s and Il efix and append the result Iye,, to the current symbolic path IT. Effectively, we relate
an underapproximated behavior of append with the postcondition of the method to be falsified,
from which Rcont is derived, and track this relation in the symbolic state.

Example 5.12. Consider the initial symbolic state from Example 5.10. The append construct re-
quires the traces of past events to be admissible to its argument R, before calling remove. Then
remove can be called in a context represented by any symbolic trace II, ., = R,~p. Further-
more, each such I1,; is also a prefix of the postcondition R, .p - Raup- The symbolic derivative
D, ., (Ra~b - Rasb) = Rap becomes the continuation effect after evaluating the append opera-
tion. The symbolic state prior to calling remove is (T, & R g, €remove Mo U)-]

Example 5.13. Continuing from Example 5.11, the symbolic state after reducing the admit is
(no # null, g —p ALy, Racsp, append (ug«Val.get ny)). The append construct records the call to
Val.get and appends a singleton event (uo<—Val.get ng) to the context. Correspondingly, the continu-
ation effect R,.~p is updated by its symbolic derivative over the Val.get event, Dy, val.get no) Rarsbs
which is R, itself as shown in Example 5.7.]

Now we leverage derivative-based semantics to falsify program e with respect to the postcondition
Rpost on the symbolic trace produced by e and show that the falsification is sound. Consider an
execution that is recorded by a reduction from the initial symbolic state to some final symbolic state,
(T, & Rposts €) =7, (P, IL, Reont, v). This execution is falsified by Rp,ost if the final state is reachable,
i.e., isSat (®,II), and its continuation effect is not nullable, i.e., =v(Rcont). The soundness of the
falsification relies on two key properties of a derivative-based semantics: (I) the continuation effect
is properly updated to denote future traces that are safe to produce as the execution continues, as
established by Lemma 5.14.

Lemma 5.14. If Reoni=DnRpost and (@, II, Reont, €)= o (@, I, R, €’) then R =D Rpost-

cont? cont

That is, Rcont in the final symbolic state, given that II records past events, correctly predicts future
events to be produced in compliance with the postcondition Rpest, i.€., Reont = DriRpost- Then
—v(Reont) suggests that without new events being produced, II fails to comply with R, i.e.,
IT © =Rpost by Corollary 5.8. Because the execution stops at value v and no more events are to
be produced, the execution is indeed falsified by Rpost. (2 Execution, including a falsified one,
underapproximate those of the non-derivative based naive semantics, as established by Lemma 5.15.

Lemma 5.15. IfII © Ry and (O, I1, Reont, €) — o (97,11, R!, - €') then there exists R(,,, such
that IT" = R/, and (D, Reurr, €) = (D', Ry €')-

curr

That is, there exists an execution paths (T, ¢, e) <" (®, Reurr, v) in the naive semantics such that
IT = Reurr- As all traces denoted by II fail to comply with Rpest, there exist some trace in Reyrr

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:21

that fails to comply with Rpst. We conclude with Theorem 5.16, establishing that given a falsified
execution in derivative-based semantics, there exists a corresponding execution in naive semantics
that overapproximates this execution and thus can also be falsified.

Theorem 5.16 (Soundness of <—>§)). Assume isSat (®,II). If (T, & Rpost, €) HZ) (O, IL, Reont» 0)
and —v(Rcont) then e is falsified against Rpost.

PROOF SKETCH.

(1) First, the single-step reduction in Lemma 5.14 can be extended to multi-step. Since Rpost =
DERPOSts we have Reont = DHRpost-

(2) Then, by Corollary 5.8 on =v(Rcont), we have IT & —Rpos.

(3) Additionally, the single-step reduction in Lemma 5.15 can also be extended to multi-step.
Since ¢ C ¢, there exists Ry, such that II £ Ry, and (T, ¢, e) —* (O, Reyrr, 0).

(4) Now that IT £ Reyrr A =Rpost and isSat (@, IT), we have isSat (D, Reurr A ~Rpost)-

(5) Lastly, by Definition 4.7, e is falsified against Rpost. O

Example 5.17. Consider the execution path from Example 4.6. Through calls to Nxt.get and Val.get,
the execution iterates over two nodes, ny and ny, of the given linked list before finding a node storing
element u, i.e., n;. Then n; is removed by linking ng to its successor i.e., n,. Following Examples 5.11
and 5.13, the execution before the removal can be manifested in a derivative-based symbolic state:
(®pads Mprestates Rawb, Nxt.put ng nz; ny), where the path condition is ®p,,4 from Example 4.6 and

Mprestate = (Nxt.put key val | key=a=n,Aval=b=n3)-(Val.put ng up)-(Nxt.put no ny)-(Val.put n; uy)
(up«—Val.get ng)-(n; «—Nxt.get ng)-(u; «Val.get ny)-(uz —Nxt.get ny)

To relate the event (Nxt.put ng ny) with Rop, we consider R,.p’s next event (Nxt.put ¢ b), lead-
ing to a symbolic derivative of @ as shown in Example 5.7. Hence, the conjunction between
(Nxt.put ng ny) and (Nxt.put 4 b) witnesses this relation and is appended to the context ITprestate-
The symbolic state becomes: (®Ppaq, [Ipad, @, no), where

Mpad = Mprestate - (Nxt.put keyoal | key = ng # a Aval = ny = b)

a = n; and b = ny witnesses the reachability of the final symbolic state. In combination with
-v(@), the execution is falsified. In fact, this execution underapproximates the execution shown in
Example 4.6, i.e., IIag E Rpad, Which could have been falsified but proves too costly using naive
semantics. O

Furthermore, this refined semantics guarantees completeness with respect to falsification. Con-
sider an execution in the naive semantics that is manifested by a reduction from the initial symbolic
state to some final symbolic state, (T, ¢,e) —* (@, Reyrr, v). According to Definition 4.7, the execu-
tion is falsified with respect to the postcondition R,cst as long as isSat (<I>, Reurr A ﬂRpost) holds.
Looking backward from the final state, it is sufficient to falsify the execution if there exists some
underapproximation of the execution, encapsulated by a symbolic trace Icy,r E Reyrr, and some
prefix Iyrefix © ~Rpost such that Iy A Hprefix represents a viable execution. Effectively, all com-
patible pairs of symbolic paths Iy E Reurr and prefixes I refix of Rpost are exhaustively explored
by executions in a derivative-based semantics. Lemma 5.18 establishes this exhaustiveness on each
reduction step.

Lemma 5.18. Given a safety property Rpost. If (®, Reurr,) — (', R, ') then for all IT},, . =
R prefix H"Jreﬁx of Rpost, and I = II/,,, A 1'[;) , there exists Ilcurr E Reurr, prefix Mprefix of

Rpost> and IT = ey A prefix such that (@, 11, Dy Rpost> €”).

refix

’ ’
PrefixRPOSt’ e) =D (CI) > II ’ DH;refix

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:22 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

As a result, Theorem 5.19 establishes that given a falsified execution manifested using the naive
semantics, there exists an underapproximating execution in a derivative-based semantics that can

also be falsified.

Theorem 5.19 (Completeness of <—7,). If (T, & e)—" (P, Reurr, v) and isSat (<I>, Rcur,/\—“Rpost)then
there exists [IERcyr and =v(Rcont) such that (T, & Rpost, €) =4, (P, I, Reont, v) and isSat (&, I1).

PROOF SKETCH.

(1) First, by Definition 4.7, there exists ® and R, such that isSat (@, Reurr A —|7€post) and
(T’ g’ e) ‘_)* (Q’ RCUI’FS 0)'

(2) Then, let Icyrr = Reurr and Mprefix = —Rpost such that isSat (@, Meyrr A Mprefix).-

(3) Furthermore, the single-step reduction in Lemma 5.18 can be extended to multi-step. As a
result, (T, ¢, Rpost, e) <_)*Z) (D, eurr A I_Ipreﬁx, anreﬁxRPOSt9 0).

(4) Lastly, we have =v(Dry . Rpost) from Iyrefix & —Rpost- m]

prefix

The completeness argument requires the symbolic execution to exhaustively relate the events
produced during execution and the safe events required by the postcondition. In the hope of
finding a falsified execution at the earliest, symbolic derivative enables strategic exploration of this
relationship during the symbolic execution. Consider an unfinished execution (T, &, Rpost, €0) C—>’b
(@, 11, Reonts €)- Recall that the continuation effect Reont predicts future traces that are safe to
produce if we finish the execution from the current symbolic state (®,II, Reont, €). Hence, the
concatenation of the current symbolic trace IT and the continuation effect Reont gives an optimistic
overapproximation of the safe behavior of the execution when finished. Then —isSat (®,II - Reont)
essentially states that all behavior is unsafe following this execution. Therefore, without finishing
the execution, we may determine it is falsified. In theory, we also require that the execution can be
finished in a satisfiable state, as stated in Theorem 5.20.

Theorem 5.20 (Soundness of @). Assume (&, IL, Reont, €) —75, (@, 1", R, v) and isSat (¢, I1").

cont?
If (T, & Rposts €0) gy (P, IL Reont, €) and —isSat (P, 11 - Reont) then e is falsified against Rpost-
PROOF SKETCH.
(1) First, by transitivity of <—>}), (T, & Rpost €0) <—>z) (O, I, R ., 0).

cont?

(2) Then, by Theorem 5.16, it is sufficient to prove —v(R/).

(3) By multi-step variant of Lemma 5.14 on Reont = Dir (IT - Reont), Rlgne = D (IT - Reont)-

(4) —isSat (D, I1 - Reont) suggests that IT - Reont is equivalent to @ under the path condition ® or
its refined path condition ®’. So does its derivative R/ ... We have =v(R/). O

However, in practice, as long as the current symbolic state is satisfiable, i.e., isSat (®, IT), it is safe
to assume that the execution can be finished in a satisfiable symbolic state, which in turn witnesses
the falsification. Another practical concern is that checking —isSat (®,II - Ront) can be expensive
as discussed in Section 4. Instead, we check whether R ont is syntactically equal to @, which implies
—isSat (&, I - Reont)- If not, we continue the execution without compromising soundness. With a
standard set of rewriting rules, e.g., @ V R = @, the syntactic approach is effective in falsifying
unfinished execution for programs considered in Section 7. In fact, Example 5.17 is such a case -
had remove not stopped at the first node found to store the given element, we can still conclude
that the execution is falsified without needing to finish iterating over the remaining linked list.
Intuitively, we exploit the existence of a dead state in the automaton associated with the post-
condition Rpest. As events produced during symbolic execution are related to transitions in the
automaton, it is sufficient to falsify a execution if the events produced can be related to transi-
tions in the automaton that leads to a dead state. This is similar to the recognition of a string

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:23

in a deterministic automaton, where it is sufficient to determine the string cannot be accepted if
a character causes the automata to enter a dead state. However, each event produced may still
nondeterministically be related to transtions from the current state in the postcondition automaton.

We would like to further exploit the structure of the postcondition automaton by actively
looking for a dead state. Again we consider the symbolic state of an unfinished execution, its
continuation symbolic derivative Reont is a symbolic derivative of the postcondition R,0st and thus
Rcont Tepresents a state in the automaton associated with Rost. The minimal distance of the state
denoted by R ont to a dead state gives us a lower bound on the number of events that the current
execution needs to produce in order to be falsified. It is also the minimal length of Ront’s prefixes
such that the derivative over them denotes a dead state, i.e., DistToDead(Rcont), where

DistToDead(R) = min |
DnR=2

When new events Il are produced during the execution as in Rule DAPPEND, among all Reont’s
prefixes IT, efix that are compatible with I, we prioritize relating ITes with prefixes that brings us
closer to a dead state, according to DistToDead(Dyy__. Rcont). In practice, we set a cut-off constant
to limit the depth of such exploitation.

prefix

Example 5.21. Consider a different execution from what is shown in Example 5.17. (Nxt.put a §)
is also a next event of R,.; but leads to a symbolic derivative of *. Correspondingly, the event
(Nxt.putkeyval | key = ng = a Awval = ny # b) is appended to the symbolic trace. While the
symbolic state happens to becomes unreachable (n, # b contradicts n, = b from I estate) and thus
can be pruned, it does not have to be the case and nondeterministic time may be spent on this
infeasible execution before it is pruned. O

6 Algorithm

In this section, we substitute the declarative components of derivative-based semantics with their
algorithmic equivalents, thus demonstrating the derivative-based semantics is a sound and relatively
complete procedure for falsification.

First, we show that the reachability check (Definition 4.2) of derivative-based symbolic states,
i.e., isSat (®,II), can be straightforwardly discharged to SMT queries like conventional symbolic
execution techniques. Intuitively, since a symbolic path II is a sequence of symbolic events, we
would like to collect constraints from each symbolic event. The constraint of an atomic symbolic
event can be built as:

constr((xret ¢ fxarg | ¢)) = [xarg = xz;rg,xret = Xret]¢p for fresh xz:rg and Xyet
To facilitate constraint collection, we give a stratified representation of symbolic events ¢ as a
disjunction of atomic symbolic events associated with disjoint effectful functions:

0= || (tret — TXag [D)l ... such that [¢] = U<xre[<_fm|¢>€[[[(xret — fXarg |)]

Since the effectful functions f associated with the disjuncts in ¢ are different, the constraint of a
symbolic event £ is simply the disjunction of constraints from ¢ ’s atomic symbolic events, and the
constraint of a symbolic path II is the conjunction of constraints from IT’s symbolic events:
constr(e)=T constr(£)="\/ 4y constr({f | #)) constr(I1;-I1;)=constr(II;) Aconstr(II,)
It immediately follows that, as established by Corollary 6.1, the reachability of a symbolic state
can be determined by the satisfiabiliy of the conjunction between its path condition ® and the
constraints from its current symbolic path II.

Corollary 6.1. isSat (®,11) iff o € [® A constr(ID)].

In response to the stratified representation of symbolic events, we discharge their boolean
connectives using Definition 6.2, which was part of the syntax in Section 4.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:24 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

Definition 6.2 (Events Algebra). The boolean operations on symbolic events can be defined as:
=i Ei 1 @) =(lli <Fi | =) | (lgen sz (2)
(i <Fi L)) Tl <85 1 Vi) = llsi=g; Fi | i AY)
(i <fi T) Ll €gy 1950 =lli=g, i | ¢V Y0 Il Uleiegy £ | @) 1l (Ul o7 <85 1 ¥50)

Again, all atomic symbolic events in ¢ are associated with different effectful functions and thus are
disjoint. The negation of ¢ includes atomic symbolic events from ¢ with their qualifiers negated and
atomic symbolic events out of £ with T qualifier. The conjunction of ¢ and #, includes atomic sym-
bolic events included by both ¢ and ¢, with the qualifier being their conjunctions. The disjunction
of #; and ¢, includes atomic symbolic events included by both ¢ and ¢, with the qualifier being their
disjunctions, as well as atomic symbolic events included only in ¢ or #. Definition 6.2 preserves
the disjointness requirement in the result and is consistent with the denotation [¢] above.

Before providing algorithms for computing prefixes and symbolic derivatives, we first demon-
strate a procedure for finding next events of a given SRE R by rediscovering the notion of “next
literals” presented in [Keil and Thiemann 2014]. For @ and ¢, their next event can only be bottom.
For ¢, its next event is simply ¢ itself. For R, its next events are the same as those of R. For =R,
its next events include those of R and the complement of their disjunction. For R; A Ry, its next
events includes the conjunction of events included in both R; and R,. For R; V R,, its next events
includes not only the conjunction of events included in both R; and R;, but also the conjunction of
each event from R; and the negation of the disjunction of R,’s next events, and vice versa, defined
as a join operation x between two sets of events. As a result, the disjunction of R; V R;’s next
events is equivalent to the disjunction of R;’s and R,’s. For R; - Ry, its next events are determined
by the join of those of R; and those of R, if R; is nullable. Otherwise, its next events includes only
those of R,.

Definition 6.3 (Admissible Next Events). The set £ of events admissible to R can be computed as:
next(@) = next(e) = {1} next(?) = {¢} next(R*) = next(R)
next(R;) = next(Rz) v(Ry)

t(=R) = next(R) U {next(R)C
next(R;) otherwise next(~R) = next(R) {nex() }

next(Rl . Rz) = {

next(R; A Rz) = next(R;) M next(R,) next(R; V Rs) = next(R;) = next(Ry)

where the dual of an event set € is 80 = |l;cg £ and the join of two event sets £; and £; is
0= {nneanel el |6 e, e e,

Definition 6.3 provides such a next operation such that each symbolic event ¢ € next(R) is
a singleton prefix of R (Definition 5.4). Due to the negation rule, the disjunction of next(R)
overapproximates the set of events admissible to R. Then the negation of this disjunction, i.e.,
next(ﬂ)c is also a next event of R, the derivative over which is @. next(R) U {next(R)C} gives
us a set of symbolic events that covers the entire space of possible events and are all amenable to
symbolic derivative computation of R. Now, the symbolic derivative of R over its next events can
be computed inductively in a similar fashion to Section 3 by the following lemma:

Lemma 6.4. Given R and its prefix II, the symbolic derivative DR can be computed via:

DR =R DHI.HZ'R = D]‘[2 DHIR D@ =Dpe=2 D, (R*) =D,R - R*
't D,R:-Ry) VDR R
Dyt = € / Dy (R - Ry) = (DeRy 2) Re v(Ry) .
@ t'C -t D,R; - R, otherwise
D, ("ﬂ) =-D,R D, (Rl A Rz) =D,R; A DR, D, (ﬂl \Y Rz) =D,R; vV D,R,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:25

The main difference is, when computing the symbolic derivative of a symbolic event £ over another
', we need to perform an inclusion check between them. If all events denoted by ¢’ are included
by ¢, then the symbolic derivative is ¢. If all events denoted by ¢’ are not included by ¢, then the
symbolic derivative is @. Since ¢’ is guaranteed to be a singleton prefix of ¢, it is impossible that
some events denoted by ¢’ are included by ¢ while some are excluded. Thus, checking whether
¢’ = ¢ is sufficient. The inclusion check essentially involves checking the validity of constr(—~¢’ LI £),
which is well-suited for SMT solving.

Using the next operation and the computation of symbolic derivatives over symbolic events,
we may enumerate prefixes of arbitrary length from an SRE R along with their corresponding
symbolic derivatives by following the rules in Fig. 7. Rule Prx-¢ states that ¢ is a prefix of R and the
corresponding symbolic derivative is R itself. Rule Prx-¢ states that all next events of R is a prefix of
R. Rule Prx-- states that given any prefix IT; of R along with the corresponding symbolic derivative
R1, and any prefix IT, of R; along with the corresponding symbolic derivative R, the concatenation
of IT; and II, is still a prefix of R with R, being the corresponding symbolic derivative. Intuitively,

£ € next(R) U {next(R)C} (II;, Ry) » R (I, R2) » Ry
——F Prx-¢ Prx-¢ Prx--
(&, R) >R (£,DyR) >R (1 - Ty, Re) » R

Fig. 7. Enumerate prefixes of a given R and compute their symbolic derivatives.

these rules allow us to construct a deterministic SFA that accepts the same set of traces as R and
all paths in the SFA are enumerated, including those that lead to dead states. As established by
Lemma 6.5, each enumerated prefix is indeed a prefix of R.

Lemma 6.5 (Soundness of Prefix Enumeration). If (I, R’) » R then R’ = Dy R.

A completeness result then states that all paths in the SFA can be enumerated. As an SRE R may have
different SFA representations, a prefix IT of R may not correspond to a path in the SFA constructed
by our prefix enumeration. However, it is guaranteed that, as established by Lemma 6.6, a set of
prefixes, i.e., a set of paths in the SFA, can be found by enumeration such that their disjunction
includes all traces denoted by such a prefix II.

Lemma 6.6 (Completeness of Prefix Enumeration). If R” = DR then there exists H_l-i such that
(I1;,R")» R forall i and IT = \/; I1;.

Sampling symbolic traces II from a given SRE R is a special case of enumerating prefixes
whose symbolic derivative is nullable, as shown in Corollary 5.8. Intuitively, the sampled symbolic
traces correspond to the paths that lead to an accepting state in the SFA. For the purpose of
sampling symbolic traces, we may ignore paths that lead to a dead state without compromising
the completeness of sampling. That is, when applying Rule PFX-¢ for trace sampling, we ignore
next(R)C, whose corresponding symbolic derivative is always @.

Lastly, we show how to relate symbolic traces of the same length by computing their con-
junction. The following rules effectively perform pairwise conjunction between symbolic events
(Definition 6.2) from two symbolic traces IT; and IT,:

ENeE=e€ AL =616 (I - i) A (TTgg - Tlpz) = (Tig A Tlpp) - (T2 A Tlpz)
where |II1;| = |IIz1| and |II;5| = |I2;|. A symbolic trace equivalent to the conjunction of IT; and I,
is returned following the rules.

To conclude this section, the prefix enumeration algorithm gives us a sound and relatively
complete equivalent for the premises of Rules DApmIT and DAPPEND. By enumerating prefixes in
increasing length, minimal traces of events are produced and appended along symbolic execution.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:26 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

Table 1. Falsification of a variety of safety property violations in ADT implementations.

ADT Repr. Type Safety Property ‘ Violation to the Safety Property ‘ T—lo."l::\els(isf?y I::;Zdu‘?e:iv;;
. . . . Overwrite an existing node when pushing. 0.51 x4.9 x3.2
Stack LinkedList - Elements are stored at unique locations. Make the linked list circular during concatenation. 0.25 Oo/M x13.2
. . Push the new element in the middle of the stack. 111 T/O x4.6
KVStore Elements are linked linearly. Concatenate elements to the middle of a stack. ‘ 0.94 ‘ Oo/M x6.5
Queue LinkedList Elements are stored at unique locations. ‘ Overwrite an existing node when enqueueing. ‘ 0.73 ‘ x2.5 x2.7
Graph Degrees of vertices are at most one. ‘ Overwrite an existing vertex when enqueueing. ‘ 175 ‘ T/O x7.4
Set KVStore Each key is associated with a distinct value. ‘ Put a duplicated element. ‘ 0.87 ‘ T/O x1.4
Tree The underlying tree is a binary search tree. ‘ Insert a smaller element to the right subtree. ‘ 1.10 ‘ x40.7 x11.1
Heap LinkedList Elements are stored at unique locations, sorted. ‘ Insert after a node with a larger value. ‘ 0.11 ‘ x12.9 x13.2
Tree Parents are smaller than their children. ‘ Insert a smaller element to the right subtree. ‘ 1.00 ‘ x2.4 x2.5
Set The cached element has been inserted and is | Record the minimum without inserting it. 1.14 x1.3 x1.3
Min Set no larger than other elements. Insert a new minimum without recording it. 1.32 x9.0 x9.9
KVStore The cached element has been put and is no Record the minimum without putting it. 0.66 T/O x4.3
larger than other elements. Overwrite an existing element when putting. 1.95 x10.7 x14.9
Tree The underlying tree is a binary search tree. ‘ Insert a smaller element to the right subtree. ‘ 1.09 ‘ x4.8 x11.5
Lazy Set Set The same element is never inserted twice. ‘ Insert a duplicated element. ‘ 0.49 ‘ x1.2 x1.3
KVStore Each key is associated with a distinct value. ‘ Put a duplicated element. ‘ 0.88 ‘ x49.8 x1.5
KVStore Each state is associated with a non-empty list | Put an overlapping transtion with the same label. 0.66 x29.9 x29.9
DFA of next states via unique labels. A transition is reversed instead of deleted. 1.04 x15.0 x15.2
Graph The outgoing edges of each state are labeled by | Connect two connected nodes with the same label. 0.98 x12.9 x12.8
P different characters. Connect two nodes instead of disconnecting them. 0.97 x16.5 x16.5
. . . Insert a vertex pair twice during initialization. 0.27 T/O x16.4
Ed; f vert ly stored
LinkedList .g}fs (pairs odver 1f:es) gn.e unlq;iy store Insert a vertex without ensuring its connectivity. 1.31 O/M x9.9
Connected Wwith connected vertices being valid. Insert a duplicated vertex pair. 1.44 O/M x11.2
Graph . P,
Create a duplicated edge during initialization. 1.13 x1.7 x1.8
Graph All vertices are connected in the graph. Create a vertex without ensuring its connectivity. 2.05 x6.0 x6.1
Disconnect a vertex from the rest of the graph. 238 x20.0 x16.2
Colored Graph Vertices are colored before being connected to | Create an edge between two vertices colored the same. 3.68 T/O T/O
Graph vertices with different colors.
KVStore Each vertex is associated with a list of vertices | Put an edge between two vertices with the same color. 7.82 T/O T/O
with different colors.
Linked S
List KVStore Each node has at most one predecessor. Put a new predecessor to a node before deleting its 7.03 Oo/M T/O
old predecessor.

7 Implementation and Evaluation

We have implemented a symbolic execution engine in OCAML based on a derivative-based semantics,
called HATch that targets the falsification of OCamt-like ADT implementations that interact with
their underlying representation types via API calls. HATch takes as input the implementation of
an ADT’s method, its behavioral specification, and the behavioral specifications of the underlying
representation types, and performs symbolic execution against an execution harness as described
in Example 4.4. Symbolic execution is performed in increasing depth of explored execution traces.
HATch performs two additional optimizations that are not discussed in Section 6. First, it not
only tracks the atomic symbolic events that are included in a symbolic event ¢ but also tracks
those that are excluded. This frees us from enumerating all other available APIs when computing
the negation. Second, since the prefixes to be enumerated are combined with a given symbolic
trace, the enumeration of prefixes is interleaved with a compatibility check against the trace. This
interleaving helps avoid enumerating prefixes that are known to be incompatible.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:27

In our evaluation, we consider the following research questions: Q1. Can HATch’s behavioral
specifications effectively capture interesting safety properties? Q2. Can HATch’s use of symbolic
derivatives improve trace exploration for falsification? Q3. Can HATch enhance assurance through
falsification when verification is challenging?

We evaluate HATch on stateful variants of functional ADTs (see Table 1) drawn from different
sources [Miltner et al. 2020; Okasaki 1999; Zhou et al. 2024]. The ADTs we consider are implemented
using different effectful representation types (i.e., Repr. Type column), including key-value stores,
linked lists, sets, trees, and graphs. We introduce artificial bugs in their methods as summarized in
the Violation column, and evaluate HATch’s capability to falsify these buggy implementations. The
next column reports the time HATch takes to falsify the violation.

To demonstrate the effectiveness of symbolic derivatives, we implement a variant of HATch
following the description given in Section 4, and report HATch’s speedup over this variant. The
satisfiability of a path condition ® and a SRE A (Definition 4.7) is checked by first replacing
logical formulae with the elements from a finite equivalence class. An A then becomes an ordinary
regular expression amenable to SMT solving, whose non-emptiness, along with the satisfiability
of the logical formulae, witness its satisfiability. Our results show that without using derivatives,
symbolic execution is unable to falsify (1) 7 violations (out of a possible 20) within 60 seconds,
resulting in timeouts (T/O) due to excessive calls to the SMT solver, and (2) 5 violations under
an 8 GB memory limit, leading to out-of-memory errors (O/M) due to the complexity involved in
constructing equivalence classes.

To demonstrate the effectiveness of HATch against a verification procedure, we compare its
performance with recent work on representation invariant verification [Zhou et al. 2024], and
report its speedup over that verifier in terms of the time taken to identify a violation. Overall,
HATch demonstrates significant improvement in performance, measured in orders of magnitude,
compared to both the non-derivative aware engine and the verifier. It is noteworthy that it is able
to efficiently handle two challenging ADTs, colored graphs and linked lists, falsifying their buggy
implementation in a small (< 8) number of seconds, whereas the other approaches are unable to
provide any result within the given resource bound (60 seconds, 8 GB).

8 Related Work

Symbolic Execution for Functional Languages. While symbolic execution has been typically used
in the context of imperative languages for bug finding [Baldoni et al. 2018], there have been recent
efforts that apply SE in a functional programming setting. [Xu et al. 2009] and [Nguyen et al.
2014] use SE to verify contracts in Haskell and pure Racket, respectively, with [Nguyén et al. 2017]
extending contract verification to handle Racket programs with mutable state. SE has also been used
for underapproximate reasoning to identify weak library specifications that lead to type-checking
failures of client programs in LiquidHaskell [Hallahan et al. 2019]. Our goals in this paper are
substantially different, focused on falsifying safety properties of functional ADTs that interact with
opaque and effectful libraries.

Temporal Verification. Model checking has been applied for software verification against temporal
specifications, e.g., LTL and CTL. Early work shows how transition systems can be extracted from
programs to abstract their behavior in a form amenable for automata-based inclusion checking to
validate temporal specifications [Clarke et al. 1994]. More recently, type and effect systems have
been proposed to infer a conservative overapproximation of effects produced during execution of
higher-order functional programs [Skalka and Smith 2004]. The granularity of effects inferred has
been improved by regarding past effects as a handle for reasoning about hidden states [Nanjo et al.
2018; Sekiyama and Unno 2023; Song et al. 2022]. The use of SFAs as a basis for specification and

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

50:28 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

verification has also been explored in [Zhou et al. 2024] that introduces Hoare Automata Types
(HATSs) as a new refinement type abstraction for verifying programs against effectful trace-based
temporal specifications. In contrast to these efforts, HATch considers this style of specification in
the context of underapproximate reasoning, exploiting the structure of SFAs to enable efficient
falsification.

Derivatives of Regular Expressions. The classic notion of derivatives of regular expressions pro-
vides a lazy and algebraic approach for constructing automaton-based recognizers from given
regular expressions, effectively relating automaton states to their regular expression counter-
parts. Brzozowski’s derivative [Brzozowski 1964] initially introduced this concept for constructing
deterministic finite automata, followed by Antimirov’s partial derivative [Antimirov 1995] for
nondeterministic finite automata, later extended to handle complement and intersection operations
[Caron et al. 2011]. While it is known that the classic derivative approach either overapproximates
or underapproximates with predicates in regular expressions, computing “next literals” has been
proposed as a remedy [Keil and Thiemann 2014]. Our formulation of symbolic derivatives, while
largely inspired by this work, accounts for universally quantified variables in regular expressions,
which are ubiquitous in program analysis tasks. However, the “next literal” approach can generate
an exponential number of transitions in worst cases. Recent work on transition regexes [Stanford
et al. 2021] introduces a novel form of symbolic derivatives that embeds potentially exponential
choices within nested conditionals, enabling lazy exploration of transitions and algebraic simplifica-
tion. Incorporating these symbolic derivatives into our symbolic execution engine thus may benefit
the reasoning of specifications with richer control structures, presenting a promising avenue for
future research.

Dynamic Trace-Based Reasoning. Traces as a form of (in)correctness specification have been
widely adopted by dynamic analysis techniques. Various runtime monitoring systems rely on a
language of traces [Avgustinov et al. 2007; Chen and Rosu 2007; Goldsmith et al. 2005; Havelund
and Rosu 2001; Meredith et al. 2008]. Regular properties over traces are also used to guide path
exploration in dynamic symbolic execution [Zhang et al. 2015]. Arbitrary trace predicates are now
supported in Racket contracts [Moy and Felleisen 2023]. We leave for future work the exploration
of non-regular trace languages amenable for derivative computation to enable the falsification of
even richer safety properties.

9 Conclusions

This paper presents a new symbolic execution procedure that integrates trace-based temporal
specifications to reason about ADTs that interact with effectful libraries. We demonstrate how
to leverage these specifications, specifically their latent SFA representations, to manifest the
hidden state maintained by an ADT’s underlying representation. More significantly, we introduce
the concept of a symbolic derivative, a new encoding of symbolic states that relate admissible
specification traces with path exploration decisions, and show how they enable significant efficiency
gains by allowing paths that are irrelevant to the falsification of a given safety property to be quickly
pruned by a symbolic execution engine. Our ideas provide new insight into how trace-guided
specifications can enable effective reachability-based program analyses.

Acknowledgments

We thank the anonymous POPL reviewers for their detailed comments and constructive feedback.
We also thank Guannan Wei for stimulating discussions and suggestions on the draft of the paper.
This material is based upon work supported by the Defense Advanced Research Projects Agency

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

Derivative-Guided Symbolic Execution 50:29

(DARPA) and the Naval Information Warfare Center Pacific INIWC Pacific) under N6600 1-22-C-
4027, STR Research with funding from the US government, and the National Science Foundation
under CCF-SHF 2321680.

Data-Availability Statement

Our implementation of HATch, the benchmark suite used, and the instructions for reproducing
results are available at Yuan et al. [2024a].

References

Valentin Antimirov. 1995. Partial Derivatives of Regular Expressions and Finite Automata Constructions. In STACS 95
(Lecture Notes in Computer Science), Ernst W. Mayr and Claude Puech (Eds.). Springer, Berlin, Heidelberg, 455-466.
https://doi.org/10.1007/3-540-59042-0_96

Pavel Avgustinov, Julian Tibble, and Oege de Moor. 2007. Making Trace Monitors Feasible. SIGPLAN Not. 42, 10 (Oct. 2007),
589-608. https://doi.org/10.1145/1297105.1297070

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic
Execution Techniques. Comput. Surveys 51, 3 (May 2018), 50:1-50:39. https://doi.org/10.1145/3182657

Suguman Bansal, Yong Li, Lucas M. Tabajara, Moshe Y. Vardi, and Andrew Wells. 2023. Model Checking Strategies
from Synthesis over Finite Traces. In Automated Technology for Verification and Analysis (Lecture Notes in Computer
Science), Etienne André and Jun Sun (Eds.). Springer Nature Switzerland, Cham, 227-247. https://doi.org/10.1007/978-3-
031-45329-8_11

Gerard Berry and Ravi Sethi. 1986. From Regular Expressions to Deterministic Automata. Theoretical Computer Science 48
(1986), 117-126. https://doi.org/10.1016/0304-3975(86)90088-5

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. . ACM 11, 4 (Oct. 1964), 481-494. https://doi.org/10.1145/
321239.321249

Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing: Three Decades Later. Commun. ACM 56, 2
(Feb. 2013), 82-90. https://doi.org/10.1145/2408776.2408795

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. 2011. Partial Derivatives of an Extended Regular Expression.
In Language and Automata Theory and Applications (Lecture Notes in Computer Science), Adrian-Horia Dediu, Shunsuke
Inenaga, and Carlos Martin-Vide (Eds.). Springer, Berlin, Heidelberg, 179-191. https://doi.org/10.1007/978-3-642-21254-
3_13

Feng Chen and Grigore Rosu. 2007. Mop: An Efficient and Generic Runtime Verification Framework. SIGPLAN Not. 42, 10
(Oct. 2007), 569-588. https://doi.org/10.1145/1297105.1297069

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Platform for in-Vivo Multi-Path Analysis of
Software Systems. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, Newport Beach California USA, 265-278. https://doi.org/10.1145/1950365.
1950396

Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model Checking and Abstraction. ACM Transactions on
Programming Languages and Systems 16, 5 (Sept. 1994), 1512-1542. https://doi.org/10.1145/186025.186051

Loris D’Antoni and Margus Veanes. 2014. Minimization of Symbolic Automata. ACM SIGPLAN Notices 49, 1 (Jan. 2014),
541-553. https://doi.org/10.1145/2578855.2535849

Loris D’Antoni and Margus Veanes. 2017. The Power of Symbolic Automata and Transducers. In Computer Aided Verification
(Lecture Notes in Computer Science), Rupak Majumdar and Viktor Kuné¢ak (Eds.). Springer International Publishing, Cham,
47-67. https://doi.org/10.1007/978-3-319-63387-9_3

Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI ’13). AAAI Press, Beijing,
China, 854-860.

Giuseppe De Giacomo and Moshe Y. Vardi. 2015. Synthesis for LTL and LDL on Finite Traces. In Proceedings of the 24th
International Conference on Artificial Intelligence (IJCAI’15). AAAI Press, Buenos Aires, Argentina, 1558-1564.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.
In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation (PLDI *93).
Association for Computing Machinery, New York, NY, USA, 237-247. https://doi.org/10.1145/155090.155113

Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken. 2005. Relational Queries over Program Traces. SIGPLAN Not. 40,
10 (Oct. 2005), 385-402. https://doi.org/10.1145/1103845.1094841

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. 2019. Lazy Counterfactual Symbolic
Execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

https://doi.org/10.1007/3-540-59042-0_96
https://doi.org/10.1145/1297105.1297070
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1016/0304-3975(86)90088-5
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1145/1297105.1297069
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/2578855.2535849
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/1103845.1094841

50:30 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

(PLDI 2019). Association for Computing Machinery, New York, NY, USA, 411-424. https://doi.org/10.1145/3314221.3314618

John Hatcliff and Olivier Danvy. 1994. A Generic Account of Continuation-Passing Styles. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL *94). Association for Computing Machinery,
New York, NY, USA, 458-471. https://doi.org/10.1145/174675.178053

Klaus Havelund and Grigore Rosu. 2001. Monitoring Java Programs with Java PathExplorer. Electronic Notes in Theoretical
Computer Science 55, 2 (Oct. 2001), 200-217. https://doi.org/10.1016/S1571-0661(04)00253-1

Matthias Keil and Peter Thiemann. 2014. Symbolic Solving of Extended Regular Expression Inequalities. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.FSTTCS.2014.175. Schloss-Dagstuhl - Leibniz Zentrum fiir Informatik. https://doi.org/10.
4230/LIPIcs. FSTTCS.2014.175

Patrick O’Neil Meredith, Dongyun Jin, Feng Chen, and Grigore Rosu. 2008. Efficient Monitoring of Parametric Context-
Free Patterns. In 2008 23rd IEEE/ACM International Conference on Automated Software Engineering. 148-157. https:
//doi.org/10.1109/ASE.2008.25

Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with Derivatives: A Functional Pearl. In Proceedings
of the 16th ACM SIGPLAN International Conference on Functional Programming. ACM, Tokyo Japan, 189-195. https:
//doi.org/10.1145/2034773.2034801

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 1-15. https://doi.org/10.1145/3385412.3385967

Cameron Moy and Matthias Felleisen. 2023. Trace Contracts. Journal of Functional Programming 33 (Jan. 2023), e14.
https://doi.org/10.1017/50956796823000096

Yoji Nanjo, Hiroshi Unno, Eric Koskinen, and Tachio Terauchi. 2018. A Fixpoint Logic and Dependent Effects for Temporal
Property Verification. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18).
Association for Computing Machinery, New York, NY, USA, 759-768. https://doi.org/10.1145/3209108.3209204

Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft Contract Verification. In Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). Association for Computing Machinery,
New York, NY, USA, 139-152. https://doi.org/10.1145/2628136.2628156

Phiic C. Nguyén, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2017. Soft Contract Verification for Higher-
Order Stateful Programs. Proceedings of the ACM on Programming Languages 2, POPL (Dec. 2017), 51:1-51:30. https:
//doi.org/10.1145/3158139

Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge University Press.

Vaughan Pratt. 1991. Action Logic and Pure Induction. In Logics in Al J. van Eijck (Ed.). Springer, Berlin, Heidelberg, 97-120.
https://doi.org/10.1007/BFb0018436

Taro Sekiyama and Hiroshi Unno. 2023. Temporal Verification with Answer-Effect Modification: Dependent Temporal
Type-and-Effect System with Delimited Continuations. Proceedings of the ACM on Programming Languages 7, POPL (Jan.
2023), 71:2079-71:2110. https://doi.org/10.1145/3571264

Christian Skalka and Scott Smith. 2004. History Effects and Verification. In Programming Languages and Systems, Wei-Ngan
Chin (Ed.). Vol. 3302. Springer Berlin Heidelberg, Berlin, Heidelberg, 107-128. https://doi.org/10.1007/978-3-540-30477-
7.8

Yahui Song, Darius Foo, and Wei-Ngan Chin. 2022. Automated Temporal Verification for Algebraic Effects. In Programming
Languages and Systems (Lecture Notes in Computer Science), Ilya Sergey (Ed.). Springer Nature Switzerland, Cham, 88-109.
https://doi.org/10.1007/978-3-031-21037-2_5

Caleb Stanford, Margus Veanes, and Nikolaj Bjerner. 2021. Symbolic Boolean Derivatives for Efficiently Solving Extended
Regular Expression Constraints. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. ACM, Virtual Canada, 620-635. https://doi.org/10.1145/3453483.3454066

Sam Tobin-Hochstadt and David Van Horn. 2012. Higher-Order Symbolic Execution via Contracts. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’12). Association
for Computing Machinery, New York, NY, USA, 537-554. https://doi.org/10.1145/2384616.2384655

Margus Veanes. 2013. Applications of Symbolic Finite Automata. In Implementation and Application of Automata, Stavros
Konstantinidis (Ed.). Springer, Berlin, Heidelberg, 16-23. https://doi.org/10.1007/978-3-642-39274-0_3

Margus Veanes, Peli de Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic Regular Expression Explorer. In Verification and
Validation 2010 Third International Conference on Software Testing. 498-507. https://doi.org/10.1109/ICST.2010.15

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static Contract Checking for Haskell. In Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL °09). Association for
Computing Machinery, New York, NY, USA, 41-52. https://doi.org/10.1145/1480881.1480889

Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan. 2024a. Artifact for "Derivative-Guided Symbolic
Execution". Zenodo. https://doi.org/10.5281/zenodo.13800040

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/174675.178053
https://doi.org/10.1016/S1571-0661(04)00253-1
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.175
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.175
https://doi.org/10.1109/ASE.2008.25
https://doi.org/10.1109/ASE.2008.25
https://doi.org/10.1145/2034773.2034801
https://doi.org/10.1145/2034773.2034801
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1017/S0956796823000096
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/2628136.2628156
https://doi.org/10.1145/3158139
https://doi.org/10.1145/3158139
https://doi.org/10.1007/BFb0018436
https://doi.org/10.1145/3571264
https://doi.org/10.1007/978-3-540-30477-7_8
https://doi.org/10.1007/978-3-540-30477-7_8
https://doi.org/10.1007/978-3-031-21037-2_5
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/2384616.2384655
https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1109/ICST.2010.15
https://doi.org/10.1145/1480881.1480889
https://doi.org/10.5281/zenodo.13800040

Derivative-Guided Symbolic Execution 50:31

Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan. 2024b. Derivative-Guided Symbolic Execution.
https://doi.org/10.48550/arXiv.2411.02716 arXiv:2411.02716

Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. 2015. Regular Property Guided Dynamic Symbolic
Execution. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE, Florence, Italy, 643-653.
https://doi.org/10.1109/ICSE.2015.80

Zhe Zhou, Qianchuan Ye, Benjamin Delaware, and Suresh Jagannathan. 2024. A HAT Trick: Automatically Verifying
Representation Invariants Using Symbolic Finite Automata. Proceedings of the ACM on Programming Languages 8, PLDI
(June 2024), 1387-1411. https://doi.org/10.1145/3656433

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.

https://doi.org/10.48550/arXiv.2411.02716
https://arxiv.org/abs/2411.02716
https://doi.org/10.1109/ICSE.2015.80
https://doi.org/10.1145/3656433

	Abstract
	1 Introduction
	2 Motivation
	2.1 Specifications
	2.2 Trace-Based Symbolic Execution
	2.3 Symbolic Execution with Symbolic Derivatives

	3 Preliminaries
	4 Trace-Based Symbolic Execution
	5 Symbolic Execution with Symbolic Derivatives
	5.1 Symbolic Derivatives
	5.2 Derivative-Based Semantics

	6 Algorithm
	7 Implementation and Evaluation
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

