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We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact
with e!ectful, opaque libraries. Our procedure allows speci"cations of libraries and abstract data type (ADT)
methods that are expressed in Linear Temporal Logic over Finite Traces (LTL𝐿 ), interpreting them as symbolic
!nite automata (SFAs) to enable intelligent speci"cation-guided path exploration in this setting. We apply
our technique to facilitate the falsi"cation of complex data structure safety properties in terms of e!ectful
operations made by ADT methods on underlying opaque representation type(s). Speci"cations naturally
characterize admissible traces of temporally-ordered events that ADT methods (and the library methods
they depend upon) are allowed to perform. We show how to use these speci"cations to construct feasible
symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of
this formalism. More importantly, we incorporate the notion of symbolic derivatives, a mechanism that allows
the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on
the automata structures latent in the provided speci"cations and the safety property that is to be falsi"ed.
Intuitively, derivatives enable symbolic execution to exploit temporal constraints de"ned by trace-based
speci"cations to quickly prune unproductive paths and discover feasible error states. Experimental results on
a wide-range of challenging ADT implementations demonstrate the e!ectiveness of our approach.

CCS Concepts: • Theory of computation → Regular languages; Automated reasoning; Modal and
temporal logics; • Software and its engineering → Automated static analysis.
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1 Introduction
Symbolic execution [Baldoni et al. 2018; Cadar and Sen 2013] (SE) is a well-studied program analysis
technique whose goal is to statically explore a bounded set of (symbolic) program executions in
search of one that yields a symbolic state inconsistent with a given safety property. The states
generated during the course of these executions consist of a set of path constraints; a violation is
identi"ed if the conjunction of these constraints with the negation of the safety property is logically
satis"able. By knowing the prestate under which a method may be invoked, SE can be performed on
individual methods in a compositional fashion. Oftentimes, however, the program being analyzed
interacts with libraries whose implementations are unavailable for analysis. In this case, we can
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augment the SE procedure to interpret models [Chipounov et al. 2011] or speci"cations [Tobin-
Hochstadt and Van Horn 2012; Xu et al. 2009] attached to library methods that describe the intended
behavior of their implementation in a form suitable for symbolic reasoning.

In this paper, we consider the design of an SE procedure for functional programs that interface
with e!ectful, opaque libraries. Since we cannot express the behavior of library methods directly
in terms of how they manipulate their hidden state (since their implementations are opaque), we
instead reason about the interaction of clients with these methods in terms of traces, sequences of
method invocations and return values that constrain the shape of allowed symbolic states that the
symbolic interpreter needs to consider. Our primary contribution is a formalization of symbolic
execution in this setting that directly leverages the temporal ordering constraints latent in these
traces to intelligently guide path exploration.

A particular useful setting in which this style of symbolic reasoning is likely to be e!ective are
abstract data type (ADT) implementations whose speci"cations and safety properties are often
couched in terms of temporal modalities that constrain how datatype instances can be constructed
and used. For example, to establish that an implementation of a functional Set datatype, imple-
mented using an e!ectful list representation, correctly respects the semantics of a mathematical set
(e.g., |𝐿 ↑ {𝑀}| = |𝐿 | if 𝑀 ↓ 𝐿) necessitates showing that any element added to its list representation
is di!erent from any previously added element. Because the list implementation is potentially
e!ectful, but does not expose the state it manages to its clients, we can only reason about the Set
ADT methods that use it behaviorally, in terms of how inputs to the list type’s setters a!ect the
values returned by its getters that are subsequently consumed.

In our running example, the representation type List, de"ned as a library, may provide a number
of operations on a list instance, some of which are pure like mem that checks for list membership,
and others of which are e!ectful, such as append! that destructively appends its argument to its
instance. The Set ADT might provide methods like in that simply uses the mem method from List
to check if an element is included in a set instance, or insert that adds a new element to the
set using append!. Suppose insert’s implementation incorrectly adds a new element by simply
invoking append!, without "rst checking if the element is already present. Constructing a set using
this implementation would violate our desired safety property, namely that every element in the
set is unique. Our goal is to use symbolic execution to identify such errors.
Given the availability of speci"cations on ADT and representation-type methods, symbolic

execution of an ADT then involves: (1) the generation of feasible (aka constructible) precondition
states for an ADT method being analyzed in the form of symbolic traces of method calls (and return
values) on the representation type that is nonetheless consistent with the ADT’s speci"cation, and
(2) devising an e!ective search procedure from this precondition state that identi"es a feasible
execution path, again expressed as a symbolic trace over symbolic invocations of methods on the
representation type, whose "nal state violates the safety property.
In this work, we develop an SE procedure for a class of behavioral speci"cations that can be

concisely expressed in linear temporal logic (LTL𝐿 [Bansal et al. 2023; De Giacomo and Vardi 2013,
2015]); these speci"cations correspond to symbolic "nite automata (SFA [D’Antoni and Veanes 2014,
2017; Veanes 2013]), in which automata transitions represent e!ectful and opaque operations made
by the ADT on its representation type(s). Our SE procedure exploits the latent SFA structure through
symbolic derivatives. By computing the residual language after consuming a pre"x, Brzozowski
derivatives simplify membership checking of regular and context-free languages [Might et al. 2011].
In our setting, symbolic derivatives compute the residual speci"cation after observing a sequence
of ADT operations, enabling both the extraction of admissible temporally ordered symbolic events
(i.e., method invocations and returns expressed in terms of symbolic variants of program variables)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.



Derivative-Guided Symbolic Execution 50:3

of the ADT’s representation type and the prediction of future admissible events by progressively
re"ning the space of safe behaviors.

When equipped with such derivatives, our SE procedure is capable of (1) generating precondition
traces whose interpretation yields a prestate consistent with method speci"cations, (2) correlating
pre- and post-invocation events with the safety property, and (3) guiding exploration along paths
likely to lead to a falsi"cation of the safety property. By viewing the set of traces prior to and
after method invocations from the lens of the safety property we wish to falsify, our SE procedure
intelligently performs path exploration. In the case of Set ADT, our SE procedure may, in the
presence of a past append! event, actively look for another append! of the identical element, in an
attempt to accelerate the falsi"cation of the unique-element property. As a result, we oftentimes
observe many orders-of-magnitude improvement in path enumeration times, enabling it to scale
favorably with speci"cation complexity.

In summary, this paper makes the following contributions:
(1) We formalize an SE framework suitable for falsifying safety properties of e!ectful ADT

implementations that manage hidden states. Speci"cations are expressed as LTL𝐿 formulae
and capture temporal dependencies over a history of interactions between an ADT imple-
mentation and its underlying representation type(s).

(2) We identify the latent SFA structures within these speci"cations and treat them as executable
representations that enable the formalization of an SE procedure in terms of the traces
characterized by these automata.

(3) We propose to integrate a notion of symbolic derivatives as part of our SE procedure that
intelligently underapproximates trace-based symbolic states and accelerates the search for a
falsi"cation witness.

(4) We describe an implementation of these ideas in OCaml and show its e!ectiveness on a
challenging set of data structure programs.

The remainder of the paper is organized as follows. Motivation and informal explanation of our
ideas is provided in the next section. Section 3 provides preliminaries and details about LTL𝐿 ,
SFAs, and derivatives. The syntax of a core language and a naïve (derivative-free) semantics is
given in Section 4. The semantics of deriviative-based execution is provided in Section 5. We
show how to translate the declarative semantics of derivatives into an e#cient algorithm in
Section 6. Implementation details and evaluation results are provided in Section 7. Related work
and conclusions are given in Section 8 and 9, resp.

2 Motivation
To motivate our ideas, consider the program shown in Fig. 1. The function remove is a method in a
linked-list ADT that uses two e!ectful key-value stores as its representation type, one to maintain
an ordering relation among nodes in the list (named Nxt), and the other to record the elements
associated with these nodes (named Val). The implementation of the store is opaque to the ADT.
Given a node curr in a linked-list instance containing argument value v, remove removes curr
from the list by "rst initializing its successor "eld to null (given as the shaded statement at Line
18), and then adjusting the link from its predecessor prev to point to its successor next .

2.1 Specifications
The speci"cation associated with remove is expressed as LTL𝐿 [De Giacomo and Vardi 2013]1
formulae given in the comment above its de"nition. Informally, we can think of such formulae as
characterizing a set of admissible traces, event sequences de"ned in terms of method invocations
1Linear temporal logic over "nite sequences.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.



50:4 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

module type KVStore
(K: Key) (V: Value) : T =

sig
(** (k: K.t) → (v: V.t)

ghost (v': V.t)
context stored(T,𝑀, 𝑁↔ )
effect ↗get 𝑀 𝑁↘
ensure 𝑁 = 𝑁↔ *)

val get : K.t → V.t

(** (k:K.t) → (v:V.t) → unit
effect ↗put 𝑀 𝑁↘ *)

val put : K.t → V.t → unit
end
module type Node = sig

type t
val null : t . . .

end
module type Elem = sig

type t . . .
end

1 module Nxt = KVStore (Node) (Node)
2 module Val = KVStore (Node) (Elem)
3

4 (** (hd:Node.t) → (v:Elem.t) → Node.t
5 ghost (a: Node.t), (b: Node.t)
6 context stored(Nxt,𝑂,𝑃 )
7 effect ⊋ ↗Nxt.put !𝑂 𝑃 ↘W↗Nxt.put 𝑂 !𝑃 ↘ *)
8 let remove (hd: Node.t) (elem: Elem.t) =
9 if hd = null then hd
10 else if Val.get hd = elem then
11 Nxt.get hd
12 else
13 let rec loop prev =
14 let curr = Nxt.get prev in
15 if curr = null then ()
16 else if Val.get curr = elem then
17 let next = Nxt.get curr in
18 Nxt.put curr null;
19 Nxt.put prev next
20 else loop curr
21 in loop hd; hd

Fig. 1. An implementation of a node remove operation in a linked-list ADT using two key-value stores.

and results. The speci"cation has several elements. In the case of remove , it introduces ghost
variables 𝑁 and 𝑂; these variables represent an arbitrary pair of nodes in the list, constrained by the
method’s precondition (identi"ed by the keyword context) and postcondition (identi"ed by the
keyword effect). The precondition characterizes all traces that construct a linked-list in terms of
the underlying key-value store representation type, identifying an arbitrary consecutive pair of
nodes using the introduced ghost variables 𝑁 and 𝑂; it uses the following de"nition:

stored(Store,𝑃, 𝑄) ! F(↗Store.put 𝑃 𝑄↘ ≃ XG⊋↗Store.put 𝑃 _↘)
The postcondition re$ects the actions performed by the method: it speci"es that node 𝑂 can be
linked to a predecessor other than 𝑁 (as denoted by !𝑁) only after 𝑁 is linked to a successor other
than 𝑂 (as denoted by !𝑂). Both the pre- and post-condition use LTL modalities. The precondition
uses the !nally modality (F) to represent the eventual establishment of a link between 𝑁 and 𝑂 in
a trace, and next (X) and global (G) modalities to prevent subsequent actions in the trace from
modifying that link; similarly, the postcondition uses the weak-until (W) modality to specify a
conditional action, namely that 𝑂 can be linked to a predecessor other than 𝑁 only after 𝑁 is no
longer 𝑂’s predecessor.
The speci"cation for the key-value stores used by the linked-list ADT is given in the left of

Fig. 1. As before, we capture the e!ectful behavior of these methods using LTL𝐿 speci"cations.
The precondition for get requires that it be invoked in a state constructed from a sequence of
actions that include a put operation which associates key 𝑃 to value 𝑄 ↔; it leverages the de"nition of
stored de"ned above, except using the key-value store instance in which the get is performed. The
method’s postcondition ensures that this property holds upon return. Additionally, the speci"cation
establishes an equality constraint, using the ensure annotation, between the value returned (𝑄)
and the value previously put on key 𝑃 (𝑄 ↔). Note that speci"cations used in this way constrain
the set of precondition states that a symbolic execution engine should consider; in particular, the
speci"cation ignores any state that does not contain a binding for 𝑃 . The speci"cation for put
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𝑄0start

𝑄1

↗Nxt.put 𝑂 𝑃 ↘

⊋ ↗Nxt.put 𝑂 𝑃 ↘

↗Nxt.put 𝑂 !𝑃 ↘

⊋ ↗Nxt.put 𝑂 !𝑃 ↘

(a) Admissible traces prior to remove.

𝑄2start 𝑄3

⇐

↗Nxt.put 𝑂 !𝑃 ↘

↗Nxt.put !𝑂 𝑃 ↘
↗Nxt.put 𝑂 𝑃 ↘

⇒↗Nxt.put !𝑂 !𝑃 ↘
⇒⊋ ↗Nxt.put↘

•

•

(b) New actions allowed from remove.

Fig. 2. The SFA representation of remove’s trace-based specification.

imposes no structure on the store that must hold before it can execute, and only guarantees that
the put action is performed upon return.

Trace Speci!cation as Safety Property. To reiterate, speci"cations written in this way characterize
admissible execution traces whose e!ects determine the context in which a function can execute as
well as the behavior manifested by the function upon return from a call, allowing us to reason about
the behavior of the ADT without having to expose implementation details about its underlying
representation type. Together, a pair of such pre- and post-condition traces captures a safety
property against which the function must be checked. In the case of remove, an execution under
the speci"ed context (precondition trace) that does not satisfy the post-condition trace serves as a
witness of a violation of the predecessor uniqueness safety property.

SFA Representation of Trace Speci!cations. The set of traces characterized by LTL𝐿 speci"ca-
tions can be naturally represented by (symbolic) "nite automata [Veanes 2013] (SFA) structures
whose labels are events representing ADT method invocations and their return values, and whose
transitions re$ect control dependencies over these actions, de"ned by modalities used in the speci-
"cation. Fig. 2 shows how the LTL𝐿 speci"cations given in Fig. 1 can be represented as SFAs. The
automaton in Fig. 2a captures the precondition for remove . The start state 𝑅0 admits traces which
contain an arbitrary number of get or put operations, not involving put operations with key
𝑁 or value 𝑂; it allows such traces to be augmented with put operations that store a binding of
𝑁 to 𝑂, thus establishing the required shape of lists to which remove can be applied. The store
can be subsequently updated with the e!ects of other put operations on key 𝑁 that bind the key
to nodes other than 𝑂, leading to a transition that exits the accepting state 𝑅1. Traces accepted
by the precondition automaton encapsulate program states that can be used as the basis for a
successful symbolic execution run of remove. The postcondition for remove can be represented
as the automaton shown in Fig. 2b. Here, the initial state of the postcondition 𝑅2 presumes the
precondition, namely ghost nodes 𝑁 and 𝑂 such that 𝑁 is the predecessor of 𝑂 in the list. A safe
implementation of remove is allowed to repeatedly (re)link 𝑁 to 𝑂 (↗Nxt.put 𝑁 𝑂↘), link other nodes
besides 𝑁 to 𝑂 (↗Nxt.put !𝑁 𝑂↘), or perform get operations (⊋↗Nxt.put↘). An event that links another
node to 𝑂 without "rst removing the link from 𝑁 results in a violation of the safety property, however,
depicted by the error state with a red circle containing ⇐. State 𝑅3 represents another accepting state
corresponding to a linked-list in which node 𝑁 no longer points to 𝑂. The traces admitted by these
automata correspond to the hidden states constructible by method invocations to the underlying
Nxt and Val store instances.
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Symbolic Derivatives and SFAs. To reveal the latent SFA representations of trace speci"cations
that qualify over symbolic variables, we propose to compute a variant of Brzozowski derivatives
[Brzozowski 1964], dubbed a symbolic derivative. Let’s revisit the postcondition for remove in
connection with its SFA representations in Fig. 2b: its LTL𝐿 formula ⊋↗Nxt.put !𝑁 𝑂↘W↗Nxt.put 𝑁 !𝑂↘
admits (1) action ↗Nxt.put 𝑁 𝑂↘, ↗Nxt.put !𝑁 !𝑂↘, or ⊋↗Nxt.put↘, followed by traces admissible by the
formula itself (𝑅2 → 𝑅2), or (2) action ↗Nxt.put 𝑁 !𝑂↘ followed by any trace of actions (𝑅2 → 𝑅3). Addi-
tionally, it does not admit ↗Nxt.put !𝑁 𝑂↘ regardless of the following actions (𝑅2 → ⇐). The symbolic
derivatives of the postcondition over ↗Nxt.put 𝑁 𝑂↘ ⇒ ↗Nxt.put !𝑁 !𝑂↘ ⇒ ⊋↗Nxt.put↘, ↗Nxt.put 𝑁 !𝑂↘,
and ↗Nxt.put !𝑁 𝑂↘ corresponds to states 𝑅2, 𝑅3, and ⇐ respectively. Such derivatives allow symbolic
execution to, as we will discuss in Section 2.3, “execute” trace speci"cations following their latent
SFA representations and make the put operation at Line 19 a witness of the action ↗Nxt.put !𝑁 𝑂↘
that leads to the dead state ⇐.

2.2 Trace-Based Symbolic Execution
Expressing Hidden States as Traces. While our speci"cation language can express a rich set of

behaviors that can be exhibited by the ADT, it is not immediately obvious how to incorporate such
speci"cations as part of an e#cient symbolic execution procedure. Yet, it is clear that remove’s
speci"cation naturally entails the uniqueness property that we wish to check, albeit in terms of
traces over the representation type’s operations, rather than directly in terms of the method’s
implementation.
Conventionally, symbolic execution explores symbolic states along a program’s CFG to "nd a

reachable path that ends at an erroneous state; however, in our setting, the linked list maintained by
the key-value stores Nxt and Val does not have an explicit state representation that can be trivially
constructed from the program; it is instead manifested by traces extracted from SFAs associated
with the ADT’s speci"cation. We will show shortly in Section 2.3 how to precisely relate the trace
structure described by the speci"cation with the execution paths explored by symbolic execution
to manifest these hidden states. Establishing this relation via the use of symbolic derivatives, which
will also be described shortly, enables a novel form of property-directed exploration that can be
exploited by a symbolic execution procedure to avoid searching over unproductive execution paths.

A relatively straightforward approach is to encapsulate symbolic states into a set of traces that
records the temporally ordered events produced along the current execution path being explored.
Such a set of traces, like our speci"cations, has a natural representation in SFA. Take the precondition
of remove as an example; stored(Nxt, 𝑁, 𝑂) encapsulates a symbolic state 𝐿0 as follows:

?
𝑁

? ?
𝑂

S0

Since 𝑁 and 𝑂 are two symbolic variables denoting two arbitrary nodes as long as the former
is the predecessor of the latter, the path condition is ⇑ initially. Before symbolically executing
remove , we introduce two additional symbolic variables 𝑆0 and 𝑇 as the arguments passed to
remove , respectively denoting the "rst node in the input linked-list, and the element that the node
to be removed stores. Since the precondition of remove places no constraint on these variables,
the path condition is ⇑ initially. Substituting 𝑆0 for hd (and 𝑇 for elem) in the body of remove,
symbolic execution may choose to enter the "rst branch at Line 9, augment the path condition
with 𝑆0 = null, and return 𝑆0. An empty symbolic trace (of length zero) is produced from this
execution and ghost nodes 𝑁 and node 𝑂 are left untouched in the symbolic state. Therefore, the
execution complies with the predecessor uniqueness safety property as speci"ed by the method’s
postcondition.
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Conventionally, symbolic states are constrained by path conditions whose satis"ability directly
manifests the reachability of the respective state. In this setting, however, events executed along the
path may also quantify over symbolic variables like path conditions and thus may impose additional
constraints on the associated symbolic state. Take 𝐿0 as an example: the SFA representation of
stored(Nxt, 𝑁, 𝑂), as shown in Fig. 2a, admits the traces of executed events allowed upon entering
remove. Transitions labeled by ↗Nxt.put 𝑁 !𝑂↘ admit event Nxt.put 𝑃𝑈𝑉 𝑄𝑁𝑊 only if 𝑃𝑈𝑉 = 𝑁 ≃ 𝑄𝑁𝑊 ω 𝑂
holds. As a result, path condition ⇑ and the SFA synergistically encapsulate the symbolic state 𝐿0,
re$ecting the conditions necessary for the execution paths that lead to remove to be feasible.

Re!nement of Trace-Based Symbolic States. We further illustrate this synergy by considering
other feasible execution paths in remove along which symbolic states are re"ned. A symbolic
execution procedure may also assume that the linked list is not empty, i.e., 𝑆0 ω null, and can
thus take the branch at Line 10 where a symbolic method invocation Val.get takes place with 𝑆0
as its argument. Just as path conditions are re"ned by branching conditions, SFAs are re"ned by
the e!ectful operations performed along execution paths, consistent with the constraints given
by the preconditions of executed operations. Here, the precondition of Val.get, when applied
to 𝑆0, is stored(Val,𝑆0,𝑇0), where 𝑇0 is a fresh symbolic variable representing the result of the
invocation. That is, 𝑇0 is the element stored at 𝑆0. Noticing that 𝑆0 is not even mentioned in 𝐿0, 𝑆0
may be 𝑁, 𝑂, or some other node not explicitly speci"ed in 𝐿0. The re"ned SFA representation, as
denoted by stored(Nxt,𝑁,𝑂)≃stored(Val,𝑆0,𝑇0), encapsulates the prestate of the method invocation
↗𝑇0⇓Val.get 𝑆0↘, which can be cleanly dissected into the following three states:

𝑇0
𝑁=𝑆0

? ?
𝑂

S1

?
𝑁

𝑇0 ?
𝑂=𝑆0

S2
𝑇0 ?

𝑆0
?

𝑁
? ?

𝑂
S3

Augmenting the path condition with 𝑇0 = 𝑇 as we enter Line 11, symbolically executing the invoca-
tion of Nxt.getwith 𝑆0 "rst introduces a new symbolic variable 𝑆1 denoting the successor of 𝑆0, and
then further re"nes the traces of executed events to be ((stored(Nxt,𝑁,𝑂) ≃ stored(Val,𝑆0,𝑇0)) ·
↗𝑇0⇓Val.get 𝑆0↘) ≃ stored(Nxt,𝑆0,𝑆1), where ·↗𝑇0⇓Val.get 𝑆0↘ records the previous method invo-
cation. Within the re"ned state, similarly, node 𝑆1 could be 𝑁, 𝑂, some other node, or even 𝑆0. Three
ordinary cases are depicted below:

𝑇0
𝑁=𝑆0

? ?
𝑂=𝑆1

S4

?
𝑁

𝑇0
𝑂=𝑆0

? ?
𝑆1

S5
𝑇0

𝑆0
?

𝑁=𝑆1
? ?

𝑂
S6 . . .

where 𝐿4, 𝐿5 and 𝐿6 re"nes the above dissected states 𝐿1, 𝐿2, and 𝐿3 respectively. Then, node 𝑆1 is
returned at (Line 11). Although the symbolic state is re"ned, node 𝑁 and node 𝑂 are still left intact
to comply with the constraints de"ned by the method’s speci"cation. Since the safety property
holds over all these possible symbolic states, this execution path is also deemed to satisfy the
postcondition.

The violation of the postcondition may happen within the loop (Line 13) if we do not execute the
shaded operation at (Line 18). Substituting 𝑆0 for prev in the loop body, the invocation of Nxt.get
with 𝑆0 then takes us to the same symbolic states, 𝐿4, 𝐿5, and 𝐿6, generated in the earlier explored
branch. If we continue the execution from 𝐿6 up until Line 17, one possible symbolic state that
holds after the invocation of Val.get and Nxt.get with 𝑆1 would be:

. . .
𝑇0

𝑆0
𝑇1

𝑁=𝑆1
? ?

𝑂=𝑆2
S7 . . .
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where𝑇1 and 𝑆2 are fresh symbolic variables that denotes the element stored in 𝑆1 and the successor
of 𝑆1 respectively. Without executing Line 18, the invocation of Nxt.put at Line 19 makes node 𝑂
(i.e., 𝑆2) the successor of both 𝑆0 and 𝑁 (i.e., 𝑆1):

. . .
𝑇0

𝑆0
𝑇1

𝑁=𝑆1
? ?

𝑂=𝑆2
S8

. . .

This symbolic state (𝐿8), among other possible states that we omit here, happens to manifest a
violation of the method’s safety property because 𝐿8 with path condition 𝑆0 ω null≃𝑇0 ω 𝑇 ≃𝑆1 ω
null ≃ 𝑇1 = 𝑇 is obviously reachable and it is obvious from the above illustration that any trace of
events encapsulated in 𝐿8 is rejected by the method’s postcondition.

2.3 Symbolic Execution with Symbolic Derivatives
E#ciency is a serious problem that must be considered by any symbolic execution procedure.
Conventional techniques can prune infeasible paths [Baldoni et al. 2018] by leveraging the control
structure in programs along with provided preconditions to consider an underapproximation of
program behavior that follows a single execution path at a time. For example, if a precondition
requires the input list to be not empty, path exploration can ignore paths that contradict this
constraint (e.g., Line 9 in Fig. 1). A trace-aware symbolic execution procedure can additionally
discover the shape of linked-lists automatically from the SFA structures latent in speci"cations
that induce these traces, and thus can introduce new opportunities for pruning unproductive paths.
For example, as currently described, although the precondition of ↗𝑇0⇓Val.get 𝑆0↘ re"nes 𝐿0, the
re"ned symbolic state does not specify whether 𝑆0 is equal to 𝑁, 𝑂, or some other node. More
notably, when the symbolic method invocation ↗𝑆1⇓Nxt.get 𝑆0↘ is made, the SFA encapsulating
the symbolic state after the invocation includes contradicting paths not depicted among 𝐿4, 𝐿5, and
𝐿6, in which 𝑆0 can be both equal to and not equal to 𝑁. Explicitly leveraging the control structure
latent in SFAs would enable us to correlate traces (and the hidden states they induce) to speci"c
program paths, exposing new pruning opportunities that would otherwise not be possible. We
propose to compute symbolic derivatives over the speci"cations to explore and exploit the latent
SFA structures within the trace-based speci"cations.

Derivative-Guided Path Exploration. Our symbolic execution procedure employs symbolic deriva-
tives to explore the SFA structures latent in the speci"cations and intelligently enumerate admissible
traces that encapsulate prestates along execution paths, lowering the cost of path feasibility check
and enabling e!ective path pruning. In our running example, the initial symbolic state 𝐿0 of remove
requires that some node 𝑁 is the predecessor of some node 𝑂 but does not specify when 𝑂 is made
the successor of 𝑁 via Nxt.put. Recall the precondition automaton (Fig. 2), which denotes the traces
encapsulating 𝐿0: the relevant Nxt.put operation may be performed (𝑅0 → 𝑅1) after some inde"nite
number of irrelevant actions (𝑅0 → 𝑅0), or after a previously executed ↗Nxt.put 𝑁 𝑂↘ is invalidated
(𝑅1 → 𝑅0). A symbolic derivative computation helps explore this automaton structure by sampling
paths from the start state 𝑅0 to the accepting state 𝑅1. In the case of remove, its behavior happens to
be invariant to when the call ↗Nxt.put 𝑁 𝑂↘ is performed. Therefore, in order to reach the erroneous
symbolic state 𝐿8, it is su#cient to begin the symbolic execution of remove with a precondition
trace that consists of ↗Nxt.put 𝑁 𝑂↘ followed by actions that do not invalidate this operation.
Our symbolic execution procedure further exploits the latent SFA structures to make informed

decisions in choosing the precondition trace that favors the e#cient exploration of feasible execu-
tion paths. To minimize the complexity of reasoning about the behavior of method invocations
performed, one straightforward strategy is to choose the “simplest” symbolic state based on the
length of the corresponding trace induced from the precondition automaton. For example, remove
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L9: 𝑆0 = null

𝐿0 𝑅2 L9: return 𝑆0
Y

𝐿0 𝑅2 L10: 𝑇0 ⇓ Val.get 𝑆0
N

L10: 𝑇0 = 𝑇

𝐿3
𝐿6

𝑅2
𝑅2

L11: 𝑆1 ⇓ Nxt.get 𝑆0
L11: return 𝑆1

Y
𝐿3 𝑅2 L14: 𝑆1 ⇓ Nxt.get 𝑆0

N

L15: 𝑆1 = null

𝐿6 𝑅2 L21: return 𝑆0
Y

𝐿6 𝑅2 L16: 𝑇1 ⇓ Val.get 𝑆1
N

L16: 𝑇1 = 𝑇

··
𝐿7
𝐿8

𝑅2
𝑅2
⇐

L17: 𝑆2 ⇓ Nxt.get 𝑆1
L19: Nxt.put 𝑆0 𝑆2
L21: return 𝑆0

Y
. . .

N

Fig. 3. Derivative-guided symbolic execution of remove.

may be invoked under a state encapsulated by the singleton trace ↗Nxt.put 𝑁 𝑂↘. This trace, however,
cannot be re"ned to admit a Val.put event, which is required by the invocation of Val.get at Line 10
in Fig. 1, thus failing to reach the error state 𝐿8. As we proceed to consider longer precondition
traces, the simplicity criteria soon becomes insu#cient to distinguish between precondition traces.
Here are two traces of four symbolic events that can be induced from the precondition automaton
and thus equally encapsulate a valid prestate of remove:

↗Nxt.put 𝑁 𝑂↘(⊋↗Nxt.put 𝑁 !𝑂↘)3 (repeated 3 times)

↗Nxt.put 𝑁 𝑂↘↗Nxt.put 𝑁 !𝑂↘↗Nxt.put 𝑁 𝑂↘(⊋↗Nxt.put 𝑁 !𝑂↘)
We know from before that the erroneous execution path leading to 𝐿8 requires at least two Val.put
events but the later trace can only admit one Val.put event. In this case, symbolic derivatives
guide SE to "rst consider the former trace when executing remove. This behavior arises from
symbolic derivatives’ tendency to maximize “progress” when inducing traces from the precondition
automaton. As symbolic derivatives facilitate the exploration within the latent SFA structures of
precondition automata, this tendency manifests in several ways: (1) consistently select the states
closer to the accepting state; (2) avoid unnecessarily transiting back to non-accepting states, and;
(3) steer clear of generating the stagnation pattern of "setting", "unsetting", and "resetting". In the
case of the precondition automaton shown in Fig. 2a, the execution tends to move from 𝑅0 to 𝑅1
via ↗Nxt.put 𝑁 𝑂↘ and stays at 𝑅1. Intuitively, the former trace induced in the described fashion
encapsulates a relatively more permissive state that potentially leads to more interesting feasible
paths being explored, including the one that leads to the error state 𝐿8.

Derivative-Guided Falsi!cation. In addition to intelligently enumerating precondition traces,
symbolic derivatives can guide the symbolic execution of remove itself, by again exploiting the
latent SFA structure of the speci"cation. Speci"cally, they allow our symbolic execution to relate
method invocations in remove to the transitions in the postcondition automaton (Fig. 2b). Consider

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.



50:10 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

the symbolic execution tree of remove in terms of operations over symbolic variables, as depicted in
Fig. 3. Each program point is associated with a state in the postcondition automaton that e!ectively
determines the set of future traces (i.e., sequences of future actions) that are (un)safe to explore.
The symbolic execution of remove begins with the initial state 𝑅2 of the postcondition automaton
because it admits all traces of actions that remove is safe to perform. As remove traverses the input
linked list via repetitive get invocations before unsafely invoking Nxt.put, symbolic derivatives
intelligently determine that the future safe traces after those get invocations are also represented
by 𝑅2. This is because 𝑅2 → 𝑅2 is the only outgoing transition from 𝑅2 that is compatible with
get actions. Recall the frontier state 𝐿7 before the unsafe invocation of Nxt.put from before: the
past traces of actions already determine 𝑆0 ω 𝑁 and 𝑆2 = 𝑂. Then our SE procedure can indeed
determine that ↗Nxt.put 𝑆0 𝑆2↘ is unsafe because it is compatible with the transition 𝑅2 → ⇐, which
happens to be the only compatible outgoing transition from 𝑅2. Note that even if remove continues
traversing the linked list after removing the "rst found element via a recursive call to loop, the
symbolic derivatives guide SE to avoid unpro"tably unrolling the loop because any future action is
unsafe. In contrast, the naïve trace-based SE described in Section 2.2 would wastefully relate each
explored execution path of remove with traces in the postcondition automaton.
To conclude this section, the main contribution of this paper is a new symbolic execution

procedure that computes such symbolic derivatives as symbolic execution proceeds to maintain a
trace of symbolic events that witness the current execution path and its relationship with the safety
property, in an attempt to accelerate the search for a feasible execution that violates the property.

3 Preliminaries
The SFA representations of speci"cations expressed in LTL𝐿 [De Giacomo and Vardi 2013] facilitate
the discussion in Section 2. To properly formulate the relationship between traces admissible by
LTL𝐿 formulae and SFAs (see Section 5), however, we need to introduce regular expressions. The
language of regular expressions (RE) is strictly more expressive for representing traces than LTL𝐿
and enjoys an important closure property under the classic derivative computation [Brzozowski
1964]. In this section, we present symbolic regular expressions (SREs) whose atoms are predicates,
show how to express common temporal modalities from LTL𝐿 in terms of RE operations, and relate
classic derivatives with states in "nite state automata.

E"ective Boolean Algebras. Tuple (ω,ε, !_",⇔,⇑,⇒,≃,¬) de"nes E"ective Boolean Algebra (EBA
[Veanes 2013]) where ω is a set of domain elements and ε is a set of predicates, closed under the
Boolean connectives with ⇔,⇑ ↓ ε. The denotation of 𝑋,𝑌 ↓ ε are provided by !_":ε → 2ω where
!⇔" = {} !⇑" = ω !𝑋 ⇒𝑌" = !𝑋" ↑ !𝑌" !𝑋 ≃𝑌" = !𝑋" ↖ !𝑌" !¬𝑋" = ω/!𝑋"

Traces. Finite sequences of elements 𝑍, 𝑎 from domain ω are called traces 𝑏 . Let 𝑐 be the empty
trace and 𝑏1 · 𝑏2 be the associative concatenation of 𝑏1 and 𝑏2. We write 𝑏1𝑏2 for 𝑏1 · 𝑏2 when it
is clear from the context that juxtaposition stands for concatenation. Following the convention,
we further denote that ω(0) = {𝑐}, ω(𝑀+1) = ω · ω(𝑀 ) , for 𝑃 ↙ 0, and ω∝ =

⋃
𝑀↙0 ω

(𝑀 ) , where
𝑑1 · 𝑑2 = {𝑏1𝑏2 | 𝑏1 ↓ 𝑑1, 𝑏2 ↓ 𝑑2} for 𝑑1 ′ ω∝ and 𝑑2 ′ ω∝. Lastly, we write 𝑑∝ for the closure of 𝑑
under concatenation when it is clear from the context that 𝑑 ′ ω∝.

Symbolic Regular Expressions. We de"ne Symbolic Regular Expressions (SRE) modulo Boolean
Algebra (ω,ε, !_",⇔, •,∞,∈,⊋) such that SREs use literals 𝑒 from ε as predicates over these char-
acters, i.e., !𝑒" ′ ω, and accept traces of characters from alphabet ω. The top literal is denoted by •
following the convention of regular expressions. Note that, to avoid later confusion with boolean
predicates, we adopt a di!erent set of notations for the boolean connectives. The syntax of SREs
is then de"ned by the following operations: empty set (∋), null (𝑓), literals (𝑒), Kleene Star (R∝),
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concatenation (R1 · R2), negation (¬R), conjunction (R1 ≃ R2), and disjunction (R1 ⇒ R2).
R ::= ∋ | 𝑓 | 𝑒 | R∝ | R1 · R2 | ¬R | R1 ≃ R2 | R1 ⇒ R2

Abusing the notation !_", the denotation of SREs, !R" ′ ω∝, is recursively de"ned as:
!∋" = {} !𝑓" = {𝑐} !R∝" = !R"∝ !R1 · R2" = !R1" · !R2"

!¬R" = ω∝ \ !R" !R1 ≃ R2" = !R1" ↖ !R2" !R1 ⇒ R2" = !R1" ↑ !R2"
Following the denotation of SREs, we write R1 ! R2 for !R1" ′ !R2" and R1 △ R2 for !R1" = !R2".

Conversion from LTL𝐿 to SRE. Interestingly, common temporal modalities from LTL𝐿 can be
expressed in SRE. As the leaf nodes in LTL𝐿 formulae are literals 𝑒 , which is expressible in SRE,
we provide the translation semantics of common temporal operators, assuming that the operands
have already been converted to SREs, as follows:
XR ! • · R 𝑒UR ! 𝑒∝ · R FR ! •∝ · R GR ! ¬(•∝ · ¬R) 𝑒WR ! ¬(•∝ · R) ⇒ (𝑒∝ · R)

That is, XR (next) holds if R accepts the trace starting from the next position; 𝑒UR (until) holds
if there exists such a position that R accepts the following trace and 𝑒 holds until that position;
FR ("nally) holds if there exists such a position that R accepts the following trace; GR holds if
there does not exist such a position that R rejects the following trace, and; 𝑒WR (weak until) holds
if either there does not exist such a position that R accepts the following trace, or 𝑒 holds until
such a position. For simplicity, we limit the "rst operand of U and W to be a single literal 𝑒 , which
su#ces for common cases found in the ADT speci"cations we consider, including the modalities
used in our evaluation (Section 7). We directly use SRE in the rest of the paper.

Derivatives of SRE. A derivative is a notion from language theory. Given a language, say de"ned
by an SRE R, and a string 𝑏 , the derivative operation returns a new language accepting all strings
that are accepted by R when appended to 𝑏 , which can be thought of as a pre!x to those strings.

!d𝑅R" = {𝑏 ↔ | 𝑏 · 𝑏 ↔ ↓ !R"}
Following the literature on derivatives of regular expressions [Antimirov 1995; Berry and Sethi
1986; Brzozowski 1964], we "rst inductively de"ne a nullable predicate 𝑔 (R) that determines if R
accepts the empty string. That is, 𝑔 (R) i! 𝑐 ↓ !R".

𝑔 (𝑓) = 𝑔 (R∝) = ⇑ 𝑔 (∋) = 𝑔 (𝑒) = ⇔ 𝑔 (¬R) = ¬𝑔 (R)
𝑔 (R1 · R2) = 𝑔 (R1 ≃ R2) = 𝑔 (R1) ≃ 𝑔 (R2) 𝑔 (R1 ⇒ R2) = 𝑔 (R1) ⇒ 𝑔 (R2)

Then the derivatives of SREs follow and can be computed recursively via the following rules:
d𝑆R = R d𝑇𝑅R = d𝑅d𝑇R d𝑇∋ = d𝑇𝑓 = ∋ d𝑇 (R∝) = d𝑇R · R∝

d𝑇 𝑒 =

{
𝑓 if 𝑍 ↓ !𝑒"
∋ if 𝑍 ε !𝑒"

d𝑇 (R1 · R2) =
{
(d𝑇R1 · R2) ⇒ d𝑇R2 if 𝑔 (R1)
d𝑇R1 · R2 if ¬𝑔 (R1)

d𝑇 (¬R) = ¬d𝑇R d𝑇 (R1 ≃ R2) = d𝑇R1 ≃ d𝑇R2 d𝑇 (R1 ⇒ R2) = d𝑇R1 ⇒ d𝑇R2
Computing the derivative of a regular expression is a well-known technique for constructing

an automaton that accepts the same language as the given regular expression. The construction
closely follows a property of regular expressions — every SRE R can be written in the form of a
disjunction as follows:

Rnullable ⇒
∨
𝑇↓ω

𝑍d𝑇R where Rnullable is 𝑓 if 𝑔 (R),∋ otherwise.

Informally, starting with the initial state, each disjunct 𝑍d𝑇R denotes a transition to a new state
with label 𝑍 . If 𝑔 (R), then we mark the current state as an accepting state. Iteratively, we repeat the
same procedure on the new states with the corresponding derivative d𝑇R until no new state can
be added. Intuitively, each state 𝑅𝑈 in the constructed automaton is denoted by a derivative (also in
SRE) of the original R– the derivative accepts the same language as the constructed automaton
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with its initial state set to 𝑅𝑈 . This can be manifested by a di!erent disjunctive form
∨

𝑅↓ω∝ 𝑏d𝑅R.
For each disjunct 𝑏d𝑅R, if d𝑅R is not empty, then 𝑏 denotes a path from the accepting state to the
state denoted by d𝑅R. Hence, whether d𝑅R denotes an accepting state determines if R accepts 𝑏 :

𝑏 ↓ !R" i! 𝑔 (d𝑅R)
However, ω often contains a large if not in"nite number of symbols and thus enumerating over all
symbols to build an automata is ine#cient at best, and impossible in the general case.Mintermization
solves this problem by constructing a "nite set of equivalence classes over the in"nite domain ω
such that all literals 𝑒 can be mapped to elements in this "nite set ([D’Antoni and Veanes 2014;
Veanes et al. 2010]). Then, following a similar procedure of constructing automata from regular
expressions, one may construct an equivalent SFA where transtitions between states are labeled
by equivalence classes. We will present the characterization of symbolic derivatives in Section 5
as a device to exploit SREs’ latent SFA structures without upfront mintermization and later its
computation in Section 6.

4 Trace-Based Symbolic Execution

Variable 𝑀,𝑉, . . . Symbolic Variable 𝑀𝑉 ,𝑉𝑉 , . . . Data Constructor 𝑕
Primitive Operator 𝑖𝑗 E!ectful API of Representation Type f, g ↓ ϑ

Simple Type 𝑘 ::= 𝑇𝑆𝑙𝑚 | 𝑂𝑖𝑖𝑊 | 𝑙𝑆𝑚 | . . . | ▽ 𝑘 | + 𝑕 𝑘
Constant 𝑛 ::= () | B | Z | . . . | (𝑛) | 𝑕 𝑛
Symbolic First-Order Value 𝑅 ::= 𝑛 | 𝑀 | 𝑀𝑉 | (𝑅) | 𝑕 𝑅 | op 𝑅
Boolean Formula 𝑋,ϖ ::= 𝑅 | ⇔ | ⇑ | ¬𝑋 | 𝑋 ≃ 𝑋 | 𝑋 ⇒ 𝑋
Symbolic Event 𝑒 ::= ↗𝑀ret ⇓ f 𝑀arg | 𝑋↘ | ⊋𝑒 | 𝑒 ∈ 𝑒 | 𝑒 ∞ 𝑒
Symbolic Value 𝑄 ::= 𝑀 | 𝑅 | (𝑄) | fun 𝑀 . 𝑈 | fix 𝑜 . fun 𝑀 . 𝑈
Symbolic Expression 𝑈 ::= 𝑄 | ?𝑉 | abort | assume 𝑋 | admit R | append R

| let 𝑀 = 𝑄 𝑄 in 𝑈 | let 𝑀 = 𝑈 in 𝑈 | 𝑈 ̸ 𝑈

𝑈1; 𝑈2 ! let 𝑀 = 𝑈1 in 𝑈2 for fresh 𝑀
assert 𝑋 ! (assume ¬𝑋 ; abort) ̸ assume 𝑋
affirm R ! (admit ¬R; abort) ̸ admit R

Fig. 4. Syntax of the core language.

We "rst introduce a naïve variant of our symbolic execution framework for falsifying functional
ADT implementations that interact with an underlying e!ectful representation type. Symbolic
execution is de"ned on a core functional language with explicit constructs for generating symbolic
values and expressing speci"cations of two kinds: formulae ϖ from decidable theories amenable to
SMT solving, which are standard for symbolic execution techniques, and trace-based speci"cations
R expressed as symbolic regular expressions, which is the novelty of our framework. Fig. 4 presents
the syntax of our core language, where the expression 𝑈 is expressed in monadic normal form
(MNF) [Hatcli! and Danvy 1994], a variant of A-normal form (ANF) [Flanagan et al. 1993] that
permits nested let-bindings. Recursive functions take the form of fix 𝑜 . fun 𝑀 . 𝑈 using an explicit
"xpoint construction, and control $ow is modeled by nondeterministic choice ̸ together with an
assume construct. The symbolic constructs in this language, including assume, will be discussed
throughout the rest of the section. Fig. 5 formalizes the naive symbolic execution of the core
language as a small-step, substitution-based operational semantics over symbolic states (ϖ,R, 𝑈).
In this section, we "rst introduce symbolic execution of pure functional programs and then extend
it with the capability to reason over traces that interact with an ADT’s underlying representation
type.
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Symbolic State 𝐿 ::= (ϖ,R, 𝑈)
fresh 𝑊𝐿

(ϖ, R, ?𝐿 ) ã→ (ϖ, R,𝑊𝐿 )
G!"S#$

(ϖ, R, abort;𝑋 ) ã→ (ϖ, R, abort)
A%&’(P’&)

(ϖ, R, assume 𝑌 ) ã→ (ϖ ≃ 𝑌, R, ( ) )
A**+$! (

ϖ, R, admit R↔) ã→
(
ϖ, R ≃ R↔, ( )

) A,$-(

(ϖ, R, append Re! ) ã→ (ϖ, R · Re!, ( ) )
A))!",

(ϖ, R, let 𝑊 = 𝑁 in 𝑋 ) ã→ (ϖ, R, 𝑋 [𝑊 ↦→ 𝑁 ] )
L!(V./

(ϖ, R, 𝑋1 ) ã→
(
ϖ↔, R↔, 𝑋↔1

)
(ϖ, R, let 𝑊 = 𝑋1 in 𝑋2 ) ã→

(
ϖ↔, R↔, let 𝑊 = 𝑋↔1 in 𝑋2

) L!(E0)
𝑈 = 1, 2

(ϖ, R, 𝑋1 ̸ 𝑋2 ) ã→ (ϖ, R, 𝑋𝑀 )
C1&-2!

𝑁𝑁 = fun 𝑊 . 𝑋1(
ϖ, R, let 𝑍 = 𝑁𝑁 𝑁 in 𝑋2

)
ã→ (ϖ, R, let 𝑍 = 𝑋1 [𝑊 ↦→ 𝑁 ] in 𝑋2 )

L!(A))F+"

𝑁𝑁 = fix 𝐿 . fun 𝑊 . 𝑋1 𝑁↔𝑁 = fun 𝐿 . 𝑋1 [𝑊 ↦→ 𝑁 ]
(
ϖ, R, let 𝑍 = 𝑁𝑁 𝑁 in 𝑋2

)
ã→

(
ϖ, R, let 𝑍 = 𝑁↔𝑁 𝑁𝑁 in 𝑋2

) L!(A))F-0

Fig. 5. Naive trace-augmented semantics.

To enable symbolic reasoning, the language supports symbolic variables 𝑀𝑉 , which stand for
constants 𝑛 of type 𝑘 . In contrast to program variables 𝑀 , symbolic variables are internal to symbolic
execution: they are never written by developers but are generated by the ?𝑉 construct during
symbolic execution (Rule G!"S#$). The 𝑘 subscript can be omitted whenever it is clear from
the context; 𝑘 denotes simple types (primitive types, e.g., 𝑇𝑆𝑙𝑚 and 𝑙𝑆𝑚 , product types ▽ 𝑘 , and
user-de"ned data types + 𝑕 𝑘) but not function types. Variables, symbolic variables, and constants,
when composed by tuple constructors (. . . ), data constructors 𝑕 , and primitive operators op , build
up to symbolic ("rst-order) values. Then, Boolean symbolic values, when composed by logical
connectives, build up to Boolean formulae ϖ. Since primitive operators are drawn from decidable
"rst-order theories, e.g., arithmetic operators, or uninterpreted functions with user-provided axioms,
the satis"ability of Boolean formulae can be straightforwardly discharged to SMT queries.

De!nition 4.1 (Denotation of Boolean Formulae). Let 𝑝 denote an interpretation of symbolic
variables as constants and𝑝 (ϖ) denote the Boolean formulaϖwith its symbolic variables substituted
for constants according to 𝑝 . Then, the denotation of a closed Boolean formula ϖ, where all variables
are symbolic, is the set of interpretations 𝑝 such that 𝑝 (ϖ) holds, i.e., !ϖ" = {𝑝 | 𝑝 (ϖ)}.
Now, we may introduce the symbolic execution of pure functional programs, in which case

each symbolic state (ϖ, 𝑈) consists of a closed Boolean formula ϖ representing the current path
condition, and a closed expression 𝑈 — all variables are bound by let, fun, or fix. The path condition
collects all the conditions that need to be satis"ed for the symbolic state to be reachable, i.e., have a
corresponding concrete state. The initial path condition is true, denoted by⇑. Let 𝑈 be the expression
to be reduced. Then the initial symbolic state is (⇑, 𝑈). The reduction rules between symbolic states
are described in Fig. 5 if we omit rules related to R. Rule A**+$! describes the augmentation of the
current path condition with the argument of assume, which is also a Boolean formula 𝑋 . In contrast
to path conditions, we use 𝑋 for Boolean formulae that may involve program variables bound in
expressions, which will be substituted for closed symbolic values via Rule L!(V./. Each assume
along an execution path further restricts the state space represented by the path condition. Suppose
a path condition ϖ is satis"able, i.e., there exists 𝑝 ↓ !ϖ". Then, a sequence of reductions from (⇑, 𝑈)
to (ϖ, abort), where abort represents a failure in execution, witnesses a feasible execution path of
𝑈 that leads to a failure. In practice, abort is rarely written by developers and can be expressed
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using assert, which is de"ned as syntactic sugar (Fig. 4). Whether a path condition ϖ passes an
assertion assert 𝑋 is e!ectively determined by the satis"ability of ϖ ≃ ¬𝑋 .

To reason about an ADT’s interaction with underlying representation types, we equip symbolic
execution with the capability to model such interactions extensionally, by recording the history
of calls to the representation type’s methods, along with their argument and return values. In
particular, interactions are captured in symbolic regular expressions (SRE) R whose literals denote
sets of such API calls to the representation types. Recall in Section 3, such literals are elements
from EBA (ω,ε, !_",⇔, •,∞,∈,⊋). Here, ω stands for the domain of events, denoted by 𝑛ret ⇓ f 𝑛arg,
and ε includes all the symbolic events 𝑒 , each denoting set of events, according to the syntax shown
in Fig. 4. An atomic symbolic event ↗𝑀ret ⇓ f 𝑀arg | 𝑋↘ denotes the calls to f such that the arguments
𝑛arg and the return value 𝑛ret satisfy the quali"er 𝑋 :

!↗𝑀ret ⇓ f 𝑀arg | 𝑋↘" ! {𝑛ret ⇓ f 𝑛arg | [𝑀arg ↦→ 𝑛arg, 𝑀ret ↦→ 𝑛ret]𝑋}
The boolean connectives have standard denotation as shown in Section 3. Notice that the scope
of 𝑀arg and 𝑀ret is limited to the quali"er 𝑋 of the symbolic event. We omit such variables local to
the symbolic event when they are either obvious from or irrelevant to the context. For example,
we always use 𝑃𝑈𝑉 and 𝑄𝑁𝑊 to denote keys and values of the calls to put and get from key-value
stores, with the result of put omitted. And similar to Section 2, we write ↗put 𝑃 𝑄↘ for ↗put 𝑃𝑈𝑉 𝑄𝑁𝑊 |
𝑃𝑈𝑉 = 𝑃 ≃ 𝑄𝑁𝑊 = 𝑄↘ and ↗put !!̂𝑃 𝑄↘ for ↗put 𝑃𝑈𝑉 𝑄𝑁𝑊 | 𝑃𝑈𝑉 ω 𝑃 ≃ 𝑄𝑁𝑊 = 𝑄↘. An atomic symbolic event
is closed if all variables in its quali"er are either symbolic or local to the event; a symbolic event
𝑒 is closed if all its atomic symbolic events are, and; an SRE is closed if all its symbolic events are.
The denotation does not apply to all closed SREs but only those SREs without symbolic variables.
For SREs that reference symbolic variables, we can only interpret them after interpreting these
symbolic variables in a way consistent with the path condition if any.
By augmenting symbolic states with SRE Rcurr to represent the events that have happened, we

de"ne a reduction semantics over (ϖ,Rcurr, 𝑈) as shown in Fig. 5. We refer to such an SRE Rcurr
as the current context of the execution from the associated symbolic state. In addition, we refer to
SREs as contexts or e"ects of a method (ADT’s or representation type’s) depending on whether they
describe admissible traces prior to calling the method or traces the method is supposed to produce.
Similar to path conditions, the SREs that represent the current context of symbolic states are always
closed. De"nition 4.2 gives the reachability of a symbolic state 𝐿 based on the satis"ability of its
path condition ϖ and its current context Rcurr.

De!nition 4.2 (Reachability). isSat (ϖ,Rcurr) i! there exists 𝑝 ↓ !ϖ" such that !𝑝 (Rcurr)" ω ⇐.

Henceforth, we omit the carat (ˆ ) on symbolic variables 𝑀 and assume all variables are symbolic
except for those variables bound in expressions.
For a symbolic state (ϖ,Rcurr, 𝑈), its path condition ϖ e!ectively captures the history of pure

computation up to this state while its current context Rcurr captures the history of e!ectful compu-
tation. Because the events in Rcurr are quali"ed with reference to the symbolic variables in ϖ, both
structures synergyistically enable the recording of a su#cient condition that allows a computation
to reach the symbolic state.

Example 4.3. The remove method from Fig. 1 can be rewritten in our core language, with the
conditional expression represented by a combination of assume and choice operation ̸, as follows:

𝑈remove ! fun 𝑞𝑕 . fun 𝑈𝑊𝑈𝑟. (assume 𝑞𝑕 = null;𝑞𝑕) ̸ (assume 𝑞𝑕 ω null; . . . )
Recall that the speci"cation in Fig. 1 requires remove to be called in a symbolic state where node 𝑁
is linked to node 𝑂 as its successor. Its precondition can be written as an SRE thus:

R𝑂ñ𝑃 ! •∝ · ↗Nxt.put 𝑁 𝑂↘ · (⊋↗Nxt.put 𝑁 _↘)∝
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This context admits traces in which a call to Nxt.put is made on key 𝑁 and value 𝑂, followed by
subsequent events that do not include calls to Nxt.put with key 𝑁. Hence, the context encapsulates
the intended requirement on symbolic states prior to calling remove.
The speci"cation in Fig. 1 also requires that remove, when called under the speci"ed context,

can link a new node other than 𝑁 to 𝑂 only when 𝑂 has been unlinked from 𝑁. The postcondition
can be written as an SRE parameterized by 𝑁 and 𝑂 thus:

R𝑂ò𝑃 ! ((⊋↗Nxt.put !𝑁 𝑂↘)∝ · ↗Nxt.put 𝑁 !𝑂↘ · •∝) ⇒ (⊋↗Nxt.put 𝑁 !𝑂↘)∝
The e!ect of remove admits traces where no node other than 𝑁 is linked to 𝑂 (via ⊋↗Nxt.put !𝑁 𝑂↘)
before 𝑁 is unlinked from 𝑂 (via ↗Nxt.put 𝑁 !𝑂↘), or 𝑁 is never unlinked from 𝑂 (via ⊋↗Nxt.put 𝑁 !𝑂↘). If
an execution of remove produces traces not admissible to R𝑂ò𝑃 , then we conclude that some node,
as witnessed by 𝑂, may unexpectedly have two predecessors at some point during the execution. ⫅̸

Similar to how path conditions are augmented by assume constructs, the current contexts of
executions are augmented by two constructs, admit Rpast and append Re! . The former, admit,
combines the current context Rcurr and its argument Rpast with conjunction, as described by Rule
A,$-(; thus, it restricts the traces of past events in Rcurr to only those admissible by Rpast. In
contrast, append concatenates the current context Rcurr with the argument Re! , as described by
Rule A))!",; thus it records new events produced during symbolic execution. The initial context
before starting the symbolic execution is 𝑓, indicating that no event has happened yet.

Now, we illustrate that a pair of append and affirm constructs the translation of the speci"cation
attached to an ADT method, capturing the safety property. Recall from Fig. 1 that the speci"cation
includes three key components, ghost variables, required context (context), and expected e!ect
(effect). Intuitively, the speci"cation states that when being executed in a required context (with
possible reference to both ghost variables andmethod parameters), themethodwith the speci"cation
attached should produce events in compliance with the expected e!ect. The append helps set up
this required context while the affirm is responsible for a#rming that the context upon exiting
the method complies with its argument Rpost by conjoining the context Rcurr with ¬Rpost. The
satis"ability of Rcurr ≃ ¬Rpost then witnesses a violation of Rpost in the execution manifested by
Rcurr. To falsify the implementation of the ADT method against its speci"cation, we construct a
harness 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 2 that wraps a call to the ADT method with such a pair of append and affirm.

Example 4.4. Continuing from Example 4.3, the speci"cation of
remove is converted into a harness 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 . First, symbolic variables
𝑁 and 𝑂 are generated (by “?” with the same name as the program
variables) to denote two arbitrary nodes. Second, symbolic variables
𝑞𝑕 and 𝑇 are generated (again by “?”) to denote the input to remove.
Third, the required context R𝑂ñ𝑃 of remove is appended to the
initial context 𝑓. Lastly, after calling remove, the postcondition of

𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 !
let 𝑁,𝑂 = ?node, ?node in
let 𝑞𝑕,𝑇 = ?node, ?elem in
append R𝑂ñ𝑃 ;
remove 𝑞𝑕 𝑇;
affirm R𝑂ñ𝑃 · R𝑂ò𝑃

the harness is a#rmed to check for any violation during the execution of the harness. Notably, the
postcondition prepends the required context R𝑂ñ𝑃 to the expected e!ect R𝑂ò𝑃 . ⫅̸

In contrast, pair(s) of admit and append construct the translation of the speci"cations attached to
APIs of representation types, providing an extensional and underapproximate model for their be-
havior. And the admit relates the context require by the API with the current context by conjoining
them while the following append records the expected traces of events produced by the API.

Example 4.5. Taking the same form as the required context R𝑂ñ𝑃 of remove from Example 4.3,
the required context of Nxt.get is R𝑑ñ𝑒 , admitting traces where node 𝑠 (the argument) is linked to
2See supplementary material for details on the translation of source language expressions to core language ones.
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node 𝑚 (the return value). And the expected e!ect of the Nxt.get is a symbolic event ↗𝑚 ⇓ Nxt.get 𝑠↘.
And thus, calls to Nxt.get can be replaced by a function 𝑈Nxt.get de"ned as follows:

𝑈Nxt.get ! fun 𝑠 . let 𝑚 = ?node in admit R𝑑ñ𝑒 ; append ↗𝑚 ⇓ Nxt.get 𝑠↘; 𝑚
Similarly, let R𝑐:𝑓 ! •∝ · ↗Val.put 𝑆 𝑇↘ · (⊋↗Val.put 𝑆 _↘)∝ denote the required context of Val.get,
where node 𝑆 (the argument) stores an element 𝑇 (the return value). Correspondingly, calls to
Val.get are replaced by a function 𝑈Val.get de"ned as follows:

𝑈Val.get ! fun 𝑆. let 𝑇 = ?elem in admit R𝑐:𝑓 ; append ↗𝑇 ⇓ Val.get 𝑆↘; 𝑇
Here, the calls to get always succeed because our goal is to falsify the implementation of remove
with respect to the speci"ed safety property. ⫅̸

By replacing API calls in the direct translation of the ADT method, e.g., 𝑈remove from Example 4.3,
with symbolic expressions that augment the context of execution using admit and append, we now
have an implementation 𝑈𝑏𝑋𝑔𝑕𝑁𝑋 of the ADT method remove that is ready to be plugged in 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑
for symbolic execution.

Example 4.6. By substituting the call to remove for 𝑈remove (Example 4.3) with Val.get and Nxt.get
respectively substituted for 𝑈Val.get and 𝑈Nxt.get (Example 4.5), the harness 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 (Example 4.4) is
closed and ready for symbolic execution. Initially, the symbolic state is (⇑, 𝑓, 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 ). The required
context R𝑂ñ𝑃 of remove is "rst appended to 𝑓. Following the second branch, 𝑆0 ω null augments
the path condition. As Val.get is called on 𝑆0, 𝑆0 substitutes 𝑆 in the body of 𝑈Val.get and a fresh
symbolic variable 𝑇0 is generated to represent the element stored in 𝑆0. The symbolic state becomes

(𝑆0 ω null,R𝑂ñ𝑃, let 𝑇
↔ = admit R𝑐0:𝑓0 ; append ↗𝑇0⇓Val.get 𝑆0↘; 𝑇0 in . . . )

As 𝑇0 is returned to the top level and substitutes 𝑇↔, the current context becomes R𝑂ñ𝑃 ≃ R𝑐0:𝑓0 ·
↗𝑇0⇓Val.get 𝑆0↘ (≃ binds SREs tighter than ·). Following the nested second branch, the path
condition becomes 𝑆0 ω null ≃ 𝑇0 ω 𝑇. As we enter the loop and follow the execution path
illustrated in Section 2.2, we (1) get the successor of 𝑆0, 𝑆1, (2) get the element stored in 𝑆1, 𝑇1,
(3) assume𝑇1 = 𝑇, (4) get the successor of 𝑆1, 𝑆2, and (5) remove 𝑆1 by linking 𝑆0 to 𝑆2. The symbolic
state becomes (ϖbad,Rbad, affirm R𝑂ñ𝑃 · R𝑂ò𝑃), where

ϖbad ! 𝑆0 ω null ≃ 𝑇0 ω 𝑇 ≃ 𝑆1 ω null ≃ 𝑇1 = 𝑇 and
Rbad ! ((((R𝑂ñ𝑃≃R𝑐0:𝑓0 · ↗𝑇0⇓Val.get 𝑆0↘)≃R𝑐0ñ𝑐1 · ↗𝑆1⇓Nxt.get 𝑆0↘)

≃R𝑐1:𝑓1 · ↗𝑇1⇓Val.get 𝑆1↘)≃R𝑐1ñ𝑐2 · ↗𝑆2⇓Nxt.get 𝑆1↘) · ↗Nxt.put 𝑆0 𝑆2↘
Rbad denotes the traces that can be produced following the execution path. To show that the
a#rmation may fail, it is su#cient to "nd an interpretation for the symbolic variables such that
the path condition ϖbad holds and there exists a trace included in Rbad but excluded from the
postcondition of the harness, i.e., isSat (ϖbad,Rbad ≃ ¬(R𝑂ñ𝑃 · R𝑂ò𝑃)). ⫅̸

As illustrated in Example 4.6, the size of the SRE that represents the current context of the execution
quickly blows up during symbolic execution. This in turn makes the symbolic a#rmation check at
the end of each execution path potentially very expensive as we quantify in Section 7.

To conclude this section, we lift the affirm check at the end of the harness progress and regard it
as a falsi"cation query on the harness program without the affirm statement. Then De"nition 4.7
describes a falsi"cation problem in terms of this trace-based symbolic execution framework.

De!nition 4.7 (Naïve Falsi"cation). Given a safety property Rpost. If (⇑, 𝑓, 𝑈) ã→∝ (ϖ,Rcurr, 𝑄) and
isSat

(
ϖ,Rcurr ≃ ¬Rpost

)
then this execution of 𝑈 is falsi"ed with respect to Rpost.
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5 Symbolic Execution with Symbolic Derivatives
The ine#ciency of the naive semantics stems from its failure to recognize regularity — the capacity
of speci"cations to be represented as automata structures — during symbolic execution. We can
exploit this regularity by underapproximating the required context or the expected e!ect of method
calls. This approximation facilitates a derivative computation, e!ectively emulating state transitions
in the SFAs associated with SREs. Speci"cally, the underapproximation takes the form of symbolic
traces ϱ, where only a subset of operations from the SRE (with the same denotation) are allowed:
empty trace (𝑓), symbolic event (𝑒), and concatenation (ϱ1 · ϱ2). Then, a derivative-based notion
of symbolic state 𝐿D that underapproximates a symbolic state 𝐿 , besides the expression 𝑈 under
execution, is given by (i) ϖ and ϱ to encapsulate the execution path that leads to 𝐿D ; along with
(ii) Rcont that predicts the traces allowed to be produced in the continuation of the execution in
compliance with the safety property, dubbed continuation e"ect.
Symbolic Trace ϱ ::= 𝑓 | 𝑒 | ϱ · ϱ Derivative-Based Symbolic State 𝐿D ::= (ϖ,ϱ,Rcont, 𝑈)
In this section, we present (1) symbolic derivatives that allow us to e!ectively explore and thus exploit
the automata structures of speci"cations, without appealing to their calculation (see Section 6), and
(2) a derivative-based semantics that leverages this notion to facilitate symbolic execution over 𝐿D
as well as the falsi"cation of a given safety property that is both sound and complete with respect
to the naïve semantics given in the previous section.

5.1 Symbolic Derivatives
SREs that represent the context of the current execution or the arguments to admit and appendmay
refer to symbolic variables that are also constrained by path conditions, as discussed in Section 4.
In what follows, we "rst revisit notions on SREs from Section 3 with such symbolic variables
left uninterpreted, i.e., treating symbolic variables as abstract symbols whose interpretation is
unknown. We then de"ne symbolic derivatives of such SREs, which may also refer to symbolic
variables involved in those SREs.

First, the inclusion and equivalence relationship between two SREs R1 and R2 is given by
De"nition 5.1 and De"nition 5.2 such that the relationship holds under any interpretation of
symbolic variables involved in R1 and R2.

De!nition 5.1 (Inclusion). R1 ! R2 i! !𝑝 (R1)" ′ !𝑝 (R2)" for all 𝑝 .
De!nition 5.2 (Equivalence). R1 △ R2 i! !𝑝 (R1)" = !𝑝 (R2)" for all 𝑝 .
Second, the nullable operation 𝑔 de"ned over SREs in Section 3, when applied to any symbolic
event 𝑒 , returns false irrespective of 𝑒 ’s quali"ers and any symbolic variables involved. Hence, the
nullable operation 𝑔 (R) determines if R accepts the empty trace 𝑐 regardless of the interpretation
of its symbolic variables (Lemma 5.3).

Lemma 5.3. 𝑔 (R) i! 𝑔 (𝑝 (R)) for all 𝑝 . 3

Third, we need to revisit the notion of pre"xes of SREs. Recall in Section 3, for an SRE R that
does not involve symbolic variables, any concrete trace 𝑏 can be a pre"x of R since the derivative
d𝑅R, which contains all concrete traces that are accepted by R when appended to 𝑏 , is always
well-de"ned. To account for symbolic variables involved in R, we consider symbolic traces ϱ, which
may also involve these symbolic variables, as a consolidated form of pre"xes of R. De"nition 5.4
gives the criteria that a valid pre"x ϱ of R has to meet.

De!nition 5.4. ϱ is a pre"x of R i! there exists R↔ s.t. d𝑅𝑝 (R)=𝑝 (R↔) for all 𝑏↓!𝑝 (ϱ)" for all 𝑝 .
3All proofs are deferred to the full version of this paper [Yuan et al. 2024b].
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Intuitively, ϱ quali"es as a pre"x of R if it represents a collection of partial runs of an SFA associated
with R. These partial runs must begin with the SFA’s start state and end at any arbitrary state.
Notably, the ending state does not need to be accepting and may even be a dead state, from which
no accepting state is accessible. For example, recall the postcondition automaton from Fig. 2:
↗Nxt.put 𝑁 !𝑂↘ and ↗Nxt.put !𝑁 𝑂↘ are both valid pre"xes but their disjunction is not because some
runs end at 𝑅3 while the others end at the dead state denoted by ∋. We dub such singleton pre"xes
as next events.

Following the de"nition of pre"xes, we introduce symbolic derivatives in De"nition 5.5.
De!nition 5.5 (Symbolic Derivative). DϱR = R↔ i! d𝑅𝑝 (R) = 𝑝 (R↔) for all 𝑏 ↓ !𝑝 (ϱ)" for all 𝑝 .
In contrast to conventional derivatives discussed in Section 3, symbolic derivatives of R are well
de"ned only over its pre"xes (De"nition 5.4) but not arbitrary symbolic traces. And the property of
pre"xes ensures that symbolic derivatives can still be succinctly expressed as SREs with references
to symbolic variables if any. Notably, R, its pre"x ϱ, and its symbolic derivative R’ over ϱ shall
interpret any referenced symbolic variables in a consistent way; De"nition 5.5 serves as a guard
against inconsistent interpretations.

Since each valid pre"x ϱ of R establishes an equivalence class where all 𝑏 denoted by ϱ produce
the same derivative, a symbolic derivative DϱR is not only a quotient but also a residual of R
with respect to ϱ. As noted by [Pratt 1991], the quotient of R contains traces that are accepted
by R when appended to some 𝑏 denoted by pre"x ϱ, while the residual of R contains traces that
are accepted by R when appended to any 𝑏 denoted by pre"x ϱ. This residuality is manisfest by
Corollary 5.6, i.e., the concatenation of pre"x ϱ and DϱR is included in R itself.
Corollary 5.6 (Residuality). Let R↔ = DϱR. Then ϱ · R↔ ! R.
Example 5.7. Consider the expected e!ect R𝑂ò𝑃 of remove from Example 4.3, admitting traces
where either no node other than 𝑁 may be linked to 𝑂 before 𝑂 is unlinked from 𝑁, or 𝑁 is linked
to 𝑂 during the course of execution. Its next events include ↗Nxt.put 𝑁 !𝑂↘, ↗Nxt.put !𝑁 𝑂↘, and
↗Nxt.put 𝑁 𝑂↘ ∞ ↗Nxt.put !𝑁 !𝑂↘ ∞⊋↗Nxt.put↘. Their symbolic derivatives are de"ned as follows, with
their respective residuality manifested: (1) D↗Nxt.put 𝑂 "𝑃 ↘

R𝑂ò𝑃 =•∝ because any event is allowed
once 𝑂 is unlinked from 𝑁; (2) D↗Nxt.put "𝑂 𝑃 ↘R𝑂ò𝑃 =∋ because it is unsafe to link node other than
𝑁 to 𝑂 with 𝑁 linked to 𝑂, and; (3) D↗Nxt.put 𝑂 𝑃 ↘∞↗Nxt.put "𝑂 "𝑃 ↘∞⊋ ↗Nxt.put↘

R𝑂ò𝑃 =R𝑂ò𝑃 because linking
𝑁 to 𝑂 again, linking nodes other than 𝑁 and 𝑂, or get calls have no e!ect on subsequent traces
admissible by R𝑂ò𝑃 . ⫅̸

Recall that the nullablility of derivative d𝑅R determines if a concrete trace 𝑏 is accepted by R.
Given a pre"x ϱ of an SRE R, the nullability of symbolic derivative DϱR determines, as established
by Corollary 5.8, whether the symbolic trace ϱ is included in R, i.e., all runs of ϱ in R end at an
accepting state irrespective of the interpretation of symbolic variables.
Corollary 5.8. Let R↔ = DϱR. Then (1) ϱ ! R i! 𝑔 (R↔) and (2) ϱ ! ¬R i! ¬𝑔 (R↔).
Therefore, by enumerating pre"xes of R, we may sample symbolic traces included in R.
Example 5.9. Consider the required context R𝑂ñ𝑃 of remove from Example 4.3, admitting traces
where 𝑁 is linked to 𝑂 and stays pointing to 𝑂. The pre"xes of R𝑂ñ𝑃 include ↗Nxt.put 𝑁 𝑂↘ ·
(⊋↗Nxt.put 𝑁 !𝑂↘)𝑐 and ↗Nxt.put 𝑁 𝑂↘ · ↗Nxt.put 𝑁 !𝑂↘ · ↗Nxt.put 𝑁 𝑂↘ · (⊋↗Nxt.put 𝑁 !𝑂↘)𝑐 for any
number 𝑆 of repetitions, which all lead to the same symbolic derivative:

(⊋↗Nxt.put 𝑁 !𝑂↘)∝ ⇒ (↗Nxt.put 𝑁 !𝑂↘ · R𝑂ñ𝑃)
admitting traces where either no subsequent event invalidates the link between 𝑁 and 𝑂, or 𝑁 is
linked to 𝑂 again after being unlinked. The symbolic derivative is nullable because its "rst disjunct
is a Kleene Star. Therefore, all these pre"xes are included in R𝑂ñ𝑃 . ⫅̸
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ϱpast ! Rpast ϱ↔ △ ϱ ≃ ϱpast(
ϖ,ϱ,Rcont, admit Rpast

)
ã→D (ϖ,ϱ↔,Rcont, ())

DA,$-(

ϱe! ! Re! ϱnew △ ϱe! ≃ ϱprefix

(ϖ,ϱ,Rcont, append Re!) ã→D
(
ϖ,ϱ · ϱnew,DϱprefixRcont, ()

) DA))!",

Fig. 6. Selected rules of derivatve-based semantics.

5.2 Derivative-Based Semantics
Now, we facilitate symbolic executionwith symbolic derivatives. As admitRpast and appendRe! are
the only two constructs that augment contexts in symbolic states, we only present their reduction
rules in Fig. 6, exhibiting the complete set of rules in the supplementary material. In contrast to the
naïve semantics, a derivative-based semantics begins symbolic execution with the postcondition,
denoted by Rpost. Recall from Section 4, Rpost is the concatenation of the required context and
the expected e!ect attached to the ADT method to be falsi"ed. E!ectively, Rpost predicts that the
context will be set up before calling the method, and the execution of the method complies with its
speci"ed e!ect. During symbolic execution, we maintain the continuation e!ect Rcont such that it
precisely predicts the safe traces to be produced as execution continues.

Example 5.10. Consider the harness program 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 from Example 4.4. Regarding the trailing
affirm as a postcondition to be a#rmed upon "nishing each execution path, we assume some
symbolic variables 𝑁 and 𝑂 and discharge affirm from 𝑈𝑎𝑂𝑏𝑐𝑋𝑑𝑑 as part of the symbolic state. In a
derivative-based semantics, the initial symbolic state is

(⇑, 𝑓,R𝑂ñ𝑃 · R𝑂ò𝑃, let 𝑞𝑕,𝑇 = ?node, ?elem in append R𝑂ñ𝑃 ; remove 𝑞𝑕 𝑇)
where 𝑞𝑕 and 𝑇 will then immediately be replaced by symbolic variables with the same name for
demonstration’s purposes. ⫅̸

Rule DA,$-( describes the semantics of admit Rpast. Given a symbolic trace ϱ, a sequence of
symbolic events, as an underapproximation of what has happened so far following the current
execution, admit Rpast imposes constraint on ϱ, also in an underapproximated fashion. The un-
derapproximation of Rpast can be found by sampling symbolic traces ϱpast ! Rpast via symbolic
derivatives. Then the execution is forked on each ϱpast and its conjunction ϱ↔ with ϱ. Intuitively,
the conjunction ϱ↔ is the pairwise conjunction of events in ϱ and ϱpast (see Section 6 for details).
A straightforward pruning strategy then is to discard ϱpast with (1) a di!erent number of events
than ϱ or (2) an event associated with a di!erent e!ectful function than the corresponding event
in ϱ. In both cases, the conjunction ϱ↔ trivially denotes an empty set. We describe such ϱpast as
incompatible with ϱ. Note that we deliberately exclude from the compatibility check the consistency
check between quali"ers of paired symbolic events to avoid generating an excessive number of
SMT queries.

Example 5.11. Consider the naive symbolic state prior to calling Val.get on 𝑆0 from Example 4.6,
(𝑆0 ω null,R𝑂ñ𝑃, let 𝑇↔ = admit R𝑐0:𝑓0 ; append ↗𝑇0⇓Val.get 𝑆0↘; 𝑇0 in . . . ). A derivative-based
symbolic state that underapproximates this naive state is (𝑆0 ω null,ϱ𝑂ñ𝑃,R𝑂ò𝑃, . . . ), where
ϱ𝑂ñ𝑃 ! ↗Nxt.put 𝑁 𝑂↘ · (⊋↗Nxt.put 𝑁 !𝑂↘)3 ! R𝑂ñ𝑃 as shown in Example 5.9, and R𝑂ò𝑃 is the
continuation e!ect prior to the call as we will discuss shortly in Example 5.12. The admit R𝑐0:𝑓0

operation enforces the required context of the call to Val.get. A symbolic trace that underap-
proximates R𝑐0:𝑓0 and is compatible with the current context ϱ𝑂ñ𝑃 is ϱ𝑐0:𝑓0 ! ⊋↗Val.put 𝑆0 𝑇0↘ ·
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↗Val.put 𝑆0 𝑇0↘ · (⊋↗Val.put 𝑆0##𝑇0↘)2. Augmented by ϱ𝑐0:𝑓0 , the context in the symbolic state then
becomes ↗Nxt.put 𝑁 𝑂↘ · ↗Val.put 𝑆0 𝑇0↘ · (⊋↗Val.put 𝑆0##𝑇0↘ ∈ ⊋↗Nxt.put 𝑁 !𝑂↘)2. ⫅̸

Rule DA))!", describes the semantics of append Re! , where new events are to be appended to
the current symbolic trace ϱ. First, we underapproximate events to be produced by append Re! ,
again by sampling symbolic traces ϱe! ! Re! . Second, we enumerate pre"xes ϱprefix of Rcont
that are compatible with ϱe! , along with the symbolic derivative DϱprefixRcont. The execution can
be forked for each pair of ϱe! and ϱprefix. Recall that Rcont imposes constraints on the events
produced during symbolic execution, including those produced by append. As long as the behavior
of append, in this case, the underapproximation ϱe! , complies with the constraints imposed by
ϱprefix, DϱprefixRcont represents the constraint on events to be produced after append and thus can
safely replace Rcont in the next symbolic state. To enforce this compliance, we take the conjunction
of ϱe! and ϱprefix and append the result ϱnew to the current symbolic path ϱ. E!ectively, we relate
an underapproximated behavior of append with the postcondition of the method to be falsi"ed,
from which Rcont is derived, and track this relation in the symbolic state.

Example 5.12. Consider the initial symbolic state from Example 5.10. The append construct re-
quires the traces of past events to be admissible to its argument R𝑂ñ𝑃 before calling remove. Then
remove can be called in a context represented by any symbolic trace ϱ𝑂ñ𝑃 ! R𝑂ñ𝑃 . Further-
more, each such ϱ𝑂ñ𝑃 is also a pre"x of the postcondition R𝑂ñ𝑃 · R𝑂ò𝑃 . The symbolic derivative
Dϱ𝑂ñ𝑃 (R𝑂ñ𝑃 · R𝑂ò𝑃) = R𝑂ò𝑃 becomes the continuation e!ect after evaluating the append opera-
tion. The symbolic state prior to calling remove is (⇑, 𝑓,R𝑂ò𝑃, 𝑈remove 𝑆0 𝑇). ⫅̸

Example 5.13. Continuing from Example 5.11, the symbolic state after reducing the admit is
(𝑆0 ω null,ϱ𝑂ñ𝑃≃ϱ𝑐0:𝑓0 ,R𝑂ò𝑃, append ↗𝑇0⇓Val.get𝑆0↘). The append construct records the call to
Val.get and appends a singleton event ↗𝑇0⇓Val.get 𝑆0↘ to the context. Correspondingly, the continu-
ation e!ect R𝑂ò𝑃 is updated by its symbolic derivative over the Val.get event, D↗𝑓0⇓Val.get 𝑐0 ↘R𝑂ò𝑃 ,
which is R𝑂ò𝑃 itself as shown in Example 5.7. ⫅̸

Nowwe leverage derivative-based semantics to falsify program 𝑈 with respect to the postcondition
Rpost on the symbolic trace produced by 𝑈 and show that the falsi"cation is sound. Consider an
execution that is recorded by a reduction from the initial symbolic state to some "nal symbolic state,
(⇑, 𝑓,Rpost, 𝑈) ã→∝

D (ϖ,ϱ,Rcont, 𝑄). This execution is falsi"ed by Rpost if the "nal state is reachable,
i.e., isSat (ϖ,ϱ), and its continuation e!ect is not nullable, i.e., ¬𝑔 (Rcont). The soundness of the
falsi"cation relies on two key properties of a derivative-based semantics: 1→ the continuation e!ect
is properly updated to denote future traces that are safe to produce as the execution continues, as
established by Lemma 5.14.

Lemma 5.14. If Rcont=DϱRpost and (ϖ,ϱ,Rcont, 𝑈)ã→D(ϖ↔,ϱ↔,R↔
cont, 𝑈

↔) then R↔
cont=Dϱ↔Rpost.

That is, Rcont in the "nal symbolic state, given that ϱ records past events, correctly predicts future
events to be produced in compliance with the postcondition Rpost, i.e., Rcont = DϱRpost. Then
¬𝑔 (Rcont) suggests that without new events being produced, ϱ fails to comply with Rpost, i.e.,
ϱ ! ¬Rpost by Corollary 5.8. Because the execution stops at value 𝑄 and no more events are to
be produced, the execution is indeed falsi"ed by Rpost. 2→ Execution, including a falsi"ed one,
underapproximate those of the non-derivative based naïve semantics, as established by Lemma 5.15.

Lemma 5.15. If ϱ ! Rcurr and (ϖ,ϱ,Rcont, 𝑈) ã→D (ϖ↔,ϱ↔,R↔
cont, 𝑈

↔) then there exists R↔
curr such

that ϱ↔ ! R↔
curr and (ϖ,Rcurr, 𝑈) ã→ (ϖ↔,R↔

curr, 𝑈
↔).

That is, there exists an execution paths (⇑, 𝑓, 𝑈) ã→∝ (ϖ,Rcurr, 𝑄) in the naïve semantics such that
ϱ ! Rcurr. As all traces denoted by ϱ fail to comply with Rpost, there exist some trace in Rcurr

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.



Derivative-Guided Symbolic Execution 50:21

that fails to comply with Rpost. We conclude with Theorem 5.16, establishing that given a falsi"ed
execution in derivative-based semantics, there exists a corresponding execution in naive semantics
that overapproximates this execution and thus can also be falsi"ed.

Theorem 5.16 (Soundness of ã→∝
D ). Assume isSat (ϖ,ϱ). If (⇑, 𝑓,Rpost, 𝑈) ã→∝

D (ϖ,ϱ,Rcont, 𝑄)
and ¬𝑔 (Rcont) then 𝑈 is falsi"ed against Rpost.

P’&&3 *4!(21.
(1) First, the single-step reduction in Lemma 5.14 can be extended to multi-step. Since Rpost =

D𝑆Rpost, we have Rcont = DϱRpost.
(2) Then, by Corollary 5.8 on ¬𝑔 (Rcont), we have ϱ ! ¬Rpost.
(3) Additionally, the single-step reduction in Lemma 5.15 can also be extended to multi-step.

Since 𝑓 ! 𝑓, there exists Rcurr such that ϱ ! Rcurr and (⇑, 𝑓, 𝑈) ã→∝ (ϖ,Rcurr, 𝑄).
(4) Now that ϱ ! Rcurr ≃ ¬Rpost and isSat (ϖ,ϱ), we have isSat

(
ϖ,Rcurr ≃ ¬Rpost

)
.

(5) Lastly, by De"nition 4.7, 𝑈 is falsi"ed against Rpost. ⫅̸

Example 5.17. Consider the execution path from Example 4.6. Through calls toNxt.get and Val.get,
the execution iterates over two nodes,𝑆0 and𝑆1, of the given linked list before "nding a node storing
element 𝑇, i.e., 𝑆1. Then 𝑆1 is removed by linking 𝑆0 to its successor i.e., 𝑆2. Following Examples 5.11
and 5.13, the execution before the removal can be manifested in a derivative-based symbolic state:
(ϖbad,ϱprestate,R𝑂ò𝑃,Nxt.put𝑆0 𝑆2; 𝑆0), where the path condition is ϖbad from Example 4.6 and

ϱprestate ! ↗Nxt.put𝑃𝑈𝑉 𝑄𝑁𝑊 | 𝑃𝑈𝑉=𝑁=𝑆1≃𝑄𝑁𝑊=𝑂=𝑆2↘·↗Val.put𝑆0 𝑇0↘·↗Nxt.put𝑆0 𝑆1↘·↗Val.put𝑆1 𝑇1↘
·↗𝑇0⇓Val.get𝑆0↘·↗𝑆1⇓Nxt.get𝑆0↘·↗𝑇1⇓Val.get𝑆1↘·↗𝑇2⇓Nxt.get𝑆2↘

To relate the event ↗Nxt.put𝑆0 𝑆2↘ with R𝑂ò𝑃 , we consider R𝑂ò𝑃 ’s next event ↗Nxt.put !𝑁 𝑂↘, lead-
ing to a symbolic derivative of ∋ as shown in Example 5.7. Hence, the conjunction between
↗Nxt.put𝑆0 𝑆2↘ and ↗Nxt.put !𝑁 𝑂↘ witnesses this relation and is appended to the context ϱprestate.
The symbolic state becomes: (ϖbad,ϱbad,∋,𝑆0), where

ϱbad ! ϱprestate · ↗Nxt.put𝑃𝑈𝑉 𝑄𝑁𝑊 | 𝑃𝑈𝑉 = 𝑆0 ω 𝑁 ≃ 𝑄𝑁𝑊 = 𝑆2 = 𝑂↘
𝑁 = 𝑆1 and 𝑂 = 𝑆2 witnesses the reachability of the "nal symbolic state. In combination with
¬𝑔 (∋), the execution is falsi"ed. In fact, this execution underapproximates the execution shown in
Example 4.6, i.e., ϱbad ! Rbad, which could have been falsi"ed but proves too costly using naive
semantics. ⫅̸

Furthermore, this re"ned semantics guarantees completeness with respect to falsi"cation. Con-
sider an execution in the naïve semantics that is manifested by a reduction from the initial symbolic
state to some "nal symbolic state, (⇑, 𝑓, 𝑈) ã→∝ (ϖ,Rcurr, 𝑄). According to De"nition 4.7, the execu-
tion is falsi"ed with respect to the postcondition Rpost as long as isSat

(
ϖ,Rcurr ≃ ¬Rpost

)
holds.

Looking backward from the "nal state, it is su#cient to falsify the execution if there exists some
underapproximation of the execution, encapsulated by a symbolic trace ϱcurr ! Rcurr, and some
pre"x ϱprefix ! ¬Rpost such that ϱcurr ≃ ϱprefix represents a viable execution. E!ectively, all com-
patible pairs of symbolic paths ϱcurr ! Rcurr and pre"xes ϱprefix of Rpost are exhaustively explored
by executions in a derivative-based semantics. Lemma 5.18 establishes this exhaustiveness on each
reduction step.

Lemma 5.18. Given a safety property Rpost. If (ϖ,Rcurr, 𝑈) ã→ (ϖ↔,R↔
curr, 𝑈

↔) then for all ϱ↔
curr !

R↔
curr, pre"x ϱ↔

prefix of Rpost, and ϱ↔ △ ϱ↔
curr ≃ ϱ↔

prefix, there exists ϱcurr ! Rcurr, pre"x ϱprefix of
Rpost, and ϱ △ ϱcurr ≃ ϱprefix such that (ϖ,ϱ,DϱprefixRpost, 𝑈) ã→D (ϖ↔,ϱ↔,Dϱ↔

prefix
Rpost, 𝑈↔).
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As a result, Theorem 5.19 establishes that given a falsi"ed execution manifested using the naïve
semantics, there exists an underapproximating execution in a derivative-based semantics that can
also be falsi"ed.

Theorem 5.19 (Completeness of ã→∝
D ). If (⇑, 𝑓, 𝑈)ã→∝ (ϖ,Rcurr, 𝑄) and isSat

(
ϖ,Rcurr≃¬Rpost

)
then

there exists ϱ!Rcurr and ¬𝑔 (Rcont) such that (⇑, 𝑓,Rpost, 𝑈)ã→∝
D(ϖ,ϱ,Rcont, 𝑄) and isSat (ϖ,ϱ).

P’&&3 *4!(21.
(1) First, by De"nition 4.7, there exists ϖ and Rcurr such that isSat

(
ϖ,Rcurr ≃ ¬Rpost

)
and

(⇑, 𝑓, 𝑈) ã→∝ (ϖ,Rcurr, 𝑄).
(2) Then, let ϱcurr ! Rcurr and ϱprefix ! ¬Rpost such that isSat

(
ϖ,ϱcurr ≃ ϱprefix

)
.

(3) Furthermore, the single-step reduction in Lemma 5.18 can be extended to multi-step. As a
result, (⇑, 𝑓,Rpost, 𝑈) ã→∝

D (ϖ,ϱcurr ≃ ϱprefix,DϱprefixRpost, 𝑄).
(4) Lastly, we have ¬𝑔 (DϱprefixRpost) from ϱprefix ! ¬Rpost. ⫅̸

The completeness argument requires the symbolic execution to exhaustively relate the events
produced during execution and the safe events required by the postcondition. In the hope of
"nding a falsi"ed execution at the earliest, symbolic derivative enables strategic exploration of this
relationship during the symbolic execution. Consider an un"nished execution (⇑, 𝑓,Rpost, 𝑈0) ã→∝

D
(ϖ,ϱ,Rcont, 𝑈). Recall that the continuation e!ect Rcont predicts future traces that are safe to
produce if we "nish the execution from the current symbolic state (ϖ,ϱ,Rcont, 𝑈). Hence, the
concatenation of the current symbolic trace ϱ and the continuation e!ect Rcont gives an optimistic
overapproximation of the safe behavior of the execution when "nished. Then ¬isSat (ϖ,ϱ · Rcont)
essentially states that all behavior is unsafe following this execution. Therefore, without "nishing
the execution, we may determine it is falsi"ed. In theory, we also require that the execution can be
"nished in a satis"able state, as stated in Theorem 5.20.

Theorem 5.20 (Soundness of ∋). Assume (ϖ,ϱ,Rcont, 𝑈) ã→∝
D (ϖ↔,ϱ↔,R↔

cont, 𝑄) and isSat (ϖ↔,ϱ↔).
If (⇑, 𝑓,Rpost, 𝑈0) ã→∝

D (ϖ,ϱ,Rcont, 𝑈) and ¬isSat (ϖ,ϱ · Rcont) then 𝑈 is falsi"ed against Rpost.

P’&&3 *4!(21.
(1) First, by transitivity of ã→∝

D , (⇑, 𝑓,Rpost, 𝑈0) ã→∝
D (ϖ↔,ϱ↔,R↔

cont, 𝑄).
(2) Then, by Theorem 5.16, it is su#cient to prove ¬𝑔 (R↔

cont).
(3) By multi-step variant of Lemma 5.14 on Rcont = Dϱ (ϱ · Rcont), R↔

cont = Dϱ↔ (ϱ · Rcont).
(4) ¬isSat (ϖ,ϱ · Rcont) suggests that ϱ · Rcont is equivalent to ∋ under the path condition ϖ or

its re"ned path condition ϖ↔. So does its derivative R↔
cont. We have ¬𝑔 (R↔

cont). ⫅̸

However, in practice, as long as the current symbolic state is satis"able, i.e., isSat (ϖ,ϱ), it is safe
to assume that the execution can be "nished in a satis"able symbolic state, which in turn witnesses
the falsi"cation. Another practical concern is that checking ¬isSat (ϖ,ϱ · Rcont) can be expensive
as discussed in Section 4. Instead, we check whether Rcont is syntactically equal to ∋, which implies
¬isSat (ϖ,ϱ · Rcont). If not, we continue the execution without compromising soundness. With a
standard set of rewriting rules, e.g., ∋ ⇒ R △ ∋, the syntactic approach is e!ective in falsifying
un"nished execution for programs considered in Section 7. In fact, Example 5.17 is such a case –
had remove not stopped at the "rst node found to store the given element, we can still conclude
that the execution is falsi"ed without needing to "nish iterating over the remaining linked list.
Intuitively, we exploit the existence of a dead state in the automaton associated with the post-

condition Rpost. As events produced during symbolic execution are related to transitions in the
automaton, it is su#cient to falsify a execution if the events produced can be related to transi-
tions in the automaton that leads to a dead state. This is similar to the recognition of a string
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in a deterministic automaton, where it is su#cient to determine the string cannot be accepted if
a character causes the automata to enter a dead state. However, each event produced may still
nondeterministically be related to transtions from the current state in the postcondition automaton.
We would like to further exploit the structure of the postcondition automaton by actively

looking for a dead state. Again we consider the symbolic state of an un"nished execution, its
continuation symbolic derivative Rcont is a symbolic derivative of the postcondition Rpost and thus
Rcont represents a state in the automaton associated with Rpost. The minimal distance of the state
denoted by Rcont to a dead state gives us a lower bound on the number of events that the current
execution needs to produce in order to be falsi"ed. It is also the minimal length of Rcont’s pre"xes
such that the derivative over them denotes a dead state, i.e., DistToDead(Rcont), where

DistToDead(R) ! min
DϱR=∋

|ϱ |
When new events ϱe! are produced during the execution as in Rule DA))!",, among all Rcont’s
pre"xes ϱprefix that are compatible with ϱe! , we prioritize relating ϱe! with pre"xes that brings us
closer to a dead state, according to DistToDead(DϱprefixRcont). In practice, we set a cut-o! constant
to limit the depth of such exploitation.

Example 5.21. Consider a di!erent execution from what is shown in Example 5.17. ↗Nxt.put𝑁 !𝑂↘
is also a next event of R𝑂ò𝑃 but leads to a symbolic derivative of •∝. Correspondingly, the event
↗Nxt.put𝑃𝑈𝑉 𝑄𝑁𝑊 | 𝑃𝑈𝑉 = 𝑆0 = 𝑁 ≃ 𝑄𝑁𝑊 = 𝑆2 ω 𝑂↘ is appended to the symbolic trace. While the
symbolic state happens to becomes unreachable (𝑆2 ω 𝑂 contradicts 𝑆2 = 𝑂 from ϱprestate) and thus
can be pruned, it does not have to be the case and nondeterministic time may be spent on this
infeasible execution before it is pruned. ⫅̸

6 Algorithm
In this section, we substitute the declarative components of derivative-based semantics with their
algorithmic equivalents, thus demonstrating the derivative-based semantics is a sound and relatively
complete procedure for falsi"cation.
First, we show that the reachability check (De"nition 4.2) of derivative-based symbolic states,

i.e., isSat (ϖ,ϱ), can be straightforwardly discharged to SMT queries like conventional symbolic
execution techniques. Intuitively, since a symbolic path ϱ is a sequence of symbolic events, we
would like to collect constraints from each symbolic event. The constraint of an atomic symbolic
event can be built as:

constr(↗𝑀ret ⇓ f 𝑀arg | 𝑋↘) = [𝑀arg ↦→ ˆ𝑀arg , 𝑀ret ↦→ ˆ𝑀ret ]𝑋 for fresh ˆ𝑀arg and ˆ𝑀ret
To facilitate constraint collection, we give a strati"ed representation of symbolic events 𝑒 as a
disjunction of atomic symbolic events associated with disjoint e!ectful functions:

𝑒 ! · · · ∀ ↗𝑀ret ⇓ f 𝑀arg | 𝑋↘ ∀ . . . such that !𝑒" =
⋃

↗𝑊ret⇓f 𝑊arg |𝑌 ↘↓𝑖!↗𝑀ret ⇓ f 𝑀arg | 𝑋↘"
Since the e!ectful functions f associated with the disjuncts in 𝑒 are di!erent, the constraint of a
symbolic event 𝑒 is simply the disjunction of constraints from 𝑒 ’s atomic symbolic events, and the
constraint of a symbolic path ϱ is the conjunction of constraints from ϱ’s symbolic events:
constr(𝑓)=⇑ constr(𝑒)=∨

↗f |𝑌 ↘↓𝑖 constr(↗f | 𝑋↘) constr(ϱ1·ϱ2)=constr(ϱ1)≃constr(ϱ2)
It immediately follows that, as established by Corollary 6.1, the reachability of a symbolic state
can be determined by the satis"abiliy of the conjunction between its path condition ϖ and the
constraints from its current symbolic path ϱ.

Corollary 6.1. isSat (ϖ,ϱ) i! 𝑝 ↓ !ϖ ≃ constr(ϱ)".
In response to the strati"ed representation of symbolic events, we discharge their boolean

connectives using De"nition 6.2, which was part of the syntax in Section 4.
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De!nition 6.2 (Events Algebra). The boolean operations on symbolic events can be de"ned as:
⊋ (∀𝑈 ↗f𝑈 | 𝑋𝑈↘) =(∀𝑈 ↗f𝑈 | ¬𝑋𝑈↘) ∀ (∀g↓ϑ/f𝑀 ↗g↘)

(∀𝑈 ↗f𝑈 | 𝑋𝑈↘) ∈ (∀ 𝑗 ↗g𝑗 | 𝑌 𝑗 ↘) = ∀f𝑀=g𝑄 ↗f𝑈 | 𝑋𝑈 ≃𝑌 𝑗 ↘
(∀𝑈 ↗f𝑈 | 𝑋𝑈↘) ∞ (∀ 𝑗 ↗g𝑗 | 𝑌 𝑗 ↘) =(∀f𝑀=g𝑄 ↗f𝑈 | 𝑋𝑈 ⇒𝑌 𝑗 ↘) ∀ (∀f𝑀εg𝑄 ↗f𝑈 | 𝑋𝑈↘) ∀ (∀g𝑄εf𝑀 ↗g𝑗 | 𝑌 𝑗 ↘)

Again, all atomic symbolic events in 𝑒 are associated with di!erent e!ectful functions and thus are
disjoint. The negation of 𝑒 includes atomic symbolic events from 𝑒 with their quali"ers negated and
atomic symbolic events out of 𝑒 with ⇑ quali"er. The conjunction of 𝑒1 and 𝑒2 includes atomic sym-
bolic events included by both 𝑒1 and 𝑒2 with the quali"er being their conjunctions. The disjunction
of 𝑒1 and 𝑒2 includes atomic symbolic events included by both 𝑒1 and 𝑒2 with the quali"er being their
disjunctions, as well as atomic symbolic events included only in 𝑒1 or 𝑒2. De"nition 6.2 preserves
the disjointness requirement in the result and is consistent with the denotation !𝑒" above.
Before providing algorithms for computing pre"xes and symbolic derivatives, we "rst demon-

strate a procedure for "nding next events of a given SRE R by rediscovering the notion of “next
literals” presented in [Keil and Thiemann 2014]. For ∋ and 𝑓, their next event can only be bottom.
For 𝑒 , its next event is simply 𝑒 itself. For R∝, its next events are the same as those of R. For ¬R,
its next events include those of R and the complement of their disjunction. For R1 ≃ R2, its next
events includes the conjunction of events included in both R1 and R2. For R1 ⇒ R2, its next events
includes not only the conjunction of events included in both R1 and R2, but also the conjunction of
each event from R1 and the negation of the disjunction of R2’s next events, and vice versa, de"ned
as a join operation ’ between two sets of events. As a result, the disjunction of R1 ⇒ R2’s next
events is equivalent to the disjunction of R1’s and R2’s. For R1 · R2, its next events are determined
by the join of those of R1 and those of R2 if R1 is nullable. Otherwise, its next events includes only
those of R2.

De!nition 6.3 (Admissible Next Events). The set ϑ of events admissible to R can be computed as:
next(∋) = next(𝑓) = {⇔} next(𝑒) = {𝑒} next(R∝) = next(R)

next(R1 · R2) =
{
next(R1) ’ next(R2) 𝑔 (R1)
next(R1) otherwise

next(¬R) = next(R) ↑
{
next(R)⫆̸

}

next(R1 ≃ R2) = next(R1) ∈ next(R2) next(R1 ⇒ R2) = next(R1) ’ next(R2)
where the dual of an event set ϑ is ϑ⫆̸ ! ⊋

⊔
𝑖↓ϑ 𝑒 and the join of two event sets ϑ1 and ϑ2 is

ϑ1 ’ ϑ2 ! {𝑒1 ∈ 𝑒2, 𝑒1 ∈ ϑ⫆̸
2 ,ϑ

⫆̸
1 ∈ 𝑒2 | 𝑒1 ↓ ϑ1, 𝑒2 ↓ ϑ2}.

De"nition 6.3 provides such a next operation such that each symbolic event 𝑒 ↓ next(R) is
a singleton pre"x of R (De"nition 5.4). Due to the negation rule, the disjunction of next(R)
overapproximates the set of events admissible to R. Then the negation of this disjunction, i.e.,
next(R)⫆̸ is also a next event of R, the derivative over which is ∋. next(R) ↑ {next(R)⫆̸} gives
us a set of symbolic events that covers the entire space of possible events and are all amenable to
symbolic derivative computation of R. Now, the symbolic derivative of R over its next events can
be computed inductively in a similar fashion to Section 3 by the following lemma:

Lemma 6.4. Given R and its pre"x ϱ, the symbolic derivative DϱR can be computed via:
D𝑆R = R Dϱ1 ·ϱ2R = Dϱ2Dϱ1R D𝑖∋ = D𝑖𝑓 = ∋ D𝑖 (R∝) = D𝑖R · R∝

D𝑖 ↔𝑒 =

{
𝑓 𝑒 ↔ ! 𝑒

∋ 𝑒 ↔ ! ⊋𝑒
D𝑖 (R1 · R2) =

{
(D𝑖R1 · R2) ⇒ D𝑖R2 𝑔 (R1)
D𝑖R1 · R2 otherwise

D𝑖 (¬R) = ¬D𝑖R D𝑖 (R1 ≃ R2) = D𝑖R1 ≃ D𝑖R2 D𝑖 (R1 ⇒ R2) = D𝑖R1 ⇒ D𝑖R2
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The main di!erence is, when computing the symbolic derivative of a symbolic event 𝑒 over another
𝑒 ↔, we need to perform an inclusion check between them. If all events denoted by 𝑒 ↔ are included
by 𝑒 , then the symbolic derivative is 𝑓. If all events denoted by 𝑒 ↔ are not included by 𝑒 , then the
symbolic derivative is ∋. Since 𝑒 ↔ is guaranteed to be a singleton pre"x of 𝑒 , it is impossible that
some events denoted by 𝑒 ↔ are included by 𝑒 while some are excluded. Thus, checking whether
𝑒 ↔ ! 𝑒 is su#cient. The inclusion check essentially involves checking the validity of constr(⊋𝑒 ↔ ∞ 𝑒),
which is well-suited for SMT solving.

Using the next operation and the computation of symbolic derivatives over symbolic events,
we may enumerate pre"xes of arbitrary length from an SRE R along with their corresponding
symbolic derivatives by following the rules in Fig. 7. Rule P305𝑓 states that 𝑓 is a pre"x of R and the
corresponding symbolic derivative is R itself. Rule P305𝑒 states that all next events of R is a pre"x of
R. Rule P305· states that given any pre"x ϱ1 of R along with the corresponding symbolic derivative
R1, and any pre"x ϱ2 of R1 along with the corresponding symbolic derivative R2, the concatenation
of ϱ1 and ϱ2 is still a pre"x of R with R2 being the corresponding symbolic derivative. Intuitively,

(𝑓,R) 𝐿 R
P305𝑓

𝑒 ↓ next(R) ↑
{
next(R)⫆̸

}
(𝑒,D𝑖R) 𝐿 R

P305𝑒
(ϱ1,R1) 𝐿 R (ϱ2,R2) 𝐿 R1

(ϱ1 · ϱ2,R2) 𝐿 R
P305·

Fig. 7. Enumerate prefixes of a given R and compute their symbolic derivatives.

these rules allow us to construct a deterministic SFA that accepts the same set of traces as R and
all paths in the SFA are enumerated, including those that lead to dead states. As established by
Lemma 6.5, each enumerated pre"x is indeed a pre"x of R.
Lemma 6.5 (Soundness of Pre"x Enumeration). If (ϱ,R↔) 𝐿 R then R↔ = DϱR.
A completeness result then states that all paths in the SFA can be enumerated. As an SRER may have
di!erent SFA representations, a pre"x ϱ of R may not correspond to a path in the SFA constructed
by our pre"x enumeration. However, it is guaranteed that, as established by Lemma 6.6, a set of
pre"xes, i.e., a set of paths in the SFA, can be found by enumeration such that their disjunction
includes all traces denoted by such a pre"x ϱ.

Lemma 6.6 (Completeness of Pre"x Enumeration). If R↔ = DϱR then there exists ϱ𝑈
𝑈 such that

(ϱ𝑈 ,R↔) 𝐿 R for all 𝑙 and ϱ !
∨

𝑈 ϱ𝑈 .
Sampling symbolic traces ϱ from a given SRE R is a special case of enumerating pre"xes

whose symbolic derivative is nullable, as shown in Corollary 5.8. Intuitively, the sampled symbolic
traces correspond to the paths that lead to an accepting state in the SFA. For the purpose of
sampling symbolic traces, we may ignore paths that lead to a dead state without compromising
the completeness of sampling. That is, when applying Rule PFX5𝑒 for trace sampling, we ignore
next(R)⫆̸ , whose corresponding symbolic derivative is always ∋.
Lastly, we show how to relate symbolic traces of the same length by computing their con-

junction. The following rules e!ectively perform pairwise conjunction between symbolic events
(De"nition 6.2) from two symbolic traces ϱ1 and ϱ2:

𝑓 ≃ 𝑓 △ 𝑓 𝑒1 ≃ 𝑒2 △ 𝑒1 ∈ 𝑒2 (ϱ11 · ϱ12) ≃ (ϱ21 · ϱ22) △ (ϱ11 ≃ ϱ21) · (ϱ12 ≃ ϱ22)
where |ϱ11 | = |ϱ21 | and |ϱ12 | = |ϱ22 |. A symbolic trace equivalent to the conjunction of ϱ1 and ϱ2
is returned following the rules.
To conclude this section, the pre"x enumeration algorithm gives us a sound and relatively

complete equivalent for the premises of Rules DA,$-( and DA))!",. By enumerating pre"xes in
increasing length, minimal traces of events are produced and appended along symbolic execution.
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Table 1. Falsification of a variety of safety property violations in ADT implementations.

.

ADT Repr. Type Safety Property Violation to the Safety Property Time (s) Speedup over
To Falsify Naïve Veri!er

Stack
LinkedList Elements are stored at unique locations. Overwrite an existing node when pushing. 0.51 ×4.9 ×3.2

Make the linked list circular during concatenation. 0.25 O/M ×13.2

KVStore Elements are linked linearly. Push the new element in the middle of the stack. 1.11 T/O ×4.6
Concatenate elements to the middle of a stack. 0.94 O/M ×6.5

Queue LinkedList Elements are stored at unique locations. Overwrite an existing node when enqueueing. 0.73 ×2.5 ×2.7

Graph Degrees of vertices are at most one. Overwrite an existing vertex when enqueueing. 1.75 T/O ×7.4

Set KVStore Each key is associated with a distinct value. Put a duplicated element. 0.87 T/O ×1.4

Tree The underlying tree is a binary search tree. Insert a smaller element to the right subtree. 1.10 ×40.7 ×11.1

Heap LinkedList Elements are stored at unique locations, sorted. Insert after a node with a larger value. 0.11 ×12.9 ×13.2

Tree Parents are smaller than their children. Insert a smaller element to the right subtree. 1.00 ×2.4 ×2.5

Min Set
Set The cached element has been inserted and is

no larger than other elements.
Record the minimum without inserting it. 1.14 ×1.3 ×1.3
Insert a new minimum without recording it. 1.32 ×9.0 ×9.9

KVStore The cached element has been put and is no
larger than other elements.

Record the minimum without putting it. 0.66 T/O ×4.3
Overwrite an existing element when putting. 1.95 ×10.7 ×14.9

Lazy Set

Tree The underlying tree is a binary search tree. Insert a smaller element to the right subtree. 1.09 ×4.8 ×11.5

Set The same element is never inserted twice. Insert a duplicated element. 0.49 ×1.2 ×1.3

KVStore Each key is associated with a distinct value. Put a duplicated element. 0.88 ×49.8 ×1.5

DFA
KVStore Each state is associated with a non-empty list

of next states via unique labels.
Put an overlapping transtion with the same label. 0.66 ×29.9 ×29.9
A transition is reversed instead of deleted. 1.04 ×15.0 ×15.2

Graph The outgoing edges of each state are labeled by
di!erent characters.

Connect two connected nodes with the same label. 0.98 ×12.9 ×12.8
Connect two nodes instead of disconnecting them. 0.97 ×16.5 ×16.5

Connected
Graph

LinkedList
Edges (pairs of vertices) are uniquely stored
with connected vertices being valid.

Insert a vertex pair twice during initialization. 0.27 T/O ×16.4
Insert a vertex without ensuring its connectivity. 1.31 O/M ×9.9
Insert a duplicated vertex pair. 1.44 O/M ×11.2

Graph All vertices are connected in the graph.
Create a duplicated edge during initialization. 1.13 ×1.7 ×1.8
Create a vertex without ensuring its connectivity. 2.05 ×6.0 ×6.1
Disconnect a vertex from the rest of the graph. 2.38 ×20.0 ×16.2

Colored
Graph

Graph Vertices are colored before being connected to
vertices with di!erent colors.

Create an edge between two vertices colored the same. 3.68 T/O T/O

KVStore Each vertex is associated with a list of vertices
with di!erent colors.

Put an edge between two vertices with the same color. 7.82 T/O T/O

Linked
List KVStore Each node has at most one predecessor. Put a new predecessor to a node before deleting its

old predecessor.
7.03 O/M T/O

7 Implementation and Evaluation
We have implemented a symbolic execution engine inOC.$/ based on a derivative-based semantics,
called HATch that targets the falsi"cation of OC.$/-like ADT implementations that interact with
their underlying representation types via API calls. HATch takes as input the implementation of
an ADT’s method, its behavioral speci"cation, and the behavioral speci"cations of the underlying
representation types, and performs symbolic execution against an execution harness as described
in Example 4.4. Symbolic execution is performed in increasing depth of explored execution traces.
HATch performs two additional optimizations that are not discussed in Section 6. First, it not
only tracks the atomic symbolic events that are included in a symbolic event 𝑒 but also tracks
those that are excluded. This frees us from enumerating all other available APIs when computing
the negation. Second, since the pre"xes to be enumerated are combined with a given symbolic
trace, the enumeration of pre"xes is interleaved with a compatibility check against the trace. This
interleaving helps avoid enumerating pre"xes that are known to be incompatible.
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In our evaluation, we consider the following research questions: Q1. Can HATch’s behavioral
speci"cations e!ectively capture interesting safety properties? Q2. Can HATch’s use of symbolic
derivatives improve trace exploration for falsi"cation? Q3. Can HATch enhance assurance through
falsi"cation when veri"cation is challenging?
We evaluate HATch on stateful variants of functional ADTs (see Table 1) drawn from di!erent

sources [Miltner et al. 2020; Okasaki 1999; Zhou et al. 2024]. The ADTs we consider are implemented
using di!erent e!ectful representation types (i.e., Repr. Type column), including key-value stores,
linked lists, sets, trees, and graphs. We introduce arti"cial bugs in their methods as summarized in
the Violation column, and evaluate HATch’s capability to falsify these buggy implementations. The
next column reports the time HATch takes to falsify the violation.
To demonstrate the e!ectiveness of symbolic derivatives, we implement a variant of HATch

following the description given in Section 4, and report HATch’s speedup over this variant. The
satis"ability of a path condition ϖ and a SRE A (De"nition 4.7) is checked by "rst replacing
logical formulae with the elements from a "nite equivalence class. An A then becomes an ordinary
regular expression amenable to SMT solving, whose non-emptiness, along with the satis"ability
of the logical formulae, witness its satis"ability. Our results show that without using derivatives,
symbolic execution is unable to falsify (1) 7 violations (out of a possible 20) within 60 seconds,
resulting in timeouts (T/O) due to excessive calls to the SMT solver, and (2) 5 violations under
an 8 GB memory limit, leading to out-of-memory errors (O/M) due to the complexity involved in
constructing equivalence classes.
To demonstrate the e!ectiveness of HATch against a veri"cation procedure, we compare its

performance with recent work on representation invariant veri"cation [Zhou et al. 2024], and
report its speedup over that veri"er in terms of the time taken to identify a violation. Overall,
HATch demonstrates signi"cant improvement in performance, measured in orders of magnitude,
compared to both the non-derivative aware engine and the veri"er. It is noteworthy that it is able
to e#ciently handle two challenging ADTs, colored graphs and linked lists, falsifying their buggy
implementation in a small (< 8) number of seconds, whereas the other approaches are unable to
provide any result within the given resource bound (60 seconds, 8 GB).

8 Related Work
Symbolic Execution for Functional Languages. While symbolic execution has been typically used

in the context of imperative languages for bug "nding [Baldoni et al. 2018], there have been recent
e!orts that apply SE in a functional programming setting. [Xu et al. 2009] and [Nguyen et al.
2014] use SE to verify contracts in Haskell and pure Racket, respectively, with [Nguyễn et al. 2017]
extending contract veri"cation to handle Racket programs with mutable state. SE has also been used
for underapproximate reasoning to identify weak library speci"cations that lead to type-checking
failures of client programs in LiquidHaskell [Hallahan et al. 2019]. Our goals in this paper are
substantially di!erent, focused on falsifying safety properties of functional ADTs that interact with
opaque and e!ectful libraries.

Temporal Veri!cation. Model checking has been applied for software veri"cation against temporal
speci"cations, e.g., LTL and CTL. Early work shows how transition systems can be extracted from
programs to abstract their behavior in a form amenable for automata-based inclusion checking to
validate temporal speci"cations [Clarke et al. 1994]. More recently, type and e!ect systems have
been proposed to infer a conservative overapproximation of e!ects produced during execution of
higher-order functional programs [Skalka and Smith 2004]. The granularity of e!ects inferred has
been improved by regarding past e!ects as a handle for reasoning about hidden states [Nanjo et al.
2018; Sekiyama and Unno 2023; Song et al. 2022]. The use of SFAs as a basis for speci"cation and
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veri"cation has also been explored in [Zhou et al. 2024] that introduces Hoare Automata Types
(HATs) as a new re"nement type abstraction for verifying programs against e!ectful trace-based
temporal speci"cations. In contrast to these e!orts, HATch considers this style of speci"cation in
the context of underapproximate reasoning, exploiting the structure of SFAs to enable e#cient
falsi"cation.

Derivatives of Regular Expressions. The classic notion of derivatives of regular expressions pro-
vides a lazy and algebraic approach for constructing automaton-based recognizers from given
regular expressions, e!ectively relating automaton states to their regular expression counter-
parts. Brzozowski’s derivative [Brzozowski 1964] initially introduced this concept for constructing
deterministic "nite automata, followed by Antimirov’s partial derivative [Antimirov 1995] for
nondeterministic "nite automata, later extended to handle complement and intersection operations
[Caron et al. 2011]. While it is known that the classic derivative approach either overapproximates
or underapproximates with predicates in regular expressions, computing “next literals” has been
proposed as a remedy [Keil and Thiemann 2014]. Our formulation of symbolic derivatives, while
largely inspired by this work, accounts for universally quanti"ed variables in regular expressions,
which are ubiquitous in program analysis tasks. However, the “next literal” approach can generate
an exponential number of transitions in worst cases. Recent work on transition regexes [Stanford
et al. 2021] introduces a novel form of symbolic derivatives that embeds potentially exponential
choices within nested conditionals, enabling lazy exploration of transitions and algebraic simpli"ca-
tion. Incorporating these symbolic derivatives into our symbolic execution engine thus may bene"t
the reasoning of speci"cations with richer control structures, presenting a promising avenue for
future research.

Dynamic Trace-Based Reasoning. Traces as a form of (in)correctness speci"cation have been
widely adopted by dynamic analysis techniques. Various runtime monitoring systems rely on a
language of traces [Avgustinov et al. 2007; Chen and Ro%u 2007; Goldsmith et al. 2005; Havelund
and Ro%u 2001; Meredith et al. 2008]. Regular properties over traces are also used to guide path
exploration in dynamic symbolic execution [Zhang et al. 2015]. Arbitrary trace predicates are now
supported in Racket contracts [Moy and Felleisen 2023]. We leave for future work the exploration
of non-regular trace languages amenable for derivative computation to enable the falsi"cation of
even richer safety properties.

9 Conclusions
This paper presents a new symbolic execution procedure that integrates trace-based temporal
speci"cations to reason about ADTs that interact with e!ectful libraries. We demonstrate how
to leverage these speci"cations, speci"cally their latent SFA representations, to manifest the
hidden state maintained by an ADT’s underlying representation. More signi"cantly, we introduce
the concept of a symbolic derivative, a new encoding of symbolic states that relate admissible
speci"cation traces with path exploration decisions, and show how they enable signi"cant e#ciency
gains by allowing paths that are irrelevant to the falsi"cation of a given safety property to be quickly
pruned by a symbolic execution engine. Our ideas provide new insight into how trace-guided
speci"cations can enable e!ective reachability-based program analyses.
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