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Putting Off the Catching Up:
Online Joint Replenishment Problem with Holding and Backlog Costs*

Benjamin Moseley’ Aidin Niaparast® R. Ravi'

Abstract

We study an online generalization of the classic Joint Replenishment Problem (JRP) that models the trade-off between
ordering costs, holding costs, and backlog costs in supply chain planning systems. A retailer places orders to a supplier for
multiple items over time: each request is for some item that the retailer needs in the future, and has an arrival time and a soft
deadline. If a request is served before its deadline, the retailer pays a holding cost per unit of the item until the deadline.
However, if a request is served after its deadline, the retailer pays a backlog cost per unit. Each service incurs a fixed joint
service cost and a fixed item-dependent cost for every item included in a service. These fixed costs are the same irrespective
of the units of each item ordered. The goal is to schedule services to satisfy all the online requests while minimizing the sum
of the service costs, the holding costs, and the backlog costs.

Constant competitive online algorithms have been developed for two special cases: the make-to-order version when the
deadlines are equal to arrival times [10]], and the make-to-stock version with hard deadlines with zero holding costs [7]. Our
general model with holding and backlog costs has not been investigated earlier, and no online algorithms are known even
in the make-to-stock version with hard deadlines and non-zero holding costs. We develop a new online algorithm for the
general version of online JRP with both holding and backlog costs and establish that it is 30-competitive. Along the way,
we develop a 3-competitive algorithm for the single-item case that we build on to get our final result. Our algorithm uses a
greedy strategy and its competitiveness is shown using a dual fitting analysis.

1 Introduction

The JRP is a fundamental problem in supply chain management [20} 19,117,123} [10,[7]], and it has been studied both in the
offline and online models.

Offline JRP. In the offline version of the JRP (see [20]] for pointers to relevant work), there is a set of n commodities
(also called items) that a retailer stocks and sells over a planing horizon 7". The demand for each item at each time period is
assumed to be known (either as a given set of deterministic quantities or via a description of the demand distribution for each
item over time). The demand for an item at a given time ¢ must be fulfilled by units of the item ordered at or before ¢, i.e., no
backlogging (delaying the satisfaction of the demand) is allowed.

With no costs for ordering, the retailer will simply order as many units of each item as is demanded as they arise over
time. Ordering items, however, incurs costs for the retailer: every order irrespective of the set of items ordered incurs a joint
ordering cost ¢(r); additionally, if units of item v are part of the order, there is an item-dependent cost of ¢(v) irrespective of
the number of units of item v ordered.

With nonzero ordering costs, the retailer will then order the total demand for all items at the beginning of the planning
horizon in a single order, but this ignores practical constraints and costs in storing these items. JRP models this with a holding
cost function h},, for holding one unit of item v for the period ¢ (when it is ordered) to ¢’ (when it is used to satisfy demand).
In this paper, we assume that the holding cost is h per unit time for all items, so that h},, = h - (¢’ — t) for all items v. The
goal of JRP is to find an ordering policy that minimizes the sum of ordering costs and holding costs. This version has also
been called the make-to-stock JRP because items are ordered to be stored until they are consumed.

In the make-to-order version of JRP (studied in [10]), holding inventory is not allowed. Hence, the demand for each item
at t can only be satisfied by items ordered at or after ¢. Instead of holding costs, there are backlog or delay costs (b},,) to
satisfy the orders as above, which must be minimized in addition to the ordering costs. The make-to-stock and make-to-order
versions of JRP are equivalent in their offline versions [19].

The bulk of the research on JRP assumes either offline deterministic demand, where the demands for each item and
each time period are known in advance, or stochastic demand, where the probability distributions of future demands are
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known (see the surveys [17,123]]). However, these assumptions may be unrealistic in practical scenarios, and motivated the
study of online algorithms [8]] for the problem, which assumes future demands are completely unknown and generated by an
adversary.

Online JRP with holding and backlog. Buchbinder et al. [10] study the online version of make-to-order JRP (with no
holding), and give an elegant 3-competitive algorithm using the online primal-dual framework. They also provide a lower
bound of approximately 2.64 on the competitiveness of any deterministic online algorithm for the problem. On the other
hand, for the online version of the make-to-stock version of the JRP (with no backlogs) in the special case where holding
costs are zero, Bienkowski et al. [[7] designed a 2-competitive algorithm and showed that this competitive ratio was optimal.

In reality, the problem faced by retailers involves ordering for items jointly, while allowing for both holding inventory
and backlogging some demand when it is not available. In particular, if we wish to model the adversarial (non-stochastic)
demand model online, there is a specific time (arrival time) when the retailer is cognizant of the demand for a future day (as
a result of either a planning exercise or a bulk order with a specific target delivery date). This naturally sets up the online
arrival of demand information for each item, which is associated with an arrival time, a deadline, and associated costs for
early or late fulfillment. In this paper, we model and study the online version of this general variant of JRP.

Motivated by the scheduling literature [24], we assume that each demand has an arrival time and a deadline. The arrival
time can be thought of as the earliest time at which the requirement for a deterministic demand at the deadline materializes.
Each demand can only be satisfied using services at times that are not earlier than its arrival time. Our model captures the
scenario where a retailer anticipates at time a that it is going to run out of item v at time d > a. So, it can only send a request
after the arrival time a to the supplier for the item v to try and meet the deadline d. We note that papers addressing the
traditional offline versions of the JRP do not consider the notion of an arrival time for demands and assume instead that they
are known at the beginning of the planning horizon (or equivalently, that their arrival time is zero). With the introduction of
the arrival time in the offline models, the equivalence of the make-to-order and make-to-stock versions (described in [19]) no
longer holds. However, it is natural and important to introduce this notion of an arrival time in the online formulation.

In the definition below, we follow the literature on multi-level aggregation problems [12] and model the demand requests
as arising in the leaves of a tree with two levels: the root node represents the joint ordering cost and each leaf represents an
item or commodity with its node cost being the item-specific ordering cost.

PROBLEM 1.1. (ONLINE JOINT REPLENISHMENT PROBLEM) Let T' be a two-level tree with root r and leaf nodes
V1,...,0n. Each node v € V(T) has a cost c(v) associated with it: the root cost represents the joint ordering cost
(also called fixed service cost), and the leaf costs represent the item-specific ordering costs (also called fixed item costs).

A set of requests arrive at different leaves over time, with possibly more than one request arriving at the same time. Each
request p is specified by a tuple p = (v,, a,, d,), where v,, is the leaf node corresponding to the commodity that makes the
request, a,, is the arrival time of the request, and d, > a,, is the (soft) deadline of the request. We assume each request is for
one unit of the commodity since we can replicate demands for more units accordingly. Moreover, we assume that there is no
ordering cost associated with each unit of each itenﬂ In the online version, at each time t, only the requests with arrival time
before or at time t are known, while nothing is known about future requests. In particular, the total number of requests and
the length of the time horizon of the problem are unknown.

Each request can only be satisfied at or after its arrival time, but possibly after its deadline. The holding and backlog
costs are assumed to be linear and uniform among different requests. In particular, if a request p is satisfied at a time
t € [ap,d,], we incur a holding cost of h - (d, — t), and if it is satisfied at a time t € (d,, 00), we incur a backlog cost of
b-(t—d,).

The requests must be satisfied using a series of services (the term we use for orders in this paper). A service is a subtree
of T' of T that contains r, and can satisfy any subset of as yet unsatisfied requests made by nodes in V (T"). The service cost
is ZUGV(T,) c(v), which is the sum of the fixed joint cost of the service (root) and the costs of the items (leaves) included
in the service. The problem is to minimize the total cost of servicing all the demand, which is the sum of the service costs,
holding costs, and backlog costs.

1.1 Solution Approaches and Our Contribution The online make-to-order JRP with only backlog cost that is studied
in [[10] is naturally suited to the online primal-dual approach surveyed in [[11]. In the algorithm suggested in [10], once a new
order for some item arrives, the dual variables associated with satisfying that demand start to grow over time, and when a
dual constraint becomes tight, a service is triggered. However, this approach cannot be used for cases where a demand can be

I'This is because such costs must be paid by any solution and they are the same among different solutions; hence they can be ignored.
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satisfied before its deadline (i.e., when holding inventory is allowed), and completely fails if a demand can not be satisfied
after a deadline (i.e., if backlog costs are infinite).

On the other hand, the (make-to-stock) JRP with deadlines model (JRP-D) studied in [7]] is also considerably simpler
to handle. When a deadline triggers service, all active requests can be satisfied due to the simplifying zero holding costs
assumption. Their algorithm then uses future deadlines in increasing order to accumulate more items until the joint ordering
cost has been spent to preemptively satisfy some items. Then, a simple analysis shows that any optimal schedule must satisfy
requests at least at half the rate (in costs) as this algorithm.

To understand the fundamental difference between handling general holding cost and backlog cost, consider the special
case of the problem with only one item (i.e. one leaf). When there is only backlog cost (i.e., no holding is allowed), once a
service is triggered at time ¢, the optimal decision is to include all the requested units of the item that have arrived before
or at t in that service, as more backlog cost is incurred if the algorithm satisfies them using some later service. Therefore,
the algorithm only needs to decide the times at which services are triggered. However, when there is only holding cost (i.e.,
no backlog is allowed), the algorithm can wait until the deadline of the first unsatisfied request to trigger a service since an
earlier service would be wasteful and would incur additional holding costs. But when a service is triggered, the algorithm
needs to decide which unsatisfied requests with deadlines in the future it wants to include in this service. The additional
decision of which active requests to include in each service is a fundamental difficulty in handling holding costs. When both
holding and backlog are allowed, the algorithm faces both challenges of when to trigger service and which active requests to
fulfill preemptively at this service.

To appreciate this, consider the single-item problem with just backlog: the optimal deterministic algorithm waits until it
accumulates backlog cost s, where s is the service cost. This accumulated backlog easily “justifies” this service, i.e., the
dual variables associated with these requests can each be set to the amount of their backlog, which sums up to s. This way,
it is easily proved that this algorithm is 2-competitive. With just holding costs, the situation is already more complicated.
This is because when we trigger a service, there might not be enough active requests with deadlines in the future to fulfill by
paying their holding cost up to value s, thus disallowing the local accumulation of dual values for this service. The problem
becomes even more algorithmically challenging when there are multiple items (i.e. multiple leaves) as in the general JRP, as
the algorithm has to also decide not only additional requests but also which subset of additional ifems it wants to include in
the current service.

Our main contribution is a constant competitive algorithm for this problem, the first known algorithm with non-trivial
worst-case guarantees. Note that the results of [L0, 7] imply a lower bound of 2.754 for the competitive ratio of deterministic
online algorithms even for the special version with no holding costs. To the best of our knowledge, no online algorithm is
currently known even for the very special case of Online JRP with only one item and only holding costs and a strict deadline
(no backlog allowed). Along the way to developing the full algorithm, we illustrate our key ideas for the general singe-item
case.

THEOREM 1.1. There exists a 3-competitive deterministic polynomial-time algorithm for Online JRP with backlog and
holding costs with a single item.

We then extend this to the general multi-item case with a worse competitive ratio.

THEOREM 1.2. There exists a 30-competitive deterministic polynomial-time algorithm for Online JRP with backlog and
holding costs.

The algorithm is loosely inspired by the primal-dual approach for constructing approximation algorithms [} [15[11].
The main idea of the algorithm is to trigger services using accumulated greedy dual variable values of a natural linear
programming formulation for the JRP. The service is triggered when these greedily growing dual variables (corresponding
to constraints requiring serving the requests in the primal) become tight for some dual constraint. Despite this connection,
the algorithm itself does not construct any dual solution explicitly but is stated as a simple greedy scheme. In contrast, [[10]]
explicitly maintains and updates dual values in the algorithm.

As in a traditional primal-dual method, the duals corresponding to requests are increased simultaneously at the rate
of backlog costs once their deadlines are past and time advances. Broadly, the algorithm waits until enough backlog cost
is accumulated in a first backlog phase to trigger a service (and makes tight a constraint on the dual values summing up
to no more than the service costs). To ensure feasibility of dual-fitting, we aggregate and serve some overdue requests for
additional items in a second backlog phase. Finally, we also aggregate and serve requests with deadlines in the future for all
included items in both phases. This ensures that the service cost, the backlog costs, and the holding costs paid are balanced.
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We use dual-fitting to define a feasible dual solution of value within a constant factor of the total algorithm’s costs to prove
the competitive ratio.

In more detail, the algorithm accumulates backlog costs for requests for a specific item (whose deadlines have passed)
until it ‘fills’ the item-specific ordering cost and the item becomes ‘mature’. Mature items then ‘overflow’ their ‘surplus
backlog costs’ towards filling the cost of the root (the joint ordering cost) in a ‘Mature Backlog Phase’. A service is triggered
when the root is fully paid for by these accumulating backlog costs. At a service, all overdue requests from all mature items
are satisfied. In addition, in a ‘Premature Backlog Phase’, a few more premature items that are close to becoming mature are
accumulated in roughly increasing order of their time to maturity as a preemptive step (similar to the ‘simulation’ step in the
algorithm of [[10]). Then, in a ‘Local Holding Phase’, for each included item in the service, requests with future deadlines that
can be satisfied by paying an overhead up to the item-dependent ordering cost are preemptively included, again in increasing
order of their deadline, in this service. Finally, a second preemptive ‘Global Holding Phase’ includes additional requests in
increasing order of future deadlines among all included items by paying an overhead of at most the joint ordering cost. The
details of the four phases are in Section 3| The bulk of our proof argues that the preemptive phases allow us to fit a feasible
dual of value at least a constant fraction of the total costs paid by the triggering services.

We prove the single-item result in the next section before providing the algorithm for the general multi-item case in the
following.

REMARK 1.1. Although for simplicity throughout the paper we assume the holding and backlog cost functions are linear, all
the results easily extend to the more general case where holding and backlog cost functions are non-negative and increasing
(as long as they are the same across different items). In particular, the results still hold when the holding and backlog costs
between times s and t, denoted by hs and by respectively, satisfy the following property: for each s’ < s < t < t' we have
hst < hgryr and bgy < by These general results will appear in a journal version of this paper.

1.2 Related Work As noted above, offline JRP is studied in both the make-to-stock model, where only holding is allowed
(but no backlogs), and the make-to-order model, where only backlog is allowed (but no holding). The special case of the
make-to-order model where the delay function is linear is called JRP-L. The special case of the make-to-stock model where
there are hard deadlines but zero holding costs is called JRP-D.

Offline Approximation Ratios. The offline JRP is known to be strongly NIP-hard [2} 4, 122], even for the special cases
of JRP-D and JRP-L. Also, JRP-D is APX-hard [22,6].

On the positive side, Levi, Roundy and Shmoys [19] gave the first approximation algorithm for (offline make-to-stock)
JRP, with a ratio of 2 under a general notion of holding costs. Their algorithm uses a primal-dual approach and can incorporate
both holding and backlog costs. This ratio was subsequently improved to 1.8 by Levi et al. [[18}21]. Later, Bienkowski et
al. [7]] improved the approximation ratio to 1.791. For offline (make-to-stock) JRP-D, the special case with zero holding
costs, the ratio was reduced to 5/3 by Nonner and Souza [22] and then to ~ 1.574 by Bienkowski et al. [6].

The special case of the make-to-order JRP with a single item is also known as Dynamic TCP Acknowledgement. This
problem was first introduced by Dooly, Goldman, and Scott [13}14] in 1998. In the offline setting, they gave a dynamic
programming solution that solves the problem optimally in O(n?) time.

Online Competitive Ratios. For the online version of (make-to-stock) JRP-D, Bienkowski et al. [7] designed a 2-
competitive online algorithm and prove that it has an optimal competitive ratio.

Brito et al. [9]] gave a 5-competitive algorithm for online make-to-order JRP. Buchbinder et al. [10] gave a 3-competitive
algorithm for this problem. They also proved a lower bound of 2.64 for this problem, which was later improved to 2.754
in [[7]]. These lower bounds apply to the more restricted version of the problem, where the delay functions are linear.

For the online version of the single-item make-to-order JRP (Dynamic TCP acknowledgment), Dooly et al.[13| [14] gave
a 2-competitive algorithm, and presented a matching lower bound for any deterministic algorithm. Seiden [25] proved an
—=7 lower bound in the online setting for any algorithm. Later, Karlin, Kenyon and Randall [16] designed a randomized
algorithm achieving —<; competitive ratio. As we mentioned before, the single-item variant of the problem with just holding
was not studied before in the online setting.

The make-to-order and make-to-stock versions of JRP are closely related to different Online Aggregation and Inventory
Routing problems, respectively, which have been studied extensively. We review additional related literature on these
problems in the full version of the paper.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3868



Downloaded 09/01/25 to 98.236.225.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2 Warm Up: Single-Item Case

In this section, we study the special case of Online JRP where there is only one item and prove Theorem[I.1. The underlying
tree only consists of a root r and a leaf v. The cost of each service is always s := ¢(r) + ¢(v). First, we present an algorithm
for single-item Online JRP. Then we write a natural linear program relaxation for the problem and obtain its dual. We then
use dual fitting to prove Theorem i.e., we come up with a feasible dual solution whose objective value is at least % the
cost of our algorithm. This proves that the algorithm is 3-competitive.

2.1 Algorithm In this section, we describe our online algorithm for single-item online JRP. We begin by describing the
algorithmic challenges.

Suppose that only one request has arrived for this single item so far with deadline d. Clearly, it is not optimal to trigger a
service before d, as we incur an unnecessary holding cost. One option is to trigger a service at d, which results in no holding
or backlog cost. This is indeed optimal if no other request arrives in the near future. However, in case some other requests
come shortly after d, it would be beneficial to aggregate all requests together and serve them all at once using one service
after all their deadlines. This approach prevents paying a service cost for each of them, at the expense of paying backlog
costs for the overdue requests.

Since the algorithm does not have access to future requests, it should hedge its bets between these two cases. When
there is no holding allowed, the single-item problem is equivalent to the TCP-acknowledgment problem, for which Dooly
et. al. [13]] show that the best deterministic approach is to wait until the sum of the backlog costs of the overdue requests
accumulates to be equal to the service cost s (similar to the familiar ski-rental idea in online algorithms) and then trigger a
service. Our proposed algorithm follows the same stopping rule to trigger a service. Moreover, when a service is triggered,
we satisfy all of overdue requests using this service since otherwise, when we fulfill them later, we will pay even more
backlog cost for them.

Unlike the TCP-acknowledgment problem, after deciding when to trigger a service, we face an additional algorithmic
challenge. After serving overdue requests, there may still be active requests with future deadlines. These requests can be
fulfilled using the current service by paying the holding costs until their deadlines. The question we face is which subset of
these active requests we must include in the current service.

On one extreme, assume that the algorithm does not fulfill any of these requests using the current service. Then, in the
case where the backlog cost b is large enough, the holding cost & is small enough, and the deadlines of active requests are
uniformly distributed in the future, the algorithm triggers a new service for each of the active requests. Alternatively, the
optimal algorithm satisfies all of them using the current service with small additional holding cost. At the other extreme,
the algorithm pays a significant holding cost to satisfy the active requests using the current service, which might be highly
suboptimal as there is the option of waiting to get closer to the deadlines of those requests so they can be served with
smaller holding/backlog costs. To address this trade-off, our algorithm sets a budget of s to pay for the holding costs of
aggregating a subset of currently active requests. The natural choice is to satisfy the requests with earlier deadlines first,
as these requests will trigger a service sooner if we do not fulfill them now.

Putting these two phases together, we propose Algorithm I]for single-item online JRP.

Algorithm 1 : Single-Item Online Joint Replenishment Problem

o Backlog Phase. Wait until the sum of the backlog costs of unsatisfied overdue requests becomes s, the service cost. Let ¢
be the time at which this happens. Trigger a service S at time ¢, and satisfy all of the unsatisfied requests with deadlines no
later than ¢ using this service.

¢ Holding Phase. Go over all the remaining active unsatisfied requests in order of their deadlines, and include them one by

one in S, as long as the sum of their holding costs at time ¢ is at most s.

2.2 Analysis In this section, we analyze the competitive ratio of Algorithm|l. We start by writing a linear program for
single-item Online JRP:
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Q2.1 P=min > s-z+Y | Y wpu-h-(dy—t)+ > zps-b-(t—dp) [SIRPp]
t 4

ap,<t<d, t>d,

(2.2) s.t. S =1, Vp
t>a,

(23) Lp,t S 2t vat Z Gp

(24) 2ty xp,t 2 07 Vp’ t

In [SIRPp], 2, represents whether a service is triggered at time ¢, and x,, ; determines if request p is satisfied at time ¢.
Constraint ensures that each request is satisfied eventually, and constraint relates the two types of variables, making
sure that a request is satisfied at time ¢ only if there is a service at that time. Replacing constraint with 2, z,+ € {0,1}
results in an integer program whose optimum value is exactly O PT’, the minimum cost incurred by the best offline algorithm.
Since [SJRPp] is a relaxation of this IP, it follows that P < OPT'. Here is the dual of [SJRPp], with variables «, and 3, ;
assigned to constraints and (2.3), respectively:

(2.5) D = max Z a, [SIRPp)
)
(2.6) s.t. > Bet <, Vit
pia, <t
2.7 ap,—Bpr <h-(d, —t), Vp,a, <t <d,
(2.8) a,—PBpr <b-(t—dp), Vp,t >d,
(2.9) Byt >0, Vp,t
(2.10) a, €R, Vp

Here we give some intuition about how to approach dual fitting. The goal is to come up with a feasible solution to
[STRPp] with a large objective function ) » @p. Think of « variables as money that we can use to pay for the cost of our
algorithm. When «, > 0 for some request p, constraints and require us to assign nonnegative 3, ; variables
for t € [max(a,,d, — %), d, + %] So each « variable imposes a range of nonzero (3 variables. Constraint can be
rewritten as 5, > a, — b (t — d,), which means that at time ¢t = d,,, we must set 5,, = «a,, and as we move past the
deadline d,, of p, the value of 3, ; can be decreased at the rate of b per unit of time, until it becomes 0 at time ¢ = d, + %”.
We call this direction the forward direction (of time). In the other direction, which we call the backward direction, as we
move from d, towards a,, Constraint implies that we can decrease 3, ; at the rate of h, until either it hits O at time
t=d,— %, or hits a,, whichever comes first. After that point, its value can stay at zero. Figureillustrates these two cases.

In assigning these 3, + values as above over several requests p, the sum of the 3 variables is bounded by Constraint (2.6):
at each time ¢, the total budget we have for the sum of the ’s is at most the service cost s.

Before describing the dual solution, we need some notation. Assume Algorithm I]triggers services St, ..., Sy at times
t; < ... < ty. Note that the algorithm does at most one service at each time step. For service 5;, let B; be the set of requests
that trigger this service, i.e., the set of requests whose backlog costs sum up to s at time ¢; and are satisfied in Backlog
Phase of Algorithm|I. Also, let H; be the set of requests with deadlines after ¢, that get fulfilled by S; in Holding Phase of
Algorithm By the design of the algorithm, we know > . b~ (t; —d,) = sand }_ . h - (d, —t;) < s. For a service
S;, let Bi1 be the set of requests in B; that were “alive” at the time of the previous service, i.e., Bi1 ={peB;:a, <ti_1}.
Let B? := B;\B}. Since at each of the N services, on top of the service cost, we pay an additional s as backlog costs of the
requests that trigger the service in Backlog Phase and at most additional s to aggregate near-time future requests in Holding
Phase, we have the following.

LEMMA 2.1. Algorithm[I|provides a solution to the Single-Item Online JRP problem of cost at most 3N s.

To complete the analysis, we give a feasible solution for [SJRPp] with an objective value of at least NVs. This would
show that offline OPT > P > D > Ns, which then shows that the competitive ratio of Algorithmll‘is at most 3]J\>’SS = 3.
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a, t dp—ldp dp+1
(a)

ap
Bp.t
L
a, tdp—ldp dp+1

(b)

Figure 1: Illustration of how the /3 variables can depreciate in forward and backward directions starting from d, to satisfy
constraints (2.7) and (2.8) in [SIRPp] for some o, > 0. Figuresand 1b illustrate the cases where d, — 52 < a,, and
d, — 5% > a,, respectively.

Even though our LPs have a variable or constraint for every point of time ¢, it is sufficient to only include the times
corresponding to events in the optimal solution. Note that this is only for the sake of analysis since the algorithm itself does
not use the LPs.

We begin by outlining the obstacles when developing a suitable dual solution and describe our strategies to address them.
The dual solution presented here is also a crucial building block of the analysis of Algorithm 2 for the general Online JRP
problem with multiple items described in Section 3.1}

The goal is to assign a subset of requests to each service ,S; such that they can pay (accumulate) the cost s using their
variables «, while all the associated variables /3 across these subsets satisfy Constraint (2.6).

Assume for a moment that for each service S;, all of the requests that trigger this service arrive after the previous service,
which has happened at time ¢;_1, i.e., for each p € B; we have a, > t;_; (in this case, Bi1 is empty for each ¢). Then, for
each service .S; and for each p € B;, we set a, := b - (t; — d,) to be the backlog cost of p at time ¢;, i.e., the contribution
of p to triggering S;. With this assignment, the 3, ; variables deflate to zero in the forward direction at time d, + 52 = t;.
Moreover, in the backward direction, each 3, ; becomes zero at a, > t;_1. This is an ideal situation because of the following.

1. The sum of the «, variables for all the requests that trigger .5; is exactly s, as by definition, a service is triggered once
the sum of the backlog costs of the active overdue requests becomes s;

2. The $3 variables associated with paying for a request p € B; can have nonzero values only in the range (¢;_1, ¢;], which
means that the 3 variables for different services do not overlap. Since the « values for a service sum to s, this is also
the largest sum of the corresponding 3 values at any time in their interval, ensuring Constraint is met.

Thus, in this scenario, a feasible dual solution with an objective value of Ns can be easily constructed.
Now what if a request p € B; arrives before ¢;,_1,1.e., p € Bi1 ? We cannot do the same assignment for the dual variables,

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3871



Downloaded 09/01/25 to 98.236.225.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S
b

Figure 2: The requests in H;_; (solid), BZ-1 (dashed black), and Bf (dashed grey) for some service S;. These are the requests
that are used to pay for (one-third of) the costs of service S;. In this figure, hy,x is the holding cost of the request in H;_
with the latest deadline, and b,y is the backlog cost of the request in BZ-1 which has the earliest deadline.

as the resulting nonzero (3 variables for requests in different service sets B; can ‘pile up’ on each other at the same time,
resulting in a violation of Constraint (2.6). In this case, a key property of Algorithm[I helps us address this issue: since p
has arrived before ¢;_1, this request was a candidate to be served in the Holding Phase of service S;_;. Since the algorithm
in the Holding Phase probes the active requests in the order of their deadline, it means that service S;_1 has served some
other requests H;_; in its Holding Phase with earlier deadlines than p. Therefore, all the requests in H;_; have earlier
deadlines than the requests in B}. See Figure for an illustration.

In this case, in addition to the requests in B;, we also use the requests in H;_; to pay s. Each request p € H;_; can
pay its holding cost that is incurred at time ¢;_; by setting v, := h - (d, — t;—1). In this way, 3, ; diminishes to zero in the
backward direction at d, — % = t;—1. However, in the forward direction, it might go beyond ¢;.

Remember that in order to control the sum of 3 variables at each time (to satisfy Constraint (2.6)), it is crucial to keep
the (3 variables associated with different services completely disjoint. This means that for each p € B; U H;_; and each
t ¢ [ti—1,t;], we want to have (3, ; = 0.

To this end, in the dual solution, we compare Ay, the holding cost (from time ¢;_1) of the request in H;_; with the
latest deadline, with by,,x, the backlog cost (at time ¢;) of the request in BZ-1 with the earliest deadline (see Figure . Intuitively,
if Amax > bmax, it means that the deadlines of the requests in Bi1 are “far enough” from ¢;_; that their 5 values will deflate
to 0 in the backward direction before they reach t;_;, making sure that all the nonzero 5’s are confined within the range
[ti—1,t;]. Similarly, if Amax < bmax. it follows that the deadlines of the requests in H;_; are “far enough” from ¢; that their 3
variables will diminish to zero before ¢; in the forward direction. Therefore, in the former case, we can use the requests in B;
to pay s, and in the latter case, we can use the requests in H;_; to pay s.

But what if the holding costs of the requests in H;_; are not enough to pay for s? The final observation is that in such
case, we can charge the requests in B; to pay the slack, as their 8 values in the backward direction definitely deflate to 0
before reaching ¢;_. This is because for each p € Bil, since it was not satisfied at time ¢;_; despite being active then, there
was not enough budget left in Holding Phase of .S;_; to include it in H;_1, which in turn means that its deadline has “enough
distance” from ¢;_1.

The Fitted Dual Solution. Putting everything together, here is our proposed dual solution. The proofs of Lemmas|2.2|
and@ which show the dual solution has an objective value of /N's and it is feasible, can be found in the full version of the
paper.

Foreachi = 1,..., N do the following. Let Ay, be the holding cost (from time ¢;_) of the request in H;_; which
has the latest deadline, and b, be the backlog cost (at time ¢;) of the request in B} which has the earliest deadline (see
Figure . Set hnax 1= 0if H;_1 = () and by, := 0if B} = (). For ease of notation, set Hy = (). There are two cases:

* Case 1. hpax > bmax: set o, = b - (t; — d,,) for each p € B;, and set a, = 0 for each p € H;_;.

» Case 2. hpax < bmax: seta, = h-(d, —t;_1) foreach p € H;_;, and set o, = ‘5_'% -b- (t; —d,) foreach p € B,
where hgm := ZpeHi_l h - (d, — ti—1) is the sum of the holding costs of requests in H;_; at time ¢;_;.
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For each p, set 3, ; as follows (see Figure[I):

5, = max(0,c, —h-(d, —t)) fora, <t<d,
Pt max(0,c, —b-(t —d,)) fort>d,.

LEMMA 2.2. In the proposed dual solution, for eachi =1, ..., N, we have ZpeBiuHi,_l o, = 5. This shows that the dual
objective function is N s.

LEMMA 2.3. The above dual solution is feasible for [STRPp).
Proof. [Proof of Theorem|1.1]] Follows from Lemmas[2.1}[2.2] and[2.3| 0

REMARK 2.1. The analysis of the Algorithm|[l]is tight, i.e., there exists an instance of the problem for which the algorithm
performs 3 times worse than the optimal offline algorithm: assume b = h = 1 and all the arrival times are 0. Assume there
are s deadlines at time 0, and for each k > 1, there are 2s deadlines at time 2k. Algorithmmakes services at times 1,3, . ..
and pays 3s for each service. But one can do services at times 0,2, .. .. and pay s for each service (no holding or backlog
cost incurred).

REMARK 2.2. In the case where no backlog is allowed, i.e. b = oo, the same analysis shows that Algorithm [I is 2-
competitive. Note that in this case, the algorithm waits until one of the requests becomes due, and then triggers a service.
After that, the algorithm goes over the active requests in the order of their deadlines and includes them in the current service
until their total holding cost reaches s.

3 Online JRP with Multiple Items

In this section, we describe an algorithm for (multiple-item) Online JRP. In Online JRP, each service includes a subset
U C {viy,...,v,} of the items, and the cost of the service is the sum of the joint service cost ¢(r), the item costs
c(U) = 3 ,cu c(u), and the holding and backlog costs of the requests fulfilled using this service.

In the case where ¢(r) > >"""_; ¢(v;), the problem reduces to single-item JRP with service cost ¢(r) as the sum of the
joint service cost and item costs for each service is within a constant factor of ¢(r). On the other hand, if for some item v we
have ¢(r) < c¢(v), we can decouple v from the other items and treat it as a separate single-item problem, which results in
the loss of only a constant factor. While we make no assumptions, the above arguments show that the hard case is where
¢(r) > c(v;) foreach i and Y, c(v;) is much larger than ¢(r). Critically, in the multi-item case, the algorithm will need to
justify paying both the joint service cost and the cost of each individual item that is included in a service.

3.1 Algorithm We start with an intuitive description of the algorithm and then give a formal definition.

Triggering a Service: Using a greedy dual-growing approach, each item type v; is represented by a cup with a target volume
¢(v;) which is “filled” over time with backlog costs of requests for this item. Once an item’s cup is full, the algorithm decides
to include that item in the next service. We call such items mature. The algorithm additionally accumulates surplus backlog
cost, which can be thought of as the “overflow” of the item cups into another cup with volume ¢(r) which corresponds to the
joint service cost. Once this joint cup is filled in a “mature” backlog accumulation phase, the algorithm zriggers an actual
service and includes all the mature items in the service, which we denote by S. The algorithm naturally serves all the overdue
requests for all items in S since otherwise a larger backlog cost will be incurred to serve them in the future.

Selecting Additional Items to Serve: It is not sufficient to include only the mature items as there are instances where the
algorithm incurs large costs from requests for several items that are just about to become mature (see [[10]). To overcome
such instances, the algorithm also serves some of the premature items; that is, the items that have not accumulated enough
backlog cost to fill up their cups. Since we are adding premature items based on their backlog, this adds a second “premature’
backlog phase to the algorithm. In this phase, the algorithm sets a budget of ©(c¢(r)) and “buys” premature items one by one
in the order of the first time they are going to be mature assuming no new request arrives for them. It is worth mentioning that
the algorithm presented in [L0] for make-to-order JRP has a similar step called the “simulation step”.

s

Selecting Additional Requests to Serve: The algorithm considers each item v; € S and performs a “local” holding phase
similar to Algorithmwith a budget of ¢(v;). As explained later in Section [E, this helps us accumulate the ¢(v;) cost using
dual variables. Moreover, by the same logic, to gather the joint service cost ¢(r) in a feasible dual, another “global” holding
phase is needed jointly among all the items in the service. In this “global” holding phase, the algorithm sets a budget of ¢(r)
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and goes over all the active requests for the items in S’ in the order of their deadlines and fulfills them by paying their holding
cost.

Formally, we propose Algorithm [2 for Online JRP. Even though the algorithm uses a continuous notion of time for
illustrative convenience, it is not hard to implement it in time polynomial in the number of requests since all relevant times of
maturity are polynomially bounded by the number of requests.

Algorithm 2 : Multiple-item Online Joint Replenishment Problem

Start with time ¢ = 0 and continuously increase ¢. At each time ¢:

e Let A; be the set of all the active requests at time ¢, i.e., the requests that have arrived before or at ¢ and are not satisfied by

any of the previous services.

e Assign a variable b;(v) to each item v, which indicates the amount of backlog accumulated by the unsatisfied overdue
peAiv,—v, d,<t U (t = dp). We call an item v mature, if b;(v) > c(v). Any backlog
cost that is accumulated after v becomes mature is called surplus backlog cost.

requests for v at time ¢, i.e., by(v) = >

e Assign a variable b;(r) to the root, which indicates the sum of the surplus backlog costs for the mature items at time ¢, i.e.,
by (7) = ZU:}){,(U)ZC(?)) (bt ('U) - C(U))'

e Mature Backlog Phase If b;(r) = c(r), i.e., the surplus backlog cost accumulated equals the joint service cost, trigger a
service S at time ¢. Include all the mature items v in S, satisfy all their overdue requests using S, and remove them from A;.

e Premature Backlog Phase. For each premature item v that has at least one unsatisfied request, compute the first
time mature;(v) it is going to be mature, assuming no new request shows up, i.e., mature;(v) is a time ¢’ such that
> pedyiv,=v, d,<p 0 (t' = dp) = c(v). Sort all of the premature items in non-decreasing order of mature; (v), and include
them in S one by one, as long as the sum of their item costs ¢(v) is at most 2¢(r). For each newly included item, satisfy all of

their overdue requests using S, and remove them from A;.

¢ Local Holding Phase. For each item v included in .S, iterate over the remaining active requests for v in non-decreasing
order of their deadlines, and satisfy them one by one using S, as long as the sum of their holding cost is at most ¢(v) (Note
that since all the overdue requests in v are already satisfied using one of the backlog phases, all the remaining active requests

in v have deadlines in the future).

¢ Global Holding Phase. Go over the remaining active requests for items included in S in non-decreasing order of their
deadlines, and satisfy them one by one using .5, as long as the sum of their holding cost is at most ¢(r).

3.2 Primal and Dual Problems We use dual-fitting to analyze the algorithm. First, we start by writing a linear program
and its dual for Online JRP.
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@3.11) P = min

S )z [JRPp]

ve{r,v1,...,un} ¢

(3.12) YD weh(dy—t)+ D wps b (t—dy)
P

a,<t<d, t>d,
(3.13) sty @ =1, Vp
t>a,
(3.14) Tpt < Zy, it Vp,t > a,
(3.15) Zuit < 2t Vi, 1<i<n
(3.16) z,4 >0, Vp,t
(3.17) 2y > 0, Yo, t

In [JRPp|, z, + represents whether a service is made at time ¢ that includes node v, and o,¢ determines if request p is
satisfied at time ¢. Constraint ensures that each request is eventually satisfied, and Constraint relates the two
types of variables, ensuring that a request is satisfied at time ¢ only if a service is provided at that time. Constraint
guarantees that the root is included in all services, i.e., the joint service cost is paid for each service that is triggered. If the
variables are constrained to be binary, the resulting Integer Program will be an exact formulation for the problem. Thus
[JRPp] is a relaxation of the original problem, and it follows that P < OPT.

The dual of [JRPp| has variables c,, 3, +, and ,, ; assigned to the constraints (3.13),(3.14), and (3.15), respectively:

(3.18) D=max Y a, [JRPp)]
P
(3.19) s.t. > Bt = Yoor < c(va), Vi, 1<i<n
pra,<t,v,=v;
(3.20) > s < elr), vt
=1
3.21) ap—Ppr < h-(d,— 1), Vp,a, <t <d,
(3.22) ap— Ppr <b-(t—d,), Vo, t >d,
(3.23) Bpt >0, Vp, t
(3.24) Yoit = 0, Vt,1<i<n

In [JRPp)], variables B,,¢ are only defined for ¢ > a,,. In the analysis, for simplicity, we define 3, ; for all values of ¢ and
set 3, tobe O foreach ¢t < a,.

Here we give some intuition about the dual problem. The goal is to find a feasible solution to [JRPp] with a large
objective function o Qp. A in the single-item case, we think of « variables as money that can be used to pay for the cost
of our algorithm. When «, is increased for some request p, Constraints and force a feasible solution to have
non-negative /3, ; variables for t € [max(a,,d, — 52),d, + 5]. Bach nonzero « variable thus imposes a range of nonzero
f3 variables. The sum of the 3 variables for requests for each item v; is bounded by Constraint (3.19). Assume that the ~
variables are all zero: then, Constraint insists that at each time ¢, the total amount of budget that we have for the sum
of the 3’s for requests p associated with item v; is at most the cost of the item c(v; ). This can be thought of as a local budget
that we have for each item per unit of time. If the cost incurred by « variables is beyond this local budget, then the variables
~ must be used, which represent a global budget that is shared between all items. Constraint implies that at each time
t, the total amount of the global budget is at most the cost of the joint service ¢(r).

3.3 Notation Let S,..., Sy be the services that our algorithm triggers, and assume that they happen at times
t1 < ... < tn. Let Vi1 and V; 5 be the set of items included in service S; in Mature Backlog Phase and Premature
Backlog Phase, respectively, and define V; := V; 1 U V; 2. Let V; 4 be the set of items that have at least one activelf]

2Recall that an active request is one that has arrived before the current time and is as yet unsatisfied.
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request immediately after the Mature Backlog Phase. Note that V; o C V; 4. For ease of notation, we define ¢y := 0 and
V() = VO,A = @

Let B; 1, H; 1, and H; 5 be the set of requests satisfied using S; in Mature Backlog Phase, Local Holding Phase, and
Global Holding Phase, respectively. For each item v, the requests for that item satisfied in these three phases are denoted by
By, H z?jl, and H Z“ o, Tespectively. For each item v € V; o, let B}’ 5 be the set of requests for v that contribute to making v
mature at time mature,, (v), i.e., the set of active requests p at the beginning of Premature Backlog phase such that a, < t;,
d, < maturey, (v), and v, = v. Let B 5 := Uv €Vis B;-f o- Note that in Premature Backlog Phase, only the requests in B; »
that have deadlines before ¢; are satisfied. So .S; C B; 1 U B; 2 U H; 1 U H; > (we abuse the notation here and use S; to refer
to both the i’th service and the set of requests included in the i’th service). For a subset U of vertices in the tree, define
c(U) ==, cu clu).

Consider a service S; and an item v € V; ;. The item v is included in the Phase I backlog of service .S, so it has matured
at some time ¢ < ¢;. This implies that the sum of the backlog costs of the active requests for v at time ¢ is at least ¢(v). Since
active requests for v at time ¢ are all included in By ;, and t < ¢;, we conclude that ZPEBEJ’I b-(t;—d,) > c(v). Letp1, ..., pm

be the requests in By ; in increasing order of arrival time. Let £* be the smallest & such that Zle b-(t;—dp,) > c(v). Define

LY :={p1,...,pp=}. If Zle b-(ti—d,,) = c(v), define R} := {pg+41,...,pm}; otherwise define R} := {pi+,..., pm}
Note that L U Ry = B}, and L{ N R} is either () or {py- }. In the latter case, the item becomes mature in the middle of
processing the dual value for request py~ in this order.

Just to repeat, similar to the single-item case, when «, > 0 for some request p, constraints and require us
to assign nonnegative (3, ; variables for ¢ € [max(a,,d, — 52),d, + 3]: see Figure As we move from time d,, to later or
earlier times, we can decrease the value of 3, ;. We call the former forward direction, and the latter backward direction (of
time).

3.4 Challenges and a High-Level Description of the Dual Solution In each service .S;, all costs are within a constant
factor of ¢(V; 1) + ¢(r); see Lemma @ In general, neither of these terms dominates the other. Therefore, we will fit a dual
solution that accumulates both ©(c(V1)) and O(c¢(r)).

In the single-item case, to pay s for each service .S;, the requests in H = H;_; and B = B; are used. There are 3
ingredients that are utilized in the dual solution for the single-item case:

(I1) Sum of the backlog costs of the requests in B at time ¢; is s.

(I2) The active requests at t;_; with future deadlines are added to H in order of their deadline and the budget for their
holding costs is s.

(I3) Each request in B that has arrived before ¢;_; is a candidate in the holding phase of S;_;.

In the dual solution presented in Section@for [JRPp], we use a similar dual solution to the single-item case to partially
pay the costs of Algorithm In fact, all the cost c(V; 1) for each service S; is paid in this way, since all 3 ingredients needed
are present. Assume v € V; 1 and let Sy be the last service before \S; that includes v. Let B := B;J)l and H := HZl. Item v
is included in V; ; because the sum of backlog accumulated for it is at least ¢(v), i.e., the sum of the backlog costs of the
request in B at time ¢; is ¢(v) (Ingredient. Moreover, in the Local Holding Phase of Sy, Algorithm |Zsets a budget of
¢(v) to go over the active requests for v with deadlines in the future and serves them using .Sy in the order of their deadlines
(Ingredient [(I2)). Lastly, each request in B that has arrived before ¢, is a candidate in the Local Holding Phase of Sy for
item v (Ingredient. We can accumulate a dual value of ¢(v) using a similar approach to the dual assignment for the
single-item case. This is done in step|D.1]of the dual assignment in Section[3.5/using Lemma|3.1| We call this procedure
local charging, as it is used to recover the item costs (which can be thought of as the local costs of the algorithm) only using
the local budget and the 3 variables. In particular, the + variables in [JRPp] are not used in the local chargings.

Paying ¢(r) is more nuanced. At first glance, it might seem that for two consecutive services S;_1 and S;, we can follow
the same structure and set B to be the set of requests that caused the surplus backlog of ¢(r) in S;, and set H := H;_1 o, the
set of requests served in the global holding phase of S;_;. In fact, with this definition of B and H, we have ingredients |(I1)|
and|(I2); but|(I3)|might be missing. This is because the set of items included in the services S;_; and \S; are not necessarily
the same, i.e., there might be a request p € B that has arrived before ¢;_; but its item v,, is not included in the service Si,l

3This difficulty does not arise in the single item case since all requests are for the same item and they are considered in the previous service if they were
active.
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This means the request was not considered in the Global Holding Phase of .S;_1. However, this shows us that we can pay for
the surplus backlog costs of the requests that were among the candidates in Global Holding Phase of .S;_1, i.e., the requests
for the items in V; 1 N V;_; (This is done in step[D.2.2.2]of the dual assignment using Lemma|[3.2).

To recover the remainder of the surplus backlog cost, namely for the items in V; 1\V;_1, we need a new idea. This is
where the Premature Backlog Phase of Algorithm[2]is exploited.

In the Premature Backlog Phase of service S;_i, for each premature item v, the algorithm computes the first
time mature;, , (v) that v becomes mature using only active requests at time ¢,_1. Suppose mature;, ,(v1) < ... <
maturey, , (v, ). The algorithm iterates over the nodes vy, . . ., vy, in this order, and includes them one by one in service .S;_1
by paying their item costs c¢(v), as long as the sum of the item costs is at most 2¢(r). Assume that the algorithm includes items
Vi—1,2 = {v1, ..., v} in the Premature Backlog Phase of service S;_1, and for simplicity, assume Z§:1 c(vj) = O(c(r)).

There are two cases to consider:

* t; > mature;, | (vgy1). In this case, for each item v € {v1, ..., v}, using Lemma we pay for ¢(v;). This allows
us to pay Z?Zl c(vj) = O(c(r)). The only difference between this case and the local charging is that we set B
to be equal to the set of requests that make v mature at time mature;, , (v). We set H = Hj, where £ is the last
service before ¢ — 1 that includes v. This case corresponds to step [D.2.1in the dual assignment below. The fact that
mature;, , (v) < mature;, , (vi4+1) < t; ensures that the non-zero § variables set in Lemmaare restricted within
[te, t;]. This prevents the 3 variables used to pay for different services from accumulating at some fixed time.

However, there is one important detail that we need to be careful about: some of the requests that contribute to v
becoming mature at time mature;, _, (v) have deadlines after ¢;,_;, which means that they are not served using .S;_;
(and they might still be active at time ¢;). This means that we are charging a request at time ¢, _; that has not yet been
served. To address this issue, we show that each request is charged at most rwice during the local chargings in the
construction of the dual solution.

* t; < mature;, , (vi+1). Note that we only need to pay for the surplus backlog cost of the items in V; 1\V;_1, which
does not include any of the items in V;_1 2 = {v1,..., v} since V;_12 C V;_1. Letv € V; 1\V;_1. We show that all
the requests that contribute to the surplus backlog cost of v have arrived after time ¢;_; (Lemma 3.3). Consider setting
a, for each such request to be equal to the backlog cost of p at time ¢;. In this case, we know that the corresponding
B variables can only have nonzero values in [t;_1,t;]. Lemma holds because either v does not have any active
requests at time ¢;_1, or v is in {vgy1, ..., Uy, }. This means that the active requests at time ¢;_; can only accumulate
enough backlog cost to make v mature at mature;, , (vg+1) > t;. Thus, all the requests responsible for the surplus
backlog cost of v at time ¢; have arrived after #; ;. This case corresponds to[D.2.2.1]in the dual assignment.

Finally, we mention one other detail that needs to be taken into account. In the above, for an item v € Vj 1, we talk about
requests that contribute to the surplus backlog cost of v at time ¢;. Here we implicitly assume that the set of requests in B}
is naturally partitioned into two sets: one set consisting of the earlier requests (in terms of arrival times) that make v mature,
and another set comprised of the later requests that are responsible for the surplus backlog cost. However, in reality, a request
can contribute to both the backlog cost that makes v mature and the surplus backlog cost. To partition the requests into two
sets having the aforementioned properties, we “artificially” partition the set B} into two sets L;" and R;’ which play the roles
of the two sets described above. Note that this partitioning of the requests in B}, is crucial as the charging used in
can only be done on the requests in Y which we know have arrived after ¢;_;.

Next we formally describe the dual solution.

3.5 Dual Solution Our proposed dual solution is constructed in a modular way. First, we describe the building blocks of
the dual solution. The (partial) dual solutions presented in the proofs of Lemmas 3.1 and 3.2 are very similar to our proposed
dual solution for the single-item case. The proofs can be found in the full version of our paper.

LEMMA 3.1. (LOCAL CHARGING LEMMA FOR v AND S;) Let S; be a service that contains item v, and let Sy be the last
service before S; that includes v. Define B and t* as follows:

* Case I (mature items): v € V; 1. Define B := L7, and t* := t,.

* Case 2 (premature items): v € V; . Define B := By, and let t* be the time maturey, (v) defined in Premature Backlog
Phase of service S; in Algorithm
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Also, let H := H} | be the set of requests for item v that are satisfied in the Local Holding Phase of service Sy. If S; is the
first service that includes v, set t; := 0 and H := (). There is an assignment for the variables c,, 3, + for each p € BU H
such that:

M > pepun @p = (),
() By =0foreachp € BUH andt ¢ (t;,t*).
(D By <« for each p € BU H and each time t,
(IV) «, and B, 4 for p € B U H satisfy constraints (3.21), (3.22), and (3.23).

(V) InCase I, ap < c(v) =32 cpoqpey b+ (ti = dp), where p™ is the request in L with the largest arrival time.

LEMMA 3.2. (TWO-SIDED GLOBAL CHARGE FOR S;) Let S; be one of the services triggered by Algorithm [2} i =
2,...,N, and let S;_, be its previous service. Let H := H;_; 9 and B := Uve% Viy RY. Then there is an assignment
for the variables o, B, and v, ; for each p € H U B and v € V; 1 N V;_1 such that:

@ ZpEBUH ap = Zvevi,mvi,l (ZpEB;’)l be(ti —d,) — C(U))'
() Byt =0and v, =0foreachpe BUH, veV;1 NV, andt ¢ (t;_1,t;).
(D) By <« foreach p € BU H and each time t,
(AV) «,, Byt and 7y, 4 for each p € BU H and v € V; 1 N V;_1 satisfy all the constraints in [JRPp).
V) Zp:apgt,vp:’v Bp,t = Yot for each v € Vi 1 N V;_1 and each time t.
We build the dual solution using the following three routines.

DEFINITION 3.1. (LOCALCHARGE(v, S;)) Assume S; is a service that includes item v. Do the dual assignment for item v
and service S; described in Lemma[3.1) and denote the variables by o and (3*. For each request p and time t, increase the

1 x 1 % .
current values of o, and B, by 1o, and 33} 4, respectively.

DEFINITION 3.2. (UNIQUEGLOBALCHARGE(p, S;)) Assume p is a request in B, 1. Let ag be the current value of «,, and
define A :=b- (t; —d,) — ag. Increase o, by A, and for each time a, <t < t;, increase 3, and ,, 1 by A.

DEFINITION 3.3. (COMMONGLOBALCHARGE(S;)) Let o*, 8* and v* be the dual assignment of Lemma for service

Si, where i = 2, ..., N. For each item v, request p, and time t, increase the values of o, B, 1, and 7y, ¢ by %a;, % ;’t, and
%’yfjw respectively.

Now we are ready to describe the dual solution.

Dual Assignment. Consider a service S; for ¢ = 2,..., N. Without loss of generality, assume after doing Mature
Backlog Phase for S;_1, the set of premature items that have at least one active request is V;_1 4 = {v1,...,vn}, and
mature;, ,(v1) < ... < mature, ,(v,,). Suppose in Premature Backlog Phase for S;_1, the items vy, . . ., vy are included,
ie., Vi1 o = {v1,...,v5}. So either these are all the items with active requests, i.e., m = k, or we did not have enough
budget to include vy in the service, i.e., Zf:ll c(vj) > 2¢(r). In the former case, define mature;, , (vg41) := 00.

Here is how we construct the dual solution for [JRPp]. Initially, set all the dual variables to zero. Foreachi =1,..., N,
do the following (note that V4 = 0):

Dual Assignment ;
D.1 For each v € V; ; do LocalCharge(v, S;).
D.2 There are two cases:
D.2.1 CaseI: V;_; 4 # 0 and ¢; > mature;, , (Vg41).
For each node v € V;_1 2, do LocalCharge(v, S;_1).
D.2.2 CaselIl: V;_; 4 = 0 ort; < mature;, ,(vgt1).
Copyright © 2025 by SIAM
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1. v 2 . v
Define R; :=U,cv, ,\v;_, i and B} := U,ev; v, B

D.2.2.1 For each p € R}, do UniqueGlobalCharge(p, S;).
D.2.2.2 If R? # (), do CommonGlobalCharge(S;).

D.2.2.3 If the total increase of the « variables in steps [D.2.2.1]and [D.2.2.2]is more than c¢(r), scale down all
the increases in these steps (for all the variables involved) so that the total increase of the « variables
becomes exactly ¢(r).

Note that for i = 1, since V;_1 4 = V;_1 = 0, only stepleD.Z.Z.l‘and |D.2.2.3‘ are called, where R} = Uvevl,l RY.

Intuitively, Dual Assignment ¢ is responsible for paying a constant fraction of the costs of service .S;.

Before calculating the objective value of the above dual solution and proving its feasibility, we prove the following key
structural lemma, which is used in the next two sections.

LEMMA 3.3. All the requests that are involved in step |D.2.2.1| of Dual Assignment i, i.e., the requests in R} =
Uvew AVis RY, arrive after t;_;.

Proof. In step of the Dual Assignment ¢, Case II happens when V;_1 4 = () or ¢; < mature;, , (vi4+1). Recall that
Vic1,4 = {v1, ..., v} is the set of all the items that have at least one active request at time ¢;_; and are not included in
Mature Backlog Phase in service .S;_;. The times at which these items are going to mature, considering only their active
requests at time ¢;_, immediately after Mature Backlog Phase, are mature;, , (v1) < ... < maturet,_, (v, ). Among these
items, V;_1 2 = {v1,..., v} are included in Premature Backlog Phase for service S;_1. The requests involved in
are the requests in R} = Uvevi‘l\vj_l RY. Since {v1,...,vp} = Vi_12 C V;_1, none of the items {v, ..., v} are in R;.

Let v € V;1\V;_1 be one of the items involved in R}. We want to show that all the requests in R? have arrived after
t;_1. There are two cases:

* U € {Vkt1,...,Um}. Since t; < mature, _, (vi+1), we conclude that the sum of the backlog costs of the requests for
v that are active at time ¢;_; is less than ¢(v) at time ¢;, i.e., these requests are not enough to make v mature at time
t;. In Mature Backlog Phase of service S;, only mature items are included. So since v € V; 1, i.e., it was chosen in
Mature Backlog Phase of service .5;, it is impossible for all the requests in L] to have arrived before ¢;_; (recall that
the requests in L7, by definition, can make v mature at time ¢;). In particular, it implies that the request with the latest
arrival time in L] has arrived after ¢;_;, which means that all the requests in R} have arrived after ¢;_;.

* v ¢ V; 4. This means that v does not have any active requests at time ¢;_; after service S;_,. Therefore all the requests
for item v that are served during Mature Backlog Phase of service .S;, i.e., B}, have arrived after ¢;,_. In particular,
all the requests in R} C Bf’ 1 have arrived after ¢;_;.

Note that since all the requests arrive after time 0, for i = 1 we have that all the requests in R} arrive after t;_1 = 0. a

3.6 Dual Objective Value In this section, we calculate the objective value of the dual solution described in Section [3.5]
and compare it to the cost of Algorithm 2]

LEMMA 3.4. The total increase of the o variables if Step 22.2.1 of Dual Assignment i is invoked is at least c(r) /2.

Proof. When this case happens, it means that vy has some active requests at time ¢;_1, i.e., mature;, , (vg+1) # co. But
we have not included vy41 in V;_1 2, which means that we could not afford to pay for ¢(vk+1) in the Premature Backlog
Phase of service S;_1. So ZIZLI ¢(vg) > 2¢(r). On the other hand, mature,, , (vg4+1) is the time at which vi1 becomes
mature using only the backlog costs of the requests that are active at time ¢;_;. Since v is not included in .S;_1, none of
these requests are fulfilled using service S;_1, and they remain active after this service. Thus, the actual time vy becomes
mature after service S;_1 is not more than mature;, , (vi4+1) < t;. Since S; has happened at time ¢;, it means that vy is
included in V; 1, as it was mature at time ¢;. So in we have called LocalCharge(vg+1, S;), which increases the sum of
the « variables by c¢(v+1)/4. We also call LocalCharge(v, S;) forall v € V;_1 5 = {v1,...,v%} in which increases

the sum of the « variables by Zif:l c(vg)/4. Therefore, (S;) > Z];ill c(ve)/4 > 2¢(r)/4 = c(r)/2. a

LEMMA 3.5. The total increase of the o variables if step @.2.2 of Dual Assignment i is invoked is at least c(r) /2.
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Proof. For i = 2,...,N, in step [D.2.2.1 of Dual Assignment i, for each p € R} = Uvevi,l\vl,l RY, we call

UniqueGlobalCharge(p, S;). This function increases the value of v, by b - (t; — d,) — o), where of is the value of
v, before calling UniqueGlobalCharge. Note that for each node v € V; 1\V;_1, only the requests in L} are used in the local
chargings, which means that for each p € RY\LY, we have ag = 0. Also, LY N RY can only have one member, and if
pr e LYNRY, Lemma@shows that a,~ > t;_1, which means that p* was not used in any of the previous dual assignments,
and the first time it was potentially used is in step of the current Dual Assignment ¢. In this case, LocalCharge? v, S; ) is

called, which sets the value of c,« to %a;* , where . is the « value assigned to p* in Lemma Lemma|Lemma 3.1(V)

ensures that oy, < c(v) — ZpeL;’\{p*} b- (t; — d,), which means that

ag*gi W)= S beti—d)| <cw)= S be(ti—d,).

pELY\{p*} pEL\{p*}

Also, when Ly N R} = (), wehave 3 ;. b- (t; — d,) = c(v). Thus the total increase of the alpha variables in is

D 0-(ti=dy)—ap) = Y > (b-(ti—d,)—ap)

PER; vEV; 1\Vio1 pERY
= > Yoo bti=dy)—ap)+ D (bt —dy) —a)
veV;1\Vio1 _pER;’\L;’ pERVNLY
> > S b ti—d))+ > bt —dy) —c(v)
v€EV;1\Vie1 | pERY\LY pELY
= > X bti—dy)—clv)
veV; 1\Vio1 _pEB;’yl

In [D.2.2.2, we call CommonGlobalCharge(S;), where due to Lemma [Lemma 3.2(I)| increases » , @p by at least

Y evianvis (Speny, b+ (b= dy) = c(v)).
Therefore, the total increase of the « variables in steps[D.2.2.1/and [D.2.2.2|of Dual Assignment 1 is at least

Z Z b-(ti —d,) — c(v) +% Z Z b-(t; —d,) —c(v)

veV;1\Vi—1 | pEBY, veViiNVi_1 | peBY

1
>0 5 | bt dy) - ()
veVia [ peBY, i
1
= §C(T)’

where the last equality is derived by the fact that Algorithm [2 has triggered \S; in Mature Backlog Phase after it has
accumulated exactly c(r) surplus backlog cost. 0

LEMMA 3.6. Let «(S;) be the total increase of the « variables in Dual Assignment i. We have «(S;) >

max($c(Vi1), s¢(r)) for each service S;.

Proof. Each time LocalCharge(v, S;) is called for an item v and a service .S; that includes v, ) p @p increases by % p Qps

where a7 is the « variable assigned to p in Lemma By Lemma [Lemma 3.1(I), we know that PO = ¢(v), which

means that the increase in ) o, during LocalCharge(v, S;) is exactly 3c(v). Fori = 1,..., N, in Dual Assignment i,
stepis called, in which LocalCharge(v, S;) is invoked for each v € V; ;. Thus, a(S;) > %C(V;"l).
Now we prove that a(S;) > ¢(r)/2. Consider the two cases in[D.2}

* Case I: In this case, by Lemma[3.4] in step[D.2.1]the o variables increase by c(r) /2.
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« Case II: In this case, by Lemma[3.5] in step the « variables increase by ¢(r)/2.
d

LEMMA 3.7. The cost of the algorithm for service S; is at most 3¢(V; 1) + 9¢(r).

Proof. We break down the costs into three parts:

* Service Cost: We pay c(r) as the joint service cost, and ¢(V; 1) + ¢(V; 2) as the item-dependent costs. From the design
of the algorithm, we know ¢(V; 2) < 2¢(r). So the service cost is at most ¢(V; 1) + 3¢(r).

* Backlog Cost: When S; is triggered, it means that in Mature Backlog Phase we have b;(r) = ¢(r), which means that
the surplus backlog cost accumulated after the items in V; ; have become mature is ¢(r). The backlog cost needed
for each item v € V; 1 to become mature is ¢(v). So the total amount of backlog cost in Mature Backlog Phase is
¢(Vi 1) + ¢(r). In Premature Backlog Phase, all of the new items that are picked up are premature, which means that
the sum of the backlog costs for their requests at time ¢; is at most their item cost. This means the sum of the backlog
cost incurred in Premature Backlog Phase is at most ¢(V; 2) < 2¢(r). Thus the total backlog cost paid in service S; is
at most ¢(V;. 1) + 3¢(r).

* Holding Cost: For each item v in V; ;1 U V] 2, a holding cost of at most ¢(v) is incurred in the Local Holding Phase of
the algorithm. Moreover, a total cost of at most ¢(r) is paid in the global holding phase. Therefore, the holding cost
paid is at most (¢(V; 1) + ¢(Vi2)) + c(r) < c(Vi1) + 3c(r).

a
LEMMA 3.8. The total cost incurred by the algorithm is at most 30y p Qps for the proposed dual solution.

Proof. The proof follows immediately from Lemmas|3.6|and[3.7, 0

3.7 Dual Feasibility In this section we show that the dual solution presented in Section [3.5]is feasible. The proofs can be
found in the full version of our paper.

LEMMA 3.9. Each request p is involved in at most two local chargings and one global charging, i.e., its corresponding
variables o, B+ and 7y, + are modified at most two times during the calls to LocalCharge(.) and at most one time during
the calls to UniqueGlobalCharge(.) or CommonGlobalCharge(.).

LEMMA 3.10. For each item v and each time t, there are only two local chargings that can increase ZPZW:U Bp.t-

LEMMA 3.11. The dual solution presented in Section is feasible for [JRPp].

3.8 Proof of Theorem[1.2]

Proof. [Proof of Theorem|1.2]] For a particular instance I of Online JRP, in Section[3.5] we construct a solution to [JRPp],
which by Lemma is feasible, and by Lemma has an objective value of at least 55 Alg(I), where Alg([) is the cost
of Algorithmgfor instance I. This objective value is a lower bound for D, the optimal value of [JRPp], which in turn, by
weak duality, is a lower bound for P, the optimal value of [JRPp|. Since [JRPp]| is a relaxation of the original problem, we
have the following:

1
Aled) < D < P < OPT(D),

where O PT'(I) is the cost of the optimal solution for instance I. This shows that Algorithmis a 30-competitive algorithm
for Online JRP. 0

4 Conclusion

This paper considers the Joint Replenishment Problem (JRP) in the online setting with holding and backlog costs for the
first time. The main result is a new constant competitive greedy algorithm. Technically, this paper introduces a dual fitting
approach that gives insight into the combinatorial structure of the problem.
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There are several interesting directions for future work. One is to consider the case where each request can have a general

monotonically increasing cost function for the holding and backlog costs. An example provided in the full version of the
paper shows that Algorithms|T]and [2]do not give bounded competitive ratios for this case, even when the cost functions are
linear. Another direction is to consider multilevel trees. There is a line of work on online algorithms for multilevel trees with
hard deadlines or with just backlog costs (and no holding) 3,15, 12]. The dual fitting approach here could give insights into
improving this line of work and, further, can be useful for giving the first results for handling backlog and holding costs in
arbitrarily deep trees. Finally, giving tight competitive ratios for different versions of Online JRP, either by strengthening the
upper bounds or the lower bounds, is an intriguing open question. There are no known lower bounds on the competitive ratio
of the Online JRP model presented in this paper except for the ones that already hold for the case where just backlogging is
allowed.
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