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Preface

These lecture notes have been utilized for several years in the courses
I taught at both UIUC and IST-Lisbon.

Originally written in Portuguese, these notes were designed for
an advanced undergraduate course at IST-Lisbon, targeting students
with a basic knowledge of analysis, algebra, and topology. The ini-
tial motivation behind writing these notes was the lack of suitable
Portuguese textbooks on the subject.

When I moved to UIUC and started teaching a first-year graduate
course on di!erentiable manifolds, I still found it valuable to rely on
my old lecture notes as a teaching guide. Furthermore, despite the
availability of numerous excellent books on the subject, I recognized
the importance of providing my students with a written version of the
lectures, enabling them to fully concentrate on the class without the
burden of extensive note-taking. As a result, I decided to develop an
English version of the notes.

The lecture notes are organized into four parts, with each part
containing sections corresponding roughly to lectures lasting approx-
imately 1 hour and 30 minutes of classroom time. However, some lec-
tures include more material than others, reflecting di!erent rhythms
in the class. The exercises at the end of each lecture play a vital role
in the course, as they provide valuable opportunities for students
to deepen their understanding through practical problem-solving.
Additionally, some exercises may contain results that were men-
tioned in class but not proven, and these results might be used in
later lectures. I always caution the students to consider that the
exercises come with varying degrees of difficulty, which aligns with
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the nature of encountering new mathematical problems. At first, it’s
often unclear whether a problem has an easy solution, a hard one, or
if it remains an open problem.

Throughout my classes, I make it a point to emphasize that the
lecture notes do not serve as a replacement for the recommended
textbooks. On the contrary, I encourage my students to explore
more comprehensive works, and I often tell them: “Read the clas-
sics!” Certain parts in these notes are inspired or follow closely ideas
that can be found in classic textbooks such as Bott and Tu (1982),
(Dubrovin et al., 1992), Helgason (2001), Kobayashi and Nomizu
(1996), Lee (2013), Sharpe (1997), Spivak (1979), and Taubes (2011).

The development of these lecture notes benefited significantly
from the feedback and input received from many students and col-
leagues. In particular, I am grateful to David Altizio, Raquel Caseiro,
Ricardo Inglês, Ricardo Joel, Georgios Kydonakis, Daan Michiels,
Miguel Negrão, Miguel Olmos, João Pimentel Nunes, Roger Picken,
Ana Rita Pires, Matthew Romney, Olivier Massicot, Wilmer Smilde,
and Joel Villatoro. Furthermore, I would like to extend special thanks
to my colleagues from IST, Śılvia Anjos and José Natário, who dili-
gently pointed out many typos and mistakes and provided several
helpful suggestions for corrections. As an ongoing process, I continue
to update and refine these lecture notes, and I am always apprecia-
tive of any corrections and suggestions for improvement that are sent
my way.

Finally, I would like to express my gratitude for the generous
support provided by the Portuguese Science Foundation and the
National Science Foundation throughout the many years it took to
shape these notes.
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PART 1

Basic Concepts

1
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Lecture 1

Manifolds as Subsets of
Euclidean Space

Recall that the Euclidean space of dimension n is

Rn :=
{
(x1, . . . , xn) : x1, . . . , xn ∈ R

}
.

We will also denote by xi : Rn → R the ith coordinate function in
Rn. If U ⊂ Rn is an open set, a map f : U → Rm is called a smooth
map if all its partials derivatives of every order

∂rf j

∂xi1 · · · ∂xir (x),

exist and are continuous functions in U . More generally, given any
subset X ⊂ Rn and a map f : X → Rm, where X is not necessarily
an open set, we say that f is a smooth map if for each x ∈ X, there
is an open neighborhood U ⊂ Rn and a smooth map F : U → Rm

such that f |X∩U = F |X∩U .
A very basic property which we leave as an exercise is the

following.

Proposition 1.1. Let X ⊂ Rn, Y ⊂ Rm, and Z ⊂ Rp. If f : X → Y
and g : Y → Z are smooth maps, then g◦f : X → Z is also a smooth
map.

A bijection f : X → Y , where X ⊂ Rn and Y ⊂ Rm, with inverse
map f−1 : Y → X, such that both f and f−1 are smooth, is called

3



June 15, 2024 15:43 Lectures on Differential Geometry 9in x 6in b5406-ch01 FA1 page 4

4 Lectures on Differential Geometry

X
Yf

Rn Rm

Fig. 1.1. Diffeomorphic subsets.

a diffeomorphism and we say that X and Y are diffeomorphic
subsets (see Figure 1.1).

One would like to study properties of sets which are invariant
under diffeomorphisms, characterize classes of sets invariant under
diffeomorphisms, etc. However, in this definition, the sets X and Y
are just too general and it is hopeless to try to say anything interest-
ing about classes of such diffeomorphic subsets. One must consider
nicer subsets of Euclidean space. For example, it is desirable that the
subset has at each point a tangent space and that the tangent spaces
vary smoothly.

Recall that a subset X ⊂ Rn has an induced topology, called the
subset topology or relative topology. For this topology, the open sets
are just the sets of the form U ∩X, where U ⊂ Rn is an open set.

Definition 1.1. A subset M ⊂ Rn is called a smooth manifold
of dimension d if each p ∈M has a neighborhood U ∩M which is
diffeomorphic to an open set V ⊂ Rd.

The diffeomorphism φ : U ∩M → V in this definition is called a
coordinate system or a chart (see Figure 1.2). The inverse map
φ−1 : V → U ∩ M , which by assumption is smooth, is called a
parameterization.

We have the category of smooth manifolds where

• the objects are smooth manifolds;
• the morphisms are smooth maps.

The reason they form a category is that the composition of smooth
maps yields a smooth map, and the identity is also a smooth map.
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M
U

U M

V

Rd

Rn

φ

Fig. 1.2. A coordinate system.

(x, f(x))

R
d

Rm

Fig. 1.3. A graph of a map f : Rd → Rm.

Example 1.1. An open subset U ⊂ Rd is itself a smooth manifold
of dimension d: the inclusion i : U ↪→ Rd gives a globally defined
chart.

Example 1.2. If f : Rd → Rm is any smooth map, its graph

Graph(f) := {(x, f(x)) : x ∈ Rd} ⊂ Rd+m

is a smooth manifold of dimension d: the map x &→ (x, f(x)) is a
diffeomorphism Rd → Graph(M), so gives a global parametrization
of Graph(f) (see Figure 1.3).

Example 1.3. The unit d-sphere is the subset of Rd+1 formed by
all vectors of length 1

Sd := {x ∈ Rd+1 : ||x|| = 1}.
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Fig. 1.4. Stereographic projection.

Fig. 1.5. 1-dimensional manifolds.

Fig. 1.6. A 2-torus.

This is a d-dimensional manifold which does not admit a global chart.
However, we can cover the sphere by two coordinate systems: if we let
N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) denote the north and south
poles, then stereographic projection relative to N and S give two
charts πN : Sd−{N}→ Rd and πS : Sd−{S}→ Rd (see Figure 1.4).

Example 1.4. The only connected manifolds of dimension 1 are the
line R and the unit circle S1. What this statement means is that any
connected manifold of dimension 1 is diffeomorphic to R or to S1 (see
Figure 1.5).

Example 1.5. The manifolds of dimension 2 include the compact
surfaces of genus g. For g = 0 this is the sphere S2, while for g = 1
this is the 2-torus. For g > 1 the compact surface of genus g is a
g-holed torus as in Figures 1.6 and 1.7.
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Fig. 1.7. A surface of genus g.

Fig. 1.8. An embedded surface of genus 2.

A compact surface of genus g can be “embedded” in R3 in many
different ways. This statement will be made precise later, but here is
one example (see Figure 1.8).

In the definitions, we have adopted so far we have chosen the
smooth category, where differentiable maps have all partial deriva-
tives of all orders. We could have chosen other classes, such as contin-
uous maps, Ck-maps, or analytic maps.1 This would lead us to the
categories of topological manifolds, Ck manifolds or analytic
manifolds. Note that in each such category we have an appropri-
ate notion of equivalence: for example, two topological manifolds X
and Y are equivalent if and only if there exists a homeomorphism
between them, i.e., a continuous bijection f : X → Y such that the
inverse is also continuous.

1We shall also use the term Ck-map, k = 1, 2, . . . ,+∞, for a map whose partial
derivatives of all orders up to k exist and are continuous. A C0-map is simply
a continuous map and a Cω-map means an analytic map. A Ck-map which is
invertible and whose inverse is also a Ck-map is called a Ck-equivalence or a
Ck-isomorphism.
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Most of the times we will be working with smooth manifolds.
However, there are many situations where it is desirable to consider
other categories of manifolds, so you should keep them in mind.

Example 1.6. Let I = [−1, 1]. The unit cube d-dimensional cube is
the set:

Id = {(x1, . . . , xd) ∈ Rd+1 : xi ∈ I, for all i = 1, . . . , n}.

The boundary of the cube

∂Id = {(x1, . . . , xd) ∈ Id : xi = −1 or 1, for some i = 1, . . . , n}.

is a topological manifold of dimension d − 1, which is not a smooth
manifold (see Figure 1.9).

Example 1.7. If f : Rd → Rl is any map of class Ck, its graph:

Graph(f) := {(x, f(x)) : x ∈ Rd} ⊂ Rd+l

is a Ck-manifold of dimension d. Similarly, if f is any analytic map
then Graph(f) is an analytic manifold.

You may wonder if the dimension d that appears in the definition
of a manifold is a well-defined integer, in other words, if a manifold
M ⊂ Rn could be of dimension d and d′ for distinct integers d (= d′.
The reason that this cannot happen is due to the following important
result:

Theorem 1.1 (Invariance of Domain). Let U ⊂ Rn be an open
set and let φ : U → Rn be a 1:1, continuous map. Then φ(U) is open.

Fig. 1.9. A cube.
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The reason for calling this result “invariance of domain” is that
a domain is a connected open set of Rn, so the result says that the
property of being a domain remains invariant under a continuous, 1:1
map. The proof of this result requires some methods from algebraic
topology and can be found in any good book on the subject (see,
e.g., Hatcher, 2002, Theorem 2B.3). We leave it as an exercise to
show that the invariance of domain implies that the dimension of a
manifold is a well-defined integer.

Exercises

Exercise 1.1

Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp. If f : X → Y and g : Y → Z are
smooth maps, show that g ◦ f : X → Z is also a smooth map.

Exercise 1.2

Let f : Rd → Rm be a map of class Ck, k = 0, . . . ,ω. Show that
φ : Rd → Graph(f), x &→ (x, f(x)), is a Ck-equivalence.

Exercise 1.3

Show that the sphere Sd and the boundary of the cube ∂Id+1 are
equivalent topological manifolds.

Exercise 1.4

Consider the set SL(2,R) formed by all 2 × 2 matrices with real
entries and determinant 1:

SL(2,R) =
{[

a b
c d

]
: ad− bc = 1

}
⊂ R4.

Show that SL(2,R) is a 3-dimensional smooth manifold.

Exercise 1.5

Use invariance of domain to show that the notion of dimension of a
topological manifold is well defined.
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Lecture 2

Abstract Manifolds

In many situations, manifolds do not arise naturally as subsets of
Euclidean space. We will see several examples of this later. For that
reason, the definition of manifold that we have seen in the previous
lecture is often not the most useful one. We need a di!erent definition
of a manifold, where M is not assumed a priori to be a subset of
some Rn. We will see later that these abstract manifolds can always
be embedded in some Euclidean space, and so, the abstract definition
is actually equivalent to the more concrete definition of the previous
lecture.

For this more abstract definition of manifold, we need to start
with a set M where we have a notion of “proximity”. In other words,
we need M to be furnished a priori with a topology. At this point, it
maybe useful to remind yourself of the basics of point set topology.

Definition 2.1. A topological space M is called a topological
manifold of dimension d if for every p ∈ M , there is a neigh-
borhood U ⊂M and a homeomorphism φ : U → V onto some open
subset V ⊂ Rd.

Sometimes, one also calls a topological manifold a locally
Euclidean space. In this more general context, we still use the
same notation as before. We call φ : U → Rd a coordinate system
or a chart (see Figure 2.1), and the functions φi = xi ◦ φ are called
coordinate functions. We shall denote a chart by (U,φ). Often, we
write xi instead of φi for the coordinate functions, in which case we

11
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Fig. 2.1. A topological manifold.

may denote the chart by (U, x1, . . . , xd). We say that a chart (U,φ)
is centered at a point p ∈M if φ(p) = 0.

Example 2.1. On R3 \ {0}, consider the equivalence relation ∼,
where v ∼ w if and only if v = λw for some real number λ &= 0. The
set of equivalence classes

RP2 := (R3 \ {0})/∼

can be identified with the set of straight lines in R3 that pass
through the origin and it is called the projective plane. Denoting by
[x : y : z], the equivalence class of (x, y, z) ∈ R3 \ {0}, we have the
quotient map

π : R3 \ {0}→ RP2, (x, y, z) '→ [x : y : z].

On RP2, we consider the quotient topology. This means that U ⊂ RP2

is open if and only if π−1(U) ⊂ R2− {0} is open. The maps given by

φ1 : U1→ R2, [x : y : z] '→
(y
x
,
z

x

)
, U1 := {[x : y : z]∈ RP2 : x &= 0},

φ2 : U2→ R2, [x : y : z] '→
(
x

y
,
z

y

)
, U2 := {[x : y : z]∈ RP2 : y &= 0},

φ3 : U3→ R2, [x : y : z] '→
(x
z
,
y

z

)
, U3 := {[x : y : z]∈ RP2 : z &= 0},

are homeomorphisms from opens in RP2 onto R2. Since {U1, U2, U3}
is an open cover of RP2, we conclude that the projective plane is a
topological manifold of dimension 2.
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We make the following tacit assumption about the underlying
topology of a manifold:

Manifolds are assumed to be Hausdorff and second countable.

This assumption has significant implications, as we shall see shortly,
which are very useful in the study of manifolds (e.g., the existence
of partitions of unity or Riemannian metrics). On the other hand, it
means that when constructing a manifold, we have to demonstrate
that the underlying topology satisfies these assumptions. This is often
easy since, for example, any metric space satisfies these assumptions.

It should be noted, however, that non-Hausdor! manifolds
do appear sometimes, for example, when one forms quotients of
(Hausdor!) manifolds (see Lecture 10). Manifolds which are not sec-
ond countable can also appear (e.g., in sheaf theory), although we
will not meet them in the course of these lectures. We limit ourselves
here to give two such examples.

Example 2.2. On R2 \ {0}, consider the connected components of
the horizontal lines y = c. This defines a partition of R2 \ {0} and so
defines an equivalence relation ∼. The quotient spaceM = R2\{0}/∼
(with the quotient topology) is a topological 1-dimensional manifold:
we can cover M by two open sets

U+ = {[(1, y)] : y ∈ R}, U− = {[(−1, y)] : y ∈ R},

for which we have homeomorphisms

φ± : U± → R, [(±1, y)] '→ y.

However, M is not a Hausdor! topological space since the points
[(1, 0)] and [(−1, 0)] cannot be separated. One calls M the line with
two origins.

Example 2.3. Consider on M = R2 the topology generated by all
sets of the form U × {y}, where U ⊂ R is open and y ∈ R. This
topology does not have a countable basis. However, M is a topo-
logical 1-dimensional manifold with charts (U × {y},φy) given by
φy(x, y) = x. In this example, M is the disjoint, uncountable, union
of copies of the real line, and it is not connected. It is possible to
give examples of connected, Hausdor!, manifolds M which are not
second countable, such as the long line (see Exercise 2.13).
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Fig. 2.2. Transition functions between two charts.

Of course, we are interested in smooth manifolds. The definition
is slightly more involved.

Definition 2.2. A smooth structure on a topological d-manifold
M is a collection of charts C = {(Uα,φα) : α ∈ A} which satisfies the
following properties:

(i) The collection C covers M :
⋃
α∈A Uα = M .

(ii) For all α,β ∈ A, the transition function φα ◦φ−1
β is a smooth

map (see Figure 2.2).
(iii) The collection C is maximal: if (U,φ) is a chart such that for

all α ∈ A, the maps φ ◦ φ−1
α and φα ◦ φ−1 are smooth, then

(U,φ) ∈ C.

The pair (M, C) is called a smooth manifold of dimension d.

Given a topological manifoldM , a collection of charts which satis-
fies conditions (i) and (ii) in the previous definition is called an atlas.
Given any such atlas C0 = {(Uα,φα) : α ∈ A}, there exists a unique
maximal atlas C which contains C0: it is enough to define C to be the
collection of all smooth charts relative to C, i.e., all charts (U,φ)
such that φ◦φ−1

α and φα ◦φ−1 are both smooth for all (Uα,φα) ∈ C0.
For this reason, one often defines a smooth structure on a topologi-
cal manifold M by specifying some atlas, and it is then implicit that
the smooth structure is the one associated with the corresponding
maximal atlas.
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It should be clear from this definition that one can define in a
similar fashion manifolds of class Ck for any k = 1, . . . ,+∞,ω, by
requiring the transition functions to be of class Ck. In these lectures,
we shall concentrate on the case k = +∞.

Example 2.4. The standard differential structure on
Euclidean space Rd is the maximal atlas that contains the coor-
dinate system (Rd, i), where i : Rd → Rd is the identity map. It is
a non-trivial fact that the Euclidean space R4 has an infinite num-
ber of smooth structures, with the same underlying topology, but
which are not equivalent to this one, in a sense to be made precise
later (see, e.g., Freedman and Luo, 1989). These are called exotic
smooth structures. It is also known that Rd, for d &= 4, has no
exotic smooth structures.

Example 2.5. If M ⊂ Rn is a d-dimensional manifold in the sense
of Definition 1.1, then M carries a natural smooth structure: the
coordinate systems in Definition 1.1 form a maximal atlas (exercise)
for the topology on M induced from the usual topology on Rn. We
shall see later in Lecture 8 that the Whitney Embedding Theorem
shows that, conversely, any smooth manifold M arises in this way.
Henceforth, we shall refer to a manifold M ⊂ Rn in the sense of
Definition 1.1 as an embedded manifold in Rn.

Example 2.6. IfM is a d-dimensional smooth manifold with smooth
structure C and U ⊂ M is an open subset, then U with the rela-
tive topology is also a smooth d-dimensional manifold with smooth
structure given by

CU = {(Uα ∩ U,φα|Uα∩U ) : (U,φα) ∈ C} .

Example 2.7. If M and N are smooth manifolds, then the Carte-
sian product M ×N , with the product topology, is a smooth man-
ifold: in M × N , we consider the maximal atlas that contains all
coordinate systems of the form (Uα × Vβ,φα × ψβ), where (Uα,φα)
and (Vβ,ψβ) are smooth coordinate systems of M and N , respec-
tively. It should be clear that dimM × N = dimM + dimN .
More generally, if M1, . . . ,Mk are smooth manifolds, then M1× · · ·×
Mk is a smooth manifold of dimension dimM1 + · · · + dimMk. For
example, the d-torus Td = S1× · · ·×S1 and the cylinders Rn×Sm
are smooth manifolds of dimensions d and n+m, respectively.
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Example 2.8. Generalizing the projective plane, one defines the
real projective space as the set

RPd :=
{
L ⊂ Rd+1 : L is a straight line through the origin

}
,

which we can think of as the quotient space of Rd+1 \ {0} /∼ by the
equivalence relation

(x0, . . . , xd) ∼ (y0, . . . , yd) if and only if (x0, . . . , xd)=λ(y0, . . . , yd)

for some λ ∈ R \ {0}. On RPd, we take the quotient topology, so
it becomes a topological manifold of dimension d: if we denote by
[x0 : · · · : xd] the equivalence class of (x0, . . . , xd) ∈ Rd+1 \ {0}, then
for each α = 0, . . . , n, we have the coordinate system (Uα,φα), where

Uα =
{
[x0 : · · · : xd] : xα &= 0

}
,

φα : Uα → Rd, [x0 : · · · : xd] '→
(
x0

xα
, . . . ,

x̂α

xα
, . . . ,

xd

xα

)

(the symbol â means that we omit the term a). We leave it as an
exercise to check that the transition functions between these coordi-
nate functions are smooth, so they form an atlas on RPd. Note that
RPd does not arise naturally as a subset of some Euclidean space.

We have established what our objects are. Now, we turn to the
morphisms.

Definition 2.3. Let M and N be smooth manifolds.

(i) A function f : M → R is called a smooth function if f ◦ φ−1

is smooth for all smooth coordinate systems (U,φ) of M .
(ii) A map Ψ : M → N is called a smooth map if τ ◦ Ψ ◦ φ−1 is

smooth for all smooth coordinate systems (U,φ) of M and (V, τ)
of N .

A smooth map Ψ : M → N which is invertible and whose inverse
is smooth is called a diffeomorphism. In this case, we say that M
and N are diffeomorphic manifolds.
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In order to check that a map Ψ : M → N is smooth, it is enough
to verify that, for each p ∈M , there exists a smooth chart (U,φ) of
M with p ∈ U and a smooth chart (V, τ) of N with Ψ(p) ∈ V, such
that τ ◦Ψ◦φ−1 is a smooth map. Also, a smooth function f : M → R
is just a smooth map where R has its standard smooth structure.

Clearly, the composition of two smooth maps, whenever defined,
is a smooth map. The identity map is also a smooth map. So, we
have the category of smooth manifolds, whose objects are the
smooth manifolds and whose morphisms are the smooth maps.

Just as we did for maps between subsets of Euclidean space, when
X ⊂M and Y ⊂ N are arbitrary subsets of some smooth manifolds,
we will say that Ψ : X → Y is a smooth map if for each p ∈ X,
there is an open neighborhood U ⊂M and a smooth map F : U → N
such that F |U∩X = Ψ|U∩X . The set of smooth maps from X to Y
will be denoted as C∞(X,Y ). When Y = R, we use C∞(X) instead
of C∞(X,R).

Example 2.9. Let M ⊂ Rn be an embedded manifold (recall our
convention from Example 2.5), any smooth function F : U → R
defined on an open Rn ⊃ U ⊃ M induces, by restriction, a smooth
function f : M → R. Conversely, every smooth function f : M → R
is the restriction of some smooth function F : U → R defined on
some open set Rn ⊃ U ⊃M . To see this, we will need the partitions
of unity to be introduced in Lecture 4.

You should also check that if M ⊂ Rn and N ⊂ Rm are embedded
manifolds, then Ψ : M → N is a smooth map if and only if for every
p ∈M , there exists an open neighborhood U ⊂ Rn of p and a smooth
map F : U → Rm such that Ψ|U∩M = F |U∩M . This shows that the
notion of smooth map in Definition 2.3 extends the notion we have
introduced in the previous lecture.

Example 2.10. The map π : Sd → RPd defined by

π(x0, . . . , xd) = [x0 : · · · : xd]

is a smooth map. Moreover, any smooth function F : Sd → R which
is invariant under inversion, i.e., such that F (−x) = F (x), induces
a unique smooth function f : RPd → R that makes the following
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diagram commute:

Sd

π
!!

F "" R

RPd
f

##⑤
⑤

⑤
⑤

Conversely, every smooth function f ∈ C∞(RPd) arises in this
way.

If we are given two smooth structures C1 and C2 on the same
manifold M , we say that they are equivalent smooth structures
if there is a di!eomorphism Ψ : (M, C1)→ (M, C2).

Example 2.11. On the line R, the identity map R→ R, x '→ x gives
a chart which defines a smooth structure C1. We can also consider the
chart R → R, x '→ x3, and this defines a distinct smooth structure
C2 on R (why?). However, these two smooth structures are equiva-
lent since the map x '→ x3 gives a di!eomorphism from (M, C2) to
(M, C1).

It is known that every topological manifold of dimension less than
or equal to 3 has a unique smooth structure. For dimensions greater
than 3, the situation is much more complicated, and not much is
known. However, as we have mentioned before, the smooth struc-
tures on Rd, compatible with the usual topology, are all equivalent if
d &= 4, and there are uncountably many inequivalent exotic smooth
structures on R4. On the other hand, for the sphere Sd, there are
no exotic smooth structures for d ≤ 6, but Milnor found that S7 has
27 inequivalent smooth structures. It is known, e.g., that S31 has
more than 16 million inequivalent smooth structures! One can read
more about Milnor’s work in Milnor (2015).

Exercises

Exercise 2.1

Let M be a topological manifold. Show that M is locally compact,
i.e., every point of M has a compact neighborhood.
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Exercise 2.2

The Urysohn’s metrization theorem states that a Hausdor!, regu-
lar, topological space with a countable basis is metrizable (see, e.g.,
Kelley, 1975). Use this to show that every topological manifold M is
metrizable.

Exercise 2.3

Let M be a connected topological manifold. Show that M is path
connected. If, additionally, M is a smooth manifold, show that for
any p, q ∈M , there exists a smooth path c : [0, 1] →M with c(0) = p
and c(1) = q.

Exercise 2.4

Let φ : Rm → Rn be a di!eomorphism. Use the chain rule to deduce
that one must have m = n. Use this result to conclude that if M
and N are di!eomorphic smooth manifolds, then dimM = dimN
without appealing to invariance of domain.

Exercise 2.5

Compute the transition functions for the atlas of real projective space
RPd and show that they are smooth. Show also that

(a) RP1 is di!eomorphic to S1;
(b) RPd \ RPd−1 is di!eomorphic to the open ball Bn = {x ∈ Rd :

||x|| < 1}, where we identify RPd−1 with the subset {[x0 : · · · :
xd] : xd = 0} ⊂ RPd.

Exercise 2.6

The complex projective d-dimensional space is the set

CPd =
{
L ⊂ Cd+1 : L is a complex line through the origin

}
.

Construct a smooth structure of a 2d-dimensional manifold on CPd

similar to the construction of a smooth structure on real projective
space RPd.

Exercise 2.7

Show that if M ⊂ Rn is an embedded manifold in the sense of Defi-
nition 1.1, then M carries a natural smooth structure.
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Exercise 2.8

Let M ⊂ Rn be a subset with the following property: for each p ∈M ,
there exists an open set U ⊂ Rn containing p and di!eomorphism
Φ : U → V onto an open set V ⊂ Rn, such that

Φ(U ∩M) =
{
q ∈ V : qd+1 = · · · = qn = 0

}
.

Show that M is a smooth manifold of dimension d (in fact, M is an
embedded manifold in Rn; see the previous exercise).

Exercise 2.9

Let M be a set and assume that one has a collection C = {(Uα,φα) :
α ∈ A}, where Uα ⊂ M and φα : Uα → Rd, satisfy the following
properties:

(a) For each α ∈ A, φα(Uα) ⊂ Rn is open and φα : Uα → φα(Uα) is
a bijection.

(b) For each α,β ∈ A, the sets φα(Uα ∩ Uβ) ⊂ Rn are open.
(c) For each α,β ∈ A, with Uα ∩ Uβ &= ∅, the map φβ ◦ φ−1

α : φα
(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) is smooth.

(d) There is a countable set of Uα that covers M .
(e) For any p, q ∈M , with p &= q, either there exists a Uα such that

p, q ∈ Uα, or there exists Uα and Uβ, with p ∈ Uα, q ∈ Uβ and
Uα ∩ Uβ = ∅.

Show that there exists a unique smooth structure on M such that
the collection C is an atlas.

Exercise 2.10

Let M = C ∪ {∞}. Let U := M \ {∞} = C and φU : U → C be
the identity map and let V := M \ {0} and φV : V → C be the map
φV (z) = 1/z, with the convention that φ(∞) = 0. Use the previous
exercise to show that M has a unique smooth structure with atlas
C := {(U,φU ), (V,φV )}. Show that M is di!eomorphic to S2.
Hint : Be careful with item (e)!

Exercise 2.11

Let M and N be smooth manifolds and let Ψ : M → N be a map.
Show that the following statements are equivalent:
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(i) Ψ : M → N is smooth.
(ii) For every p ∈ M, there are smooth coordinate systems (U,φ)

of M and (V, τ) of N , with p ∈ U and Ψ(p) ∈ V, such that
τ ◦Ψ ◦ φ−1 is smooth.

(iii) There exist atlases {(Uα,φα) : α ∈ A} and {(Uβ ,ψβ) : β ∈ B}
of M and N , such that for each α ∈ A and β ∈ B, ψβ ◦Ψ ◦ φ−1

α
is smooth.

Exercise 2.12

Let M and N be smooth manifolds and let Φ : M → N be a map.
Show the following:

(i) If Φ is smooth, then for every open set U ⊂ M , the restriction
Φ|U : U → N is a smooth map.

(ii) If every p ∈M has an open neighborhood U such that the restric-
tion Φ|U : U → N is a smooth map, then Φ : M → N is smooth.

Exercise 2.13

Let ω1 denote the first uncountable ordinal (see, e.g., Levy, 2002)
and let M = (ω1 × [0, 1))\{(0, 0)} with the topology induced by the
lexicographic order. Show that M has a smooth structure compatible
with this topology, so that it is a connected, Hausdor!, manifold
which is not second countable. This manifold is known as the long
line. Intuitively, it is obtained by gluing an uncountable number of
copies of (0, 1).
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Lecture 3

Manifolds with Boundary

There are many spaces, such as the closed unit disk, a solid donut, or
the Möbius strip, which just fail to be a manifold because they have
a “boundary”. One can remedy this situation by trying to enlarge
the notion of manifold so that it includes this possibility. The clue
to be able to include boundary points is to understand what is the
local model around points in the “boundary” and this turns out to
be the closed half-space Hd:

Hd := {(x1, . . . , xd) ∈ Rd : xd ≥ 0}.

We will denote the open half-space by

IntHd =: {(x1, . . . , xd) ∈ Rd : xd > 0}.

and the boundary of the closed half-space by

∂Hd =: {(x1, . . . , xd) ∈ Rd : xd = 0}.

When n = 0, we have H0 = R0 = {0}, so IntH0 = R0 and ∂H0 = ∅.

Definition 3.1. A topological manifold with boundary of
dimension d is a topological space M such that every p ∈M has a
neighborhood U which is homeomorphic to some open set V ⊂ Hd

(see Figure 3.1).

Just as we do for manifolds without boundary, we shall assume
that all manifolds with boundary are Hausdor! and have a countable
basis of open sets.

23
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M
U

U

V
VHdHd

φ
φ

Fig. 3.1. Charts in a manifold with boundary.

We shall use the same notations as before, so we call a homeo-
morphism φ : U → V as in the definition of a system of coordinates
or a coordinate chart. Note that there are two types of open sets in
Hd according to whether they intersect ∂Hd or not. These give rise
to two types of coordinate systems φ : U → V , according to whether
V intersects ∂Hd or not. In the first case, when V ∩∂Hd = ∅, we just
have a coordinate system of the same sort as for manifolds without
boundary, and we call it an interior chart. In the second case, when
V ∩ ∂Hd '= ∅, we call it a boundary chart.

Using Invariance of Domain (Theorem 1.1), one shows that

Lemma 3.1. Let M be a topological manifold with boundary of
dimension d. If for some chart (U,φ) we have φ(p) ∈ ∂Hd, then
this is also true for every other chart.

Proof. Exercise.

This justifies the following definition:

Definition 3.2. Let M be a topological manifold with boundary
of dimension d. A point p ∈ M is called a boundary point if
there exists some chart (U,φ) with p ∈ U , such that φ(p) ∈ ∂Hd.
Otherwise, p is called an interior point.

The set of boundary points of M will be denoted by ∂M and is
called the boundary of M and the set of interior points of M will
be denoted by IntM and is called the interior of M. If on both sets
we consider the topology induced from M , we have:
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Proposition 3.1. Let M be a topological manifold with boundary
of dimension d > 0. Then IntM and ∂M are topological manifolds
without boundary of dimension d and d − 1, respectively. If N is
another manifold with boundary and Ψ : M → N is a homeomor-
phism then Ψ restricts to homeomorphisms Ψ|∂M : ∂M → ∂N and
Ψ|IntM : IntM → IntN .

Proof. Let p ∈ IntM and let φ : U → V be a chart with p ∈ U
and V ⊂ H. Then if we set V0 := V \ ∂H and U0 := φ−1(V0), we
have that U0 is an open neighborhood of M , V0 is open in Rd, and
φ|U0 : U0 → V0 is a homeomorphism. This shows that IntM is a
topological manifold without boundary of dimension d.

On the other hand, let p ∈ ∂M and let φ : U → V be a chart
with p ∈ U and φ(p) ∈ ∂H. Then if we set V0 := V ∩ ∂H and U0 :=
φ−1(V0), we have that U0 = U ∩ ∂M is an open neighborhood of
∂M , V0 is open in ∂H ) Rd−1, and φ|U0 : U0 → V0 is a homeo-
morphism. This shows that ∂M is a topological manifold without
boundary of dimension d− 1.

It is important not to confuse the notions of interior and boundary
point for manifolds with boundary with the usual notions of interior
and boundary point of a subset of a topological space. If M happens
to be a manifold with boundary embedded in some Rn then the two
notions may or may not coincide.

Example 3.1. M = Hd is itself a topological manifold with bound-
ary of dimension d, where IntM = IntHd and ∂M = ∂Hd, so our
notations are consistent. If we think of Hd ⊂ Rd, then these notions
coincide with the usual notions of boundary and interior of Hd as a
topological subspace of Rd.

Example 3.2. The closed unit disk:

Dk = Bd := {x ∈ Rd : ‖x‖ ≤ 1},

is a topological manifold with boundary of dimension d with inte-
rior the open unit ball Bd and boundary the unit sphere Sd−1.
If we think of Dd ⊂ Rd, then these notions coincide with the usual
notions of boundary and interior of Dd as a topological subspace
of Rd.



June 15, 2024 15:43 Lectures on Differential Geometry 9in x 6in b5406-ch03 FA1 page 26

26 Lectures on Differential Geometry

Example 3.3. The cube Id is a topological manifold with boundary
of dimension d. Id and Dd are homeomorphic topological manifolds
with boundary.

Example 3.4. The Möbius strip M ⊂ R3 is a topological manifold
with boundary ∂M = S1. Note that, as a topological subspace of R3,
all points of M are boundary points!

Now that we have the notion of chart for a topological manifold
with boundary, we can define a smooth structure on a topologi-
cal d-manifold with boundary M by exactly the same procedure as
we did for manifolds without boundary: it is a collection of charts
C = {(Uα,φα) : α ∈ A} which satisfies the following properties:

(i) The collection C is an open cover of M :
⋃
α∈A Uα = M ;

(ii) For all α,β ∈ A, the transition function φα ◦φ−1
β is a smooth

map;
(iii) The collection C is maximal: if (U,φ) any coordinate system

such that φ ◦ φ−1
α and φα ◦ φ−1 are smooth maps for all α ∈ A,

then (U,φ) ∈ C.

The pair (M, C) is called a smooth d-manifold with boundary.
Again, given an atlas C0 = {(Uα,φα) : α ∈ A} (i.e., a collection

satisfying (i) and (ii)), there exists a unique maximal atlas C which
contains C0: it is enough to define C to be the collection of all smooth
charts relative to C0, i.e., all coordinate systems (U,φ) such that
φ ◦ φ−1

α and φα ◦ φ−1 are both smooth for all (Uα,φα) ∈ C0.
The notion of smooth map Ψ : M → N between two manifolds

with boundary is also defined in exactly the same way as in the case
of manifolds without boundary.

Proposition 3.2. Let M be a smooth manifold with boundary of
dimension d > 0. Then IntM and ∂M are smooth manifolds without
boundary of dimension d and d − 1, respectively. If N is another
smooth manifold with boundary and Ψ : M → N is a diffeomorphism
then Ψ restricts to diffeomorphisms Ψ|∂M : ∂M → ∂N and Ψ|IntM :
IntM → IntN .

Proof. Exercise.
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You should check that the half space Hd, the closed disk Dd and
the Möbius strip, are all smooth manifolds with boundary, while the
cube Id is not.

Although often one can work with manifolds with boundary much
the same way as one can work with manifolds without boundary,
some care must be taken. For example, the Cartesian product of two
half-spaces is not a manifold with boundary (it is rather a manifold
with corners, a notion we will not discuss). So the cartesian product
of manifolds with boundary may not be a manifold with boundary.
However, we do have the following result:

Proposition 3.3. If M is a smooth manifold without boundary and
N is a smooth manifold with boundary, then M × N is a smooth
manifold with ∂ (M ×N) = M × ∂N and Int(M ×N) = M × IntN .

Proof. Exercise.

Example 3.5. If M is a manifold without boundary and I = [0, 1]
then M × I is a manifold with boundary for which:

Int(M × I) = M×]0, 1[, ∂(M × I) = M × {0} ∪M × {1}.

It is very cumbersome to write always “manifold without bound-
ary”, so we agree to refer to these simply as “manifolds”, and add
the qualitative “with boundary”, whenever that is the case. You
should be aware that in the literature it is also common to use non-
bounded manifold for a manifold in our sense, and to call a closed
manifold a compact manifold without boundary and open mani-
fold a manifold without boundary and with no compact connected
component.

Exercises

Exercise 3.1

Use Invariance of Domain to show that if for a chart (U,φ) of a
topological manifold with boundary one has φ(p) ∈ ∂Hd, then this
also holds for every other chart.
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Exercise 3.2

Let M ⊂ Rd have the induced topology. Show that if M is a
closed subset and a d-dimensional manifold with boundary then the
topological boundary of M coincides with ∂M . Give a counterexam-
ple to this statement when M is not a closed subset.

Exercise 3.3

Give the details of the proofs of Propositions 3.2 and 3.3.

Exercise 3.4

Let M = D2 × S1 be the solid torus (a 3-manifold with boundary).
What is the boundary of the solid torus? How does this generalize
to dimension > 3?
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Lecture 4

Partitions of Unity

From now on, we will be dealing almost exclusively with smooth
manifolds. Hence, we often write simply “manifold”, we will use
the term “chart” (or “coordinate system”) to mean “smooth chart”
(or “smooth coordinate system”). When M is a manifold and f ∈
C∞(M), we define the support of f to be the closed set:

supp f := {p ∈M : f(p) "= 0}.

Also, given a collection C = {Uα : α ∈ A} of subsets of M we say
that

• C is locally finite if, for all p ∈ M , there exists a neighborhood
p ∈ O ⊂ M such that O ∩ Uα "= ∅ for only a finite number of
α ∈ A.

• C is a cover of M if
⋃
α∈A Uα = M .

• C0 = {Uβ : β ∈ B} is a subcover if C0 ⊂ C and C0 still covers M .
• C′ = {Vi : i ∈ I} is a refinement of a cover C if it is itself a cover

and for each i ∈ I there exists αi = α(i) ∈ A such that Vi ⊂ Uαi .

Definition 4.1. A partition of unity in a manifold M is a collec-
tion {φi : i ∈ I} ⊂ C∞(M) such that

(i) the collection of supports {suppφi : i ∈ I} is locally finite;
(ii) φi(p) ≥ 0 and

∑
i∈I φi(p) = 1 for every p ∈M .

A partition of unity {φi : i ∈ I} is called subordinated to a cover
{Uα : α ∈ A} of M if for each i ∈ I there exists αi ∈ A such that
suppφi ⊂ Uαi .

29
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Note that the sum in (ii) is actually finite: by (i) for each p ∈M
there is only a finite number of functions φi with φi(p) "= 0.

The existence of partitions of unity is not obvious, but we will see
in this lecture that there are many partitions of unity on a manifold.

Theorem 4.1 (Existence of Partitions of Unity). Let M be a
manifold and let {Uα : α ∈ A} be an open cover of M . Then there
exists a countable partition of unity {φi : i = 1, 2, . . . } , subordinated
to the cover {Uα : α ∈ A} and with suppφi compact for all i.

If we do not care about compact supports for any open cover, we
can get partitions of unity with the same set of indices:

Corollary 4.1. Let M be a manifold and let {Uα : α ∈ A} be an
open cover of M . Then there exists a partition of unity {φα : α ∈ A}
such that suppφα ⊂ Uα for each α ∈ A.

Proof. By Theorem 4.1 there exists a countable partition of unity

{ψi : i = 1, 2, . . . }

subordinated to the cover {Uα : α ∈ A}. For each i, we can choose a
α = α(i) such that suppψi ⊂ Uα(i). Then the functions

φα =

{∑
α(i)=α ψi, if {i : α(i) = α} "= ∅,

0, otherwise,

form a partition of unity with suppφα ⊂ Uα for all α ∈ A.

Example 4.1. For the sphere Sd, consider the cover with the two
opens sets UN := Sd \ N and US := Sd \ S. Then the corollary
says that there exists a partition of unity subordinated to this cover
with the same indices, i.e., a pair of non-negative smooth functions
φN ,φS ∈ C∞(Sd) with suppφN ⊂ UN and suppφS ⊂ US , such that
φN (p) + φS(p) = 1 for all p ∈ Sd.

Corollary 4.2. Let A ⊂ O ⊂ M, where O is an open subset and A
is a closed subset of a manifold M . There exists a smooth function
φ ∈ C∞(M) such that

(i) 0 ≤ φ(p) ≤ 1 for each p ∈M ;
(ii) φ(p) = 1 if p ∈ A;
(iii) suppφ ⊂ O.
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Proof. The open sets {O,M \ A} give an open cover of M .
Therefore, by the previous corollary, there is a partition of unity
{φ,ψ} with supφ ⊂ O and supψ ⊂ M \ A. The function φ satisfies
(i)–(iii).

Roughly speaking, partitions of unity are used to “glue” local
properties (i.e., properties that hold on domains of local coordinates),
giving rise to global properties of a manifold, as shown in the proof
of the following result.

Corollary 4.3 (Extension Lemma for smooth maps). Let M
be a manifold, A ⊂M a closed subset and Ψ : A→ Rn a smooth map.
For any open set A ⊂ U ⊂M there exists a smooth map Ψ̃ : M → Rn

such that Ψ̃|A = Ψ and supp Ψ̃ ⊂ U .

Proof. For each p ∈ A we can find an open neighborhood Up ⊂M ,

such that we can extend Ψ|Up∩A to a smooth function Ψ̃p : Up →
Rn. By replacing Up by Up ∩ U we can assume that Up ⊂ U . The
sets {Up,M \ A; p ∈ A} form an open cover of M so we can find a
partition of unit {φp : p ∈ A}∪{φ0}, subordinated to this cover with

suppφp ⊂ Up. Now define Ψ̃ : M → Rn by setting

Ψ̃ :=
∑

p∈A
φpΨ̃p.

Clearly, Ψ̃ has the required properties.

We now turn to the proof of Theorem 4.1. There are two main
ingredients in the proof. The first one is that topological manifolds
are paracompact, i.e., every open cover has an open locally finite
refinement. This is in fact a consequence of our assumption that
manifolds are Hausdorff and second countable, and we will use the
following more precise versions:

(a) Every open cover of a topological manifold M has a countable
subcover.

(b) Every open cover of a topological manifold M has a countable,
locally finite refinement consisting of open sets with compact
closures.

The proofs are left to the exercises. The second ingredient is the exis-
tence of “very flexible” smooth functions, sometimes called bump
functions:
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Rd−δ δ ε−ε

φ

Fig. 4.1. A bump function.

(c) for any ε > δ > 0, there exists a function φ ∈ C∞(Rd) such
that φ(x) = 1, if x ∈ Bδ(0), and φ(x) = 0, if x ∈ Bε(0)c (see
Figure 4.1).

This can be proved by observing that

• The function f : R→ R defined by

f(x) =

{
exp(− 1

x2 ), x > 0,

0, x ≤ 0.

is a smooth function.
• If δ > 0, the function g : R→ R defined by

g(x) = f(x)f(δ − x),

is smooth, g(x) > 0 if x ∈]0, δ[ and g(x) = 0 otherwise.
• The function h : R→ R defined by

h(x) :=

∫ x
0 g(t) dt
∫ δ
0 g(t) dt

,

is smooth, non-decreasing, h(x) = 0 if x ≤ 0 and h(x) = 1 if x ≥ δ.

Using these functions, you should now be able to show that (c) holds.

Proof of Theorem 4.1. By (b) above, we can assume that the
open cover {Uα : α ∈ A} is countable, locally finite, and the sets Uα

are compact. If p ∈ Uα, we can choose a smooth chart (Vp, τ), cen-

tered in p, with Vp ⊂ Uα, and such that Bε(0) ⊂ τ(Vp) for some
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ε > 0. Now if φ is the function defined in (c) above, we set

ψp :=

{
φ ◦ τ, in Vp,

0, in M \ Vp.

Then ψp ∈ C∞(M) is a non-negative function, taking the value 1
in an open set Wp ⊂ Vp which contains p. Since {Wp : p ∈M} is an
open cover of M , by (a) above, there exists a countable subcover
{Wp1 ,Wp2 , . . . } of M . Then the open cover {Vp1 , Vp2 , . . . } is locally
finite and subordinated to the cover {Uα : α ∈ A}. Moreover, the
closures V pi are compact.

The sum
∑

i ψpi may not be equal to 1. To fix this we observe
that

ψ =
+∞∑

i=1

ψpi ,

is well defined, of class C∞ and ψ(p) > 0 for every p ∈ M . If we
define

φi =
ψpi

ψ
,

then the functions {φ1,φ2, . . . } give a partition of unity, subordinated
to the cover {Uα : α ∈ A}, with suppφi compact for each i = 1, 2, . . . .

This completes the proof of Theorem 4.1.

Exercises

Exercise 4.1

Show that f : R → R, defined by f(x) = exp(−1/x2) is a smooth
function.

Exercise 4.2

Given any ε > δ > 0, show that there exists a function φ ∈ C∞(Rd)
such that 0 ≤ φ(x) ≤ 1, φ(x) = 1 if |x| ≤ δ and φ(x) = 0 if |x| > ε.

Exercise 4.3

Show that for a second countable topological space X, every open
cover of X has a countable subcover.

Hint : If {Uα : α ∈ A} is an open cover of X and B = {Vj ∈ J} is
a countable basis of the topology of X, show that the collection B′
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formed by Vj ∈ B such that Vj ⊂ Uα for some α, is also a basis.
Now, for each Vj ∈ B′ choose some Uαj containing Vj , and show that
{Uαj} is a countable subcover.

Exercise 4.4

Show that a topological manifold is paracompact, in fact, show that
every open cover of a topological manifold M has a countable, locally
finite refinement consisting of open sets with compact closures.

Hint : Show first that M can be covered by open sets O1, O2, . . . ,
with compact closures and Oi ⊂ Oi+1. Then given an arbitrary open
cover {Uα : α ∈ A} of M , choose for each i ≥ 3 a finite subcover of
the cover {Uα ∩ (Oi+1 \Oi−2 : α ∈ A} of the compact set Oi \Oi−1,
and a finite subcover of the cover {Uα ∩O3 : α ∈ A} of the compact
set O2. The collection of such open sets will do it.

Exercise 4.5

Show that if M ⊂ Rn is an embedded manifold then a function f :
M → R is smooth if and only if there exists an open set M ⊂ U ⊂ Rn

and a smooth function F : U → R such that F |M = f .

Exercise 4.6

Show that the conclusion of the Extension Lemma for Smooth Maps
may fail if A ⊂M is not assumed to be closed.

Exercise 4.7

Show that Theorem 4.1 still holds for manifolds with boundary.
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Lecture 5

The Tangent Space

The tangent space to Rd at p ∈ Rd is by definition the set

TpRd :=
{
(p,!v) : !v ∈ Rd

}
.

Note that this tangent space is a vector space over R where addition
is defined by

(p,!v1) + (p,!v2) := (p,!v1 + !v2),

while scalar multiplication is given by

a(p,!v) := (p, a!v).

Of course there is a natural isomorphism TpRd " Rd, but in many
situations, it is better to think of TpRd as the set of vectors with
origin at p (see Figure 5.1).

This distinction becomes even more clear in the case of an embed-
ded manifold M ⊂ Rn (see Figure 5.2). For such an embedded man-
ifold we can define the tangent space to M at p ∈M to be the sub-
space TpM ⊂ TpRn consisting of those tangent vectors (p,!v) ∈ Rn for
which there exists a smooth curve c : (−ε, ε) → Rn, with c(t) ∈ M ,
c(0) = p and c′(0) = !v .

A tangent vector (p,!v) ∈ TpM acts on smooth functions defined
in a neighborhood of p as follows. If f : U → R is a smooth function

35
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Fig. 5.1. Tangent space to Rd.

M

M n

Fig. 5.2. Tangent space to an embedded manifold M ⊂ Rn.

defined on a open set U containing p then we can choose a smooth
curve c : (−ε, ε)→ U , with c(0) = p and c′(0) = !v, and set

(p,!v)(f) :=
d

dt
(f ◦ c)(0).

This operation does not depend on the choice of smooth curve c (exer-
cise). In fact, this is just the usual notion of directional derivative
of f at p in the direction !v.

We will now define the tangent space to an abstract manifold M
at p ∈ M . There are several different approaches to define the tan-
gent space at p ∈ M , which correspond to different points of view,
all of them very useful. We shall give here three distinct descrip-
tions and we leave it to the exercises to show that they are actually
equivalent.



June 29, 2024 15:22 Lectures on Differential Geometry 9in x 6in b5406-ch05 FA2 page 37

The Tangent Space 37

M

Uα
Uβ

φβ

φβ φ−1
α

φα

φα φ−1
β

Rd Rd

p

vw

Fig. 5.3. First description of tangent space to M .

Description 1.

Let M be a smooth d-dimensional manifold with an atlas C =
{(Uα,φα) : α ∈ A}. To each point p ∈M, we would like to associate
a copy of Rd, so that each element !v ∈ Rd should represent a tangent
vector. Of course, if p ∈ Uα, the system of coordinates φα gives an
identification of an open neighborhood of p with Rd. Distinct smooth
charts will give different identifications, but they are all related by
transition functions, as in Figure 5.3.

This suggests one should consider triples (p,α,!v) ∈M ×A×Rd,
with p ∈ Uα, and that two such triples should be declared to be
equivalent if

[p,α,!v] = [q,β, !w] iff p = q and (φα ◦ φ−1
β )′(φβ(p)) · !w = !v.

Hence, we define a tangent vector to M at a point p ∈M to be
an equivalence class [p,α,!v], and the tangent space at p to be the
set of all such equivalence classes:

TpM :=
{
[p,α,!v] : α ∈ A,!v ∈ Rd

}
.
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Fig. 5.4. Second description of tangent space to M .

We leave it as an exercise to check that the operations:

[p,α,!v1] + [p,α,!v2] := [p,α,!v1 + !v2], a[p,α,!v] := [p,α, a!v],

are well defined and give TpM the structure of vector space over
R. Note that we still have an isomorphism TpM " Rd, but this
isomorphism now depends on the choice of a chart.

Description 2.

Again, fix p ∈ M . For this second description, we will consider all
smooth curves c : (−ε, ε) → M , with c(0) = p. Two such smooth
curves c1 and c2 will be declared equivalent if there exists some
smooth chart (U,φ) with p ∈ U , such that (see Figure 5.4)

d

dt
(φ ◦ c1)(0) =

d

dt
(φ ◦ c2)(0).

It should be clear that if this condition holds for some smooth chart
around p, then it also holds for every other smooth chart around p
belonging to the smooth structure.

We call a tangent vector at p ∈ M an equivalence class of
smooth curves [c], and the set of all such classes is called the tangent
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space TpM at the point p. Again, you should check that this tangent
space has the structure of vector space over R and that TpM is
isomorphic to Rd, through an isomorphism that depends on a choice
of smooth chart.

Description 3.

The two previous descriptions use smooth charts. Our third descrip-
tion has the advantage of not using charts, and it will be our official
definition of the tangent space.

Again we fix p ∈M and we look at the set of all smooth functions
defined in some open neighborhood of p. Given two smooth functions
f : U → R and g : V → R, where U and V are open sets that contain
p, we say that f and g define the same germ at p if there is an open
set W ⊂ U ∩ V containing p and such that

f |W = g|W .

We denote by Gp the set of all germs of smooth functions at p. This
set has the structure of an R-algebra, where addition, product, and
multiplication by scalars are defined in the obvious way:

[f ] + [g] := [f + g], [f ][g] := [fg], a[f ] := [af ].

Note also that it makes sense to talk of the value of a germ [f ] ∈ Gp

at the point p, which is f(p). On the other hand, the value of [f ] ∈ Gp

at any other point q )= p is not defined.

Definition 5.1. A tangent vector at a point p ∈ M is a linear
derivation of Gp, i.e., a linear map v : Gp → R satisfying

v([f ][g]) = v([f ])g(p) + f(p)v([g]).

The tangent space at a point p ∈ M is the set of all such tangent
vectors and is denoted by TpM .

Since linear derivations can be added and multiplied by real num-
bers, it is clear that the tangent space TpM has the structure of a
real vector space.
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Example 5.1. Let (U,φ) = (U, x1, . . . , xd) be a coordinate system
in M with p ∈ U . We define the tangent vectors ∂

∂xi

∣∣
p
∈ TpM ,

i = 1, . . . , d, to be the derivations

∂

∂xi

∣∣∣∣
p

([f ]) =
∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

.

Note that the tangent vector ∂
∂xi

∣∣
p
corresponds to the direction one

obtains by freezing all coordinates but the ith coordinate.

In order to check that TpM is a vector space with dimension equal
to dimM , consider the set of all germs that vanish at p

Mp := {[f ] ∈ Gp : f(p) = 0},

It is immediate to check that Mp ⊂ Gp is a maximal ideal in Gp. The
kth power of this ideal

Mk
p = Mp · · ·Mp︸ ︷︷ ︸

k

.

consists of germs that vanish to order k at p: if [f ] ∈Mk
p and (U,φ) is

a coordinate system centered at p, then the smooth function f ◦ φ−1

has vanishing partial derivatives at φ(p) up to order k − 1. These
powers form a tower of ideals

Gp ⊃Mp ⊃M2
p ⊃ · · · ⊃Mk

p ⊃ · · ·

Theorem 5.1. The tangent space TpM is naturally isomorphic to
(Mp/M2

p)
∗ and has dimension equal to dimM .

Proof. First, we check that if [c] ∈ Gp is the germ of the constant
function f(x) = c then v([c]) = 0 for any tangent vector v ∈ TpM .
In fact, we have that

v([c]) = cv([1]),

and that

v([1]) = v([1][1]) = 1v([1]) + 1v([1]) = 2v([1]),

hence v([1]) = 0.
Now if [f ] ∈ Gp and c = f(p), we remark that

v([f ]) = v([f ]− [c]),
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so the derivation v is completely determined by its effect on Mp. On
the other hand, any derivation vanishes on M2

p, because if f(p) =
g(p) = 0, then

v([f ][g]) = v([f ])g(p) + f(p)v([g]) = 0.

We conclude that every tangent vector v ∈ TpM determines a unique
linear transformation Mp → R, which vanishes on M2

p. Conversely,
if L ∈ (Mp/M2

p)
∗ is a linear transformation, we can define a linear

transformation v : Gp → R by setting

v([f ]) := L([f ]− [f(p)]).

This is actually a derivation (exercise), so we conclude that TpM "
(Mp/M2

p)
∗.

In order to verify the dimension of TpM , we choose some system
of coordinates (U, x1, . . . , xd) centered at p, and we show that the
tangent vector

∂

∂xi

∣∣∣∣
p

∈ TpM, i = 1, . . . , d,

form a basis for TpM . If f : U → R is any smooth function, then
f ◦ φ−1 : Rd → R is smooth in a neighborhood of the origin. This
function can be expanded as

f ◦ φ−1(x) = f ◦ φ−1(0) +
d∑

i=1

∂(f ◦ φ−1)

∂xi
(0)xi +

∑

i,j

gij(x)x
ixj ,

where the gij are some smooth functions in a neighborhood of the
origin. It follows that we have the expansion

f(q) = f(p) +
d∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

xi(q) +
∑

i,j

hij(q)x
i(q)xj(q),

where hij ∈ C∞(U), valid for any q ∈ U . We conclude that for any
tangent vector v ∈ TpM

v([f ]) =
d∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

v([xi]).
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In other words, we have

v =
d∑

i=1

ai
∂

∂xi

∣∣∣∣
p

,

where ai = v([xi]). This shows that the vectors (∂/∂xi)|p ∈ TpM ,
i = 1, . . . ,dimM form a generating set. We leave it as an exercise to
show that they are linearly independent.

From now on, given v ∈ TpM and a smooth function f defined in
some neighborhood of p ∈M we set

v(f) := v([f ]).

Note that v(f) = v(g) if f and g coincide in a neighborhood of p
and that for a, b ∈ R

v(af + bg) = av(f) + bv(g), v(fg) = f(p)v(g) + v(f)g(p),

where af + bg and fg are defined in the intersection of the domains
of f and g.

The proof of Theorem 5.1 shows that if (U,φ) = (U, x1, . . . , xd)
is a coordinate system around p, then any tangent vector v ∈ TpM
can be written as

v =
d∑

i=1

ai
∂

∂xi

∣∣∣∣
p

.

The numbers ai = v(xi) are called the components of tangent
vector v in the coordinate system (U, x1, . . . , xd). If we introduce
the notation

∂f

∂xi

∣∣∣∣
p

:=
∂f ◦ φ−1

∂xi

∣∣∣∣
φ(p)

,

then we can write

v(f) =
d∑

i=1

ai
∂f

∂xi

∣∣∣∣
p

.

On the other hand, given another coordinate system
(V, y1, . . . , yd), we find that

∂

∂yj

∣∣∣∣
p

=
d∑

i=1

∂xi

∂yj

∣∣∣∣
p

∂

∂xi

∣∣∣∣
p

.
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Hence, in this new coordinate system, we have

v =
d∑

j=1

bj
∂

∂yj

∣∣∣∣
p

, with bj = v(yj),

where the new components bj are related to the old components ai

by the transformation formula

ai =
d∑

j=1

∂xi

∂yj

∣∣∣∣
p

bj . (5.1)

Let us turn now to the question of how the tangent spaces vary
from point to point. We define the tangent bundle to M to be
union of all tangent spaces:

TM :=
⋃

p∈M
TpM.

Note that we have a natural projection π : TM → M which asso-
ciates to a tangent vector v ∈ TpM the corresponding base point
π(v) = p. The term “bundle” comes from the fact that we can pic-
ture TM as a set of fibers (the spaces TpM), juxtaposed with each
other forming a manifold (see Figure 5.5).

Proposition 5.1. TM has a natural smooth structure of manifolds
of dimension 2 dimM such that the projection in the base is a smooth
map.

Fig. 5.5. The tangent bundle to M .
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Proof. Let {(Uα,φα) : α ∈ A} be an atlas for M . For each smooth
chart (Uα,φα) = (Uα, x1, . . . , xn), we define φ̃α : π−1(Uα) → R2d by
setting

φ̃α(v) := (x1(π(v)), . . . , xd(π(v)),v(x1), . . . ,v(xd)).

One checks easily that the collection
{
φ̃−1
α (O) : O ⊂ R2d open,α ∈ A

}

is a basis for a topology of TM , which is Hausdorff and second count-
able. Now, we have that

(a) TM is a topological manifold with local charts (π−1(Uα), φ̃α).
(b) For any pair of charts (π−1(Uα), φ̃α) and (π−1(Uβ), φ̃β), the tran-

sition functions φ̃β ◦ φ̃−1
α are smooth.

We conclude that the collection
{
(π−1(Uα), φ̃α) : α ∈ A

}
is an atlas,

and so defines on TM the structure of a smooth manifold of dimen-
sion dimTM = 2dimM . Finally, the map π : TM → M is smooth
because for each α we have that φα ◦ π ◦ φ̃−1

α : R2d → Rd is just the
projection in the first d components.

We say that a d-dimensional manifold M has trivial tangent
bundle if there is a diffeomorphism Ψ : TM → M × Rd commut-
ing with the projections

TM Ψ !!

π
""❉

❉❉
❉❉

❉❉
❉ M × Rn

pr1##✉✉
✉✉
✉✉
✉✉
✉

M

whose restriction to each fiber is linear isomorphism Φ|TpM : TpM →
Rd. For example, Rd and Td have both trivial tangent bundles. How-
ever, we will see later that Sd has trivial tangent bundle if and only
if d = 1, 3.

Exercises

Exercise 5.1

Show that the three descriptions of tangent vectors are indeed
equivalent.
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Exercise 5.2

In R3 consider the usual Cartesian coordinates (x, y, z). One defines
spherical coordinates in R3 to be the smooth chart (U,φ), where
U = R3 \ {(x, 0, z) : x ≥ 0} and φ = (r, θ,ϕ) is defined as usual by

• r(x, y, z) :=
√

x2 + y2 + z2 is the distance to the origin;
• θ(x, y, z) is the longitude, i.e., the angle in ]0, 2π[ between the

vector (x, y, 0) and the x-axis;
• ϕ(x, y, z) is the co-latitude, i.e., the angle in ]0,π[ between the

vector (x, y, z) and the z-axis.

Compute:

(a) The components of the tangent vectors to R3 ∂
∂r ,

∂
∂θ ,

∂
∂ϕ in Carte-

sian coordinates.
(b) The components of the tangent vectors to R3 ∂

∂x ,
∂
∂y ,

∂
∂z in spher-

ical coordinates.

Exercise 5.3

LetM ⊂ Rn be an embedded d-manifold. Show that if ψ : V →M∩U
is a parameterization of a neighborhood of p ∈M , then the tangent
space TpM can be identified with the subspace ψ′(q)(Rd) ⊂ Rn,
where p = ψ(q).

Exercise 5.4

Let (U, x1, . . . , xd) be a local coordinate system in a manifold M .
Show that the tangent vectors

∂

∂xi

∣∣∣∣
p

∈ TpM, i = 1, . . . , d,

are linearly independent.

Exercise 5.5

Theorem 5.1 says that the tangent space at p ∈ M is isomorphic to
(Mp/M2

p)
∗. Can you give a geometric interpretation of (Mp/Mk

p)
∗

for k > 2?

Exercise 5.6

Let (U,φ) = (U, x1, . . . , xd) be a chart for a manifold M . Show that
the corresponding chart φ̃ : π−1(U) → R2d for TM , given in the
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proof of Proposition 5.1, is given by

v =
n∑

i=1

vi
∂

∂xi

∣∣∣∣
p

,→ (x1(p), . . . , xd(p), v1, . . . , vd).

Determine the transition functions between two such charts and show
that they are smooth.

Exercise 5.7

Show that there is a canonical identification T (M1 ×M2) " TM1 ×
TM2 and use this to show that the torus Td has a trivial tangent
bundle.
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Lecture 6

The Differential

A smooth map between two smooth manifolds determines a linear
transformation between their tangent spaces.

Definition 6.1. LetΨ : M → N be a smooth map. The differential
of Ψ at p ∈ M is the linear transformation dpΨ : TpM → TΨ(p)N
defined by

dpΨ(v)(f) := v(f ◦Ψ),

where f is any smooth function defined in a neighborhood of Ψ(p).

If (U,φ) = (U, x1, . . . , xd) is a coordinate system around p and
(V,ψ) = (V, y1, . . . , ye) is a coordinate system aroundΨ(p), we obtain

dpΨ · ∂

∂xi

∣∣∣∣
p

=
e∑

j=1

∂(ψ ◦Ψ ◦ φ−1)j

∂xi

∣∣∣∣
φ(p)

∂

∂yj

∣∣∣∣
Ψ(p)

.

The matrix formed by the partial derivatives ∂(ψ◦Ψ◦φ−1)j

∂xi is often

abbreviated to ∂(yj◦Ψ)
∂xi , or simply ∂Ψj

∂xi , and is called the Jacobian
matrix of the smooth map Ψ relative to the specified system of
coordinates.

The following result is an immediate consequence of the defini-
tions and the usual chain rule for smooth maps between Euclidean
space.

47



June 15, 2024 19:31 Lectures on Differential Geometry 9in x 6in b5406-ch06 FA1 page 48

48 Lectures on Differential Geometry

Proposition 6.1 (Chain Rule). Let Ψ : M → N and Φ : N → P
be smooth maps. Then the composition Φ ◦Ψ is smooth and we have
that

dp(Φ ◦Ψ) = dΨ(p)Φ ◦ dpΨ.

Similarly, it is easy to prove the following proposition that gener-
alizes another well-known result for smooth maps between Euclidean
spaces.

Proposition 6.2. If a smooth map Ψ : M → N has zero differential
on a connected open set U ⊂M, then Ψ is constant in U .

An important special case occurs when taking the differential of
a smooth function f : M → R, thought as a smooth map between M
and the manifold R, with its canonical smooth structure. In this case,
the differential at p is a linear transformation dpf : TpM → Tf(p)R.
Since we have a canonical identification TxR % R, the differential
dpf is an element in the dual vector space to TpM . Explicitly, it is
given by

dpf(v) := v(f).

Definition 6.2. The cotangent space to M at a point p is the
vector space T ∗

pM dual to the tangent space

T ∗
pM := {ω : TpM → R, with ω linear} .

Of course, we can define dpf ∈ T ∗
pM even if f is a smooth func-

tion defined only in a neighborhood of p. In particular, if choose a
coordinate system (U, x1, . . . , xd) around p, we obtain elements

{
dpx

1, . . . ,dpx
d
}
⊂ T ∗

pM.

It is then easy to check that

dpx
i · ∂

∂xj

∣∣∣∣
p

=

{
1 if i = j,

0, if i &= j.
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In other words, we have:

Lemma 6.1. For a coordinate system (U, xi) of M around p,{
dpx1, . . . ,dpxd

}
is the basis of T ∗

pM dual to
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xd

∣∣
p

}
.

Therefore, once we have fixed a coordinate system (U, x1, . . . , xd)
around p, every element ω ∈ T ∗

pM can be written in the basis{
dpx1, . . . ,dpxd

}
as

ω =
d∑

i=1

aidpx
i, with ai = ω(∂/∂xi

∣∣
p
).

If (V, y1, . . . , yd) is another coordinate system, we find that

ω =
d∑

j=1

bjdpy
j, with bj = ω(∂/∂yj

∣∣
p
),

and it follows that the components of ω in the two charts are
related by

ai =
d∑

j=1

∂yj

∂xi

∣∣∣∣
p

bj . (6.1)

This transformation formula for the components of elements of T ∗
pM

should be compared with the corresponding transformation formula
(5.1) for the components of elements of TpM .

Similarly to what we did for the tangent bundle, we define the
cotangent bundle to M as the union of all cotangent spaces

T ∗M :=
⋃

p∈M
T ∗
pM,

with a natural projection π : T ∗M → M which is associate to a
tangent covector ω ∈ T ∗

pM the corresponding base point π(ω) = p.
Again, T ∗M has a natural smooth structure of manifold of dimension
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2 dimM , such that the projection is a smooth map. The proof is
entirely similar to the case of TM , so it is left as an exercise.

Let Ψ : M → N be a smooth map. We will denote by dΨ : TM →
TN the induced map on the tangent bundle obtained by collecting
the differentials of Ψ at each point:

dΨ(v) := dπ(v)Ψ(v).

We call this map the differential of Ψ. We leave it as an exercise
to check that dΨ : TM → TN is a smooth map between the smooth
manifolds TM and TN .

If f : M → R is a smooth function, then df : TM → TR.
However, TR = R × R so by projecting in the second factor, we
consider df as a map:

df : TM → R, df(v) := dπ(v)f(v) = v(f).

If (U, x1, . . . , xd) is a system of coordinates around p, then from the
definition we see that dpf ∈ T ∗

pM satisfies:

dpf · ∂

∂xi

∣∣∣∣
p

=
∂f

∂xi

∣∣∣∣
p

.

It follows that the expression for df in local coordinates
(x1, . . . , xd) is

df |U =
d∑

i=1

∂f

∂xi
dxi.

Note that in this formula all terms have been precisely defined. This
gives some justification for heuristic manipulations with df and dxi

one often finds.
The definitions of tangent space, tangent bundle, and differential,

extend to manifolds with boundary.
For example, one can define the tangent space to a manifold

with boundary of dimension d at some point p ∈ M exactly as
in Definition 5.1 (see Figure 6.1). The tangent space at any point
p ∈M , even at points of the boundary, has dimension d. The tangent
bundle TM is now a manifold with boundary of dimension 2 dimM .
Similarly, the differential of a smooth map Ψ : M → N between
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M
p

T Mp

T (∂M)MMpT T 

Fig. 6.1. Tangent spaces at boundary point.

manifolds with boundary can be defined as a smooth map between
their tangent bundles dΦ : TM → TN .

For a manifold with boundary M of dimension d > 0, the bound-
ary ∂M is a smooth manifold of dimension d−1. Hence, if p ∈ ∂M we
have two tangent spaces: TpM , which has dimension d, and Tp(∂M),
which has dimension d− 1. We leave it as an exercise to check that
the inclusion i : ∂M ↪→ M is a smooth map and its differential
dpi : Tp(∂M) → TpM is injective, at any point p ∈ ∂M . It follows
that we can identify Tp(∂M) with its image in TpM , so inside the
tangent space to M at points of the boundary we have a well-defined
subspace. It is common to denote this subspace also by Tp(∂M), a
practice that we will also adopt.

Exercises

Exercise 6.1

Show that the map Ψ : RP2 → R4 given by

Ψ([x : y : z]) =
1

x2 + y2 + z2
(xy, xz, y2 − z2, 2yz),

is smooth, injective and has differential dpΨ injective for all p ∈ RP2.

Exercise 6.2

Let Ψ : CPd → Rd+1 be the smooth map given by

Ψ([z0 : · · · : zd]) =
(

|z0|2

|z0|2 + · · · + |zd|2
, . . . ,

|zd|2

|z0|2 + · · ·+ |zd|2

)
.

Find the points p ∈ CPd where the differential dpΦ vanishes.
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Exercise 6.3

Let π : Sd → RPd be the map (x0, . . . , xd) )→ [x0 : · · · : xd]. Show
that the differential dpπ is a linear isomorphism for all p ∈ S2.

Exercise 6.4

Show that T ∗M has a smooth structure of manifold of dimension
2 dimM for which the projection π : T ∗M →M is a smooth map.

Exercise 6.5

Check that if M and N are smooth manifolds and Ψ : M → N is a
smooth map, then dΨ : TM → TN is also smooth.
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Lecture 7

Immersions, Submersions, and
Submanifolds

As we can expect from what we know from calculus in Euclidean
space, the properties of the differential of a smooth map between
two smooth manifolds reflect the local behavior of the smooth map.
In this lecture, we will make this precise.

Definition 7.1. Let Ψ : M → N be a smooth map:

(a) Ψ is called an immersion if dpΨ : TpM → TΨ(p)N is injective
for all p ∈M ;

(b) Ψ is called a submersion if dpΨ : TpM → TΨ(p)N is surjective
for all p ∈M ;

(c) Ψ is called an étale1 if dpΨ : TpM → TΨ(p)N is an isomorphism
for all p ∈M .
Immersions, submersions, and étales have local canonical forms.

They are all consequences of the following general result:

Theorem 7.1 (Constant Rank Theorem). Let Ψ : M → N be
a smooth map and p ∈ M . If dqΨ : TqM → TΨ(q)N has constant
rank r for all points q in a neighborhood of p, then there are local
coordinates (U,φ) = (U, x1, . . . , xm) for M centered at p and local
coordinates (V,ψ) = (V, y1, . . . , yn) for N centered at Ψ(p), such that

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

1We use this term provisionally. We shall see later in Corollary 7.3 that an étale
map is the same thing as a local diffeomorphism.

53
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Proof. Let (Ũ , φ̃) and (Ṽ , ψ̃) be local coordinates centered at p and
Ψ(p), respectively, with Ψ(Ũ ) ⊂ Ṽ . Then,

ψ̃ ◦Ψ ◦ φ̃−1 : φ̃(Ũ)→ ψ̃(Ṽ )

is a smooth map from a neighborhood of zero in Rm to a neighbor-
hood of zero in Rn, whose differential has constant rank. Therefore,
it is enough to consider the case where Ψ : Rm → Rn is a smooth
map

(x1, . . . , xm) %→ (Ψ1(x), . . . ,Ψn(x)),

whose differential has constant rank in a neighborhood of the origin.
Let r be the rank of dΨ. Eventually after some reordering of the

coordinates, we can assume that

det

[
∂Ψj

∂xi

]r

i,j=1

(0) &= 0.

It follows immediately from the Inverse Function Theorem that the
smooth map φ : Rm → Rm defined by

(x1, . . . , xm)→ (Ψ1(x), . . . ,Ψr(x), xr+1, . . . , xm),

is a diffeomorphism from a neighborhood of the origin. We conclude
that

Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr,Ψr+1 ◦ φ−1(x), . . . ,Ψn ◦ φ−1(x)).

Let q be any point in the domain of Ψ ◦ φ−1. We can compute the
Jacobian matrix of Ψ ◦ φ−1 as:

[
Ir 0

* ∂(Ψj◦φ−1 )
∂xi (q)

]

,

where Ir is the r × r identity matrix and where in the lower right
corner i, j > r. Since this matrix has exactly rank r, we conclude
that

∂(Ψj ◦ φ−1)

∂xi
(q) = 0, if i, j > r.
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In other words, the components of Ψj ◦φ−1, for j > r, do not depend
on the coordinates xr+1, . . . , xm

Ψj ◦ φ−1(x) = Ψj ◦ φ−1(x1, . . . , xr), if j > r.

Let us consider now the map ψ : Rn → Rn, defined in some
neighborhood of the origin, given by

ψ(y1, . . . , yn) = (y1, . . . , yr, yr+1−Ψr+1◦φ−1(y), . . . , yn−Ψn◦φ−1(y)).

We see that ψ is a diffeomorphism in a neighborhood of the origin
since its Jacobian matrix at the origin is

[
Ir 0
* Ie−r

]
,

which is non-singular. But now we compute

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

An immediate corollary of this result is that an immersion of a
m-manifold into a n-manifold, where necessarily m ≤ n, locally looks
like the inclusion Rm ↪→ Rn.

Corollary 7.1. Let Ψ : M → N be an immersion. Then for each
p ∈ M, there are local coordinates (U,φ) = (U, x1, . . . , xm) for M
centered at p and local coordinates (V,ψ) = (V, y1, . . . , yn) for N
centered at Ψ(p), such that

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Similarly, we conclude that a submersion of a m-manifold into a
n-manifold, where necessarily m ≥ n, locally looks like the projection
Rm ! Rn.

Corollary 7.2. Let Ψ : M → N be a submersion. Then for each
p ∈ M, there are local coordinates (U,φ) = (U, x1, . . . , xm) for M
centered at p and local coordinates (V,ψ) = (V, y1, . . . , yn) for N
centered at Ψ(p), such that

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xn).
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Since an étale is a smooth map which is simultaneously an immer-
sion and a submersion, we conclude also that an étale is just a local
diffeomorphism.

Corollary 7.3. Let Ψ : M → N be an étale. Then for each p ∈ M,
there are local coordinates (U,φ) = (U, x1, . . . , xd) for M centered
at p and local coordinates (V,ψ) = (V, y1, . . . , yd) for N centered at
Ψ(p), such that

ψ ◦Ψ ◦ φ−1(x1, . . . , xd) = (x1, . . . , xd).

Let us now turn to the study of sub-objects in the category of
smooth manifolds.

Definition 7.2. A submanifold of a manifold M is a pair (N,Φ)
where N is a manifold and Φ : N → M is an injective immersion.
When Φ : N → Φ(N) is a homeomorphism for the relative topology
on Φ(N), one calls the pair (N,Φ) an embedded submanifold and
Φ an embedding.

One sometimes uses the term immersed submanifold to
emphasize that the map Φ : N → M is only an immersion and
reserves the term submanifold for embedded submanifolds. However,
in these notes, we will use the term submanifold to denote immersed
submanifolds that may fail to be embedded.

Example 7.1. Figure 7.1 illustrates various immersions of N = R
in M = R2. Note that (R,Φ1) is an embedded submanifold of R2,
while (R,Φ2) is only an immersed submanifold of R2. On the other
hand, Φ3 is an immersion but it is not injective, so (R,Φ3) is not a
submanifold of R2.

Fig. 7.1. Immersions of the real line in the plane.
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Example 7.2. According to an exercise in the previous lecture, the
map Ψ : RP2 → R4 defined by

Ψ([x : y : z]) :=
1

x2 + y2 + z2
(xy, xz, y2 − z2, 2yz),

is smooth, injective, and has differential dpΨ injective for all p ∈ RP2.
Since RP2 is compact, this map is an embedding (see the exercises
at the end of this lecture). It follows that RP2 can be realized as an
embedded submanifold of R4.

If (N,Φ) is a submanifold of M , then the linear map dpΦ : TpN →
TΦ(p)M is injective for each p ∈ N . Hence, we can always identify the
tangent space TpN with its image dpΦ(TpN), which is a subspace of
TΦ(p)M . From now on, we will use this identification, so that TpN
will always be interpreted as a subspace of TΦ(p)M .

The local canonical form for immersions (Corollary 7.1) yields the
following result.

Proposition 7.1 (Local normal form for immersed subman-
ifolds). Let (N,Φ) be a submanifold of dimension d of a mani-
fold M . Then for all p ∈ N , there exists a neighborhood U of
p and a coordinate system (V, x1, . . . , xm) for M centered at Φ(p)
such that

Φ(U) =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

Proof. By Corollary 7.1, for any p ∈ N , we can choose coordinates
(U,φ) for N centered at p and coordinates (V,ψ) = (V, x1, . . . , xm)
for M centered at Φ(p), such that ψ ◦ Φ ◦ φ−1 : Rd → Rm is the
inclusion. But then ψ◦Φ(U) is exactly the set of points in ψ(V ) ⊂ Rm

with the last m− d coordinates equal to 0.

As illustrated by Figure 7.2, in the Proposition one may have
Φ(N) ∩ V &= Φ(U). In other words, there could exist points in
Φ(N) ∩ V which do not belong to the slice {q ∈ V : xd+1(q) = · · · =
xm(q) = 0}. Whenever (N,Φ) is an embedded submanifold this can
be fixed.



July 16, 2024 19:37 Lectures on Differential Geometry 9in x 6in b5406-ch07 FA3 page 58

58 Lectures on Differential Geometry
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Rd

Rm−d

ψΦ

Fig. 7.2. Immersed submanifold.

Corollary 7.4 (Local normal form for embedded submani-
folds). Let (N,Φ) be an embedded submanifold of dimension d of a
manifold M . For each p ∈ N, there exists a chart (V, x1, . . . , xm) of
M centered at Φ(p), such that

Φ(N) ∩ V =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

Proof. Fix p ∈ N and choose a neighborhood U of p and a chart
(V ′, x1, . . . , xm) centered at Φ(p), as in the proposition. Since (N,Φ)
is assumed to be embedded, Φ(U) is an open subset of Φ(N) for
the relative topology: there exists an open set V ′′ ⊂ M such that
Φ(U) = V ′′ ∩ Φ(N). If we set V = V ′ ∩ V ′′ the restrictions of the xi

to V , yield a coordinate system (V, x1, . . . , xm) such that

Φ(N) ∩ V =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

We would like to think of submanifolds of a manifold M simply as
subsets of M . However, this in general is not possible, as illustrated
by the following example.

Example 7.3. There are two injective immersions Φi : R → R2,
i = 1, 2, with image the same infinite symbol (see Figure 7.3).

The previous example shows that one must be careful if we wish
to think of a submanifold of M as a subset. In order to deal with
the issues that arise in dealing with this idea, it is convenient to
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Fig. 7.3. Injective immersions with the same image.

introduce an equivalence relation on the set of submanifolds of a
given manifold M , thought of as the set of pairs (N,Φ). For this
notion of equivalence, the two submanifolds (R,Φ1) and (R,Φ2) in
Example 7.3 will be inequivalent.

Definition 7.3. We say that (N1,Φ1) and (N2,Φ2) are equivalent
submanifolds of M if there exists a diffeomorphism Ψ : N1 → N2

such that the following diagram commutes

N1
Φ1 !!

Ψ ""❇
❇

❇
❇

M

N2

Φ2

##

If (N,Φ) is a submanifold of M we can consider the image
Φ(N) ⊂ M with the unique smooth structure for which Φ̂ : N →
Φ(N) is a diffeomorphism. Obviously, if we take this smooth struc-
ture on Φ(N), the inclusion i : Φ(N) ↪→M is an injective immersion
and the following diagram commutes

N Φ !!

Φ̂ $$❊
❊❊

❊❊
❊❊

❊ M

Φ(N)

i

##

Therefore, every equivalence class of submanifolds of M has a unique
representative (A, i), where A ⊂ M is a subset and i : A ↪→ M is
the inclusion. Note, however, that the topology on A is, in general,
distinct from the relative topology. The next proposition shows that,
once the topology of A is specified, the smooth structure is unique,
and this allows one to say “A ⊂M is a submanifold”.
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Theorem 7.2. Let A ⊂M be some subset of a smooth manifold and
i : A ↪→M the inclusion. Then,

(i) For each choice of a topology in A there exists at most one smooth
structure compatible with this choice and such that (A, i) is a
submanifold of M .

(ii) If A admits a smooth structure compatible with the relative topol-
ogy such that (A, i) is a submanifold of M, then this is the only
topology in A for which there exists a compatible smooth struc-
ture such that (A, i) is a submanifold of M .

Example 7.4. If A ⊂ M is an arbitrary subset, in general, there
will be no smooth structure on A for which the inclusion i : A ↪→M
is an immersion. For example, the subset

A = {(x, |x|) : x ∈ R} ⊂ R2

does not admit such a smooth structure (exercise). On the other
hand, if A admits a smooth structure such that the inclusion i :
A ↪→ M is an immersion, this smooth structure may not be unique
as we saw in Example 7.3.

Example 7.5. The sphere S7 ⊂ R8 is an embedded submanifold.
We have mentioned before that the sphere S7 has smooth structures
compatible with the usual topology but which are not equivalent to
the standard smooth structure on the sphere. It follows that for these
exotic smooth structures, S7 is not a submanifold of R8.

In order to prove Theorem 7.2, we observe that if (N,Φ) is a
submanifold of M and Ψ : P → M is a smooth map such that
Ψ(P ) ⊂ Φ(N), the fact that Φ is 1:1 implies that Ψ factors through
a map Ψ̂ : P → N , i.e., we have a commutative diagram:

P Ψ !!

Ψ̂ %%❆
❆

❆
❆ M

N

Φ

##

However, the problem is that, in general, the map Ψ̂ is not smooth,
as shown by the example of the infinite symbol.
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Example 7.6. Let Φi : R → R2, i = 1, 2, be the two injective
immersions whose images in R2 coincide with the infinite symbol, as
in Example 7.3. Since Φ1(R) = Φ2(R), we have unique maps Φ̂1 :
R→ R and Φ̂2 : R→ R such that Φ2 ◦ Φ̂1 = Φ1 and Φ1 ◦ Φ̂2 = Φ2. It
is easy to check that Φ̂1 and Φ̂2 are not continuous, hence they are
not smooth.

Next we show that what may fail is precisely the continuity of the
map Ψ̂.

Proposition 7.2. Let (N,Φ) be a submanifold of M , Ψ : P → M
a smooth map such that Ψ(P ) ⊂ Φ(N) and Ψ̂ : P → N the induced
map.

(i) If Ψ̂ is continuous, then it is smooth.
(ii) If Φ is an embedding, then Ψ̂ is continuous (hence smooth).

Proof. Assume first that Ψ̂ is continuous. For each p ∈ N , choose
U ⊂ N and (V,φ) = (V, x1, . . . , xm) as in Proposition 7.1, and con-
sider the smooth map

ψ = π ◦ φ ◦ Φ : U → Rd,

where π : Rm → Rd is the projection (x1, . . . , xm) %→ (x1, . . . , xd).
The pair (U,ψ) is a smooth coordinate system for N centered at p.
On the other hand, we see that

ψ ◦ Ψ̂ = π ◦ φ ◦ Φ ◦ Ψ̂ = π ◦ φ ◦Ψ,

is smooth in the open set Ψ̂−1(U). Since the collection of all such
open sets Ψ̂−1(U) covers P , we conclude that Ψ̂ is smooth, so (i)
holds.

Now if Φ is an embedding, then every open set U ⊂ N is
of the form Φ−1(V ), where V ⊂ M is open. Hence, Ψ̂−1(U) =
Ψ̂−1(Φ−1(V )) = Ψ−1(V ) is also open. We conclude that Ψ̂ is con-
tinuous, so (ii) also holds.

Proof of Theorem 7.2. The first item follows immediately from
Proposition 7.2(i). As for the second item, let (N,Φ) be a
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submanifold with Φ(N) = A and consider the diagram

N Φ !!

Φ̂ %%❇
❇❇

❇❇
❇❇

❇ M

A

i

##

Since A is assume to have the relative topology, by Proposi-
tion 7.2(ii), Φ̂ is smooth. Hence, Φ̂ is an invertible immersion so it is
a diffeomorphism (exercise). We conclude that (N,Φ) is equivalent
to (A, i), so (ii) holds.

The previous discussion justifies considering the following class of
submanifolds, which lies in between immersed and embedded sub-
manifolds.

Definition 7.4. A regularly immersed submanifold of M is a
submanifold (N,Φ) such that every smooth map Ψ : P → M with
Ψ(P ) ⊂ Φ(N) factors through a smooth map Ψ̂ : P → N

P Ψ !!

Ψ̂ %%❆
❆

❆
❆ M

N

Φ

##

The two different immersions of the infinity symbol that we saw
above are not regular immersions. On the other hand, Proposi-
tion 7.2(ii) shows that embedded submanifolds are always regularly
immersed submanifolds. But there are many examples of regularly
immersed submanifolds which are not embedded.

Example 7.7. In the 2-torus T2 = S1 × S1 we have a family of
submanifolds (R,Φa), depending on the parameter a ∈ R, defined by

Φa(t) = (eit, eiat).

If a = m/n is rational, this is a closed curve, which turns m times
in one torus direction and n times in the other torus direction, so
this is an embedding. However, if a &∈ Q then the curve is dense
in the 2-torus, so this is only an immersed submanifold. Given a
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map Ψ̂ : P → R such that the composition Φa ◦ Ψ̂ is smooth, we see
immediately that Ψ̂ : P → Rmust be continuous. By Proposition 7.2,
we conclude that Ψ̂ is smooth. Hence, (N,Φa) is a regularly immersed
submanifold.

Exercises

Exercise 7.1

Show that a submersion is an open map. What can you say about
an immersion?

Exercise 7.2

Show that {(x, |x|) : x ∈ R} is not the image of an immersion Φ :
R→ R2.

Exercise 7.3

Show that S3 has trivial tangent bundle, i.e., there exists a diffeo-
morphism Ψ : TS3 → S3 × R3, which makes the following diagram
commutative:

TS3

π
""❈

❈❈
❈❈

❈❈
❈

Ψ !! S3 × R3

prS3&&✇✇
✇✇
✇✇
✇✇
✇✇

S3

and where the restriction Ψ : TpS3 → R3 is linear for every p ∈ S3.
Hint : The 3-sphere is the set of quaternions of norm 1.

Exercise 7.4

Let
{
y1, . . . , ye

}
be some set of smooth functions on a manifold M .

Show the following:

(a) If
{
dpy1, . . . ,dpye

}
⊂ T ∗

pM is a linearly independent set, then the

functions
{
y1, . . . , ye

}
is a part of a coordinate system around p.

(b) If
{
dpy1, . . . ,dpye

}
⊂ T ∗

pM is a generating set, then a subset of{
y1, . . . , ye

}
is a coordinate system around p.

(c) If
{
dpy1, . . . ,dpye

}
⊂ T ∗

pM is a basis, then the functions{
y1, . . . , ye

}
form a coordinate system around p.
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Exercise 7.5

Let Φ : RP2 → R3 be the map defined by

Φ([x, y, z]) =
1

x2 + y2 + z2
(yz, xz, xy).

Show that Φ is smooth which fails to be an immersion at six points.
Sketch its image.

Exercise 7.6

Let M be a manifold, A ⊂ M , and i : A ↪→ M the inclusion. Show
that (A, i) is a an embedded submanifold of M of dimension d, if and
only if for each p ∈ A there exists a coordinate system (U, x1, . . . , xm)
centered at p such that

A ∩ U =
{
p ∈ U : xd+1(p) = · · · = xm(p) = 0

}
.

Exercise 7.7

Show that a subset M ⊂ Rn satisfies Definition 1.1) if and only it is
an embedded submanifold (so this justifies us calling M an embedded
manifold in Rn).

Exercise 7.8

One says that a subset S of a manifold M has zero measure if for
every coordinate system (U,φ) of M , the set φ(S ∩U) ⊂ Rd has zero
measure. Show the following:

(a) A smooth map Φ : M → N maps zero measure sets to zero
measure sets;

(b) For an immersion Φ : N → M with dimN < dimM , Φ(N) has
zero measure.

Exercise 7.9

Show that for a submanifold (N,Φ) of a manifold M the following
are equivalent:

(a) Φ(N) ⊂M is a closed subset and (N,Φ) is embedded.
(b) Φ : N →M is a closed map (i.e., Φ(A) is closed whenever A ⊂ N

is a closed subset).
(c) Φ : N → M is a proper map (i.e., Φ−1(K) ⊂ N is compact,

whenever K ⊂M is compact).
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Use this to conclude that a submanifold (N,Φ) with N compact, is
always an embedded submanifold.

Exercise 7.10

Show that an invertible immersion Φ : N →M is a diffeomorphism.
Give a counterexample to this statement if N does not have a count-
able basis.

Exercise 7.11

Let π : M̃ → M be a covering space of a smooth manifold M ,
where M̃ is a second countable topological space. Show that M̃ has
unique smooth structure for which the covering map π is a local
diffeomorphism.
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Embeddings and Whitney’s Theorem

Definition 8.1. Let ! : M → N be a smooth map.

(i) p ∈ M is called a regular point of ! if dp! : TpM → TΨ(p)N
is surjective. Otherwise, one calls p a singular point of !;

(ii) q ∈ N is called a regular value of ! if every p ∈ !−1(q) is a
regular point. Otherwise one calls q a singular value of !.

The following example gives some evidence for the use of the terms
“regular” and “singular”.

Example 8.1. Let ! : R3 → R be the map defined by

!(x, y, z) := x2 + y2 − z2.

This map has Jacobian matrix [2x 2y − 2z]. Therefore, every
(x, y, z) $= (0, 0, 0) is a regular point of ! and (0, 0, 0) is a singu-
lar point of !. On the other hand, 0 is a singular value of !, while
every other value is a regular value of !.

If we consider a regular value c, the level set !−1(c) is a subman-
ifold of R2 (either a 1 sheet or a 2 sheets hyperboloid). On the other
hand, for the singular value 0, we see that !−1(0) is a cone, which is
not a manifold at the origin (see Figure 8.1).

In fact, the level sets of regular values are always submanifolds:

Theorem 8.1. Let ! : M → N be a smooth map and let q ∈ N be
a regular value of !. Then !−1(q) ⊂M is an embedded submanifold
of dimension dimM − dimN and for all p ∈ !−1(q) we have

Tp(!
−1(q)) = Ker dp!.

67
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Fig. 8.1. Regular and singular level sets of Ψ(x, y, z) = x2 + y2 − z2.

Proof. If q ∈ N is a regular value of ! there exists an open set
!−1(q) ⊂ O ⊂M such that !|O is a submersion. Therefore, for any
p ∈ !−1(q) we can choose coordinates (U, x1, . . . , xm) around p and
coordinates (V, y1, . . . , yn) around q such that ! is represented in
these local coordinates by the projection

Rm → Rn : (x1, . . . , xm) &→ (x1, . . . , xn).

Therefore, we see that

!−1(q) ∩ U =
{
p ∈ U : x1(p) = · · · = xn(p) = 0

}
.

It follows that !−1(q) is an embedded submanifold of dimension
m−n = dimM −dimN (see Exercise 7.9). The statement about the
tangent space to !−1(q) is left as an exercise.

Example 8.2. Let M = Rd+1 and let ! : Rd+1 → R be the smooth
map

!(x) := ‖x‖2.

The Jacobian matrix of ! at x is

!′(x) = [2x1, . . . , 2xd+1].

Since !′(x) has rank one if ‖x‖ > 0, it follows that any c = R2 > 0 is
a regular value of !. The theorem above then asserts that the spheres
SdR = !−1(R2) are embedded submanifolds of Rd+1 of codimension 1.
Note that for the differential structure on Sd that we have defined
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before, Sd is also an embedded submanifold of Rd+1. Hence, the two
differential structures coincide.

Not every embedded submanifold S ⊂ M is of the form !−1(q)
for a regular value of some smooth map ! : M → N . There are
global obstructions that we will study later. Also, singular level sets
can be very wild: using a partition of unity argument it is possible to
show that for any closed subset A ⊂M of a smooth manifold, there
exists a smooth function f : M → R such that f−1(0) = A.

If N ⊂M is a submanifold we call the codimension of N in M
the integer dimM −dimN . Since a set with a single point is a mani-
fold of dimension 0, the previous result can be restated as saying that
if q is a regular value of !, then !−1(q) is an embedded submanifold
with codim!−1(q) = codim {q}. In this form, the previous result can
be generalized in the following very useful way.

Theorem 8.2. Let ! : M → N be a smooth map and let Q ⊂ N be
an embedded submanifold. Assume that for all p ∈ !−1(Q) one has

Imdp!+ TΨ(p)Q = TΨ(p)N. (8.1)

Then !−1(Q) ⊂M is an embedded submanifold with

codim!−1(Q) = codimQ

and for all p ∈ !−1(Q) one has

Tp(!
−1(Q)) = (dp!)−1(TΨ(p)Q).

Proof. Choose p0 ∈ !−1(Q) and set q0 = !(p0). Since Q ⊂ N is
assumed to be an embedded submanifold, we can choose a coordinate
system (V,φ) = (V, y1, . . . , yn) for N around q0, such that

Q ∩ V =
{
q ∈ V : yl+1(q) = · · · = yn(q) = 0

}
,

where l = dimQ. Define a smooth map Φ : !−1(V )→ Rn−l by

Φ = (yl+1 ◦!, . . . , yn ◦!).

Then we see that U = !−1(V ) is an open subset of M which contains
p0 and such that !−1(Q) ∩ U = Φ−1(0). If we can show that 0 is
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a regular value of Φ, then by Theorem 8.1 it follows that for all
p0 ∈ !−1(Q), there exists an open set U ⊂M such that !−1(Q)∩U
is an embedded submanifold of M of codimension n− l = codimQ.
This implies that !−1(Q) is an embedded submanifold of M , as
claimed.

To check that 0 is a regular value of Φ, note that Φ = π ◦ φ ◦!,
where π : Rn → Rn−l is the projection in the last n− l components.
Since π is a submersion, φ is a diffeomorphism and ker dq(π◦φ) = TqQ
for all q ∈ Q∩V , it follows from (8.1) that dpΦ = dΨ(p)(π ◦φ) ·dp! is
surjective for all p ∈ !−1(Q) ∩ U = Φ−1(0), i.e., 0 is a regular value
of Φ.

The statement about the tangent space to !−1(Q) is left as an
exercise.

Condition (8.1) appearing in the statement of the previous theo-
rem is so important that one has a special name for it.

Definition 8.2. Let ! : M → N be a smooth map. We say that !
is transversal to a submanifold Q ⊂ N , and we write ! ! Q, if

Imdp!+ TΨ(p)Q = TΨ(p)N, ∀p ∈ !−1(Q).

Note that submersions ! : M → N are specially nice: they are
transverse to every submanifold Q ⊂ N ! So for a submersion the
inverse image of any submanifold is a submanifold.

A special case that justifies the use of the term “transversal”
is when M ⊂ N is a submanifold and ! : M ↪→ N is the inclu-
sion. In this case, !−1(Q) = M ∩Q and the transversality condition
reduces to

TqM + TqQ = TqN, ∀q ∈M ∩Q.

Note that this condition is symmetric in M and Q. So in this case,
we simply say that M and Q intersect transversely and we write
M ! Q.

Corollary 8.1. If M,Q ⊂ N are embedded submanifolds such that
M ! Q. Then M ∩Q is an embedded submanifold of N with

dimM ∩Q = dimM + dimQ− dimN.

Moreover, for all q ∈M ∩Q, one has

Tq(M ∩Q) = TqM ∩ TqQ.
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Fig. 8.2. Non-transverse intersection.

Although Theorem 8.2 and its corollary were stated for embedded
submanifolds, you are asked in an exercise in this lecture to check
that these results still hold for immersed submanifolds.

Transversality plays an important role because of the following
properties:

• Transversality is a stable property : If Φ : M → N is transverse to
Q then any map ! : M → N close enough to Φ is also transverse
to Q.

• Transversality is a generic property : Any smooth map Φ : M → N
can be approximated by Φ̃ : M → N transverse to Q.

We shall not attempt to make precise these two statements, since
we would need to introduce and study appropriate topologies on the
space of smooth maps C∞(M,N). These types of issues are studied
in Differential Topology (see, e.g., Hirsch, 1994).

On the other hand, when two submanifolds do not intersect
transversally, in general, the intersection is not a manifold as illus-
trated by Figure 8.2.

Given a manifold M one may wonder if it can be embedded into
some Euclidean space. For elementary examples of manifolds, it is
not hard to construct explicit embeddings, as we show in the next
examples.

Example 8.3. Let M = S1 × R be a cylinder. We can embed M in
R3 using the map Φ : M → R3 defined by

Φ(θ, t) = (R cos θ, R sin θ, t),
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Fig. 8.3. Side identification on the 2-torus.

where we identify S1 = [0, 2π]/2πZ. This map is injective and its
Jacobian matrix Φ′(θ, t) has rank 2, hence Φ is an injective immer-
sion. The image of Φ is the level set of a smooth map, namely

ImΦ =
{
(x, y, z) ∈ R3 : x2 + y2 = R2

}
= !−1(c),

where c = R2 and !(x, y, z) := x2 + y2. Since !′(x, y, z) =
[2x, 2y, 0] $= 0 if x2 + y2 = c $= 0, we conclude that any c $= 0 is
a regular value of !, so we have an embedding of S1 × R in R3.

Example 8.4. The 2-torus M = S1 × S1 can also be embedded
in R3 as follows. First, we can think of the two torus as S1 × S1 =
[0, 2π]/2πZ × [0, 2π]/2πZ. Note that this amounts to think of the
torus as a square of side 2π where we identify the sides of the square
(see Figure 8.3).

Now define Φ : M → R3 by

Φ(θ,φ) = ((R + r cosφ) cos θ, (R+ r cosφ) sin θ, r sinφ).

It is easy to check that if R > r > 0, then Φ is an injective immersion
with image:

ImΦ =
{
(x, y, z) ∈ R3 : (x2 + y2 + z2 −R2 − r2)2 + 4R2z2

= 4R2r2
}
= !−1(c),

where c = 4R2r2 and ! : R3 → R is the smooth map

!(x, y, z) = (x2 + y2 + z2 −R2 − r2)2 + 4R2z2.

We leave it as an exercise to check that every c $= 0 is a regular value
of !, so this gives an embedding of S1 × S1 in R3.
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Fig. 8.4. Coordinates for the Klein bottle.

Example 8.5. The Klein bottle is the subset K ⊂ R4 defined
as follows: Let Ox, Oy, Oz, and Ow, be the coordinate axes in R4

and denote by C a circle of radius R in the plane xOy. Let θ be
the angle coordinate on this circle (say, measured from the Ox-axis).
If S1 is a circle of radius r in the plane xOz, with center at q ∈ C,
then K is the figure obtained by rotating this circle around the zOw
plane so that when its center q ∈ C is rotated an angle θ, the plane
where S1 lies has rotated an angle θ/2 around the Oq-axis in the
3-space OqOzOw. Let φ be the angle coordinate in the circle S1 (say,
measured from the Oq-axis). See Figure 8.4.

The points of K with θ $= 0 and φ $= 0 can be parameterized by
the map Φ1 :]0, 2π[×]0, 2π[→ R4 given by

Φ1(θ,φ) = ((R+ r cosφ) cos θ, (R+ r cosφ) sin θ, r sinφ cos θ/2,

r sinφ sin θ/2).

We can change the origin of θ and φ, obtaining new parameteri-
zations, which all together cover K. It is easy to check that three
parameterizations Φ1, Φ2, and Φ3 are enough to cover K. For these
parameterizations, the transitions Φi ◦ Φ−1

j are C∞, so K is an

embedded manifold in R4. Any of these parameterizations amount
to think of K as a square of side 2π where we identify the sides as in
Figure 8.5.

One can also express the Klein bottle as a level set K = !−1(c, 0),
where c = 4R2r2 and ! : R4 → R2 is the smooth map

!(x, y, z) = ((x2 + y2 + z2 + w2 −R2 − r2)2

+4R2(z2 +w2), y(z2 − w2)− 2xzw).
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Fig. 8.5. Side identification on the Klein bottle.

For c $= 0, one check that (c, 0) is a regular value of !, so that K is
an embedded submanifold of R4.

Actually, any compact manifold can be embedded in an Euclidean
space of large enough dimension.

Theorem 8.3 (Whitney). Let M be a compact manifold. There
exists an embedding Φ : M → Rm for some integer m.

Proof. Since M is compact, we can find a finite collection of coor-
dinate systems {(Ui,φi) : i = 1, . . . , N} such that

(a) B1(0) ⊂ φi(Ui);

(b)
⋃N

i=1 φ
−1
i (B1(0)) = M .

Let λi : M → R, i = 1, . . . , N , be smooth functions such that

λi(p) =

{
1, if p ∈ φ−1

i (B1(0)),

0, if p $∈ Ui.

Also, let ψi : M → Rd, i = 1, . . . , N , be smooth maps defined by

ψi(p) =

{
λiφi(p), if p ∈ Ui,

0, if p $∈ Ui.

We claim that the smooth map Φ : M → RNd+N defined by

Φ(p) = (ψ1(p),λ1(p), . . . ,ψN (p),λN (p))

is the desired embedding. In fact, we have that

(i) Φ is an immersion: if p ∈ M then p ∈ φ−1
i (B1(0)), for some i.

Hence, we have that ψi = φi in a neighborhood p. We conclude
that dpψi = dpφi is injective. This shows that dpΦ is injective.
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(ii) Φ is injective: Let p, q ∈ M , p $= q, and choose i such that p ∈
λ−1
i (1). If q $∈ λ−1

i (1), then λi(p) $= λi(q) so that Φ(p) $= Φ(q).
On the other hand, if q ∈ λ−1

i (1), then ψi(p) = φi(p) $= φi(q) =
ψi(q), since φi is injective. In any case, Φ(p) $= Φ(q), so Φ is
injective.

Since M is compact, we conclude that Φ is an embedding.

The previous result also holds for non-compact manifolds (see
the exercises in this lecture) and is valid also for manifolds with
boundary. It is a weaker version of the following result:

Theorem 8.4 (Whitney, 1944). Any smooth manifold (compact
or not) of dimension d can be embedded in R2d.

As the example of the Klein bottle shows, there are smooth man-
ifolds of dimension d which cannot be embedded in R2d−1. On the
other hand, for d > 1, Whitney also showed that any manifold of
dimension d can be immersed in R2d−1.

Whitney’s results are not the best possible. Ralph Cohen (1985)
showed that a compact manifold of dimension d can be immersed
in R2d−a(d) where a(d) is the number of 1’s in the binary expression
of d, and this is the best possible!! (e.g., every compact 5-manifold
can immersed in R8, but there are compact 5-manifolds which cannot
be immersed in R7). On the other hand, the best optimal embedding
dimension is only known for a few dimensions.

Exercises

Exercise 8.1

Consider the sets of orthogonal and symmetric n× n matrices:

O(n) =
{
A : AAT = I

}
,

S(n) =
{
A : A = AT

}
.

Show that O(n) and S(n) are embedded submanifolds of the space
Rn2

of all n × n matrices and check that they intersect transversely
at I. Use this to conclude that there is a neighborhood of I where
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the only n × n-matrix which is both orthogonal and symmetric is
I itself.

Exercise 8.2

Furnish the details of the example of the Klein bottle K and show
that K is an embedded manifold in R4.

Exercise 8.3

Prove that the map Φ : R3 → R4, Φ(x, y, z) := (x2 − y2, xy, xz, yz),
induces an embedding of RP2 in R4.

Exercise 8.4

If ! : M → N is a smooth map with a regular value q ∈ N , show
that

Tp!
−1(q) = {v ∈ TpM : dp! · v = 0}.

Exercise 8.5

Let ! : M → N be a smooth map which is transversal to a sub-
manifold Q ⊂ N (not necessarily embedded). Show that !−1(Q) is
a submanifold of M (not necessarily embedded) and that

Tp!
−1(Q) =

{
v ∈ TpM : dp! · v ∈ TΨ(p)Q

}
.

Exercise 8.6

Extend Theorem 8.2 to the case where ! : M → N is a smooth map
between manifolds with boundary such that !(∂M) = ∂N . Show
that the conclusion of the theorem may fail if this last condition is
omitted.

Exercise 8.7

Let M and N be smooth manifolds and let S ⊂ M × N be a sub-
manifold. Denote by πM : M ×N → M and πN : M ×N → N the
projections on each factor. Show that the following are equivalent:

(a) S is the graph of a smooth map Φ : M → N ;
(b) πM |S is a diffeomorphism from S onto M ;
(c) For each p ∈ M , the submanifolds S and {p} × N = π−1

M (p)
intersect transversely and the intersection consists of a single
point.
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Moreover, if any of these hold then S is an embedded submanifold.

The next sequence of exercises give a sketch of the proof of the
weak Whitney’s Embedding Theorem for non-compact manifolds. It
uses the following result which we will not discuss in these lectures
(see, e.g., Hirsch, 1994).

Theorem 8.5 (Sard’s Theorem). The set of singular values of
any smooth map ! : M → N has zero measure.

Exercise 8.8

Using Sard’s Theorem, show that if Φ : M → N is a smooth map
between smooth manifolds and dimM < dimN then Φ(M) has zero
measure.

Exercise 8.9

LetM ⊂ Rn be a smooth submanifold of dimension d. Given v ∈ Rn\
Rn−1 denote by πv : Rn → Rn−1 the linear projection with kernel Rv.
Show that if n > 2d+1, there is a dense set of vectors v ∈ Rn \Rn−1

for which πv|M is an injective immersion of M in Rn−1. Conclude
that any compact manifold with boundary of dimension d can be
embedded in R2d+1.

Hint : Check that the proof given in the text of Whitney’s embedding
theorem is valid for compact manifolds with boundary. Then apply
Sard’s theorem in a clever way.

Exercise 8.10

Using a smooth exhaustion function, show that any smooth manifold
M of dimension d can be embedded in R2d+1.

Hint : If f : M → R is a smooth exhaustion function, then by Sard’s
Theorem, in each interval [i, i+1[, the function f has a regular value
ai. It follows that the sets E0 = f−1(]−∞, a2], Ei = f−1([ai−1, ai+1]
(i = 1, 2, . . . ), are all compact submanifolds of M of dimension d
to which the previous result can be applied. Now use a partition of
unity to build an embedding of M in R2d+1.
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Lecture 9

Foliations

A foliation is a nice decomposition of a manifold into submanifolds.

Definition 9.1. Let M be a manifold of dimension d. A foliation
of dimension k of M is a decomposition {Lα : α ∈ A} of M into
disjoint path-connected subsets satisfying the following property: for
any p ∈M there exists a smooth chart φ = (x1, . . . , xk, y1, . . . , yd−k) :
U → Rd = Rk×Rd−k, such the connected components of Lα ∩U are
the sets

{p ∈ U : y1(p) = const., . . . , yd−k(p) = const.}.

We will denote a foliation by F = {Lα : α ∈ A}. The connected
sets Lα are called leaves leaf of a foliation of F and a chart (U,φ)
as in the definition is called a foliated chart (see Figure 9.1). The
connected components of U ∩ Lα are called plaques of Lα.

A path of plaques is a collection of plaques P1, . . . , Pl such that
Pi ∩ Pi+1 %= ∅, for all i = 1, . . . , l − 1. The integer l is called the
length of the path of plaques. Two points p, q ∈ M belong to
the same leaf if and only if there exists a path of plaques P1, . . . , Pl,
with p ∈ P1 and q ∈ Pl.

Each leaf of a k-dimensional foliation of M is a submanifold of M
of dimension k. In general, these are only immersed submanifolds: a
leaf can intersect a foliated coordinate chart an infinite number of
times and accumulate overt itself. Before we check that leaves are
submanifolds, let us look at some examples.

Example 9.1. Let Φ : M → N be a submersion. By the local nor-
mal form for submersions, the connected components of the fibers

79
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Fig. 9.1. A foliated chart.

Fig. 9.2. A foliated torus.

Φ−1(q), where q ∈ N , form a foliation of M of codimension equal to
the dimension of N . In this case, all leaves are actually embedded
submanifolds.

Example 9.2. In R2, take the foliation by straight lines with a fixed
slope a ∈ R. This is just a special case of the previous example, where
Φ : R2 → R is given by

Φ(x, y) = y − ax.

Now let T2 = R2/Z2 be the torus. Then we have an induced foliation
on T2, and there are two possibilities. If a ∈ Q, the leaves are closed
curves, hence they are embedded submanifolds. However, if a %∈ Q,
then the leaves are dense in the torus, so they are only immersed
submanifolds. One can also use the model for a torus as a square
with sides identified to picture this foliation (see Figure 9.2).

Example 9.3. Let Φ : R3 → R be the smooth map defined by

Φ(x, y, z) = f(x2 + y2)e−z ,

where f ∈ C∞(R) is a smooth function with f(0) = 1, f(1) = 0 and
f ′(t) < 0. It is easy to check that Φ is a submersion and so determines
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Fig. 9.3. A foliation of R3.

a foliation F of R3 whose leaves are the pre-images {Φ−1(c)}c∈R .
When c = 0, we obtain as leaf the cylinder C = {(x, y, z) : x2 +
y2 = 1}. This cylinder splits the leaves into two classes (see
Figure 9.3):

• The leaves with c > 0 lying in the interior of the cylinder C, which
are all diffeomorphic to R2 .

• The leaves with c < 0 lying in the exterior of the cylinder C, which
are all diffeomorphic to C.

An explicit parameterization of the leaves with c %= 0 is given by

(x, y) (→ (x, y, log(c/f(x2 + y2)).

For the first type of leaves, c > 0 and x2 + y2 < 1, while for the
second type of leaves c < 0 and x2 + y2 > 1.

Example 9.4. The foliation of R3 in the previous example is invari-
ant under translations in the Oz-axis direction. If we identify R3 =
R2 × R, we obtain a foliation in the quotient R2 × S1 = R2 × R/Z.
If we restrict this foliation to IntD2 × S1, where D2 = {(x, y) :
x2 + y2 ≤ 1}, we obtain a foliation of the solid 2-torus called the
Reeb foliation. Note that the boundary 2-torus is a leaf of this
foliation (see Figure 9.4).

This example suggests that foliations of manifolds with boundary
are also interesting. We will not pursue this topic, but you should be
aware of the existence of foliations on manifolds with boundary (see
Candel and Conlon, 2000).
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Fig. 9.4. The Reeb foliation of the solid 3-torus.

Example 9.5. The 3-sphere S3 can be obtained by “gluing” two
solid 2-torus along its boundary:

S3 = T1 ∪Φ T2,

where Φ : ∂T1 → ∂T2 is a diffeomorphism that takes the meridians
of ∂T1 in the circles of latitude of ∂T2, and vice-versa. Explicitly, if
we write

S3 = {(x, y, z, w) : x2 + y2 + z2 + w2 = 1},

then we can take

T1 := {(x, y, z, w) ∈ S3 : x2 + y2 ≤ 1/2},

T2 := {(x, y, z, w) ∈ S3 : x2 + y2 ≥ 1/2}.

Each of these solid 2-torus admits a 2-dimensional foliation as in the
previous example. One then obtains a famous 2-dimensional foliation
of the sphere S3, called the Reeb foliation of S3. Note that it is not
at all obvious that one can glue these foliations to obtain a smooth
foliation. Details on this construction can be found, e.g., in Candel
and Conlon (2000).

Proposition 9.1. Let F be a k-dimensional foliation of a smooth
manifold M . Every leaf L ∈ F is a regularly immersed submanifold
of dimension k.

Proof. Let L be a leaf of F . On each plaque of L we consider the
relative topology, and we furnish L with the topology generated by
the open sets in the plaques of L. For each plaque P , associated with
a foliated chart (U,φ) = (U, x1, . . . , xk, y1, . . . , yd−k), we consider the
map ψ : P → Rk obtained by choosing the first k-components so

ψ(p) = (x1(p), . . . , xk(p)).
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The pairs (P,ψ) give charts for L, which turn L into a Hausdorff
topological manifold. The transition functions for these charts are
clearly smooth, so we can consider the maximal atlas that contains
all the charts (U,ψ). To check that L is a manifold, we only need to
check that the topology admits a countable basis. For that we apply
the following lemma.

Lemma 9.1. Let L be a leaf of F and {Un : n ∈ Z} a covering of
M by domains of foliated charts. The number of plaques of L in this
covering, i.e., the number of connected components of L∩Un, n ∈ Z,
is countable.

Fix a plaque P0 of L in the covering {Un : n ∈ Z}. If a plaque P ′

belongs to L then there exists a path of plaques P1, . . . , Pl in the
covering, with Pi ∩ Pi+1 %= ∅ which connects P ′ to P0. Therefore, it
is enough to check that the collection of such paths is countable.

For each path of plaques P1, . . . , Pl let us call l the length of the
path. Using induction on n, we show that the collection of paths of
length less or equal to n is countable:

• The collection of paths of length 1 has only one element hence is
countable.

• Assume that the collection of paths of length n−1 is countable. Let
P1, . . . , Pn−1 be a path of length n−1, corresponding to domains of
foliated charts U1, . . . , Un−1. In order to obtain a path of plaques
of length n, we choose a domain of a foliated chart Un %= Un−1

and we consider the plaques P ′, which are connected components
of L∩Un, such that the intersection with Pn−1 is non-empty. Now
observe that

(L ∩ Un) ∩ Pn−1 = Un ∩ Pn−1.

Hence, these intersections form an open cover of the plaque Pn−1.
This cover has a countable subcover, so the collection of all such
P ′ is countable. It follows that the collection of paths of length less
or equal than n is countable.

We leave it as an exercise to check that the leaves are actually
regularly immersed submanifolds.

Corollary 9.1. Each leaf of a foliation intersects the domain of a
foliated chart at most a countable number of times.
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Let us describe two constructions which allows one to obtain new
foliations out of other foliations.

Product of Foliations

Let F1 and F2 be foliations of M1 and M2, respectively. Then the
product foliation F1 × F2 is a foliation of M1 × M2 defined as

follows: if F1 = {L(1)
α }α∈A and F2 = {L(2)

β }β∈B , then

F1 × F2 = {L(1)
α × L(2)

β }(α,β)∈A×B .

It should be clear that dim(F1 ×F2) = dimF1 +dimF2 and, hence,
that codim (F1 × F2) = codimF1 + codimF2

Pull-Back of a Foliation

Let Φ : M → N be a smooth map between smooth manifolds. If F
is a foliation of N we will say that Φ is transversal to F and write
Φ ! F if Φ is transversal to every leaf L of F :

dpΦ(TpM) + TΦ(p)L = TΦ(p)N, ∀p ∈M.

Whenever Φ ! F one defines the pull-back foliation Φ∗(F) to
be the foliation of M whose leaves are the connected components
of Φ−1(L), where L ∈ F . It should be clear that codimΦ∗(F) =
codimF .

The definition of a foliation is not very practical and it is con-
venient to have alternative characterizations of foliations, which we
discuss next.

Foliations via Smooth Gk
d-Structures

Let F = {Lα : α ∈ A} be a k-dimensional foliation of M . If (U,φ)
and (V,ψ) are foliated charts then the change of coordinates ψ◦φ−1 :
φ(U ∩ V )→ ψ(U ∩ V ) is of the form (see Figure 9.5):

Rk × Rd−k . (x, y) (→ (h1(x, y), h2(y)) ∈ Rk ×Rd−k.
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U

Fig. 9.5. Transitions between foliation charts.

In other words, we have that the transition functions satisfy:

∂(ψ ◦ φ−1)j

∂xi
= 0, (i = 1, . . . , k, j = k + 1, . . . , d). (9.1)

Conversely, denote by Gk
d the diffeomorphisms Rd → Rd defined

on some open set that satisfies condition (9.1). We can refine the
notion of smooth structure by requiring that in Definition 2.2, the
transition functions belong to Gk

d , and we then speak of a smooth
Gk
d -structure. An ordinary smooth structure on M is just a Gd

d -
structure: the leaves are the connected components of M .

We have the following alternative description of a foliation.

Proposition 9.2. Let M be a smooth d-dimensional manifold. Given
a foliation F = {Lα : α ∈ A} of M of dimension k the collection of
all foliated charts C = {(U,φ)} defines a smooth Gk

d -structure. Con-
versely, for every smooth Gk

d -structure C on a topological space M,
there is smooth structure that makes M into a d-dimensional man-
ifold and there exists a foliation F of M of dimension k, for which
the foliated charts are the elements of C.

Proof. We have shown above that every k-dimensional foliation of
a d-dimensional manifold determines a smooth Gk

d -structure. We will
show that, conversely, given a smooth Gk

d -structure C = {(U,φ)} we
can associate to it a smooth structure on M of dimension d and a
k-dimensional foliation F of M .
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It should be clear that a smooth Gk
d -structure C = {(U,φ)} deter-

mines a smooth structure on M of dimension d, since it is in particu-
lar an atlas. In order to build F , we first observe that we can choose
an atlas defining C with the property that the slices φ−1(Rk×{c}), for
c ∈ Rd−k, are connected. We call these slices plaques and note that
M is covered by all such plaques. Hence, we can define an equivalence
relation in M by

• p ∼ q if there exists a path of plaques P1, . . . , Pl with p ∈ P1 and
q ∈ Pl.

Let F be the set of equivalence classes of ∼. We show that F is a
foliation of M , i.e., that the condition in Definition 9.1 is satisfied.

Let p0 ∈M and consider a plaque P0 which contains p0. Then,

P0 = φ−1(Rk × {c0}),

for some smooth chart (U,φ) ∈ C with φ(p0) = (a0, c0) ∈ Rk ×Rd−k.
We claim that (U,φ) is a foliated chart: let L ∈ F be an equivalence
class that intersects U . If p ∈ U ∩L, then φ(p) = (a, c) ∈ Rk ×Rd−k,
so we see that that the plaque

P = φ−1(Rk × {c}),

is contained in L. Since P is connected, it is clear that P is contained
in the connected component of L∩U that contains p. If we can show
that this connected component is actually P it will follow that (U,φ)
is a foliated chart.

Let q ∈ L∩U be some point in the connected component of L∩U
containing p. We claim that q ∈ P . By the definition of ∼, there
exists a path of plaques P1, . . . , Pl, with p ∈ P1 and q ∈ Pl, and
such that Pi ⊂ U . Each plaque Pi is associated to a smooth chart
(Ui,φi) ∈ C such that

Pi = φ−1
i (Rk × {ci}).

We can assume also that U1 = U , φ1 = φ, P1 = P and c1 = c. Since
φ2 ◦ φ−1 ∈ Gk

d , we have that

φ−1
2 (Rk × {c2}) ⊂ φ−1

2 ◦ φ2 ◦ φ
−1 ◦ (Rk × {c̄2}) = φ−1(Rk × {c̄2}),

for some c̄2 ∈ Rd−k. Since P2 ∩ P1 %= ∅ and the plaques φ−1 ◦
(Rk × {c}) are disjoint, we conclude that c̄2 = c1 and P2 ⊂ P1 = P .
By induction, Pi ⊂ P so q ∈ P , as claimed.
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Foliations via Submersions

We saw before that the connected components of the fibers of a
submersion is an example of a foliation. Actually, every foliation is
locally of this form. If F = {Lα}α∈A is a foliation of M of dimension
k, for any foliated chart

φ = (x1, . . . , xk, y1, . . . , yd−k) : U → Rd,

the projection in the last (d− k)-components gives a submersion

ψ := (y1, . . . , yd−k) : U → Rd−k,

whose fibers are the connected components of Lα∩U . Given another
foliated chart

φ̄ = (x̄1, . . . , x̄k, ȳ1, . . . , ȳd−k) : Ū → Rd,

with U ∩ Ū %= ∅, the corresponding submersion

ψ̄ := (ȳ1, . . . , ȳd−k) : Ū → Rd−k,

we have a change of charts of the form

φ̄ ◦ φ−1(x, y) = (h1(x, y), h2(y)),

where h2 has Jacobian matrix

[
∂hj2
∂yi

]d−k

i,j=1

with rank d − k. We conclude that the two submersions ψ and ψ̄
differ by a local diffeomorphism: for every p ∈ U ∩ Ū there exists
an open neighborhood p ∈ Up ⊂ U ∩ Ū and a local diffeomorphism
Ψ : Rd−k → Rd−k, such that

ψ̄|Up = Ψ ◦ ψ|Up.

This suggests another way of defining foliations which can be made
precise as follows.
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Proposition 9.3. Let M be a d-dimensional manifold. Every
k-dimensional foliation F of M determines a collection {ψi}i∈I of
submersions ψi : Ui → Rd−k, where {Ui}i∈I is an open cover of
M, which satisfies the following property : for every i, j ∈ I and
p ∈ Ui ∩ Uj , there exists a local diffeomorphism ψp

ji of Rd−k, such
that

ψj = ψp
ji ◦ ψi,

in an open neighborhood Up of p. Conversely, every such collection
determines a foliation of M .

We have already seen how to a foliation we can associate a collec-
tion of submersions. We leave it as an exercise to prove the converse.

Foliations appear naturally in many problems in differential geom-
etry and we shall see many other examples of foliations during the
course of these lectures. Our discussion here only touches upon very
elementary aspects of the theory of foliations. For more in-depth dis-
cussions,d we refer to standard textbooks such as Candel and Conlon
(2000) and Moerdijk and Mrcun (2003).

Exercises

Exercise 9.1

Show that the leaves of a foliation are regularly immersed submani-
folds.

Exercise 9.2

Let F be the Reeb foliation of S3 and let Φ : S3 → N be a continuous
map whose restriction to each leaf of F is constant. Show that Φ is
constant.

Exercise 9.3

Prove Proposition 9.3.

Exercise 9.4

Let F1 = {L(1)
α }α∈A and F2 = {L(2)

β }β∈B be foliations. Using your
favorite definition of a foliation, show that the product F1 ×F2 is a
foliation:

F1 × F2 := {L(1)
α × L(2)

β }(α,β)∈A×B .
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Exercise 9.5

Let Φ : M → N be a smooth map and F = {Lα}α∈A a foliation of N
such that Φ ! F . Using your favorite definition of a foliation, show
that the pull-back Φ∗(F) is a foliation:

Φ∗(F) := {connected components of Φ−1(Lα)}α∈A.

Exercise 9.6

Let F1 and F2 be two foliations of a smooth manifold M such that
F1 ! F2, i.e., such that

TpM = TpL
(1) + TpL

(2), ∀p ∈M,

where L(1) and L(2) are the leaves of F1 and F2 through p. Show that
there exists a foliation F1 ∩F2 of M whose leaves are the connected
components of L(1)

α ∩L(2)
β , and which satisfies codimF = codimF1+

codimF2.

Exercise 9.7

Given a foliation F of M , one denotes by M/F the space of leaves
of F with the quotient topology. Describe for each of the examples
given in the text their space of leaves.

Exercise 9.8

Given a foliation F of M , one denotes by M/F the space of leaves
of F with the quotient topology. Describe for each of the examples
given in the text their space of leaves.
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Quotients

We have seen several constructions that produce new manifolds out
of old manifolds, such as the product of manifolds or the pullback
of submanifolds under transversal maps. We will now study another
important, but more delicate, such construction: forming quotients
of manifolds.

Let X be a topological space. If ∼ is an equivalence relation on
X, we will denote by X/∼ the set of equivalence classes of ∼ and
by π : X → X/∼ the quotient map which associates to each x ∈ X
its equivalence class π(x) = [x]. In X/∼ we consider the quotient
topology : a subset V ⊂ X/∼ is open if and only if π−1(V ) is open.
This is the largest topology in X/∼ for which the quotient map
π : X → X/∼ is continuous. We have the following basic result
about the quotient topology which we leave as an exercise.

Lemma 10.1. Let X be a Hausdorff topological space and let ∼ be
an equivalence relation on X such that π : X → X/∼ is an open
map. Then X/∼ is Hausdorff if and only if the graph of ∼

R := {(x, y) ∈ X ×X : x ∼ y},

is a closed subset of X ×X.

Let M be a smooth manifold and let ∼ be an equivalence relation
on M . We would like to know when there exists a smooth structure
on M/∼, compatible with the quotient topology, such that π : M →
M/∼ becomes a submersion. Before we can state a result that gives
a complete answer to this question, we need one definition. For that,

91
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recall that a continuous map Φ : X → Y, between two Hausdorff
topological spaces is called a proper map if Φ−1(K) ⊂ X is compact
whenever K ⊂ Y is compact. A proper map is always a closed map.

Definition 10.1. A proper submanifold of M is a submanifold
(N,Φ) such that Φ : N →M is a proper map.

By Exercise 7.9, any proper submanifold is an embedded subman-
ifold. Also, if Φ : N →M is proper, then its image Φ(N) is a closed
subset of M . Conversely, every embedded closed submanifold of M
is a proper submanifold.

Theorem 10.1 (Godement’s Criterion). Let M be a smooth
manifold and let ∼ be an equivalence relation on M . The following
statements are equivalent :

(i) There exists a smooth structure on M/∼, compatible with the
quotient topology, such that π : M →M/∼ is a submersion.

(ii) The graph R of ∼ is a proper submanifold of M × M and
the restriction of the projection p1 : M ×M → M to R is a
submersion.

R ! " !! M ×M
p2

""■
■■

■■
■■

■■
p1

##✉✉
✉✉
✉✉
✉✉
✉

M M

Proof. We must show both implications:

(i) ⇒ (ii). The graph of the quotient map, as for every smooth map,
is a closed embedded submanifold

G(π) = {(p,π(p)) : p ∈M} ⊂M ×M/∼.

Since Id× π : M ×M →M ×M/∼ is a submersion and

R = (Id× π)−1(G(π)),

we conclude that R ⊂ M ×M is an embedded closed submanifold,
i.e., is a proper submanifold.

On the other hand, the map (Id×π)|R : R→ G(π) is a submersion
while G(π) → M , (p,π(p)) '→ p is a diffeomorphism, hence their
composition p1|R is a submersion.
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(ii) ⇒ (i). We split the proof into several lemmas. The first of these
lemmas states that we can “straighten out” ∼.

Lemma 10.2. For every p ∈ M, there exists a local chart
(U, (x1, . . . , xd)) centered at p, such that

∀q, q′ ∈ U, q ∼ q′ if and only if xk+1(q)

= xk+1(q′), . . . , xd(q) = xd(q′),

where k is an integer independent of p.

To prove this lemma, let ∆ ⊂ M × M be the diagonal. Note
that ∆ ⊂ R ⊂ M × M , and since ∆ and R are both embedded
submanifolds of M×M , we have that ∆ is an embedded submanifold
of R. Therefore, for each p ∈ M , there exists a neighborhood O of
(p, p) in M ×M and a submersion Φ : O → Rd−k, where d − k =
codimR, such that

(q, q′) ∈ O ∩R if and only if Φ(q, q′) = 0.

We have that k ≥ 0, since ∆ ⊂ R and codim∆ = d.
Next, we observe that the differential of the map q '→ Φ(q, p) has

maximal rank at q = p. In fact, after identifying T(p,p)(M ×M) =
TpM × TpM , we see that d(p,p)Φ is zero precisely in the subspace
formed by pairs (v,v) ∈ TpM × TpM , and this subspace is comple-
mentary to the subspace formed by elements of the form (v, 0) ∈
TpM × TpM . We conclude that there exists a neighborhood V ′ of p
such that V ′ × V ′ ⊂ O, and the map q '→ Φ(q, p) is a submersion in
V ′. By the local canonical form for submersions, there exist a chart
(V,φ) = (V, (u1, . . . , uk, v1, . . . , vd−k)) centered at p, with V ⊂ V ′,
such that

Φ ◦ (φ−1 × φ−1)(u1, . . . , uk, v1, . . . , vd−k, 0, . . . , 0) = (v1, . . . , vd−k).

In the domain of this chart, the points q ∈ V such that q ∼ p are
precisely the points satisfying v1(q) = 0, . . . , vd−k(q) = 0.

Now set Φ̂ = Φ ◦ (φ−1 × φ−1). The smooth map

Rd × Rd−k → Rd−k, (u, v, w) '→ Φ̂((u, v), (0, w)),
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satisfies

Φ̂((u, v), (0, 0)) = v.

so the matrix of partial derivatives ∂Φ̂i/∂vj , (i, j = 1, . . . , d − k) is
non-degenerate. We can apply the Implicit Function Theorem to con-
clude that there exists a local defined smooth function Rk×Rd−k →
Rd−k, (u,w) '→ v(u,w), such that

Φ̂((u, v), (0, w)) = 0 if and only if v = v(u,w).

Since v(0, w) = w is a solution, uniqueness implies that

φ−1(0, w) ∼ φ−1(0, w′) if and only if w = w′.

This shows that the map (u,w) '→ (u, v(u,w)) is a local diffeomor-
phism. Hence, there exists an open set U where

(x1, . . . , xd) = (u1, . . . , uk, w1, . . . , wd−k)

are local coordinates and in these coordinates, we have

∀q, q′ ∈ U, q ∼ q′ if and only if xk+1(q)

= xk+1(q′), . . . , xd(q) = xd(q′),

so the lemma follows.
Since the functions xk+1, . . . , xd given by this lemma induce well-

defined functions x̄k+1, . . . , x̄d on the quotient M/∼, we consider the
pairs of the form (π(U), x̄k+1, . . . , x̄d) and prove they furnish an atlas.

Lemma 10.3. The collection C = {(π(U), x̄k+1, . . . , x̄d)} gives
M/∼, with the quotient topology, the structure of a topological man-
ifold of dimension d− k.

To prove this, note that π : M → M/∼ is an open map. In fact,
for any V ⊂M , we have that

π−1(π(V )) = p1|R((p2|R)−1(V )).

By assumption, p1|R is a submersion hence it is an open map. There-
fore, if V ⊂M is open then π−1(π(V )) is also open, so π(V ) ⊂M/∼
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is open. In particular, we can conclude that π(U) is open. Since the
map

(xk+1, . . . , xd) : U → Rd−k

is both continuous and open, it follows that the induced map

(x̄k+1, . . . , x̄d) : π(U)→ Rd−k

is continuous, open, and injective, hence a homeomorphism onto its
image. This proves the lemma.

Lemma 10.4. The family C = {(π(U), x̄k+1, . . . , x̄d)} is an atlas
generating a smooth structure for M/∼ such that π : M → M/∼ is
a submersion.

To see this, take two pairs of charts in C

(π(U), φ̄) := (π(U), x̄k+1, . . . , x̄d),

(π(V ), ψ̄) := (π(V ), ȳk+1, . . . , ȳd),

which correspond to two charts in M

(U,φ) := (U, x1, . . . , xd), (V,ψ) := (V, y1, . . . , yd).

The corresponding transition function

ψ̄ ◦ φ̄−1 : Rd−k → Rd−k,

composed with the projection p : Rd → Rd−k in the last d − k com-
ponents equals

ψ̄ ◦ φ̄−1 ◦ p = p ◦ ψ ◦ φ−1.

Since the right-hand side is a smooth map Rd → Rd−k, it follows
that ψ̄ ◦ φ̄−1 is smooth.

In order to check that π : M → M/∼ is a submersion, it
is enough to observe that in the charts (U, x1, . . . , xd) for M and
(π(U), x̄k+1, . . . , x̄d) for M/∼, this map corresponds to the projec-
tion p : Rd → Rd−k. This completes the proof of the lemma.

To finish the proof of Theorem 10.1, we check that

Lemma 10.5. The quotient topology M/∼ is Hausdorff and second
countable.
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It is obvious that if M has a countable basis, then the quotient
topology also has a countable basis. Since the graph R of ∼ is closed
in M ×M , M is Hausdorff and π is an open map, it follows from
Lemma 10.1 that M/∼ is Hausdorff.

Remark 10.1. The proof shows that if we assume that R is embed-
ded, not closed, and p1|R : R→M is a submersion, then the quotient
M/∼ is a smooth manifold, second countable, but not Hausdorff (see
Exercise 10.4 for an example).

We will now study two important examples of quotients.

Leaf Spaces of Foliations

Let F be a foliation of a smooth manifold M . Since F is a partition
of M , it determines an equivalence relation on M , namely:

p ∼ q if and only if p and q belong to the same leaf.

The set of equivalence classes

M/F := M/∼

is the collection of all leaves of F and hence is called the leaf space
of the foliation.

In general, the leaf space of a foliation does not carry a smooth
structure compatible with the quotient topology. One can use Gode-
ment’s Criterion to find when this happens.

Corollary 10.1. Let F be a foliation of a smooth manifold M . The
following statements are equivalent:

(i) There exists a smooth structure on M/F , compatible with the
quotient topology, such that π : M →M/F is a submersion.

(ii) The leaf space M/F is Hausdorff and there is a cover of M by
foliated charts with the property that each leaf of F intersects
each chart at most once.

A foliation satisfying either of the equivalent conditions in this
corollary is called a simple foliation. We leave the proof as an
exercise.
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As a side remark, note that the proof of Godement’s Criterion
actually amounts to show that the equivalence classes of R form a
simple foliation of M .

Orbit Spaces of Discrete Group Actions

A very important class of equivalence relations on manifolds is given
by actions of groups of diffeomorphisms. If G is a group, we recall
that an action of G on a set M is a group homomorphism Ψ̂ from
G to the group of bijections of M . One can also view an action as a
map Ψ : G×M →M , which we write as (g, p) '→ g · p, if one sets

g · p := Ψ̂(g)(p).

Since Ψ̂ is a group homomorphism, it follows that

(a) e · p = p, for all p ∈M ;
(b) g · (h · p) = (gh) · p, for all g, h ∈ G and p ∈M .

Conversely, any map Ψ : G×M → M satisfying (a) and (b), deter-
mines a homomorphism Ψ̂. From now on, we will denote an action by
Ψ : G×M →M , and for each g ∈ G we denote by Ψg the bijection

Ψg : M →M, p '→ g · p

Given an action of G on M the quotient G\M is, by definition,
the set of equivalence classes determined by the orbit equivalence
relation:

p ∼ q ⇐⇒ ∃g ∈ G : q = g · p.

Assume now that M is a manifold. We say that that a group G
acts on M by diffeomorphisms if, for each g ∈ G, Ψg : M → M is
a diffeomorphism. This means that we have a group homomorphism
Ψ̂ : G→ Diff(M), where Diff(M) denotes the group of all diffeomor-
phisms of M . We can also express this condition by saying that the
map Ψ : G ×M → M is smooth, where G is viewed as a smooth
0-dimensional manifold with the discrete topology. So we will also
say in this case that the discrete group G acts smoothly on M .

We will now discuss conditions on an action by diffeomorphisms
for the quotient G\M to be a manifold. We recall that a free action
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is an action G ×M → M such that each g /= e acts without fixed
points, i.e.,

g · p = p for some p ∈M =⇒ g = e.

Denoting by Gp the isotropy subgroup of p ∈M , i.e.,

Gp = {g ∈ G : g · p = p},

an action is free if and only if Gp = {e}, for all p ∈M .

Definition 10.2. A smooth action Ψ : G ×M → M of a discrete
group G on a smooth manifold M is said to be proper if the map:

G×M →M ×M, (g, p) '→ (g · p, p),

is a proper map.

Example 10.1. Actions of finite groups are always proper (exercise).
For example, the Z2-action on M = Sd, defined by

±1 · (x1, . . . , xd+1) := ±(x1, . . . , xd+1).

is a free and proper action.

Example 10.2. Let Zd act on Rd by translations:

(n1, . . . , nd) · (x1, . . . , xd) := (x1 + n1, . . . , x
d + nd).

It is easy to see that his action is also free and proper. So there are
proper actions of infinite discrete groups G.

Example 10.3. The orthogonal group O(d) consisting of orthog-
onal matrices of size d acts smoothly on the sphere Sd by matrix
multiplication:

A · x := Ax.

The isotropy group of x0 consists of those orthogonal matrices fixing
x0 and contains, e.g., the rotations with the axis of the line through
x0 and the origin. Since a proper smooth action G ×M → M of a
discrete group must have finite isotropy groups (exercise) this action
is not proper. Note that O(d) is considered here as a discrete group.

Godement’s Criterion yields conditions for an orbit space to be
smooth.

Corollary 10.2. Let Ψ : G × M → M be a free and proper
smooth action of a discrete group G on M . There exists a unique
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smooth structure on G\M such that π : M → G\M is a local
diffeomorphism.

Proof. We check that condition (ii) of Theorem 10.1 holds.
We claim that R ⊂ M ×M is a proper submanifold. Since the

action if free and proper, one finds (see Exercise 10.6) for each p0 ∈M
an open set p0 ∈ U , such that

g · U ∩ U = ∅, ∀g ∈ G \ {e}.

For such an open set, if g0 ∈ G, we have

(U × g0 · U) ∩R = {(q, g0 · q) : q ∈ U}.

Hence, the map

U → (U × g0 · U) ∩R, q '→ (q, g0 · q),

is a parameterization of O ∩ R, with O ⊂ M ×M open. It follows
that R can be covered by open sets O ∩R embedded in M ×M , so
R is an embedded submanifold. Also, the action being proper, the
inclusion

R = {(p, g · p) : p ∈M,g ∈ G} ↪→M ×M

is a proper map.
Finally, we observe that the projection p1 : M×M →M restricted

to R is an inverse to the parameterizations of R constructed above,
hence p1|R is a local diffeomorphism.

Under the conditions of this corollary, it is easy to check that the
projection π : M → G\M is in fact a covering map. Therefore, if M
is simply connected, then M is the universal covering space of G\M
and we conclude that π1(G\M) 1 G.

Example 10.4. The action Z2×Sd → Sd defined in Example 10.1 is
free and proper so the orbit space Z2\Sd is a manifold. We claim that
this manifold is diffeomorphic to RPd: the map Sd → RPd given by
(x1, . . . , xd) '→ [x1 : · · · : xd] induces a diffeomorphism Z2\Sd → RPd

such that the following diagram commutes:

Sd

$$ %%●
●●

●●
●●

●●

Z2\Sd !! RPd
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For d > 1, Sd is simply connected, so we conclude also that the
quotient map is a covering map and that π1(RPd) = Z2.

Example 10.5. The action Zd×Rd → Rd defined in Example 10.2 is
also free and proper, so the orbit space Zd\Rd is a smooth manifold.
This manifold is diffeomorphic to d-torus Td: the map Rd → Td

given by (x1, . . . , xd)→ (e2πix
1
, . . . , e2πix

1
) induces a diffeomorphism

Zd\Rd → Td such that we have a commutative diagram

Rd

$$ &&❋
❋❋

❋❋
❋❋

❋❋

Zd\Rd !! Td

Since Rd is simply connected, we conclude also that the quotient map
is a covering map and that π1(Td) = Zn.

Example 10.6. Let (R,+) act on R2 by translations in the
x-direction defined by

λ · (x1, x2) = (x1 + λ, x2).

This is a free but non-proper action of a discrete group. However,
the orbits of this action form a simple foliation of R2 so that R\R2

inherits a smooth structure. The quotient R\R2 is diffeomorphic to R.
The issue in the last example is that one should consider on the

group (R,+) the usual topology, instead of the discrete topology.
Later we will study Lie groups, which are groups carrying a com-
patible smooth structure (of positive dimension). Quotients for Lie
group actions give rise to many other examples of manifolds.

Exercises

Exercise 10.1

Let X be a Hausdorff topological space and ∼ an equivalence relation
in X such that π : X → X/∼ is an open map, for the quotient
topology. Show that X/∼ with the quotient topology is Hausdorff if
and only if the graph of ∼ is closed in X ×X.
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Exercise 10.2

Let π : M → Q be a surjective submersion, Φ : M → N and Ψ :
Q→ N any maps into a smooth manifold N such that the following
diagram commutes:

M

π
$$

Φ

''◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆

Q
Ψ

!! N

Show that Φ is smooth if and only if Ψ is smooth. Use this to con-
clude that if M is a manifold, ∼ is an equivalence relation satisfy-
ing any of the conditions of Theorem 10.1, and Φ : M → N is a
smooth map such that Φ(x) = Φ(y) whenever x ∼ y, then there
is an induced smooth map Φ : M/∼ → N such that the following
diagram commutes

M

π
$$

Φ

((❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

M/∼
Φ

!!❴❴❴❴❴❴ N

Exercise 10.3

Use Godement’s Criterion to prove Corollary 10.1 characterizing sim-
ple foliations.

Exercise 10.4

Let F be the foliation of M = R2 \ {0} whose leaves are the con-
nected components of the horizontal lines y = const. Show that
the leaf space M/F has a non-Hausdorff smooth structure (this
non-Hausdorff manifold is sometimes called the line with two
origins).

Exercise 10.5

Show that any smooth action G×M →M of a finite group G on a
manifold M is proper.
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Exercise 10.6

A smooth action Ψ : G × M → M of a discrete group G is said
to be properly discontinuous if the following two conditions are
satisfied:

(a) For every p ∈M , there exists a neighborhood U of p, such that

g · U ∩ U = ∅, ∀g ∈ G \Gp.

(b) If p, q ∈M do not belong to the same orbit, then there are open
neighborhoods U of p and V of q, such that

g · U ∩ V = ∅, ∀g ∈ G.

Show that a free action of a discrete group is proper if and only if it
is properly discontinuous.

Exercise 10.7

Show that for a proper and free action of a discrete group
G×M→M , the projection π : M → G\M is a covering map.
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Lecture 11

Vector Fields and Flows

Definition 11.1. A vector field on a manifold M is a section of
the tangent bundle π : TM → M , i.e., a map X : M → TM such
that π ◦X = Id. We say that the vector field X is smooth or C∞,
if the map X : M → TM is smooth. We will denote by X(M) the
set of smooth vector fields on a manifold M .

If X is a vector field on M , we denote by Xp, rather than X(p),
the value of X at p ∈M . For each p ∈M , Xp is a derivation, hence,
given any f ∈ C∞(M) we can define a new function X(f) : M → R
by setting

X(f)(p) := Xp(f).

Recalling the definition of the di!erential of a function, ones sees
immediately that this definition is equivalent to

X(f) := df(X).

Also, from Definition 5.1 of a tangent vector, we see that f $→ X(f)
satisfies for any a, b ∈ R and smooth functions f, g:

(a) X(af + bg) = aX(f) + bX(g);
(b) X(fg) = X(f)g + fX(g).

Fix a chart (U, xi) for M . Then the vector fields ∂
∂xi ∈ X(U),

i = 1, . . . , d, defined by

p $→ ∂

∂xi

∣∣∣∣
p

,

105
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yield a basis for TpM at each p ∈ U . Therefore, if X ∈ X(M) is any
vector field on M , its restriction to the open set U , denoted by X|U ,
can be written in the form

X|U =
d∑

i=1

Xi ∂

∂xi
,

for unique functions Xi : U → R, i = 1, . . . , d. The functions Xi are
called the components of the vector field X with respect to the
chart (U, xi). We have the following equivalent characterizations of
smooth vector fields.

Lemma 11.1. If X is a vector field on M, the following statements
are equivalent:

(i) The vector field X is C∞.
(ii) The components Xi of X with respect to any chart (U, xi)

are C∞.
(iii) For any f ∈ C∞(M), the function X(f) is C∞.

Proof. We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
To show that (i) ⇒ (ii), note that if X is C∞ and U is an open

set, the restriction X|U is also C∞. Hence, if (U, xi) is any chart, we
have that dxi(X|U ) := dxi ◦X|U is C∞. But

dxi(X|U ) = dxi




d∑

j=1

Xj ∂

∂xj



 = Xi.

To show that (ii) ⇒ (iii), note that f ∈ C∞(M) if and only if
f |U ∈ C∞(U), for every domain U of a chart. But

X(f)|U =
d∑

i=1

Xi ∂f

∂xi
∈ C∞(U).

To show that (iii) ⇒ (i), it is enough to show that X|U is C∞, for
every domain U of a chart. Recall that, if (U, x1, . . . , xd) is a chart
for M , then

(
π−1(U), x1 ◦ π, . . . , xd ◦ π,dx1, . . . ,dxd

)
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is a chart for TM . Since

xi ◦ π ◦X|U = xi ∈ C∞(U), dxi ◦X|U = X(xi) ∈ C∞(U),

we conclude that X|U is C∞.

The previous lemma shows that a smooth vector field X ∈ X(M)
defines a map DX : C∞(M)→ C∞(M), f $→ X(f), satisfying prop-
erties (a) and (b) above. We call DX is a linear derivation of the
algebra C∞(M). The converse is also true.

Lemma 11.2. Every linear derivation D : C∞(M) → C∞(M)
determines a smooth vector field X ∈ X(M) through the formula

Xp(f) := D(f)(p).

Proof. Recalling Definition 5.1, we only need to show that Xp(f)
only depends on the germ [f ] ∈ Gp, i.e., if f, g ∈ C∞(M) are two
functions which agree in some neighborhood U of p, then D(f)(p) =
D(g)(p). This follows from the fact that derivations are local: if D is
a derivation and f ∈ C∞(M) is zero on some open set U ⊂ M ,
then D(f) is also zero in U . To see this, let p ∈ U and choose
g ∈ C∞(M) such that g(p) > 0 and supp g ⊂ U . Since gf := 0,
we have that

0 = D(gf) = D(g)f + gD(f).

If we evaluate both sides at p, we obtain D(f)(p) = 0. Hence,
D(f)|U = 0 as claimed.

From now on, we will not distinguish between a vector field and
the associated derivation of C∞(M), so we will use the same letter
to denote them.

Recall that a path in a manifold M is a continuous map
γ : I → M , where I ⊂ R is an interval. A smooth path is a
path for which γ is C∞. Note that if ∂I '= ∅, i.e., is not an open
interval, then γ is smooth if and only if it has a smooth extension to
a smooth path defined in an open interval J ⊃ I. If γ : I → M is a
smooth path, its derivative is

dγ

dt
(t) := dγ · ∂

∂t

∣∣∣∣
t

∈ Tγ(t)M, (t ∈ I).
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We often abbreviate writing γ̇(t) instead of dγ
dt (t). The derivative

t $→ γ̇(t) is a smooth path in the manifold TM .

Definition 11.2. Let X ∈ X(M) be a vector field. A smooth path
γ : I →M is called an integral curve of X if

γ̇(t) = Xγ(t), ∀t ∈ I. (11.1)

In a chart (U, xi) a path γ(t) is determined by its components
γi(t) = xi(γ(t)). Its derivative is then given by

γ̇(t) = dγ · ∂
∂t

=
d∑

i=1

dγi

dt

∂

∂xi
.

It follows that the integral curves of a vector fieldX with components
Xi relative to a chart (U, xi) are the solutions of the system of o.d.e.’s

dγi

dt
= Xi(γ1(t), . . . , γd(t)), (i = 1, . . . , d). (11.2)

This system is the local form of the equation (11.1). Note that it is
common to write xi(t) for the components γi(t) = xi(γ(t)) so that
this system of equations becomes

dxi

dt
= Xi(x1(t), . . . , xd(t)), (i = 1, . . . , d).

Example 11.1. In R2 consider the vector field X = x ∂
∂y − y ∂

∂x . The

equations for the integral curves (11.2) are
{
ẋ(t) = −y(t),
ẏ(t) = x(t).

Hence, the curves γ(t) = (R cos t, R sin t) are integral curves of this
vector field.

This vector field is tangent to the submanifold S1 = {(x, y) :
x2 + y2 = 1}, so defines a vector field on the circle: Y = X|S1 . If
we consider the angle coordinate θ on the circle, the smooth func-
tions C∞(S1) can be identified with the 2π-periodic smooth functions
f(θ) = f(θ + 2π). It is easy to see that the vector field Y , thought
of as a derivation, is given by

Y (f)(θ) = f ′(θ).



June 29, 2024 15:30 Lectures on Differential Geometry 9in x 6in b5406-ch11 FA2 page 109

Vector Fields and Flows 109

Hence, we will write this vector field as

Y =
∂

∂θ
,

although the function θ is not a globally defined smooth coordinate
on S1.

On the cylinder M = S1×R, with coordinates (θ, x), consider the
vector field

Z :=
∂

∂θ
+ x

∂

∂x
.

The integral curve of Z through a point (θ0, x0) is given by

γ(t) = (θ0 + t, x0e
t).

If x0 = 0, this is just a circle around the cylinder. If x0 '= 0 this is a
spiral that approaches the circle when t → −∞ and goes to infinity
when t→ +∞.

Standard results about existence, uniqueness, and maximal inter-
val of definition of solutions a system of o.d.e.’s lead to the following
proposition.

Proposition 11.1. Let X ∈ X(M) be a vector field. For each p ∈
M, there exist real numbers ap, bp ∈ R ∪ {±∞} and a smooth path
γp :]ap, bp[→M, such that

(i) 0 ∈]ap, bp[ and γp(0) = p;
(ii) γp is an integral curve of X;
(iii) If η :]c, d[→ M is any integral curve of X with η(0) = p, then

]c, d[⊂]ap, bp[ and γp|]c,d[ = η.

We call the integral curve γp given by this proposition the max-
imal integral curve of X through p. For each t ∈ R, we define the
domain Dt(X) consisting of those points for which the integral curve
through p exists at least until time t

Dt(X) := {p ∈M : t ∈]ap, bp[}.

If it is clear the vector field we are referring to we will write Dt

instead of Dt(X). The flow of the vector field X ∈ X(M) is the
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map φtX : Dt →M given by

φtX(p) := γp(t).

The next result gives the basic properties of the flow of a vector field.
The proof is left as an exercise.

Proposition 11.2. Let X ∈ X(M) be a vector field with flow φtX .
Then,

(i) For each p ∈ M, there exists a neighborhood U of p and ε > 0,
such that the map (−ε, ε) × U → M, (t, q) $→ φtX(q), is well
defined and smooth.

(ii) For each t ∈ R, Dt is open and
⋃

t>0 Dt = M .
(iii) For each t ∈ R, φtX : Dt → D−t is a diffeomorphism and

(φtX)−1 = φ−t
X ;

(iv) For each s, t ∈ R, the domain of φtX ◦ φsX is contained in Dt+s

and

φt+s
X = φtX ◦ φsX .

One calls a vector field X complete if Dt(X) = M , for every
t ∈ R, i.e., if the maximal integral curve through any p ∈ M is
defined for all t ∈]−∞,+∞[. In this case, the flow of X is a map:

R×M →M, (t, p) $→ φtX(p).

The properties above then say that this map defines an action of the
group (R,+) on M . In other words, the map

R→ Di!(M), t $→ φtX ,

is a group homomorphism from (R,+) to the group (Di!(M), ◦) of
di!eomorphisms of M . One often says that φtX is a 1-parameter group
of transformations of M . In the non-complete case, one also says that
φtX is a 1-parameter group of local transformations of M .

Example 11.2. The vector field X = x ∂
∂y − y ∂

∂x in R2 is complete

(see Example 11.1) and is flow is given by

φtX(x, y) = (x cos t− y sin t, x sin t+ y cos t).
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Example 11.3. The vector field Y = −x2 ∂
∂x − y ∂

∂y in R2 is not

complete: the integral curve through a point (x0, y0) is the solution
to the system of o.d.e.’s

{
ẋ(t) = −x2, x(0) = x0,

ẏ(t) = −y, y(0) = y0.

After solving this system, ones obtains the flow of Y

φtX(x, y) =

(
x

xt+ 1
, ye−t

)
.

It follows that the flow through points (0, y) exist for all t. But for
points (x, y), with x '= 0, the flow exists only for t ∈]− 1/x,+∞[ if
x > 0 and for t ∈] −∞,−1/x[ if x > 0. The domain of the flow is
then given by

Dt(Y ) =






{
(x, y) ∈ R2 : x > −1/t

}
if t > 0,

R, if t = 0,
{
(x, y) ∈ R2 : x < −1/t

}
if t < 0.

Let Φ : M → N be a smooth map. In general, given a vector field
X in M , it is not possible to use Φ to map X to obtain a vector field
Y in N . However, given a priori two vector fields, one in M and one
in N , it makes sense to ask if they are related by a map.

Definition 11.3. Let Φ : M → N be a smooth map. A vector field
X ∈ X(M) is said to be Φ-related to a vector field Y ∈ X(N) if

YΦ(p) = dΦ(Xp), ∀p ∈M.

If X and Y are Φ-related vector fields then, as derivations of
C∞(M),

Y (f) ◦ Φ = X(f ◦ Φ), ∀f ∈ C∞(N).

When Y is determined from X via Φ we write Y = Φ∗(X), and call
Φ∗(X) the push forward of X by Φ. This is the case, for example,
when Φ is a di!eomorphism, in which case

Φ∗(X)(f) = X(f ◦ Φ) ◦ Φ−1, ∀f ∈ C∞(N).
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The integral curves of vector fields which are Φ-related are also
Φ-related. The proof is a simple exercise applying the chain rule and
is left as an exercise.

Proposition 11.3. Let Φ : M → N be a smooth map and let X ∈
X(M) and Y ∈ X(N) be Φ-related vector fields. If γ : I → M is an
integral curve of X, then Φ ◦ γ : I → N is an integral curve of Y.
In particular, Φ(Dt(X)) ⊂ Dt(Y ) and the flows of X and Y yield a
commutative diagram

Dt(X) Φ !!

φtX
""

Dt(Y )

φtY
""

D−t(X) Φ !! D−t(Y )

If X ∈ X(M) is a vector field and f ∈ C∞(M) we have X(f) ∈
C∞(M). The expression for X(f) in local coordinates shows that
X is a first-order di!erential operator. If we iterate, we obtain the
powers Xk, which are the kth-order di!erential operators defined by

Xk+1(f) := X(Xk(f)).

Proposition 11.4 (Taylor Formula). Let X ∈ X(M) be a vector
field and let f ∈ C∞(M). For each positive integer k, one has the
expansion

f ◦ φtX = f + tX(f) +
t2

2!
X2(f) + · · ·+ tk

k!
Xk(f) +O(tk+1),

where for each p ∈M, t $→ O(tk+1)(p) denotes a real smooth function
defined in a neighborhood of t = 0 whose derivatives of order ≤ k all
vanish at t = 0.

Proof. By the usual Taylor formula for real functions applied to
t $→ f(φtX(p)), it is enough to show that

dk

dtk
f(φtX(p))

∣∣∣∣
t=0

= Xk(f)(p).

To prove this, we show by induction that

dk

dtk
f(φtX(p)) = Xk(f)(φtX(p)).
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When k = 1, this follows because

d

dt
f(φtX(p)) = dpf ·XφtX(p) = XφtX(p)(f) = X(f)(φtX(p)).

On the other hand, if we assume that the formula is valid for k − 1,
we obtain

dk

dtk
f(φtX(p)) =

d

dt

(
dk−1

dtk−1
f(φtX(p))

)

=
d

dt
Xk−1(f)(φtX(p))

= X(Xk−1(f))(φtX(p)) = Xk(f)(φtX(p)).

Another common notation for the flow of a vector field, which is
justified by the previous result, is the exponential notation

exp(tX) := φtX .

In this notation, the properties of the flow are written as

exp(tX)−1 = exp(−tX), exp((t+ s)X) = exp(tX) ◦ exp(sX),

while the Taylor expansion takes the suggestive form

f(exp(tX)) = f + tX(f) +
t2

2!
X2(f) + · · ·+ tk

k!
Xk(f) +O(tk+1).

We will not use this notation in these Lectures.
If X ∈ X(M) is a vector field, a point p ∈M is called a singular

point or a fixed point of X if Xp = 0. It should be obvious that
the integral curve through a singular point of X is the constant path
φtX(p) := p, for all t ∈ R. On the other hand, for non-singular points
we have a unique local canonical form X.

Theorem 11.1 (Flow Box Theorem). Let X ∈ X(M) be a vec-
tor field and p ∈ M a non-singular point: Xp '= 0. There are local
coordinates (U, xi) centered at p, such that

X|U =
∂

∂x1
.
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Proof. First we choose a chart (V,ψ) = (V, yi), centered at p, such
that

X|p =
∂

∂y1

∣∣∣∣
p

.

The map σ : Rd →M given by

σ(t1, . . . , td) = φt1X(ψ−1(0, t2, . . . , td)),

is well defined and C∞ in a neighborhood of the origin. Its di!erential
at the origin is given by

d0σ · ∂

∂t1

∣∣∣∣
0

=
d

dt1
φt1X(ψ−1(0, 0, . . . , 0))

∣∣∣∣
t1=0

= Xp =
∂

∂y1

∣∣∣∣
p

,

d0σ · ∂

∂ti

∣∣∣∣
0

=
∂

∂ti
ψ−1(0, t2, . . . , td))

∣∣∣∣
0

=
∂

∂yi

∣∣∣∣
p

.

We conclude that σ is a local di!eomorphism in a neighborhood of
the origin. Hence, there exists an open set U containing p such that
φ = σ−1 : U → Rd is a chart. If we write (U,φ) = (U, (xi), we have

∂

∂x1

∣∣∣∣
σ(t1,...,td)

= dσ · ∂

∂t1

∣∣∣∣
(t1,...,td)

=
d

dt
φtX(ψ−1(0, t2, . . . , td))

∣∣∣∣
t=t1

= X(φt1X(ψ−1(0, t2, . . . , td))) = Xσ(t1 ,...,td).

Exercises

Exercise 11.1

Let M be a connected manifold. Show that for any pair of points
p, q ∈M , with p '= q, there exists a smooth path γ : [0, 1]→M such
that

(a) γ(0) = p and γ(1) = q;

(b) dγ
dt (t) '= 0, for every t ∈ [0, 1];

(c) γ is simple (i.e., γ is injective).

Use this to prove that any connected manifold of dimension 1 is
di!eomorphic to either R or S1.
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Exercise 11.2

Let X ∈ X(M) be a vector field and f ∈ C∞(M) a nowhere vanishing
function. Find the relationship between the integral curves of X and
of fX.

Exercise 11.3

Verify the properties of the flow of a vector field given by
Proposition 11.2.

Exercise 11.4

Determine the flow of the vector field X = y ∂
∂x − x ∂

∂y + ∂
∂z in R3.

Exercise 11.5

Give an example of an embedded submanifold N ⊂ R2 and a vector
field X ∈ X(N) which is not the restriction of a vector field X̃ ∈
X(R2).

Exercise 11.6

Give an example of a manifold M and two vector fields X1 and X2

which are complete but for which their sum X1+X2 is not complete.
On the other hand, show that if M is compact then every vector field
X ∈ X(M) is complete.

Hint : Show that if K ⊂ M is a compact set then there exists a > 0
such that for every x ∈ K the maximal integral curve through x
exists for t ∈ [−a, a].

Exercise 11.7

Let A ⊂ M . Call a map X : A → TM a vector field along A if
Xp ∈ TpM for all p ∈ A. Show that if A ⊂ O ⊂M , with A closed and
O open, then every smooth vector field X along A can be extended
to a smooth vector field in M such that Xp = 0 for p '∈ O.

Exercise 11.8

Let X ∈ X(M) be a vector field without singular points. Show that
the integral curves of X form a foliation F of M of dimension 1.
Conversely, show that locally the leaves of a foliation of dimension 1
are the orbits of a vector field. What about globally?

Exercise 11.9

A Riemannian structure on a manifold M is a smooth choice of
an inner product 〈 , 〉p in each tangent space TpM . Here by smooth
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we mean that for any vector fields X,Y ∈ X(M), the function p $→
〈X(p), Y (p)〉p is C∞. Show that every smooth manifold admits a
Riemannian structure M .

Exercise 11.10

Let 〈 , 〉 be a Riemannian structure on a manifold M . Given a
function f ∈ C∞(M) show that there exists a unique vector field
grad(f) ∈ X(M) such that

X(f) = 〈X, grad(f)〉, ∀X ∈ X(M).

One calls grad(f) the gradient of f . Verify that

(i) IfM = Rd and 〈 , 〉 is the usual Riemannian structure defined by

〈
d∑

i=1

Xi ∂

∂xi
,

d∑

i=1

Y i ∂

∂xi

〉

:=
d∑

i=1

XiY i,

show that this yields the usual definition where grad(f) =∑d
i=1

∂f
∂xi

∂
∂xi ;

(ii) p ∈M is a singular point of grad(f) if and only if it is a singular
point of f ;

(iii) If x ∈ R is a regular value of f the integral curves of grad(f)
are orthogonal to the level set f−1(x), i.e., any integral curve γ
of grad(f) with γ(t0) ∈ f−1(x), satisfies

〈γ̇(t0), v〉 = 0, ∀v ∈ Tγ(0)f
−1(x).
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Definition 12.1. Let X,Y ∈ X(M) be smooth vector fields. The
Lie bracket of X and Y is the vector field [X,Y ] ∈ X(M) given by

[X,Y ](f) := X(Y (f))− Y (X(f)), ∀f ∈ C∞(M).

Note that the formula for the Lie bracket [X,Y ] shows that it is a
di!erential operator of order ≤ 2. A simple computation shows that
[X,Y ] is a linear derivation of C∞(M), i.e., that

[X,Y ](fg) = [X,Y ](f)g + f [X,Y ](g), ∀f, g ∈ C∞(M).

In order words, the terms of the second order cancel each other and
we have in fact that [X,Y ] ∈ X(M).

In a local chart one can compute the Lie bracket in a straightfor-
ward way if we think of vector fields as di!erential operators.

Example 12.1. Let M = R3 with coordinates (x, y, z), and consider
the vector fields

X = z
∂

∂y
− y

∂

∂z
, Y = x

∂

∂z
− z

∂

∂x
, Z = y

∂

∂x
− x

∂

∂y
.

Then we compute

[X,Y ] =

(
z
∂

∂y
− y

∂

∂z

)(
x
∂

∂z
− z

∂

∂x

)

−
(
x
∂

∂z
− z

∂

∂x

)(
z
∂

∂y
− y

∂

∂z

)

= y
∂

∂x
− x

∂

∂y
= Z.
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We leave it as an exercise the computation of the other Lie brackets.
The result is:

[Y,Z] = X, [Z,X] = Y.

Our next result shows that the Lie bracket [X,Y ] measures the
failure in the commutativity of the flows of X and Y.

Proposition 12.1. Let X,Y ∈ X(M) be vector fields. For each
p ∈M, the commutator

γp(ε) := φ−
√
ε

Y ◦ φ−
√
ε

X ◦ φ
√
ε

Y ◦ φ
√
ε

X (p)

is well defined for a small enough ε ≥ 0, and we have

[X,Y ]p =
d

dε
γp(ε)

∣∣∣∣
ε=0+

.

Proof. One can work on a local chart (U, x1, . . . , xd), centered at p.
Writing

X =
d∑

i=1

Xi ∂

∂xi
, Y =

d∑

i=1

Y i ∂

∂xi
,

the Lie bracket of X and Y is

[X,Y ](xi) = X(Y i)− Y (Xi).

Consider the points p1, p2, and p3 defined by (see Figure 12.1):

p1 = φ
√
ε

X (p), p2 = φ
√
ε

Y (p1), p3 = φ−
√
ε

X (p2),

Then γp(ε) = φ−
√
ε

Y (p3), and Taylor’s formula (Proposition 11.4)
applied to each coordinate xi yields

xi(p1) = xi(p) +
√
εXi(p) +

1

2
εX2(xi)(p) +O(ε

3
2 ).
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Fig. 12.1. Flows and Lie bracket.

Similarly, one finds

xi(p2) = xi(p1) +
√
εY i(p1) +

1

2
εY 2(xi)(p1) +O(ε

3
2 )

= xi(p) +
√
εXi(p) +

1

2
εX2(xi)(p)

+
√
εY i(p1) +

1

2
εY 2(xi)(p1) +O(ε

3
2 ).

The last two terms can also be estimated using again Taylor’s formula
as follows:

Y i(p1) = Y i(φ
√
ε

X (p)) = Y i(p) +
√
εX(Y i)(p) +O(ε)

Y 2(xi)(p1) = Y 2(xi)(φ
√
ε

X (p)) = Y 2(xi)(p) +
√
εX(Y 2(xi))(p) +O(ε).

Hence, we obtain

xi(p2) =xi(p) +
√
ε(Y i(p) +Xi(p))

+ ε

(
1

2
Y 2(xi)(p) +X(Y i)(p) +

1

2
X2(xi)(p)

)
+O(ε

3
2 ).
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Proceeding in a similar fashion, we can estimate xi(p3) and xi(γp(ε)),
obtaining

xi(p3) = xi(p2)−
√
εXi(p2) +

1

2
εX2(xi)(p2) +O(ε

3
2 )

= xi(p) +
√
εY i(p)

+ ε

(
X(Y i)(p)− Y (Xi)(p) +

1

2
Y 2(xi)(p)

)
+O(ε

3
2 ),

xi(γp(ε)) = xi(p3)−
√
εY i(p3) +

1

2
εY 2(xi)(p3) +O(ε

3
2 )

= xi(p) + ε
(
X(Y i)(p)− Y (Xi)(p)

)
+O(ε

3
2 ).

Therefore, we can compute the limit in the statement

lim
ε→0+

xi(γp(ε)) − xi(p)

ε
= X(Y i)(p)− Y (Xi)(p) = [X,Y ]p(x

i).

The following proposition gives the most basic properties of the
Lie bracket of vector fields. The proof is elementary and is left as an
exercise.

Proposition 12.2. The Lie bracket satisfies the following properties:

(i) Skew-symmetry: [X,Y ] = −[Y,X].
(ii) Bi-linearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R.
(iii) Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
(iv) Leibniz identity: [X, fY ] = X(f)Y + f [X,Y ], ∀f ∈ C∞(M).

Moreover, if Φ : M → N is a smooth map, X, Y ∈ X(M) are Φ-
related with, respectively, Z,W ∈ X(N), then [X,Y ] is Φ-related with
[Z,W ].

The geometric interpretation of the Lie bracket given by Proposi-
tion 12.1 shows that the Lie bracket and the flow of vector fields are
intimately related. There is another form of this relationship which
we now explain. For that, we need the following definition:

Definition 12.2. Let X,Y ∈ X(M) be vector fields and f ∈
C∞(M).
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(i) The Lie derivative of f along X is the function LXf ∈
C∞(M) given by

(LXf)(p) := lim
t→0

1

t

(
f(φtX(p))− f(p)

)
.

(ii) The Lie derivative of Y along X is the vector field LXY ∈
X(M) given by

(LXY )p := lim
t→0

1

t

(
dφ−t

X · YφtX(p) − Yp

)
.

One can merge these two definitions by observing that a di!eo-
morphism Φ : M →M acts on functions C∞(M) by

(Φ∗f)(p) = f(Φ(p)),

and acts on vector fields Y ∈ X(M) by

(Φ∗Y )p = dΦ−1 · YΦ(p).

Note that Φ∗Y = (Φ−1)∗Y , so the two operations are related by

Φ∗Y (f) = Y ((Φ−1)∗f).

It follows that the Lie derivative of an object P (a function or a
vector field) is given by

LXP =
d

dt
(φtX)∗P

∣∣∣∣
t=0

= lim
t→0

1

t

(
(φtX)∗P − P

)
. (12.1)

We will see later that one can take Lie derivatives of other objects
using precisely this last formula as the definition. We can now give
another geometric interpretation of the Lie bracket.

Theorem 12.1. Let X ∈ X(M) be a vector field. Then,

(i) For any function f ∈ C∞(M): LXf = X(f)d.
(ii) For any vector field Y ∈ X(M): LXY = [X,Y ].
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Proof. To prove (i), we simply observe that

LXf =
d

dt
f ◦ φtX

∣∣∣∣
t=0

= df ·X = X(f).

To prove (ii), we note first that

(LXY )(f)(p) = lim
t→0

1

t

(
dφ−t

X · YφtX(p) − Yp

)
(f)

= lim
t→0

1

t

(
YφtX(p)(f ◦ φ−t

X )− Yp(f)
)
.

On the other hand, Taylor’s formula gives

f ◦ φ−t
X = f − tX(f) +O(t2).

Hence, using also (i), we find

(LXY )(f)(p) = lim
t→0

1

t

(
YφtX(p)(f)− tYφtX(p)(X(f)) − Yp(f)

)

= lim
t→0

1

t

(
YφtX(p)(f)− Yp(f)

)
− Yp(X(f))

= Xp(Y (f))− Yp(X(f)) = [X,Y ](f)(p).

Exercises

Exercise 12.1

Check the properties of the Lie bracket given in Proposition 12.2.

Exercise 12.2

Complete the computation of the Lie brackets in Example 12.1 and
show that all three vector fieldsX, Y, and Z are tangent to the sphere
S2 ⊂ R3. Show that there are unique vector fields X̃ , Ỹ and Z̃ on RP2

such that π∗X = X̃ , π∗Y = Ỹ, and π∗Z = Z̃ where π : S2 → RP2 is
the projection. What are the Lie brackets between X̃ , Ỹ, and Z̃?

Exercise 12.3

Find 3 everywhere linearly independent vector fields X, Y , and Z on
the sphere S3 such that [X,Y ] = Z, [Y,Z] = X, and [Z,X] = Y.

Hint : Recall that S3 can be identified with the unit quaternions.
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Exercise 12.4

In R2, consider the vector fields X = ∂
∂x and Y = x ∂

∂y . Compute
the Lie bracket [X,Y ] in three distinct ways: (i) using the definition,
(ii) using Proposition 12.1 and (iii) using Theorem 12.1.

Exercise 12.5

Let Φ : M → N be a surjective submersion. We say that X ∈ X(M)
is vertical if Xp ∈ ker(dpΦ) for all p ∈ M , and that Y ∈ X(M) is
projectable if it is Φ-related to some Ỹ ∈ X(N). Show the following:

(i) The Lie bracket of vertical (respectively, projectable) vector
fields is vertical (respectively, projectable).

(ii) If X is vertical and Y is projectable then [X,Y ] is vertical.
(iii) If Φ has connected fibers and [X,Y ] is vertical for any vertical

vector field X ∈ X(M), then Y is projectable.

Hint : Vertical vector fields are projectable!

Exercise 12.6

Let X,Y ∈ X(M) be vector fields with flows φtX and φsY . Show the
following:

(i) [X,Y ] = 0 if and only if φtX ◦ φsY (p) = φsY ◦ φtX(p) for all p ∈M
and all s and t sufficiently small (which may depend on p);

(ii) Given an example where [X,Y ] = 0 and φtX ◦ φsY *= φsY ◦ φtX for
some s and t.

Exercise 12.7

Let X1, . . . ,Xk ∈ X(M) be vector fields such that

(a) {X1|p, . . . ,Xk|p} are linearly independent, for all p ∈M ;
(b) [Xi,Xj ] = 0, for all i, j = 1, . . . , k.

Show that for each p ∈M there exists a neighborhood U of p and a
unique k-dimensional foliation F of U such that

TqL = 〈X1|q , . . . , Xk|q〉, ∀q ∈ U,

where L ∈ F is the leaf containing q.

Hint : Use the previous exercise to show that the leaf L is obtained
by flowing from q along the flows of the vector fields X1, . . . ,Xk.
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Lecture 13

Distributions and the
Frobenius Theorem

A vector field X ∈ X(M) which is nowhere vanishing determines a
partition of M into 1-dimensional submanifolds

F = {γ(I) : γ : I →M a maximal integral curve of X}.

By the Flow Box Theorem, this is a 1-dimensional foliation of M .
Note that if Y ∈ X(M) is another vector field such that Y = fX,
for some nowhere vanishing smooth function f ∈ C∞(M), then Y
determines the same foliation of M . So, this foliation only depends
on the family of 1-dimensional subspaces

M # p $→ 〈Xp〉 ⊂ TpM.

We will now generalize all this to higher dimensions.

Definition 13.1. Let M be a smooth manifold of dimension d and
let 1 ≤ k ≤ d be an integer. A k-dimensional distribution D in M
is a map

M # p $→ Dp ⊂ TpM,

which associates to each p ∈M a subspaceDp ⊂ TpM of dimension k.
We say that a distribution D is of class C∞ if for each p ∈M there
exists a neighborhood U of p and smooth vector fields X1, . . . ,Xk ∈
X(U), such that

Dq = 〈X1|q, . . . ,Xk|q〉, ∀q ∈ U.
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If D is a distribution in M we denote the set of vector fields
tangent to D by

X(D) := {X ∈ X(M) : Xp ∈ Dp,∀p ∈M}.

Note that X(D) is a module over the ring C∞(M): if f ∈ C∞(M)
and X ∈ X(D) then fX ∈ X(D).

Example 13.1. Every nowhere vanishing smooth vector field X
defines a 1-dimensional smooth distribution by

Dp := 〈Xp〉 = {λXp : λ ∈ R}.

Note that Y ∈ X(D) if and only Y = fX for some uniquely defined
smooth function f ∈ C∞(M).

Example 13.2. A set of smooth vector fields X1, . . . ,Xk which at
each p ∈M are linearly independent define a k-dimensional smooth
distribution D by

Dp := 〈X1|p, . . . ,Xk|p〉.

A vector field X ∈ X(D) if and only if

X = f1X1 + · · · + fkXk,

for uniquely defined functions fi ∈ C∞(M).
For example, in M = R3, we have the 2-dimensional smooth dis-

tribution D = 〈X1,X2〉 generated by the vector fields

X1 =
∂

∂x
+ z2

∂

∂y
, X2 =

∂

∂y
+ z2

∂

∂z
.

and every vector field X ∈ X(D) is a linear combination aX1 + bX2,
where the smooth functions a = a(x, y) and b = b(x, y) are uniquely
determined.

Example 13.3. More generally, a set of smooth vector fields
X1, . . . ,Xs which at each p ∈ M span a k-dimensional subspace
define a k-dimensional smooth distribution D by setting

Dp := 〈X1|p, . . . ,Xs|p〉.

We have that X ∈ X(D) if and only if

X = f1X1 + · · ·+ fsXs,



June 15, 2024 15:44 Lectures on Differential Geometry 9in x 6in b5406-ch13 FA1 page 127

Distributions and the Frobenius Theorem 127

for some smooth functions fi ∈ C∞(M). The difference from the
previous example is that the functions fi are not uniquely defined.
Moreover, we may not be able to find k vector fields tangent to D
which globally generate D.

For example, in M = R3 \ {0} consider the vector fields X, Y,
and Z defined in Example 12.1. The matrix whose columns are the
components of the vector fields X, Y , and Z relative to the usual
coordinates (x, y, z) of R3 is




0 −z y

z 0 −x
−y x 0





and has rank 2 everywhere. Hence, we have the 2-dimensional distri-
bution D = 〈X,Y,Z〉. We leave it as an exercise to check that this
distribution is not globally generated by only 2 vector fields.

We can think of a distribution as a generalization of the notion
of a vector field. In this sense, the concept of an integral curve of a
vector field is replaced by the following:

Definition 13.2. Let D be a distribution in M . A connected sub-
manifold (N,Φ) of M is called an integral manifold of D if

dpΦ(TpN) = DΦ(p), ∀p ∈ N.

Note that if D is a k-dimensional distribution, its integral mani-
folds, if they exist, are k-dimensional manifolds.

Example 13.4. Consider the 2-distribution of R3 given in Exam-
ple 13.2. The plane N = {z = 0} is an integral manifold of this
distribution, since it is a connected submanifold and

D(x,y,0) =

〈
∂

∂x

∣∣∣∣
(x,y,0)

,
∂

∂y

∣∣∣∣
(x,y,0)

〉
= T(x,y,0)N.

Example 13.5. Consider the 2-distribution D of R3 \ {0} defined
by the vector fields X, Y, and Z in Example 13.3. The spheres

Sc = {(x, y, z) ∈ R3 \ 0 : x2 + y2 + z2 = c},
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are integral manifolds of D: each sphere is a connected submanifold,
has dimension 2 and:

Xp, Yp.Zp ∈ TpSc, ∀p ∈ Sc.

Since D has dimension 2, we have TpSc = Dp, for all p ∈ Sc.

As suggested by the last example, given a smooth k-dimensional
foliation F of a manifold M , we associate to it a k-dimensional dis-
tribution d defined by

Dp := TpL,

where L ∈ F denotes the leaf containing the point p ∈ M . Hence-
forth, we will denote this distribution by TF and we will write TpF
instead of (TF)p. The existence of foliated charts shows that TF is
a smooth distribution. A vector field is tangent to TF if and only if
it is tangent to each leaf of the foliation.

Definition 13.3. A smooth distribution D in M is called inte-
grable if there exists a foliation F in M such that D = TF .

A distribution D in M may fail to be integrable. In fact, there
may not even exist integral manifolds through each point of M.
The following proposition gives a necessary condition for this to
happen:

Proposition 13.1. Let D be a smooth distribution in M . If there
exists an integral manifold of D through p ∈M, then for any X,Y ∈
X(D) we must have that [X,Y ]p ∈ Dp.

Proof. Let X,Y ∈ X(D) and fix p ∈ M . Assume there exists an
integral manifold (N,Φ) of D through p and choose q ∈ N , such that
Φ(q) = p. For any q′ ∈ N , the map dq′Φ : Tq′N → TΦ(q′)M is injective
and its image is DΦ(q′). By the local normal form for submanifolds,

there exist smooth vector fields X̃, Ỹ ∈ X(N) which are Φ-related
with X and Y , respectively. It follows from Proposition 12.2 that
[X̃, Ỹ ] is also Φ-related with [X,Y ] and we must have

[X,Y ]p = dq0Φ([X̃, Ỹ ]q) ∈ dqΦ(TqN) = Dp.
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Example 13.6. For the smooth distribution D = 〈X1,X2〉 of R3

given in Example 13.2, we saw that the plane z = 0 is an integral
manifold. On the other hand, we find that

[X1,X2] = −2z3
∂

∂y
.

If z += 0 this vector field is not tangent to the distribution. Hence,
the only points through which there exist integral manifolds are the
points in the plane z = 0.

For an integrable distribution D = TF we have an integral
manifold through every point. Hence, for any pair of vector fields
X,Y ∈ X(TF), we must have [X,Y ] ∈ X(TF).

Definition 13.4. A smooth distributionD inM is called involutive
if for any X,Y ∈ X(D) one has [X,Y ] ∈ X(D).

The following important result says that the lack of involutivity
is the only obstruction to the integrability of a distribution.

Theorem 13.1 (Frobenius). A smooth distribution D is integrable
if and only if it is involutive. In this case, the integral foliation tan-
gent to D is unique.

Proof. Proposition 13.1 show that one of the implications hold.
To check the other implication we assume that D is an involutive
distribution.

We claim that, for each p ∈ M , there exist vector fields X1, . . . ,
Xk ∈ X(U), defined in an open neighborhood U of p, such that

(a) D|U = 〈X1, . . . ,Xk〉;
(b) [Xi,Xj ] = 0, for every i, j = 1, . . . , k.

Then, by Exercise 12.7, we obtain an open cover {Ui}i∈I of M , such
that for each i ∈ I there exists a unique foliation Fi in Ui which
satisfies TFi = D|Ui . By uniqueness, whenever Ui ∩ Uj += 0, we
obtain Fi|Ui∩Uj = Fj |Ui∩Uj . Hence, there exists a unique foliation F
of M such that F|Ui = Fi.

To prove the claim, fix p ∈ M . Since D is smooth, there exist
vector fields Y1, . . . , Yk defined in some neighborhood V of p, such
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that D|V = 〈Y1, . . . , Yk〉. We can also assume that V is the domain
of some coordinate system (x1, . . . , xd) of M , so that

Yi =
d∑

l=1

ail
∂

∂xl
, (i = 1, . . . , k),

where ail ∈ C∞(V ). The matrix A(q) = [ail(q)]
k,d
i,l=1 has rank k at

p and we can assume, eventually after some relabeling of the coordi-
nates, that the k×k minor formed by the first k rows and k columns
of A has non-zero determinant in a smaller open neighborhood U
of p. Let B be the k × k inverse matrix of this minor, and define
vector fields X1, . . . ,Xk ∈ X(U) by

Xi :=
k,d∑

j,l=1

bijajl
∂

∂xl
=

∂

∂xi
+

d∑

l=k+1

cil
∂

∂xl
, (i = 1, . . . , k),

where cil ∈ C∞(U). On the one hand, we have that

D|U = 〈Y1, . . . , Yk〉 = 〈X1, . . . ,Xk〉,

so (a) is satisfied. On the other hand, a simple computation shows
that

[Xi,Xj ] =
d∑

l=k+1

dlij
∂

∂xl
, (i, j = 1, . . . , k),

for certain functions dlij ∈ C∞(U). Since D is involutive, this commu-
tator must be a C∞(M)-linear combination ofX1, . . . ,Xk. Therefore,
the functions dlij must be identically zero, so (b) also holds.

The Frobenius Theorem establishes a one-to-one correspondence:
{
involutive distributions on M

}
←→

{
foliations on M

}

This is an example of an integrability theorem: a distribution D is an
infinitesimal object on M while a foliation F is a global object on M
and the integrability condition is the involutivity of D. We will see
other integrability theorems later.
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Exercises

Exercise 13.1

Give an example of a smooth distribution D of dimension 1 on the
cylinder S1 × R which is not globally generated by a vector field.

Exercise 13.2

Show that the 2-dimensional distribution D in Example 13.3 is not
globally generated by only 2 vector fields.

Exercise 13.3

Show that the 2-dimensional distribution in R3 defined by the vector
fields

X1 =
∂

∂x
, X2 = e−x ∂

∂y
+

∂

∂z
,

has no integral manifolds.

Exercise 13.4

Consider the distribution D in R3 generated by the vector fields:

∂

∂x
+ cos x cos y

∂

∂z
,

∂

∂y
− sinx sin y

∂

∂z
.

Check that D is involutive and determine the foliation F that inte-
grates it.

Exercise 13.5

Consider the 3-sphere:

S3 = {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1}.

Check that the vector field in R3 given by

X = −y ∂
∂x

+ x
∂

∂y
−w

∂

∂z
+ z

∂

∂w
,

restricts to a nowhere vanishing vector field on S3, so determines a
1-dimensional distribution D. Find the foliation F integrating this
distribution.
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Exercise 13.6

Let X1, . . . ,Xk ∈ X(M) be vector fields which pairwise commute,
i.e., such that

[Xi,Xj ] = 0, (i, j = 1, . . . , k).

Assume that there exists p ∈ M such that the tangent vectors
{X1|p, . . . ,Xk|p} form a linearly independent set. Using the Flow
Box Theorem, show that there exist a chart (U, xi) centered at p
such that

Xi =
∂

∂xi
, (i = 1, . . . , k).
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Lie Groups and Lie Algebras

The next definition axiomatizes some of the properties of the Lie
bracket of vector fields (see Proposition 12.2).

Definition 14.1. A Lie algebra is a real vector space g together
with a binary operation [ , ] : g × g → g, called the Lie bracket,
which satisfies:

(i) Skew-symmetry: [X,Y ] = −[Y,X].
(ii) Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R.
(iii) Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

We can also define Lie algebras over the complex numbers or over
other fields.

Example 14.1.

(1) Rd with the zero Lie bracket [ , ] ≡ 0 is a Lie algebra, called the
abelian Lie algebra of dimension d.

(2) In R3 one can define a Lie algebra structure with the Lie bracket,
the vector product

[!v, !w] := !v × !w.

(3) If V is any vector space, the vector space of all linear trans-
formations T : V → V is a Lie algebra with Lie bracket the
commutator

[T, S] := T ◦ S − S ◦ T.

This Lie algebra is called the general linear Lie algebra and
denoted gl(V ). When V = Rn, we denote it by gl(R, n) or

133
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simply gl(n). After fixing a basis, we can identify gl(n) with the
space of all n×n real matrices. Under this identification, the Lie
bracket becomes the commutator of matrices.

(4) If g1, . . . , gk are Lie algebras, their cartesian product g1× · · ·×gk
is a Lie algebra with Lie bracket

[(X1, . . . ,Xk), (Y1, . . . , Yk)] := ([X1, Y1]g1 , . . . , [Xk, Yk]gk).

(5) The space of all smooth vector fields X(M) with the usual
Lie bracket is a Lie algebra, which is infinite dimensional if
dimM > 0. We will be mainly interested in finite-dimensional
Lie algebras.

We shall see shortly that Lie algebras are the “infinitesimal
versions” of groups with a smooth structure, as in the following
definition.

Definition 14.2. A Lie group is a group G with a smooth structure
such that its structure maps are smooth:

µ : G×G→ G, (g, h) (→ gh (multiplication),

ι : G→ G, g (→ g−1 (inverse).

One can also define topological groups, analytic groups, etc.

Example 14.2.

(1) Any countable group with the discrete topology is a Lie group
of dimension 0 (we need it to be countable so that the discrete
topology is second countable).

(2) Rd with the usual addition of vectors is an abelian Lie group.
The groups of all non-zero real numbers R∗ and all non-zero
complex numbers C∗, with the usual multiplication operations,
are also abelian Lie groups. Note that C∗ is also a complex Lie
group, thinking of C∗ as a complex manifold, but we will mostly
restrict ourselves to real Lie groups.

(3) The circle S1 = {z ∈ C : ‖z‖ = 1} ⊂ C∗ with the usual com-
plex multiplication is also an abelian Lie group. The unit quater-
nions S3, with quaternionic multiplication, is a non-abelian Lie
group. It can be shown that the only spheres Sd that admit Lie
group structures are d = 0, 1, 3.

(4) If V is a finite-dimensional real vector space, the set of all
invertible linear transformations T : V → V is a Lie group
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with multiplication composition of transformations. It is called
the general linear group and is denoted by GL(V ). Fixing
a basis, we can identify V = Rn, and under this identification
GL(V ) becomes the group of all invertible n × n matrices with
matrix multiplication and we denote it by GL(R, n) or simply
GL(n).

(5) If G1, . . . , Gk are Lie groups their cartesian product G× · · ·×Gk

is also a Lie group. For example, the torus Td = S1 × · · ·× S1 is
an abelian Lie group.

(6) If G is a Lie group, its connected component of the iden-
tity is a Lie group, denoted by G0. For example, the connected
component of the identity of the multiplicative group of non-
zero real numbers (R∗, ·) is the group of positive real numbers
(R+, ·).

In a Lie group G, a left-invariant vector field is a vector field
X such that

(Lg)∗X = X, ∀g ∈ G,

where Lg : G→ G, h (→ gh denotes the left translation by g. One
defines analogously a right invariant vector field a vector field X
such that

(Rg)∗X = X, ∀g ∈ G,

where Rg : G → G, h (→ hg is the right translation by g. We
choose to use left-invariant vector fields and we denote the set of all
such smooth vector fields by

XL-inv(G) := {X ∈ X(G) : (Lg)∗X = X, ∀g ∈ G}.

Proposition 14.1. Let G be a Lie group.

(i) Every left-invariant vector field is smooth.
(ii) If X,Y ∈ XL-inv(G) then [X,Y ] ∈ XL-inv(G).
(iii) XL-inv(G) ⊂ X(G) is a finite-dimensional subspace of dimension

dimG.

Proof. We leave the proof of (i) as an exercise. To check (ii), it is
enough to observe that if X,Y ∈ XL-inv(G) then

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ], ∀g ∈ G.

Hence, [X,Y ] ∈ XL-inv(G).
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Now to see that (iii) holds, it is clear from the definition of a left
invariant vector field that XL-inv(G) ⊂ X(G) is a linear subspace.
On the other hand, the restriction map

XL-inv(G)→ TeG, X (→ Xe,

is a linear isomorphism. Its inverse associates to v ∈ TeG the left
invariant vector field X defined by

Xg := dLg · v.

We conclude that dimXL-inv(G) = dimTeG = dimG.

This proposition shows that for a Lie group G the set XL-inv(G)
forms a Lie algebra. We call it the Lie algebra of the Lie group
G and denote it by g. The proof also shows that g can be identified
with TeG.

Example 14.3.

(1) The Lie algebra of any discrete Lie group is the 0-dimensional
vector space g = R0 = {0}. The Lie algebra of any 1-dimensional
Lie group, such as S1 or R∗, is the 1-dimensional (abelian) Lie
algebra R.

(2) Let G = (Rd,+). A vector field X in Rd is left invariant if and
only if it is constant, i.e., X =

∑d
i=1 ai

∂
∂xi , with ai ∈ R. The Lie

bracket of any two constant vector fields is zero, hence the Lie
algebra of (Rd,+) is the abelian Lie algebra Rd.

(3) The Lie algebra of the cartesian product of two Lie groupsG×H,
is the cartesian product of their Lie algebras g× h. For example,
the Lie algebra of the torus Td is the abelian Lie algebra Rd.

(4) The tangent space at the identity to the general linear group
G = GL(n) can be identified with gl(n). The restriction map
g → gl(n), maps the commutator of left-invariant vector fields
to the commutator of matrices (exercise). Hence, we can identify
the Lie algebra of GL(n) with gl(n).

(5) One may wonder if the Lie algebra X(M) is associated with
some Lie group. Since this Lie algebra is infinite dimensional
(if dimM > 0), this Lie group must be infinite dimensional too.
One can show that it is the group Diff(M) of all diffeomorphisms
of M under composition. The study of such infinite-dimensional
Lie groups is an important topic which is beyond the scope of
this course.
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Definition 14.3.

(i) A homomorphism of Lie algebras is a linear map φ : g→ h
between two Lie algebras which preserves the Lie brackets:

φ([X,Y ]g) = [φ(X),φ(Y )]h, ∀X,Y ∈ g.

(ii) A homomorphism of Lie groups is a smooth map Φ : G→ H
between two Lie groups which is also a group homomorphism:

Φ(gh−1) = Φ(g)Φ(h)−1, ∀g, h ∈ G.

We have seen that to each Lie group there is associated a Lie alge-
bra. Similarly, to each homomorphism of Lie groups there is associ-
ated a homomorphism of their Lie algebras. To see this, note that
if Φ : G → H is a Lie group homomorphism we have an induced
map Φ∗ : g → h which to X ∈ g associates Φ∗(X) ∈ h, the unique
left-invariant vector field such that Φ∗(X)|e = deΦ ·Xe.

Proposition 14.2. If Φ : G → H is a Lie group homomorphism,
then,

(i) For all X ∈ g, Φ∗X is Φ-related with X;
(ii) Φ∗ : g→ h is a Lie algebra homomorphism.

Proof. Part (ii) follows from (i), since the Lie bracket of Φ-related
vector fields is preserved — see Proposition 12.2. In order to show
that (i) holds, we observe that since Φ is a group homomorphism,
Φ ◦ Lg = LΦ(g) ◦ Φ. Hence, we find

Φ∗(X)Φ(g) = deLΦ(g) · deΦ ·Xe

= de(LΦ(g) ◦ Φ) ·Xe

= de(Φ ◦ Lg) ·Xe

= dgΦ · deLg ·Xe = dgΦ ·Xg.

Example 14.4.

(1) Let T 2 = S1 × S1. For each a ∈ R one has the Lie group homo-
morphism

Φa : R→ T2, t (→ (eit, eiat).
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If a is rational, the image Φa is a closed curve, while if a is
irrational the image is a dense curve in the torus. The induced
Lie algebra homomorphism is

(Φa)∗ : R→ R2, X (→ (X, aX).

(2) The determinant defines a Lie group homomorphism det :
GL(n) → R∗. The induced Lie algebra homomorphism (det)∗ :
gl(n)→ R coincides with the trace (det)∗(X) = trX (exercise).

(3) Conjugation by a fixed matrix A ∈ GL(n) yields a Lie group
automorphism

ΦA : GL(n)→ GL(n), B (→ ABA−1.

Since this map is linear the associated Lie algebra automorphism
is also given by conjugation

(ΦA)∗ : gl(n)→ gl(n), X (→ AXA−1.

(4) More generally, for any Lie group G we can consider conjugation
by a fix g ∈ G:

ig : G→ G, h (→ ghg−1.

This is a Lie group automorphism and the induced Lie algebra
automorphism is denoted by

Adg : g→ g, Adg(X) := (ig)∗X.

As another instance of the Lie group/algebra correspondence, we
will show now that to each subgroup of a Lie group G corresponds a
Lie subalgebra of its Lie algebra g.

Definition 14.4. A subspace h ⊂ g is called a Lie subalgebra if,
for all X,Y ∈ h, we have [X,Y ] ∈ h.

Example 14.5.

(1) Any subspace of the abelian Lie algebra Rd is a Lie subalgebra.
(2) In the Lie algebra gl(n), we have the Lie subalgebra formed by

all matrices of zero trace

sl(n) := {X ∈ gl(n) : trX = 0},
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and also the Lie subalgebra formed by all skew-symmetric
matrices

o(n) := {X ∈ gl(n) : X +XT = 0}.

(3) The complex n×n matrices, denoted by gl(n,C), can be seen as
a real Lie algebra. It has the Lie subalgebra of all skew-Hermitian
matrices

u(n) := {X ∈ gl(n,C) : X + X̄T = 0},

and the Lie subalgebra of all skew-Hermitian matrices of trace
zero

su(n) := {X ∈ gl(n,C) : X + X̄T = 0, trX = 0}.

(4) If φ : g → h is a homomorphism of Lie algebras, then its kernel
is a Lie subalgebra of g and its image is a Lie subalgebra of h.

A notion of a Lie subgroup is defined similarly.

Definition 14.5. A Lie subgroup of G is a submanifold (H,Φ) of
G such that

(i) H is Lie group;
(ii) Φ : H → G is a Lie group homomorphism.

As we discussed in Lecture 7, we can always replace the sub-
manifold (H,Φ) by the subset Φ(H) ⊂ G, and the immersion Φ by
the inclusion i. Since Φ(H) is a subgroup of G, in the definition
of a Lie subgroup we can assume that H ⊂ G is a subgroup and
that Φ is the inclusion. Note, however, that the topology on H may
be different from the subspace topology. On the other hand, since
the induced map Φ∗ : h → g is injective, we see that the Lie alge-
bra of a Lie subgroup H ⊂ G corresponds to the Lie subalgebra
h ⊂ g.

Example 14.6.

(1) In Example 14.1 (1), for each a ∈ R we have a Lie subgroup
Φa(R) of T2. If a is rational, this Lie subgroup is embedded,
while if a is irrational this Lie subgroup is only immersed.
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(2) The general linear group GL(n) has the following (embedded)
subgroups:

(i) The special linear group of all matrices of determinant 1

SL(n) := {A ∈ GL(n) : detA = 1}.

To this subgroup corresponds the Lie subalgebra sl(n).
(ii) The orthogonal group of all orthogonal matrices

O(n) := {A ∈ GL(n) : AAT = I}.

To this subgroup corresponds the Lie subalgebra o(n).
(iii) The special orthogonal group of all orthogonal matrices

of positive determinant

SO(n) := {A ∈ O(n) : detA = 1}.

To this subgroup corresponds the Lie subalgebra
so(n) = o(n).

(3) The (real) Lie group GL(n,C) has the following (embedded) sub-
groups:

(i) The unitary group of all unitary matrices

U(n) := {A ∈ GL(n,C) : AĀT = I}.

To this subgroup corresponds the Lie subalgebra u(n).
(ii) The special unitary group of all unitary matrices of deter-

minant 1

SU(n) := {A ∈ U(n) : detA = 1}.

To this subgroup corresponds the Lie subalgebra su(n).

(4) Let Φ : G→ H is a Lie group homomorphism and let (Φ)∗ : g→ h
be the induced Lie algebra homomorphism. Then KerΦ ⊂ G and
ImΦ ⊂ H are Lie subgroups whose Lie algebras coincide with
Ker(Φ)∗ ⊂ g and Im (Φ)∗ ⊂ h, respectively.
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Exercises

Exercise 14.1

Show that in the definition of a Lie group, it is enough to assume
that

(a) The inverse map G→ G, g (→ g−1 is smooth, or that
(b) The map G×G→ G, (g, h) (→ gh−1, is smooth.

Exercise 14.2

Show that every left-invariant vector field in a Lie group G is smooth
and complete.

Exercise 14.3

Show that the tangent space at the identity of GL(n) can be identi-
fied with gl(n). Show also that, under this identification, the linear
isomorphism g→ gl(n) takes the Lie bracket of left-invariant vector
fields to the commutator of matrices. What happens if one defines
the Lie algebra of G using right invariant vector fields, instead of left
invariant vector fields?

Exercise 14.4

Show that the tangent bundle TG of a Lie group G is trivial, i.e.,
there exist vector fields X1, . . . ,Xd ∈ X(G) which at each g ∈ G give
a basis for TgG. Conclude that an even dimension sphere S2n does
not admit the structure of a Lie group.

Exercise 14.5

Show that the Lie algebra homomorphism induced by the determi-
nant det : GL(n)→ R∗ coincides with the trace: (det)∗ = tr.

Exercise 14.6

Consider S3 ⊂ H as the set of quaternions of norm 1. Show that S3,
with the product of quaternions, is a Lie group and determine its Lie
algebra.

Exercise 14.7

Show that S3 and SU(2) are isomorphic Lie groups.
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Hint : For any pair of complex numbers z, w ∈ C with |z|2+ |w|2 = 1,
the matrix:

(
z w

−w̄ z̄

)

is an element in SU(2).

Exercise 14.8

Identify the vectors v ∈ R3 with the purely imaginary quater-
nions. For each quaternion q ∈ S3 of norm 1 define a linear map
Tq : R3 → R3 by v (→ qvq−1. Show that Tq is a special orthogonal
transformation and that the map S3 → SO(3), q (→ Tq, is a Lie group
homomorphism. Is this map surjective? Injective?

Exercise 14.9

Let G be a Lie group. Show that the connected component of the
identity is a Lie group G0 whose Lie algebra is isomorphic to the Lie
algebra of G.

Exercise 14.10

Let G be a connected Lie group with Lie algebra g. Show that G
is abelian if and only if g is abelian. What can you say if G is not
connected?

Exercise 14.11

Show that a compact connected abelian Lie group G is isomorphic
to a torus Td.

Exercise 14.12

Let (H,Φ) be a Lie subgroup of G. Show that Φ is an embedding if
and only if Φ(H) is closed in G.

Exercise 14.13

Let A ⊂ G be a subgroup of a Lie group G. Show that if (A, i)
has a smooth structure making it into a submanifold of G, then this
smooth structure is unique and that for that smooth structure A is
a Lie group and (A, i) a Lie subgroup.

Hint : Show that (A, i) is a regularly immersed submanifold.
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Integrations of Lie Algebras

We saw in the previous lecture that

• To each Lie group corresponds a Lie algebra;
• To each Lie group homomorphism corresponds a Lie algebra homo-

morphism;
• To each Lie subgroup corresponds to a Lie subalgebra.

It is natural to wonder about the inverse of each of these correspon-
dences. We have seen that two distinct Lie groups can have isomor-
phic Lie algebras (e.g., Rn and Tn, O(n) and SO(n), or SU(2) and
SO(3)). There are indeed topological issues that one must take care
of to make the inverse correspondences work. For that, we start with
the following result that shows that a connected Lie group is deter-
mined by a neighborhood of the identity.

Proposition 15.1. Let G be a connected Lie group and U a neigh-
borhood of the identity e ∈ G. Then,

G =
∞⋃

n=1

Un,

where Un := {g1 · · · gn : gi ∈ U, i = 1, . . . , n}.

Proof. If U−1 := {g−1 : g ∈ U} then V := U ∩ U−1 is a neighbor-
hood of the origin such that V = V −1. Let

H :=
∞⋃

n=1

V n ⊂
∞⋃

n=1

Un.

143



July 17, 2024 18:10 Lectures on Differential Geometry 9in x 6in b5406-ch15 FA3 page 144

144 Lectures on Differential Geometry

To complete the proof we show that H = G. For that, we note

(i) H is a subgroup: if g = g1 . . . gn, h = h1 . . . hm ∈ H, where
gi, hj ∈ V, then gh−1 = g1 . . . gnh−1

m . . . h−1
1 ∈ V n+m ⊂ H.

(ii) H is open: if g ∈ H then gV ⊂ gH = H is an open set contain-
ing g.

(iii) H is closed: for each g ∈ G, gH is an open set and we have
Hc =

⋃
g #∈H gH.

Since G is connected and H $= ∅ is open and closed, we must have
H = G.

Theorem 15.1. Let G be a Lie group with Lie algebra g. Given a
Lie subalgebra h ⊂ g, there exists a unique connected Lie subgroup
H ⊂ G with Lie algebra h.

Proof. A Lie subalgebra h defines a distribution D in G by setting

Dg := {Xg : X ∈ h}.

This distribution is smooth and involutive. In fact, if X1, . . . ,Xk is
a basis for h, then these vector fields are smooth and generate D
everywhere, hence D is smooth. On the other hand, if Y,Z ∈ X(D),
then,

Y =
k∑

i=1

aiXi, Z =
k∑

j=1

bjXj.

Using that h is a Lie subalgebra it follows that

[Y,Z] =
k∑

i,j=1

aibj [Xi,Xj ] + aiXi(bj)Xj − bjXj(ai)Xi ∈ X(D),

proving that D is involutive.
Applying Frobenius Theorem, let (H, i) be the leaf of D that

contains the identity e ∈ G, where i : H ↪→ G denotes the inclusion.
We claim that (H, i) is the desired Lie subgroup. To prove this claim,
note that if g ∈ H then (H,Lg−1 ◦ i) is also an integral manifold of
D which contains e, since

dh(Lg−1 ◦ i)(ThH) = dhLg−1(Dh) = Dg−1h.



July 17, 2024 18:10 Lectures on Differential Geometry 9in x 6in b5406-ch15 FA3 page 145

Integrations of Lie Algebras 145

Hence, Lg−1 ◦ i(H) ⊂ i(H), and we conclude that for all g, h ∈ H,
we have g−1h ∈ H, proving that H is a subgroup of G. To verify
that (H, i) is a Lie subgroup, it remains to prove that the map ν̂ :
H × H → H, (g, h) *→ g−1h, is smooth. For this, we observe that
the map ν : H × H → G, (g, h) *→ i(g)−1i(h) is smooth, being the
composition of smooth maps, so that we have a commutative diagram

H ×H ν !!

ν̂ ""❍
❍❍

❍❍
❍❍

❍❍
G

H

i

##

Since the leaves of any foliation are regularly immersed submanifolds
(Proposition 9.1), we conclude that ν̂ : H ×H → H is smooth.

Uniqueness follows from Proposition 15.1 (exercise!).

The question of deciding if every finite-dimensional Lie algebra
g is associated with some Lie group G is a much harder question
which is beyond the scope of these lecture notes. There are several
ways to prove that this is indeed true. For example, one can construct
an integration G explicitly (see, e.g., Duistermaat and Kolk, 2000)
or one can develop the structure theory of Lie algebras and show
that any finite-dimensional Lie algebra is isomorphic to a matrix Lie
algebra (see, e.g., Varadarajan, 1984), obtaining the following result.

Theorem 15.2 (Ado). Let g be a finite-dimensional Lie algebra.
There exists an integer n and an injective Lie algebra homomorphism
φ : g→ gl(n).

Since gl(n) is the Lie algebra of GL(n), as a corollary of Ado’s
Theorem and Theorem 15.1 it follows that.

Theorem 15.3. For any finite-dimensional Lie algebra g, there
exists a Lie group G with Lie algebra isomorphic to g.

The previous theorem gives a matrix group integrating any finite-
dimensional Lie algebra. However, we will see later an example of a
connected Lie group which is not isomorphic to a matrix group.

We already saw that there can be several non-isomorphic, con-
nected, Lie groups integrating the same Lie algebra. In order to clar-
ify the issue of multiple (connected) Lie groups integrating the same
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Lie algebra, recall that if π : N → M is a covering of a manifold
M , then there is a unique di!erentiable structure on N for which
the covering map is a local di!eomorphism. In particular, if M is
connected then the universal covering space of M , which is char-
acterized as the 1-connected (i.e., connected and simply connected)
covering of M , has a natural smooth structure. For Lie groups, this
leads to the following result.

Proposition 15.2. Given a connected Lie group G its universal cov-
ering space G̃ has a unique Lie group structure for which the covering
map π : G̃ → G is a Lie group homomorphism. Moreover, the Lie
algebras of G and G̃ are isomorphic and ker π ⊂ G̃ is a discrete,
normal, subgroup of the center of G̃. In particular, π1(G) + kerπ is
abelian.

Proof. Recall that one can identify the universal covering space of
G explicitly as

G̃ := {[γ] | γ : [0, 1]→ G, γ(0) = e}, π : G̃→ G, [γ] *→ γ(1),

where [γ] denotes the homotopy class of the path γ relative to end
points. One can define a group structure in G̃ as follows:

(i) The product [γ][η] in G̃ is the homotopy class of the path
t *→ γ(t)η(t).

(ii) The identity ẽ ∈ G̃ is the homotopy class of the constant path
based at the identity γ(t) = e.

(iii) The inverse map i : G̃ → G̃ associated to an element [γ] is the
homotopy class of the path t *→ γ(t)−1.

With these choices, the covering map π : G̃ → G is a group homo-
morphism.

Now, consider on G̃ the unique smooth structure for which the
covering map is a local di!eomorphism. To check that G̃ is a Lie
group, observe that the map ν̃ : G̃ × G̃ → G̃, (g, h) → g−1h, is
smooth since it fits into the commutative diagram

G̃× G̃ ν̃ !!

π×π
$$

G̃

π
$$

G×G ν
!! G
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where the vertical arrows are local di!eomorphisms and ν is di!er-
entiable. Since π : G̃ → G is a local di!eomorphism it induces an
isomorphism between the Lie algebras of G̃ and G.

Uniqueness follows, because the condition that π : G̃→ G induces
an isomorphism between the Lie algebras of G̃ and G implies that
π is a local di!eomorphism, so both the smooth structure and the
group structure are uniquely determined.

We leave as an exercise the remaining statements in the theorem.

Example 15.1. The special unitary group SU(2) is formed by the
matrices:

SU(2) =

{(
a b
−b̄ ā

)
: a, b ∈ C, |a|2 + |b|2 = 1

}
.

Therefore SU(2) is isomorphic as a manifold to S3, hence it is
1-connected. In fact, by an exercise in the previous lecture, SU(2) is
isomorphic, as a Lie group, to the group S3 consisting of the quater-
nions of length 1.

The Lie algebra of SU(2) consists of the skew-Hermitian matrices
of trace zero:

su(2) =

{(
iα β
−β̄ −iα

)
: α ∈ R,β ∈ C

}
.

Setting x = α√
2
, y = Reβ√

2
, z = Im β√

2
, we obtain identifications

(
iα β
−β̄ −iα

)
←→ (x, y, z),

giving a Lie algebra isomorphism su(2) + R3, where on R3 the Lie
bracket is given by the vector product. We make use of this identi-
fication and consider the standard Euclidean inner product on R3.
Then, by Example 14.1 (4), for each g ∈ SU(2) we have a linear
transformation Adg : R3 → R3. This satisfies (exercise):

(a) For each g ∈ SU(2), Adg preserves the inner product and the
usual orientation, hence determines an element in SO(3).

(b) Ad : SU(2)→ SO(3), g *→ Adg, is a surjective group homomor-
phism with kernel the group Z2 = {±I}.
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It follows that Ad : SU(2)→ SO(3) is a covering map (see Exercise
15.1). Since SU(2) + S3 is 1-connected, we conclude that SU(2) is
the universal covering space of SO(3). The covering map identifies
the antipodal points in the sphere, so we can identify SO(3) with the
real projective space RP3 and π1(SO(3)) = Z2.

Considering now the question of integrating homomorphisms of
Lie algebras to homomorphisms of Lie groups, one notices again that
there are topological obstructions. For example, the identity Id : R→
R is a Lie algebra isomorphism between the Lie algebras of S1 and
(R,+). However, the only Lie group homomorphism Φ : S1 → R is
the trivial one because the image Φ(S1) is a compact subgroup of
(R,+), and {0} is the only such subgroup. Therefore, there is no Lie
group homomorphism Φ : S1 → R with Φ∗ = Id. The problem in this
example is that S1 is not simply connected.

Theorem 15.4. Let G and H be Lie groups with Lie algebras g
and h. If G is 1-connected then for every Lie algebra homomorphism
φ : g→ h, there exists a unique Lie group homomorphism Φ : G→ H
such that Φ∗ = φ.

Proof. Let k = {(X,φ(X)) : X ∈ g} ⊂ g × h be the graph of φ.
Since φ is a Lie algebra homomorphism, k is a Lie subalgebra of g×h.
Hence, there exists a unique connected Lie subgroup K ⊂ G × H
with Lie algebra k. Let us consider the restriction to K of the pro-
jections on each factor as in the diagram

K ⊂ G×H
π1

%%""
""
""
""
""
"

π2

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

G H

The restriction of the first projection π1|K : K → G gives a Lie
group homomorphism such that

(π1)∗(X,φ(X)) = X.

Hence, the map (π1|K)∗ : k → g is a Lie algebra isomorphism and
it follows that π1|K : K → G is a covering map (see Exercise 15.1).



July 17, 2024 18:10 Lectures on Differential Geometry 9in x 6in b5406-ch15 FA3 page 149

Integrations of Lie Algebras 149

Since G is 1-connected, we conclude that π1|K is a Lie isomorphism.
Then, the composition

Φ = π2 ◦ (π1|K)−1 : G→ H

is a Lie group homomorphism and we have that

(Φ)∗(X) = (π2)∗ ◦ (π1|K)−1
∗ (X) = (π2)∗(X,φ(X)) = φ(X).

We leave the proof of uniqueness as an exercise.

We summarize the previous results in the following statements,
sometimes known as Lie’s theorems.

Theorem 15.5 (Lie I). If G is a connected Lie group with Lie
algebra g, there is a unique (up to isomorphism) 1-connected Lie
group G̃ with Lie algebra g and a surjective Lie group morphism
Φ : G̃→ G.

Theorem 15.6 (Lie II). Let G and H be two Lie groups, with Lie
algebras denoted g and h, respectively. If G is 1-connected, then a
Lie algebra morphism φ : g → h integrates to a unique Lie group
morphism Φ : G→ H.

Theorem 15.7 (Lie III). Any finite-dimensional Lie algebra g is
integrable to a Lie group.

Note also that, given a finite-dimensional Lie algebra g, one can
obtain any connected Lie group G integrating it (up to isomorphism)
as follows:

(i) Construct the 1-connected Lie group G̃ integrating g.
(ii) Find a discrete normal subgroup N of the center of G̃.
(iii) G = G̃/N is a connected Lie group integrating g.

If one drops the condition of G being connected this problem is not
solvable since it would include as a special case the classification of
all finite groups, a problem which is well-known not to have any
reasonable solution.

As we observed before, Ado’s Theorem does not prevent the exis-
tence of Lie groups which are not isomorphic to any group of matri-
ces. As an application of the integration of morphisms, we give one
such example.
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Example 15.2. Consider the special linear group

SL(2) =

{(
a b
c d

)
: ad− bc = 1

}
.

To exhibit its topological structure, it is convenient to perform the
change of variables (a, b, c, d) *→ (p, q, r, s) defined by

a = p+ q, d = p− q, b = r + s, c = r − s.

Then

ad− bc = 1 ⇐⇒ p2 + s2 = q2 + r2 + 1.

Therefore, we can also describe SL(2) as

SL(2) = {(p, q, r, s) ∈ R4 : p2 + s2 = q2 + r2 + 1}.

This description shows that SL(2) is di!eomorphic to R2 × S1. In
particular,

π1(SL(2)) = π1(S1) = Z.

Let S̃L(2) be the universal covering group of SL(2). We claim

that S̃L(2) is not isomorphic to any group of matrices. Although
SL(2) is not 1-connected, by Exercise 15.5 one has:

• Given any Lie algebra morphism φ : sl(2) → gl(n), there exists a
unique Lie group morphism Φ : SL(2)→ GL(n) such that Φ∗ = φ.

We prove the claim by contradiction. Assume that for some n there
exists an injective Lie group homomorphism

Φ̃ : S̃L(2)→ GL(n).

Then Φ̃ induces a morphism φ := (Φ̃)∗ : sl(2)→ gl(n), so there exists
a unique Lie group homomorphism Φ : SL(2) → GL(n) such that
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Φ∗ = φ. By uniqueness in Lie II, we obtain a commutative diagram

S̃L(2) Φ̃ !!

π

$$

GL(n)

SL(2)

Φ

''✈✈✈✈✈✈✈✈✈

In this diagram, the morphism π is not injective, while the morphism
Φ̃ is injective, which is a contradiction.

Exercises

Exercise 15.1

Let Φ : G → H be a Lie group homomorphism between connected
Lie groups G and H such that (Φ)∗ : g→ h is an isomorphism. Show
that Φ is a covering map.

Exercise 15.2

Complete the proof of Theorem 15.1 by showing that the integrating
Lie subgroup is unique.

Exercise 15.3

Let G be a Lie group and let π : H → G be a covering map. Show
that H is a Lie group.

Exercise 15.4

Let SL(2,C) be the group of complex 2 × 2 matrices with determi-
nant 1. Show that SL(2,C) is 1-connected.
Hint : Show that a matrix in SL(2,C) can be written uniquely as
a product AB, where A ∈ SU(2) and B is upper triangular with
determinant 1.

Exercise 15.5

Show that any homomorphism of Lie algebras φ : sl(2) → gl(n)
integrates to a unique homomorphism of Lie groups Φ : SL(2) →
GL(n).
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Hint : Consider the complexification φc : sl(2,C)→ gl(n,C) of φ and
use the previous exercise.

Exercise 15.6

Let G be a connected Lie group and let D ⊂ G be a discrete normal
subgroup. Show that D is contained in the center of G, so in partic-
ular it must be abelian. Conclude that any connected Lie group has
abelian fundamental group.

Exercise 15.7

Find all (up to isomorphism) connected Lie groups integrating the
abelian Lie algebra g = Rd.

Exercise 15.8

Find all (up to isomorphism) connected Lie groups integrating the
Lie algebra so(3).
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The Exponential Map

We will now construct the exponential map for Lie groups/algebras,
which generalizes the exponential of matrices. So let G be a Lie group
with Lie algebra g. Given a left-invariant vector field X ∈ g, the map

φX : R→ g, t #→ tX,

is a Lie algebra homomorphism. Since R is 1-connected it follows
from Lie II that there exists a unique Lie group homomorphism !X :
R→ G such that (!X)∗ = φX . Noting that !X(0) = e and

!X(t+ s) = !X(t)!X(s) = LΦX(t)!X(s),

we find

d

dt
!X(t) =

d

ds
!X(t+ s)

∣∣∣∣
s=0

= deLΦX(t) ·
d

ds
!X(s)

∣∣∣∣
s=0

= deLΦX(t) ·Xe = XΦX(t).

This means that t #→ !X(t) is actually the integral curve of X
through e ∈ G.

Definition 16.1. The exponential map exp : g→ G is the map

exp(X) := !X(1) = φ1X(e).

153
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The proof of the following proposition listing basic properties of
the exponential map is left as an exercise.

Proposition 16.1. The exponential map exp : g→ G satisfies:

(i) exp((t+ s)X) = exp(sX) exp(tX);
(ii) exp(−tX) = [exp(tX)]−1;
(iii) exp is a smooth map and d0 exp = Id;
(iv) For any Lie group homomorphism ! : G → H, the following

diagram commutes

G Φ !! H

g

exp

""

Φ∗
!! h

exp

""

Property (iii) implies that the exponential is a diffeomorphism
from a neighborhood of 0 ∈ g to a neighborhood of e ∈ G. In general,
the exponential exp : g→ G is neither surjective, nor injective. Also,
it may fail to be a local diffeomorphism at other points of G. There
are however examples of Lie groups/algebras in which some of these
properties do hold (see the exercises in this lecture).

Example 16.1. Recall that the Lie algebra of G = GL(n) is g =
gl(n). Given a matrix A = (aij) ∈ gl(n) the corresponding left-
invariant vector field in GL(n) is

XA =
∑

ijk

xikakj
∂

∂xij
.

Hence, the integral curves of this vector field are the solutions of the
system of ode’s

ẋij =
n∑

k=1

xikakj, (i, j = 1, . . . , n).

The solutions are

xij(t) =
n∑

k=1

xik(0)(e
tA)kj,
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where the matrix exponential is defined as usual by the series

eA :=
+∞∑

k=0

An

n!
.

We conclude that the exponential map exp : gl(n)→ GL(n) coincides
with the usual matrix exponential.

By item (iv) in Proposition 16.1, it follows from the previous
example that if h ⊂ gl(n) is a Lie subalgebra and H ⊂ GL(n) is
the associated connected Lie subgroup, then the exponential map
exp : h→ H also coincides with the matrix exponential.

The exponential map is very useful in the study of Lie groups
and Lie algebras since it provides a direct link between the Lie alge-
bra (the infinitesimal object) and the Lie group (the global object).
For example, we have the following result whose proof is left as an
exercise:

Proposition 16.2. Let H be a subgroup of a Lie group G and let
h ⊂ g be a subspace of the Lie algebra of G. If U ⊂ g is a neighborhood
of 0 which is diffeomorphic via the exponential map to a neighborhood
V ⊂ G of e, and

exp(h ∩ U) = H ∩ V,

then, for the relative topology, H is a Lie subgroup of G with Lie
algebra h.

Using this proposition, one can then prove the following important
result.

Theorem 16.1. Let G be a Lie group and H ⊂ G a closed subgroup.
Then H, with the relative topology, is a Lie subgroup.

Sketch of the proof. The idea of the proof is the consider the set

h := {X ∈ g : exp(tX) ∈ H,∀t ∈ R}

and apply the previous proposition.
Clearly, the set h is closed under multiplication by scalars. On the

other hand, if X,Y ∈ g one shows that

lim
n→+∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n

= exp(t(X + Y )),
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and then it follows that h is also closed under addition since H is a
closed subset. Hence, h is a linear subspace.

Finally, arguing by contradiction using again that H is closed
in G, one shows that there exists neighborhoods U ⊂ g of 0 and
V ⊂ G of e, such that exp : U → V is a diffeomorphism and:

exp(h ∩ U) = H ∩ V.

The details of this proof can be found, e.g., in Warner (1983).

The previous results allow one to check quickly if subgroups of
GL(n) are Lie subgroups and to determine their Lie algebras.

Example 16.2. Consider the subgroup SL(n) ⊂ GL(n). It is a
closed subgroup, so by Theorem 16.1 it is a Lie subgroup. To find its
Lie algebra, one observes first that the set sl(n) of matrices of trace
zero is a subspace of gl(n) and second that we have the well-known
formula

det(eX) = etrX .

Hence, we see that exp(X) ∈ SL(n) if and only if trX = 0. By Propo-
sition 16.2, we conclude that the Lie algebra of SL(n) is sl(n).

Using the same method, it should be now easy to check that the
Lie algebras of the matrix groups SO(n), SU(n) and U(n) are so(n),
su(n) and u(n), respectively.

We will not get into a deeper study of the theory of Lie groups and
Lie algebras. We refer the reader to standard textbooks in the subject
such as Helgason (2001), Humphreys (1978), Samelson (1990), Serre
(2006), and Varadarajan (1984).

Exercises

Exercise 16.1

Verify the properties of the exponential map given in Proposi-
tion 16.1.

Exercise 16.2

Show that the exponential map exp : gl(2)→ GL(2) is not surjective.
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Exercise 16.3

Let N ⊂ GL(n) be the subgroup formed by all upper triangular
matrices with diagonal elements all equal to 1. Show that N is a Lie
subgroup, find its Lie algebra n and prove that the exponential map
exp : n→ N is a bijection.

Exercise 16.4

Let G be a compact Lie group. Show that exp : g→ G is surjective.

Hint : Use the fact, to be proved later, that any compact Lie group
has a bi-invariant metric, i.e., a metric invariant under both right
and left translations.

Exercise 16.5

Let G and H be Lie groups. Show that

(a) Every continuous homomorphism ! : R→ G is smooth.
(b) Every continuous homomorphism ! : G→ H is smooth.
(c) If G and H are isomorphic as topological groups, then G and H

are isomorphic as Lie groups.

Exercise 16.6

Let G be a Lie group with Lie algebra g and let H ⊂ G be a Lie
subgroup with Lie algebra h ⊂ g. Show that X ∈ g belongs to h if
and only if exp(tX) ∈ H for all t ∈ R.

Exercise 16.7

Prove Proposition 16.2.

Hint : Show that H has a smooth structure compatible with the rel-
ative topology making (H, i) a submanifold of G, by considering the
charts:

{(H ∩ hV, exp−1 ◦Lh) : h ∈ H}.

Then check that multiplication in H is smooth and use the previous
exercise to complete the proof.
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Lecture 17

Groups of Transformations

Let G be a group. Recall from Lecture 10 that we denote an action
of G on a set M by a map Ψ : G ×M → M , which we write as
(g, p) #→ g · p and satisfies:

(i) e · p = p, for all p ∈M ;
(ii) g · (h · p) = (gh) · p, for all g, h ∈ G and p ∈M .

An action can also be viewed as a group homomorphism from G to
the group of bijections of M . For each g ∈ G, we denote by Ψg the
bijection

Ψg : M →M, p #→ g · p

When G is a Lie group, M is a smooth manifold and the map Ψ :
G ×M → M is smooth, we say that we have a smooth action.
In this case, each Ψg : M → M is a diffeomorphism of M , so one
also says that G is a group of transformations of M . For such
a smooth action, the isotropy subgroup at p ∈ M is the closed
subgroup

Gp := {g ∈ G : g · p = p} ⊂ G,

hence it is an embedded Lie subgroup of G – see Theorem 16.1.
The results in Lecture 10 concerning smooth structures on orbits

spaces of discrete group actions extend to arbitrary smooth actions
of Lie groups. First, we call a smooth action Ψ : G ×M → M a

159
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proper action if the map

G×M →M ×M, (g, p) #→ (p, g · p),

is proper. Here are a few examples.

Example 17.1.

(1) The action by translations of a Lie group G on itself, G×G→ G,
(g, h) #→ gh, is always proper.

(2) Smooth actions of compact Lie groups are always proper. Also,
for a proper action G × M → M the isotropy groups Gp are
all compact (why?). So, for example, the action of O(n) on Rn

by matrix multiplication is proper (since O(n) is compact), while
the action of SL(n) on Rn by matrix multiplication is not proper
(since the isotropy group of 0 is SL(n) which is not compact).

(3) Given a smooth proper action G ×M → M and a closed sub-
group H ⊂ G, the restricted action H×M →M is still a smooth
proper action. For example, restricting the action by translations
of (Rn,+) on itself, we obtain the smooth proper action of (R,+)
on Rn given by

t · (x1, . . . , xn) := (x1 + t, x2, . . . , xn).

Next, recall that an action is free if the isotropy groups Gp are
all trivial. We leave as an exercise to check that for free actions the
orbits are copies of G.

Lemma 17.1. Given a smooth free action G×M →M and p ∈M
the map

Ψp : G→M, g #→ g · p

is an injective immersion. In particular, its orbits are submanifolds
of M diffeomorphic to G.

In general, the orbits are not embedded submanifolds: for exam-
ple, the irrational lines on the torus T2 are the orbits of a free,
smooth, action of (R,+). We will see later that the orbits of any
action are immersed submanifolds.

For proper actions, the geometry of the orbits is much nicer.
In particular, proper actions which are free have smooth orbit spaces.
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Theorem 17.1. Let Ψ : G ×M → M be a smooth action of a Lie
group G on a manifold M . If the action is free and proper, then G\M
has a unique smooth structure, compatible with the quotient topology,
such that π : M → G\M is a submersion, and

dimG\M = dimM − dimG.

In particular, the orbits of a smooth, proper, and free action of G are
embedded submanifolds diffeomorphic to G.

Proof. We apply Theorem 10.1 to the orbit equivalence relation
defined by the action. This means that we need to verify that its
graph:

R = {(p, g · p) : p ∈M,g ∈ G} ⊂M ×M,

is a proper submanifold and that the restriction of the projection
p1|R : R→M is a submersion.

Consider the map

Φ : G×M →M ×M, (g, p) #→ (p, g · p),

whose image is precisely R. Since the action is assumed to be free, Φ
is injective. On the other hand, its differential d(g,p)Φ : TgG× TpM →
TpM × Tg·pM is the map

(v,w) #→ (w,dΨp · v + dΨg ·w).

Since this map is injective, we conclude that Φ is an injective immer-
sion with image R. By assumption, Φ is proper so R is a proper
submanifold of M ×M .

To verify that p1|R : R→M is a submersion, it is enough to show
that the composition p1 ◦Φ : G×M →M is a submersion. But this
composition is just the projection (g, p) #→ p, which is obviously a
submersion.

Example 17.2. Consider the action of S1 = {w ∈ C : |w| = 1} on
the 3-sphere S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}, defined by

w · (z1, z2) = (wz1, wz2).

This action is free and proper. Hence, the orbits of this action are
embedded submanifolds of S3 diffeomorphic to S1. The orbit space
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S1\S3 is a smooth manifold. We will see later that this manifold is
diffeomorphic to S2.

Let G be a Lie group and consider the action of G on itself by left
translations

G×G→ G, (g, h) #→ gh.

This action is free and proper. If H ⊂ G is a closed subgroup, then
H is a Lie subgroup and the action of H on G, by left translation
is also free and proper. The orbit space for this action consist of the
right cosets

H\G = {Hg : g ∈ G}.

From Theorem 17.1, we conclude that

Corollary 17.1. Let G be a Lie group and let H ⊂ G be a closed
subgroup. Then H\G has a unique smooth structure, compatible with
the quotient topology, such that π : G → H\G is a submersion. In
particular,

dimH\G = dimG− dimH.

Remark 17.1. So far we have considered left actions. One can also
consider right actions M×G→M , (m, g)→ m ·g, with axioms (i)
and (ii) replaced by

(i) p · e = p, for all p ∈M ;
(ii) (p · h) · g = p · (hg), for all g, h ∈ G and p ∈M .

Given a left action (g,m) #→ g·m one obtains a right action by setting
m ·g := g−1 ·m, and conversely. Hence, every result about left actions
yields a result about right actions, and conversely. For example, if G
is a Lie group and H ⊂ G is a closed subgroup, the right action of H
on G by right translations is free and proper. Hence, the set of left
cosets

G/H = {gH : g ∈ G},

also has a natural smooth structure.

Given two G-actions, G × M → M and G × N → N , a
G-equivariant map is a map Φ : M → N such that

Φ(g · p) = g · Φ(p), ∀g ∈ G, p ∈M.
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We say that two G-actions are equivalent if there exists a
G-equivariant bijection between them. For example, given any action
Ψ : G×M →M and fixing p ∈M , the map

Ψp : G→M, g #→ g · p,

induces a bijection Ψ̄p : G/Gp → Op, where Op ⊂ M is the orbit
through p. Note that G acts on the set of right cosets by left trans-
lations

G×G/Gp → G/Gp, (h, gGp) #→ (hg)Gp.

The map Ψ̄p : G/Gp → Op is a G-equivariant bijection.
For a smooth action Ψ : G ×M → M , the results above with

H = Gp show that G/Gp has a smooth structure and that the map

Ψ̄p : G/Gp →M, gGp #→ g · p,

is an injective immersion with image the orbit through p.

Theorem 17.2. Let Ψ : G ×M → M be a smooth action of a Lie
group G on a manifold M . The orbits of the action are regularly
immersed submanifolds of M . Moreover, for every p ∈M, the map

Ψ̄p : G/Gp →M, gGp #→ g · p,

is a G-equivariant diffeomorphism between G/Gp and the orbit Op.

Proof. Since Gp is a closed subgroup, by Corollary 17.1, the space
G/Gp has a smooth structure. The map

Ψ̄p : G/Gp →M, gGp #→ g · p,

is an injective immersion whose image is the orbit through p. This
makes the orbit an immersed submanifold and we leave it as an
exercise to show that it is regularly immersed.

This smooth structure on the orbit does not depend on the choice
of M since two points p, q ∈M which belong to the same orbit have
conjugate isotropy groups:

q = g · p =⇒ Gq = gGpg
−1.
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It follows that Φ : G/Gp → G/Gq, hGp #→ ghg−1Gq, is a
G-equivariant diffeomorphism which makes the following diagram
commute

G/Gp
Ψ̄p !!

Φ
""

M

Ψg

""
G/Gq

Ψ̄q !! M

Since Ψg : M →M , m #→ g ·m, is a diffeomorphism, the two immer-
sions give equivalent smooth structures on the orbit.

A transitive action Ψ : G×M →M is an action with only one
orbit. This means that for any pair of points p, q ∈ M , there exists
g ∈ G such that q = g · p. In this case, fixing any point p ∈ M ,
we obtain an equivariant bijection G/Gp → M . When the action
is smooth, this gives an equivariant diffeomorphism between M and
the quotient G/Gp. In this case, one also calls M a homogeneous
space.

The homogeneous G-spaces are just the manifolds of the form
G/H where H ⊂ G is a closed subgroup. For a homogenous space
G/H we have the natural G-action, induced from the action of G on
itself by left translations. Homogenous spaces are particularly nice
examples of manifolds. A manifold can be a homogeneous G-space
for different choices of Lie groups, as illustrated in the following
examples.

Example 17.3. Let S3 be the unit quarternions. Identifying R3 with
the purely imaginary quaternions, we obtain an action of S3 on R3:

q · v = qvq−1.

It is easy to see that the orbits of this action are the spheres of
radius r and the origin. Let us restrict the action to S2, the sphere
of radius 1. An easy computation shows that the isotropy group of
p = (1, 0, 0) is the subgroup S1 = (S3)p ⊂ S3 formed by quaternions of
the form q0+iq1+0j+0k. It follows that the sphere is a homogeneous
space

S2 * S3/S1.
The surjective submersion π : S3 → S2, q #→ q · (1, 0, 0), whose fibers
are diffeomorphic to S1, is known as the Hopf fibration.
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Example 17.4. Let O(3) × R3 → R3 be the standard action by
matrix multiplication:

(A,"v) #→ A"v.

The orbits of this action are also the spheres the spheres of radius r
and the origin. Again, we consider the sphere S2 of radius 1 and we
let pN = (0, 0, 1) ∈ S2 be the north pole. The isotropy group at pN is

O(3)pN =

{(
A 0
0 1

)
: A ∈ O(2)

}
.

It follows that the map

O(3)/O(2) → S2, AO(3) #→ A · pN ,

is a diffeomorphism.
An entirely similar reasoning shows that S2 is also diffeomorphic

to the homogeneous space SO(3)/SO(2). We leave as an exercise to
check that this generalizes to higher dimensional spheres, so that

Sd * O(d+ 1)/O(d) * SO(d+ 1)/SO(d).

Example 17.5. Let Gk(Rd) denote that set of all linear subspaces
of Rd of dimension k. The usual action of the orthogonal group O(d)
on Rd by matrix multiplication induces an action O(d)×Gk(Rd)→
Gk(Rd), where an invertible linear transformation takes a linear
subspace of dimension k to another one. It is easy to check that
given any two k-dimensional linear subspaces S1, S2 ⊂ Rd there
exists A ∈ O(d) mapping S1 onto S2. In other words, the action
O(d)×Gk(Rd)→ Gk(Rd) is transitive.

Then let S0 ∈ Gk(Rd) be the subspace Rk × {0} ⊂ Rd. The
corresponding isotropy group is

O(d)S0 =

{(
A 0
0 B

)
∈ O(d) : A ∈ O(k), B ∈ O(d− k)

}
,

so we have a bijection

O(d)/(O(k) ×O(d− k))→ Gk(Rd).

On Gk(Rd) we can consider the unique smooth structure for which
this bijection becomes a diffeomorphism. This gives Gk(Rd) the
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structure of a manifold of dimension k(d − k) = dimO(d) −
(dimO(k) + dimO(d − k)). One can show that this smooth struc-
ture is independent of the choice of base point S0. The manifold
Gk(Rd) is called the Grassmannian manifold of k-planes in Rd.

Since Lie groups have infinitesimal counterparts, it should come
as no surprise that Lie group actions also have an infinitesimal coun-
terpart. Let Ψ : G×M →M be a smooth action, which we can view
as a homomorphism

Ψ̂ : G→ Diff(M).

We think of Diff(M) as a Lie group with Lie algebra X(M), then
there should exist a homomorphism of Lie algebras

ψ = (Ψ̂)∗ : g→ X(M).

In fact, if X ∈ g and p ∈M the curve

t #→ exp(−tX) · p,

goes through p at t = 0, and it is defined and smooth for t ∈ R. We
can then define a vector field ψ(X) in M by

ψ(X)p :=
d

dt
exp(−tX) · p

∣∣∣∣
t=0

. (17.1)

The proof of the following lemma is left as an exercise.

Lemma 17.2. For each X ∈ g, the vector field ψ(X) is smooth. The
resulting map ψ : g→ X(M) is linear and satisfies

ψ([X,Y ]g) = [ψ(X),ψ(Y )], ∀X,Y ∈ g.

Remark 17.2. The appearance of a minus sign in formula (17.1) is
easy to explain. With our conventions, where the Lie algebra of a
Lie group is formed by the left-invariant vector fields, the Lie alge-
bra of the group of diffeomorphisms Diff(M) is formed by the vector
fields X(M) with a Lie bracket which is the symmetric of the usual
Lie bracket of vector fields. One can see this, for example, by deter-
mining the 1-parameter subgroups of the group of diffeomorphims.
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We could have defined the Lie bracket of vector fields with the oppo-
site sign, but this would lead to the presence of negative signs in
other formulas.

Also, given a right Lie group action M ×G → M , (p, g) #→ p · g,
we obtain a Lie algebra homomorphism ψ : g → X(M) by setting
now

ψ(X)p :=
d

dt
exp(tX) · p

∣∣∣∣
t=0

. (17.2)

The reason for the absence of a minus sign is discussed in the
exercises.

The lemma above suggests the following definition.

Definition 17.1. An infinitesimal action of a Lie algebra g on a
manifold M is a homomorphism of Lie algebras ψ : g→ X(M).

Example 17.6. The Lie algebra so(3) has a basis consisting of the
skew-symmetric matrices:

X =




0 0 0

0 0 −1
0 1 0



, Y =




0 0 1

0 0 0

−1 0 0



, Z =




0 −1 0

1 0 0

0 0 0



.

In this basis, we have the following Lie bracket relations:

[X,Y ] = Z, [Y,Z] = X, [Z,X] = Y.

For the usual action of SO(3) on R3 by rotations, we can com-
pute the infinitesimal action as follows. First, we compute the
exponential

exp(tX) =




1 0 0

0 cos t − sin t

0 sin t cos t



.

Then,

ψ(X)(x,y,z) =
d

dt
exp(−tX) · (x, y, z)

∣∣∣∣
t=0

= z
∂

∂y
− y

∂

∂z
.
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Similarly, we compute:

ψ(Y ) = x
∂

∂z
− z

∂

∂x
, ψ(Z) = y

∂

∂x
− x

∂

∂y
.

The vector fields {ψ(X),ψ(Y ),ψ(Z)} are called the infinitesimal
generators of the action. Using that ψ is a homomorphism of Lie
algebras, one recovers the Lie brackets of Example 12.1.

A smooth action Ψ : G×M →M induces an infinitesimal action
ψ : g → X(M). The converse does not necessarily hold, as shown in
the next example.

Example 17.7. Any non-zero vector field X on a manifold M deter-
mines an infinitesimal action of the Lie algebra g = R onM by setting

ψ : R→ X(M), λ #→ λX.

This infinitesimal action integrates to a Lie group action of (R,+) on
M if and only if the vector field X is complete. Namely, the action
is given by the flow of the vector field, i.e.,

Ψ : R×M →M, (t, x) #→ φtX(x).

The Lie group S1 also has Lie algebra R but, even if the vector field
X is complete, there may not exist an action Ψ : S1 ×M →M with
Ψ∗ = ψ, since the flow may not be periodic.

In order to integrate an infinitesimal Lie algebra action to a Lie
group action there are two issues one needs to take care of. First, if an
action ψ : g→ X(M) is induced from a Lie group action G×M →M
then the infinitesimal generators ψ(X) ∈ X(M) are all complete vec-
tor fields. Second, as suggested by Lie’s second theorem, one should
require G to be 1-connected. A proof that these two conditions are
sufficient can be found in Lee (2013, Theorem 20.16).

Theorem 17.3. Let ψ : g→ X(M) be a Lie algebra action such that
ψ(X) is complete, for all X ∈ g. Then there exists a smooth action
Ψ : G→ Diff(M) with Ψ∗ = ψ, where G is the 1-connected Lie group
with Lie algebra g.

Corollary 17.2. If M is a compact manifold and G is a 1-connected
Lie group with Lie algebra g, then every infinitesimal Lie algebra
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action Ψ : g → X(M) integrates to a smooth Lie group action Ψ :
G×M →M .

Example 17.8. A representation of a Lie group G in a vector
space V is a Lie group homomorphism Ψ̂ : G → GL(V ). A rep-
resentation of a Lie algebra g is a Lie algebra homomorphism
ρ : g→ gl(V ).

Note that GL(V ) ⊂ Diff(V ), so representation of a Lie group G
is the same as a smooth linear Lie group action, i.e., an action
Ψ : G× V → V where each Ψg is linear.

On the other hand, one calls a vector field X on a vector space
V a linear vector field if for any linear function l ∈ V ∗, the func-
tion X(l) is a also linear. A linear vector field X ∈ Xlin(V ) deter-
mines a linear map X : V ∗ → V ∗, and its transpose is an element
−X∗ ∈ gl(V ). The converse also holds, so we have a 1:1 correspon-
dence associating to a linear map T : V → V a linear vector field
XT ∈ X(V ) such that

XT (l) = −l ◦ T,

for any linear function l : V → R. The minus sign guarantees that

[XT1 ,XT2 ] = X[T1,T2],

so one has an injective Lie algebra morphism gl(V ) ↪→ X(V ), T #→
XT , whose image is the subalgebra Xlin(V ) of linear vector fields.
Hence, a representation of a Lie algebra ρ : g→ gl(V ) is the same as
a linear Lie algebra action ψ : g→ Xlin(V ).

Since linear vector fields are always complete, we conclude from
Theorem 17.3 that for a 1-connected Lie group there is a 1:1 cor-
respondence between representations of G and representations of its
Lie algebra g.

Exercises

Exercise 17.1

Show that the orbits of a smooth action are regularly immersed sub-
manifolds.



June 29, 2024 15:36 Lectures on Differential Geometry 9in x 6in b5406-ch17 FA2 page 170

170 Lectures on Differential Geometry

Exercise 17.2

Let Ψ : G×M →M be a proper and free smooth action and denote
by B = G\M its orbit space. Show that the projection π : M → B
is locally trivial, i.e., for any b ∈ B there exists a neighborhood
b ∈ U ⊂ B and diffeomorphism

σ : π−1(U)→ G× U, q #→ (χ(q),π(q)),

such that

σ(g · q) = (gχ(q),π(q)), ∀q ∈ π−1(U), g ∈ G.

Exercise 17.3

Let G be a connected Lie group and H ⊂ G a closed connected
subgroup with Lie algebra h ⊂ g. Show the following:

(a) H is a normal subgroup of G if and only if h is an ideal of g,
i.e.,

∀X ∈ g, Y ∈ h, [X,Y ] ∈ h.

(b) If H is normal in G, then G/H is a Lie group and π : G→ G/H
is a Lie group homomorphism.

Exercise 17.4

Let G be a Lie group and let H ⊂ G be a closed subgroup. Show
that ifG/H andH are both connected then G is connected. Conclude
from this that the groups SO(d), SU(d), and U(d) are all connected.
Show that O(d) and GL(d) have two connected components.

Exercise 17.5

Let Ψ : G × M → M be a smooth transitive action with M con-
nected. Show the following:

(a) The connected component of the identity G0 also acts transitively
on M .

(b) For all p ∈M , G/G0 is diffeomorphic to Gp/(Gp ∩G0).
(c) If Gp is connected for some p ∈M , then G is connected.

Exercise 17.6

For a Lie group G one defines the adjoint representation

Ad : G→ GL(g), g #→ Adg := deig,
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where ig : G → G, h #→ ghg−1 denotes conjugation by g. Show that
the induced Lie algebra representation is

ad : g→ gl(g), adX(Y ) = [X,Y ].

Exercise 17.7

Find the orbits and the isotropy groups for the adjoint representa-
tions of the 3-dimensional Lie groups SL(2), SO(3), and SU(2).

Exercise 17.8

Show that the real and complex projective spaces can be exhibited
as homogenous spaces

RPd * SO(d+ 1)/O(d), CPd * SU(d+ 1)/U(d).

Exercise 17.9

For a vector space V of dimension d denote by Sk(V ) the set of all
k-frames of V :

Sk(V ) = {(v1, . . . ,vk) ∈ V

× . . .× V : v1, . . . ,vk are linearly independent}.

Show that Sk(V ) is a homogenous space of dimension dk. Sk(V ) is
called the Stiefel manifold of k-frames of V.

Hint : Fix a basis of V and consider the action GL(d) in V by matrix
multiplication.

Exercise 17.10

Give a proof of Lemma 17.2 and explain the appearance/absence of
signs in formulas (17.1) and (17.2).
Hint : If G is a Lie group with Lie algebra g, for each X ∈ g denoted
by X ∈ X(G) the right invariant vector field in G with Xe = X.
Show that

[X,Y ] = −[X,Y ], ∀X,Y ∈ g,

and express the infinitesimal action φ : g → X(M) in terms of right
invariant vector fields.

Exercise 17.11

Let Ψ : G×M →M be a smooth action with associated infinitesimal
action ψ : g→ X(M). If Gp is the isotropy group at p, show that its
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Lie algebra is the isotropy subalgebra:

gp = {X ∈ g : ψ(X)p = 0}.

Exercise 17.12

Let Ψ : G×M →M be a smooth action with associated infinitesimal
action ψ : g → X(M). We call p0 ∈ M a fixed point of the
action if:

g · p0 = p0,∀g ∈ G.

Show that if p0 is a fixed point of the action then

(a) Ψ induces a representation Ψp0 : G→ GL(Tp0M);
(b) ψ induces a representation ψp0 : g→ gl(Tp0M);
(c) The group representation Ψp0 integrates the Lie algebra repre-

sentation ψp0 .
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Lecture 18

Differential Forms and Tensor Fields

For a finite-dimensional real vector space V, we denote the dual vector
space by

V ∗ := {α : α : V → R is a linear map}.

Its tensor algebra is

⊗
V ∗ =

+∞⊕

k=0

⊗kV ∗,

where ⊗kV ∗ is identified with the space of k-multilinear maps
V × · · · × V → R. It is furnished with the tensor product
⊗kV ∗ × ⊗lV ∗ → ⊗k+lV ∗ which to multilinear maps α ∈ ⊗kV ∗ and
β ∈ ⊗lV ∗ associates the multilinear map α⊗β ∈ ⊗k+lV ∗ defined by

α⊗ β(v1, . . . , vk+l) := α(v1, . . . , vk)β(vk+1, . . . , vk+l).

The exterior algebra of V is the quotient of the tensor algebra by
the two-sided ideal generated by all elements α ⊗ α, α ∈ V ∗. It is
furnished with the exterior product ∧ : ∧kV ∗ × ∧lV ∗ → ∧k+lV ∗.
It can also be viewed as the subspace (not a subalgebra!) of the tensor
algebra

∧
V ∗ =

d⊕

k=0

∧kV ∗ ⊂
⊗

V ∗,

where ∧kV ∗ consists of all alternating k-multilinear maps V × · · · ×
V → R. For example, if αi ∈ V ∗, then α1∧ · · ·∧αk is the alternating

175
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k-multilinear map

α1 ∧ · · · ∧ αk(v1, . . . ,vk) = det(αi(vj))
k
i,j=1.

If T : V → W is a linear transformation between two finite-
dimensional vector spaces, its transpose is the linear transformation
T ∗ : W ∗ → V ∗ defined by

(T ∗α)(v) := α(Tv).

More generally, there exists an induced linear map T ∗ : ∧kW ∗ →
∧kV ∗ defined by

(T ∗ω)(v1, . . . ,vk) := ω(Tv1, . . . , Tvk).

There is the restriction of a similarly defined map T ∗ : ⊗kW ∗ →
⊗kV ∗.

Let now M be a smooth manifold. If (x1, . . . , xd) are local coor-
dinates around p ∈M , we know that the tangent vectors

{
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xd

∣∣∣∣
p

}
,

yield a basis for TpM , while the di!erentials
{
dpx

1, . . . ,dpx
d
}
,

yield a dual basis for T ∗
pM . If we take tensor products and exterior

products of elements of these bases, we obtain bases for ⊗kTpM ,
∧kTpM , ⊗kT ∗

pM , ∧kT ∗
pM , etc. For example, the space ∧kT ∗

pM has
the basis

dpx
i1 ∧ · · · ∧ dpx

ik (i1 < · · · < ik).

As in the case of the tangent and cotangent spaces, we are inter-
ested in the spaces ⊗kTpM , ∧kTpM , ⊗kT ∗

pM , ∧kT ∗
pM , etc., when p

varies. For example, we define

∧kT ∗M :=
⋃

p∈M
∧kT ∗

pM.

and we have a projection π : ∧kT ∗M → M . We call ∧kT ∗M the
k-exterior bundle of M . We leave as an exercise to check that, just
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like the case of the tangent bundle, one has natural smooth structures
on this bundle.

Proposition 18.1. There exists a canonical smooth structure on
∧kT ∗M such that the canonical projection in M is a submersion.

One has also smooth structures on the bundles ∧kTM , ⊗kT ∗M ,
⊗kTM , ⊗kTM ⊗s T ∗M , etc. For any map π : E → M a section is
a map s : M → E such that π ◦ s = Id.

Definition 18.1. Let M be a manifold.

(i) A differential form of degree k is a section of π :
∧kT ∗M→M .

(ii) A multivector field of degree k is a section of π :
∧kTM→M .

(iii) A tensor field of degree (k, s) is a section of π : ⊗kTM ⊗s

T ∗M →M .

We will consider only smooth di!erential forms, smooth multi-
vector fields and smooth tensor fields, meaning that the correspond-
ing sections are smooth maps. Note that ∧kTM and ∧kT ∗M are
submanifolds of ⊗kTM ⊗s T ∗M , so a multivector field of degree k
and a di!erential form of degree k are examples of tensor fields of
degree (k, 0 and (0, k), respectively. Of course, there are tensor fields
of degree (k, 0 and (0, k) which are not alternating: for example, a
Riemannian structure (see Exercise 11.9) is a tensor field of degree
(0, 2) which is symmetric, rather than alternating.

If (U,φ) = (U, x1, . . . , xd) is a chart then a tensor field θ of degree
(k, s) takes the local expression:

θ|U =
∑

i1,...,ik,j1,...,js

θi1,...,ikj1,...,js

∂

∂xi1
⊗ · · ·⊗ ∂

∂xik
⊗ dxj1 ⊗ · · ·⊗ dxjk .

It should be clear that θ is smooth if and only if for any open cover
by charts the components θi1,...,ikj1,...,js

are smooth function in C∞(U).
On the other hand, a smooth k-di!erential form ω can be written

in a local chart as

ω|U =
∑

i1<···<ik

ωi1···ikdx
i1 ∧ · · ·∧dxik =

∑

i1···ik

1

k!
ωi1···ikdx

i1 ∧ · · ·∧dxik ,
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where the components ωi1···ik ∈ C∞(U) are alternating, i.e., for every
permutation σ ∈ Sk, one has

ωσ(i1)···σ(ik) = (−1)sgn σωi1···ik .

Similarly, a smooth k-multivector field π can be written in a local
chart as

π|U =
∑

i1<···<ik

πi1···ik
∂

∂xi1
∧· · ·∧ ∂

∂xik
=
∑

i1···ik

1

k!
πi1···ik

∂

∂xi1
∧· · ·∧ ∂

∂xik
,

where the components πi1···ik ∈ C∞(U) are alternating.
If (U,φ) = (U, x1, . . . , xd) and (V,ψ) = (V, y1, . . . , yd) are charts

with U∩V *= ∅, then on the intersection we have two local coordinate
expressions for a k-form ω:

ω|U∩V =
∑

i1<···<ik

ωi1···ikdx
i1∧· · ·∧dxik =

∑

j1<···<jk

ωj1···jkdy
j1∧· · ·∧dyjk .

Recalling the transformation formulas

∂

∂xi
=

d∑

j=1

∂yj

∂xi
∂

∂yi
, dxi =

d∑

j=1

∂xi

∂yj
dyj,

one sees that the components of the forms relative to the two charts
are related by

ωj1···jk(y) =
∑

i1<···<ik

ωi1···ik(φ ◦ ψ
−1(y))

∂(xi1 · · · xik)
∂(yj1 · · · yjk)

(y).

The symbol on the right side of this expression is an abbrevia-
tion for the minor consisting of the rows i1, . . . , ik and the columns
j1, . . . , jk of the Jacobian matrix of the change of coordinates φ◦ψ−1 :
ψ(U ∩ V )→ φ(U ∩ V ).

We leave it as an exercise to determine the formulas of transfor-
mation of variables for multivector fields and tensor fields.

Remark 18.1. One maybe intrigued with the relative positions of
the indices, as subscripts and superscripts, in the di!erent objects.
The convention that we follow is such that an index is only summed
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if it appears in a formula repeated both as a subscript and as a
superscript. With this convention, one can even omit the summation
sign from the formula, with the agreement that one sums over an
index whenever that index is repeated. This convention is called the
Einstein convention sum.

From now on we will concentrate on the study of di!erential forms.
Although other objects, such as multivector fields and tensor fields,
are also interesting, di!erential forms play a more fundamental role
because, as we will see later, they are the objects one can integrate
over a manifold.

We will denote the vector space of smooth di!erential forms of
degree k on a manifold M by Ωk(M). Given a di!erential form
ω ∈ Ωk(M) its value at a point ωp ∈ ∧kT ∗

pM can be seen as an
alternating, multilinear map

ωp : TpM × · · ·× TpM → R.

Hence, if X1, . . . ,Xk ∈ X(M) are smooth vector fields M we obtain
a smooth function ω(X1, . . . ,Xk) ∈ C∞(M):

p ,→ ωp(X1|p, . . . ,Xk|p).

Therefore, every di!erential form ω ∈ Ωk(M) can be seen as a map

ω : X(M)× · · · ×X(M)→ C∞(M).

This map is C∞(M)-multilinear and alternating. Conversely, every
C∞(M)-multilinear, alternating, map X(M)× · · ·×X(M)→ C∞(M)
defines a smooth di!erential form. This is usually the simplest way
to specify a smooth di!erential form.

We introduced now several basic algebraic operations with di!er-
ential forms.

Exterior Product of Differential Forms

The exterior (or wedge) product ∧ in the exterior algebra ∧T ∗
pM

induces an exterior (or wedge) product of di!erential forms

∧ : Ωk(M)× Ωs(M)→ Ωk+s(M), (ω ∧ η)p ≡ ωp ∧ ηp.
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We consider the space of all di!erential forms:

Ω(M) :=
d⊕

k=0

Ωk(M).

where we convention that Ω0(M) := C∞(M). If we let f ∧ ω := fω,
then the exterior product satisfies:

(i) (fω + gη) ∧ θ = fω ∧ θ + gη ∧ θ;
(ii) ω ∧ η = (−1)deg ω deg ηη ∧ ω;
(iii) (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ);
(iv) α1 ∧ · · · ∧ αk(X1, . . . ,Xk) = det [αi(Xj)]

k
i,j=1.

The first 3 properties say that Ω(M) is a Grassmann algebra over
the ring C∞(M). These 4 properties is all that we need to know to
compute exterior products in local coordinates.

Example 18.1. In R4, with coordinates (x, y, z, w), consider the dif-
ferential forms of degree 2:

ω = (x+ w2)dx ∧ dy + ezdx ∧ dw + cos xdy ∧ dz,

η = xdy ∧ dz − ezdz ∧ dw.

Then using only the first 3 properties above we find

ω ∧ η = −(x+ w2)ezdx ∧ dy ∧ dz ∧ dw + xezdx ∧ dw ∧ dy ∧ dz

= −w2ezdx ∧ dy ∧ dz ∧ dw.

Also, if we would like to compute, e.g., η on the vector fields
X = y ∂

∂z −
∂
∂y and Y = ez ∂

∂w we can use property (iv) to obtain

η(X,Y ) = xdy ∧ dz(X,Y )− ezdz ∧ dw(X,Y )

= x

∣∣∣∣
dy(X) dy(Y )

dz(X) dz(Y )

∣∣∣∣− ez
∣∣∣∣
dz(X) dz(Y )

dw(X) dw(Y )

∣∣∣∣

= x

∣∣∣∣
−1 0

y 0

∣∣∣∣− ez
∣∣∣∣
y 0

0 ez

∣∣∣∣ = −ye
2z
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Pull-Back of Differential Forms

Let Φ : M → N be a smooth map. For each p ∈M , the transpose of
the di!erential (dpΦ)∗ : T ∗

Φ(p)N → T ∗
pM , induces a linear map

(dpΦ)
∗ : ∧kT ∗

Φ(p)N → ∧
kT ∗

pM.

The pull-back of differential forms Φ∗ : Ωk(N) → Ωk(M) is
defined by

(Φ∗ω)(X1, . . . ,Xk)p = ((dpΦ)
∗ω)(X1|p, . . . ,Xk|p)

= ωΦ(p)(dpΦ ·X1|p, . . . ,dpΦ ·Xk|p).

The last expression shows that Φ∗ω is a C∞(M)-multilinear, alter-
nating, map X(M) × · · · × X(M) → C∞(M), hence it is a smooth
di!erential form in M .

It is easy to check that for any smooth map Φ : M → N , the
pull-back Φ∗ : Ω(N)→ Ω(M) satisfies:

(i) Φ∗(aω + bη) = aΦ∗ω + bΦ∗η, a, b ∈ R;
(ii) Φ∗(ω ∧ η) = Φ∗ω ∧ Φ∗η;
(iii) Φ∗(fω) = (f ◦Φ)Φ∗ω, f ∈ C∞(M);
(iv) Φ∗(df) = d(f ◦ Φ).

In the last property, for a smooth function f : N → R we view
df : TN → R as a di!erential form of degree 1. So (iv) is just the
chain rule. On the other hand, since f ◦ Φ = Φ∗f , property (iii) is a
special case of (ii). The first 2 properties say that Φ∗ : Ω(N)→ Ω(M)
is a homomorphism of Grassmann algebras. These properties is all
that it is needed to compute pull-backs in local coordinates.

Example 18.2. Let Φ : R2 → R4 be the smooth map

Φ(u, v) =

(
u+ v, u− v, v2,

1

1 + u2

)
.

In order to compute the pull-back under Φ of the form

η = xdy ∧ dz − ezdz ∧ dw ∈ Ω2(R4),
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we proceed as follows using the properties above:

Φ∗η = (x ◦ Φ)d(y ◦ Φ) ∧ d(z ◦ Φ)− e(z◦Φ)d(z ◦ Φ) ∧ d(w ◦Φ)

= (u+ v)d(u− v) ∧ d(v2)− ev
2
d(v2) ∧ d

(
1

1 + u2

)

= (u+ v)du ∧ 2vdv − 2vev
2
dv ∧ −2udu

(1 + u2)2

=

(

2v(u+ v)− 4uvev
2

(1 + u2)2

)

du ∧ dv.

In other words, to compute the pull-back Φ∗η one simply replaces
in η the coordinates (x, y, z, w) by its expressions in terms of the
coordinates (u, v).

When (N, i) is a submanifold of M the pull-back of a di!erential
form ω ∈ Ωk(M) by the inclusion map i : N ↪→ M is called the
restriction of the differential form ω to N . Often one denotes
the restriction ω|N instead of i∗ω. Sometimes, one even drops the
restriction sign.

Example 18.3. For the sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},

one can write

ω = (xdy ∧ dz + y dz ∧ dx+ z dx ∧ dy)|S2 ,

meaning that ω is the pull-back by the inclusion i : S2 ↪→ R3 of
the di!erential form xdy ∧ dz + ydz ∧ dx + zdx ∧ dy ∈ Ω2(R3).
In spherical coordinates (r, θ,,) (see Exercise 5.2) one finds

ω = −r3 sin,dθ ∧ d,,

so that

ω|S2 = − sin,dθ ∧ d,.

One should also note that if Φ : M → N and Ψ : N → Q are
smooth maps, then Ψ ◦Φ : M → Q is a smooth map and we have:

(Ψ ◦ Φ)∗ω = Φ∗(Ψ∗ω).
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In categorical language, we have a contravariant functor from the
category of smooth manifolds to the category of Grassmann algebras,
which to a smooth manifold M associates the algebra Ω(M) and to a
smooth map Φ : M → N associates a homomorphism Φ∗ : Ω(N) →
Ω(M).

Interior Product

Given a vector field X ∈ X(M) and a di!erential form ω ∈ Ωk(M),
the interior product of ω by X, denoted iXω ∈ Ωk−1(M), is the
di!erential form of degree (k − 1) defined by

iXω(X1, . . . ,Xk−1) = ω(X,X1, . . . ,Xk−1).

Since iXω : X(M)× · · ·×X(M)→ C∞(M) is a C∞(M)-multilinear,
alternating, map, it is indeed a smooth di!erential form of degree
k − 1.

It is easy to check that the following properties hold:

(i) iX(fω + gθ) = fiXω + giXθ;
(ii) iX(ω ∧ θ) = (iXω) ∧ θ + (−1)deg ωω ∧ (iXθ);
(iii) i(fX+gY )ω = fiXω + giY ω;
(iv) iX(df) = X(f).

Again, these properties is all that it is needed to compute interior
products in local coordinates.

Example 18.4. In R3, let ω = exdx ∧ dy + ezdy ∧ dz, and
X = x ∂

∂y − y ∂
∂x . Then,

i ∂
∂x
(dx ∧ dy) =

(
i ∂
∂x
dx
)
∧ dy − dx ∧

(
i ∂
∂y
dy
)
= dy,

i ∂
∂y
(dx ∧ dy) =

(
i ∂
∂y
dx
)
∧ dy − dx ∧

(
i ∂
∂y
dy
)
= −dx,

i ∂
∂x
(dy ∧ dz) =

(
i ∂
∂x
dy
)
∧ dz − dy ∧

(
i ∂
∂x
dz
)
= 0,

i ∂
∂y
(dy ∧ dz) =

(
i ∂
∂y
dy
)
∧ dz − dy ∧

(
i ∂
∂y
dz
)
= dz.

Hence, we conclude that

iXω = −xexdx− yexdy + xezdz.
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Remark 18.2. One can extend the interior product in a more or less
obvious way to other objects (multivector fields, tensor fields, etc.).
For these objects it is frequent to use the designation contraction,
instead of interior product. For example, one can define the contrac-
tion of a di!erential form ω of degree k by a multivector field π of
degree l < k, to be a di!erential form iπω of degree k − l. In a local
chart (U, x1, . . . , xd), if

ω|U =
∑

i1···ik

ωi1···ikdx
i1∧· · ·∧dxik , π|U =

∑

j1···jl

πj1···jl
∂

∂xj1
∧· · ·∧ ∂

∂xjl
,

then:

(iπω)|U =
∑

i1···ik

ωi1···ikπ
i1···ildxil+1 ∧ · · · ∧ dxik .

Exercises

Exercise 18.1

Construct the natural di!erentiable structure on ∧kT ∗M , for which
the canonical projection π : ∧kT ∗M →M is a submersion.

Exercise 18.2

Determine the formulas of transformation of variables for multivector
fields and tensor fields.

Exercise 18.3

Prove the basic properties of the pull-back and interior product of
di!erential forms.

Exercise 18.4

Let Φ : M → N be a smooth map and let X ∈ X(M) and Y ∈ X(N)
be Φ-related smooth vector fields. Show that

Φ∗(iY ω) = iXΦ∗ω, ∀ω ∈ Ω(N).

Exercise 18.5

Let G be a Lie group. A di!erential form ω ∈ Ωk(G) is called left
invariant if

(Lg)
∗ω = ω, ∀g ∈ G.



June 15, 2024 15:45 Lectures on Differential Geometry 9in x 6in b5406-ch18 FA1 page 185

Differential Forms and Tensor Fields 185

We denote by Ωk
L-inv(G) the space of left-invariant k-forms. Show

that the operations studied in this lecture are compatible with the
group operation, namely:

(a) For any left-invariant vector fieldX ∈ g, interior product restricts
to a map iX : Ωk

L-inv(G)→ Ωk−1
L-inv(G).

(b) The wedge product restricts to a product ∧ : Ωk
L-inv(G) ×

Ωs
L-inv(G)→ Ωk+s

L-inv(G).
(c) For any Lie group homomorphism Φ : G → H, pullback by Φ

restricts to a map Φ∗ : Ωk
L-inv(H)→ Ωk

L-inv(G).

Moreover, show that evaluation at the identity e ∈ G

Ωk
L-inv(G)→ ∧kg, ω ,→ ωe,

is an isomorphism.

Exercise 18.6

Consider the matrix Lie group

G =

{(
x y

0 1

)
: x ∈ R \ {0}, y ∈ R

}
.

Show that
{

dx
x , dy

x

}
is a basis for Ω1

L-inv(G) and find a basis for

Ω2
L-inv(G) (see previous exercise for notation).

Exercise 18.7

Let Ψ : G×M →M be a Lie group action with associated infinites-
imal action ψ : g→ X(M). A di!erential form ω ∈ Ωk(M) is called

(a) G-invariant if (Ψg)∗ω = ω, for all g ∈ G;
(b) basic if it is G-invariant and iψ(X)ω = 0, for all X ∈ g.

Assuming that the action is free and proper show that ω ∈ Ωk(M)
is basic if and only if there exists α ∈ Ωk(G\M) such that

ω = π∗α,

where π : M → G\M is the projection to the orbit space.

Exercise 18.8

Show that a Riemannian structure on a manifold M (see
Exercise 11.9) defines a symmetric tensor field of degree (0, 2).
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Hint : In a chart (U, xi), a symmetric tensor field of degree (0, 2) is
written as

g|U =
∑

i,j

gijdx
i ⊗ dxj,

where the components gij ∈ C∞(U) satisfy gij = gji.

Exercise 18.9

Convince yourself that all the discussion in this lecture extends to
manifolds with boundary. In particular, show that if M is a manifold
with boundary ∂M and i : ∂M →M is the inclusion map then:

(a) for each di!erential form ω ∈ Ωk(M) the pullback (or restriction)
i∗ω is a smooth di!erential form on ∂M ;

(b) every di!erential form η ∈ Ωk(∂M) has an extension to a di!er-
ential form ω ∈ Ωk(M) such that η = i∗ω.
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Volume Forms and Orientation

If V is a linear vector space of dimension d and µ ∈ ∧d(V ∗) is a
non-zero element, then for any basis {v1, . . . ,vd} of V we have

µ(v1, . . . ,vd) #= 0.

This implies that µ splits the ordered basis of V into two classes.
We will say that a basis {v1, . . . ,vd} has positive (respectively,
negative) µ-orientation if this number is positive (respectively,
negative). We also say that µ determines an orientation for the
vector space V.

Example 19.1. Let V = Rd then we have a canonical element
µ0 ∈ ∧d(Rd)∗, namely the determinant

µ0(v1, . . . ,vd) = det[vj
i ]
n
i,j=1.

The standard basis of Rd is positively oriented for this canonical
choice. Note also that |µ0(v1, . . . ,vd)| represents the usual volume of
the parallelepiped span by the vectors v1, . . . ,vd. For an arbitrary
vector space V, there is no such canonical choice of orientation and
one needs to choose an element µ ∈ ∧d(V ∗) to orient its bases.

Definition 19.1. A volume form on a smooth manifold M of
dimension d, is a top degree form µ ∈ !d(M) which is nowhere
vanishing, i.e., µp #= 0, for all p ∈ M . A manifold M is said to be
orientable if it admits a volume form.

187
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Example 19.2. The sphere S2 is orientable since it admits the
volume form

ω = (xdy ∧ dz + y dz ∧ dx+ z dx ∧ dy)|S2 .

More generally, on the d-dimensional sphere Sd we have the volume
form

ω =
d+1∑

i=1

(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1

∣∣∣∣∣
Sd

.

We leave it as an exercise to check that this form never vanishes.

Example 19.3. We claim that the real projective space RP2 does
not admit a volume form, hence it is not orientable. To see this let
µ ∈ !2(RP2) be any differential 2-form. If π : S2 → RP2 is the
quotient map, then the pull-back π∗µ is a differential 2-form in S2.
It follows that there exists a smooth function f ∈ C∞(S2)

π∗µ = fω,

where ω ∈ !2(S2) is the volume form in the previous example.
Let Φ : S2 → S2, p &→ −p, be the anti-podal map. Since π ◦Φ = π,

we have

Φ∗(π∗µ) = (π ◦ Φ)∗µ = π∗µ.

On the other, it is easy to check that Φ∗ω = −ω. Hence,

fω = π∗µ = Φ∗(π∗µ) = Φ∗(fω) = (f ◦ Φ)Φ∗(ω) = −(f ◦ Φ)ω.

We conclude that f(−p) = −f(p), for all p ∈ S2. By continuity,
we must have f(p0) = 0 for some p0 ∈ S2. Hence, π∗µ vanishes
at some point. Since π is a local diffeomorphism, we conclude that
µ ∈ !2(RP2) vanishes at some point, so RP2 has no volume forms,
as claimed.

If µ ∈ !d(M) is a volume form then any other differential form
of top degree in M takes the form fµ, for some f ∈ C∞(M). In
particular, if µ1, µ2 ∈ !d(M) are two volume forms then there exists
a unique non-vanishing function f ∈ C∞(M) such that µ2 = fµ1.
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We say that µ1 and µ2 define the same orientation if for all p ∈ M
and any ordered basis {v1, . . . ,vd} of TpM , one has

µ1(v1, . . . ,vd)µ2(v1, . . . ,vd) > 0.

Note that if µ1 and µ2 define the same orientation, then a basis is
µ1-positive if and only if it is µ2-positive.

Lemma 19.1. Let M be manifold of dimension d. Two volume forms
µ1, µ2 ∈ !d(M) define the same orientation if and only if µ2 = fµ1

for a smooth everywhere positive function f ∈ C∞(M).

We leave the proof as an exercise. It follows that the property
“same orientation” is an equivalence relation on the set of volume
forms in an orientable manifold M .

Definition 19.2. An orientation for an orientable manifold M
is a choice of an equivalence class [µ]. A pair (M, [µ]) is called an
oriented manifold.

Hence, an orientation [µ] for a manifold M (if it exists!) amounts
to a choice of orientation for each tangent space TpM varying
smoothly with p. It follows from the previous lemma that a connected
orientable manifold has two orientations. More generally, an ori-
entable manifold with k connected components has 2k orientations.

Example 19.4.

(1) The canonical orientation of Rd is the one defined by the
volume form dx1 ∧ · · · ∧ dxd. The usual basis of TpRd ( Rd is
positive for this orientation.

(2) The volume form in Example 19.2 defines the canonical orien-
tation of Sd.

(3) A Lie group G is always orientable. A orientation of its Lie alge-
bra g determines an orientation of G. In fact, if {α1, . . . ,αd} is
a basis of left invariant 1-forms then µ = α1 ∧ · · · ∧ αd is a (left
invariant) volume form.

Given oriented manifolds (M, [µM ]) and (N, [µN ]) we say that a
diffeomorphism Φ : M → N preserves orientations, or that it is
positive, if [Φ∗µN ] = [µM ].
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Example 19.5. Let [dx1∧ · · ·∧dxd] be the canonical orientation for
Rd. Given a diffeomorphism φ : U → V, where U, V are open sets in
Rd, we have

φ∗(dx1 ∧ · · · ∧ dxd) = det[φ′(x)]dx1 ∧ · · · ∧ dxd.

Hence φ preserves the canonical orientation iff det[φ′(x)] > 0, for all
x ∈ Rd.

One can also express the possibility of orienting a manifold in
terms of an atlas, as shown by the following proposition.

Proposition 19.1. Let M be a manifold of dimension d. The fol-
lowing statements are equivalents:

(i) M is orientable, i.e., M has a volume form.
(ii) There exists an atlas {(Ui,φi)}i∈I for M such that for all i, j ∈ I

the transition functions preserve the canonical orientation of Rd.

In particular, if [µM ] is an orientation for M , then there exists an
atlas {(Ui,φi)}i∈I for M such that each chart φi : Ui → Rd is positive,
where in Rd we consider the canonical orientation.

Proof. (i) ⇒ (ii) Assume M is orientable and fix the canonical
orientation for Rd. Given a chart (U,φ) = (U, x1, . . . , xd), then
either the chart is already position or it is a negative and then
(U, φ̄) := (U,−x1, x2, . . . , xd) is a positive chart. Therefore, given
any atlas we can construct another atlas whose charts are all posi-
tive by keeping all the positive charts and changing all the negative
charts in this way. The corresponding transition functions will all
preserve the canonical orientation for Rd.

(ii) ⇒ (i) Let {(Ui,φi)}i∈I be an atlas for M such that all its
transition functions preserve the canonical orientation of Rd. Choose
a partition of unity {ρi}i∈I subordinated to the cover {Ui}i∈I . If µ0 =
dx1 ∧ · · · ∧ dxd is the canonical volume form on Rd then

µ :=
∑

i∈I
ρiφ

∗
iµ0,

is a top-degree form which is nowhere vanishing (exercise). Hence,
M is orientable.

We observed in the previous lecture that it makes sense to
talk about tensor fields, differential forms, etc., on a manifold with
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boundary. In particular, it makes sense to talk about an orientable
manifold with boundary.

Proposition 19.2. Let M be an orientable manifold with boundary
∂M . Then ∂M is also orientable.

Proof. Let M be a manifold with boundary and p ∈ ∂M . In a
boundary chart (U, xi) centered at p, a tangent vector v ∈ TpM can

be written as v =
∑d

i=1 v
i ∂
∂xi

∣∣
p
, and the tangent vectors in Tp(∂M)

are exactly the tangent vectors whose last component vanishes

Tp(∂M) = {v ∈ TpM : vd = 0}.

We will say that a tangent vector is exterior to ∂M if vd < 0.
It is easy to see that this condition is independent of the choice of
boundary chart.

Using this remark, given an orientation [µ] on M , we construct an
orientation on ∂M as follows. If p ∈ ∂M , the orientation of Tp(∂M)
is, by definition, [ivµp] where v ∈ TpM is any exterior tangent vec-
tor to ∂M . Is easy to see that this definition is independent of the
choice of exterior tangent vectors so we have a well-defined orienta-
tion on each tangent space Tp(∂M). Since these vary smoothly, ∂M
is orientable.

The previous proof shows that a choice of orientation on M
induces an orientation on ∂M , which we call the induced orien-
tation. Whenever M is an oriented manifold with boundary, we will
always consider the induced orientation on ∂M .

Exercises

Exercise 19.1

Verify that the top degree form µ constructed in the second part of
the proof of Proposition 19.1 is a volume form.

Exercise 19.2

Show that for any orientable manifolds M and N, the product
M ×N is orientable. Conclude that the torus Td is orientable. Give
an example of a volume form in Td.



June 15, 2024 15:45 Lectures on Differential Geometry 9in x 6in b5406-ch19 FA1 page 192

192 Lectures on Differential Geometry

Exercise 19.3

Let G be a finite group which acts freely on an oriented manifold M
and assume that the action of each g ∈ G is orientation preserving.
Show that M/G is an orientable manifold. Using this result prove
that RPd is orientable if and only if d is odd.

Exercise 19.4

Let M be any manifold and consider the set of all orientations of its
tangent spaces

M̃ori := {[µp] : µp ∈ ∧dTpM, p ∈M}.

Also, let π : M̃ori →M , be the map [µp] &→ p. Show the following:

(a) M̃ori has a unique smooth structure such that π : M̃ori →M is a
2:1 cover;

(b) M̃ori is an orientable manifold;
(c) If M is connected, then M is orientable if and only if M is not

connected.

One calls M̃ori the orientation cover of M .

Exercise 19.5

Verify that the Klein bottle form Example 8.5 is a non-orientable
manifold.

Exercise 19.6

Let (M,g) be a Riemannian manifold of dimension d. Show the
following:

(a) For each p ∈ M , the map TpM → T ∗
pM , v &→ g(v, ·), is an

isomorphism, so the inner product on the tangent space TpM
induces an inner product on the cotangent space T ∗

pM .
(b) For each p ∈M , there exists a neighborhood U of p and orthonor-

mal smooth vector fields X1, . . . ,Xd ∈ X(U):

〈Xi,Xj〉 = δij (Kronecker symbol).

The set {X1, . . . ,Xd} is called a (local) orthonormal frame.



June 15, 2024 15:45 Lectures on Differential Geometry 9in x 6in b5406-ch19 FA1 page 193

Volume Forms and Orientation 193

(c) For each p ∈M , there exists a neighborhood U of p and orthonor-
mal differential forms α1, . . . ,αd ∈ !1(U):

〈αi,αj〉 = δij (Kronecker symbol).

The set {α1, . . . ,αd} is called a (local) orthonormal coframe.
(d) Assume further that [µ] is an orientation for M . Show that there

exists a volume form µ0 ∈ !d(M) such that

µ0|U = α1 ∧ · · · ∧ αd,

for every local orthonormal coframe α1, . . . ,αd ∈ !1(U) which is
positive (i.e., α1 ∧ · · · ∧ αd is positive). One calls µ0 the canon-
ical volume form of the oriented Riemannian manifold
(M,g, [µ]).

Exercise 19.7

Let (M,g, [µ]) be an oriented Riemannian manifold of dimension d.
Show that there exists a unique linear map ∗ : !k(M) → !d−k(M)
such that for every positive local orthonormal coframe α1, . . . ,αd the
following properties hold:

(a) ∗1 = α1 ∧ · · · ∧ αd and ∗(α1 ∧ · · · ∧ αd) = 1;
(b) ∗(α1 ∧ · · · ∧ αk) = αk+1 ∧ · · · ∧ αd.

Moreover, check that for any k-form ω

∗ ∗ ω = (−1)k(d−k)ω.

One calls ∗ the Hodge star operator.
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Lecture 20

Cartan Calculus

We will introduce now two important differentiation operations on
differential forms: the differential of forms, which is an intrinsic
derivative, and the Lie derivative of differential forms, which is a
derivative along vector fields. These differential operations together
with the algebraic operations on differential forms that we studied in
the previous lecture, are the basis of a calculus on differential forms
which is usually called Cartan Calculus.

The differential of ω ∈ Ωk(M) is the (k+1)-form dω ∈ Ωk+1(M)
defined by

dω(X0, . . . ,Xk) :=
k∑

i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . ,Xk))

+
∑

0≤i<j≤k

(−1)i+j

×ω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j . . . ,Xk), (20.1)

for any smooth vector fields X0, . . . ,Xk ∈ X(M). This for-
mula defines a C∞(M)-multilinear, alternating, map X(M) × · · · ×
X(M)→ C∞(M), so that dω is indeed a smooth differential (k+1)-
form.

A smooth function f ∈ C∞(M) is a degree 0 form. In this case,
formula (20.1) gives

df(X) = X(f).

Therefore this definition matches our previous definition of the dif-
ferential of a smooth function.

195
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Our next result shows that the differential is the only operation on
the forms which extends the differential of functions in a reasonable
way.

Theorem 20.1. The differential d : Ω•(M)→ Ω•+1(M) is the only
operation on forms satisfying the following properties:

(i) d is R-linear : d(aω + bθ) = adω + bdθ;
(ii) d is a derivation: d(ω ∧ θ) = (dω) ∧ θ + (−1)deg ωω ∧ (dθ);
(iii) d extends the usual differential: df(X) = X(f) if f ∈ C∞(M),

X ∈ X(M);
(iv) d2 = 0.

Proof. We leave it for the exercises to check that d, as defined by
(20.1), satisfies properties (i) through (iv). To prove uniqueness, we
need to check that given ω ∈ Ωk(M), then dω is determined by
properties (i)–(iv).

Since d is a derivation, it is local: if ω|U = 0 on an open set U
then (dω)|U = 0. In fact, let p ∈ U and f ∈ C∞(M) with f(p) > 0
and supp f ⊂ U . Since fω ≡ 0, we find that

0 = d(fω) = df ∧ ω + fdω.

If we evaluate both sides of this identity at p, we conclude that
f(p)(dω)p = 0. Hence dω|U = 0, as claimed.

Therefore, to prove uniqueness, it is enough to consider ω ∈ Ωk(U)
where U is the domain of some local chart (x1, . . . , xd). In this case,
we have

ω =
∑

i1<···<ik

ωi1···ikdx
i1 ∧ · · · ∧ dxik .

Using only properties (i)–(iv) we find

dω =
∑

i1<···<ik

d(ωi1···ikdx
i1 ∧ · · · ∧ dxik) (by (i))

=
∑

i1<···<ik

d(ωi1···ik) ∧ dxi1 ∧ · · · ∧ dxik (by (ii) and (iv))

=
∑

i1<···<ik

∑

i

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik (by (iii)).
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The last expression defines a differential form of degree k + 1 in
U . Hence, dω is completely determined by properties (i)–(iv), as
claimed.

As this proof shows, one can compute the differential of a form in
local coordinates using only properties (i)–(iv). This is often much
more efficient than applying directly formula (20.1).

Example 20.1. Let ω = eydx ∧ dz + ezdy ∧ dz ∈ Ω2(R3). Using
properties (i)–(iv), we find

dω = d(eydx ∧ dz + ezdy ∧ dz)

= (dey) ∧ dx ∧ dz + d(ez) ∧ dy ∧ dz

= eydy ∧ dx ∧ dz + ezdz ∧ dy ∧ dz = −eydx ∧ dy ∧ dz.

The pullback operation preserves differentials.

Proposition 20.1. If Φ : M → N is a smooth map, then for every
ω ∈ Ωk(N)

Φ∗dω = dΦ∗ω.

Proof. It is enough to prove this holds on local charts. We leave the
(easy) computation to the exercises.

The operation d : Ω•(M) → Ω•+1(M) is also referred to as exte-
rior differentiation, since it increases the degree of a form. There is
another type of differentiation of a form which preserves the degree.

Definition 20.1. The Lie derivative of a differential form ω ∈
Ωk(M) along a vector X ∈ X(M) is the differential form LXω ∈
Ωk(M) defined by

LXω =
d

dt
(φtX)∗ω

∣∣∣∣
t=0

= lim
t→0

1

t

(
(φtX)∗ω − ω

)
.

Example 20.2. Let ω = eydx ∧ dz + ezdy ∧ dz ∈ Ω2(R3) and
X = x ∂

∂y ∈ X(R3). The flow of X is given by φtX(x, y, z) =
(x, y + tx, z). Hence, we find that

(φtX)∗ω = ey+txdx ∧ dz + ezd(y + tx) ∧ dz

= ey+txdx ∧ dz + ezdy ∧ dz + tezdx ∧ dz.
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Then

LXω =
d

dt
(φtX)∗ω

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

(
ey+txdx ∧ dz + ezdy ∧ dz + tezdx ∧ dz

)

= xeydx ∧ dz + ezdx ∧ dz.

In most examples it is impossible to find explicitly the flow of
a vector field. Still, the basic properties of the Lie derivative listed
in the next proposition allow one to find the Lie derivative without
knowledge of the flow. The proof is left as an exercise.

Proposition 20.2. Let X ∈ X(M) and ω, η ∈ Ω•(M). Then,

(i) LX(aω + bη) = aLXω + bLXη for all a, b ∈ R;
(ii) LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη;
(iii) LX(f) = X(f), if f ∈ Ω0(M) = C∞(M);
(iv) LXdω = dLXω.

Example 20.3. Let us redo Example 20.2 using only properties
(i)–(iv) in the previous proposition

LXω = LX(eydx ∧ dz + ezdy ∧ dz)

= LX(ey)dx ∧ dz + eyLX(dx) ∧ dz + eydx ∧ LX(dz)

+ LX(ez)dy ∧ dz + ezLX(dy) ∧ dz + ezdy ∧ LX(dz)

= X(ey)dx ∧ dz + ezdX(y) ∧ dz

= xeydx ∧ dz + ezdx ∧ dz.

There is still another way to compute the Lie derivative by apply-
ing a formula which relates all three basic operations on forms: Lie
derivative, exterior differential, and interior product. This “magic”
formula often plays an unexpected role.

Theorem 20.2 (Cartan’s Magic Formula). Let X ∈ X(M) and
ω ∈ Ω(M). Then

LXω = iXdω + diXω. (20.2)

Proof. By Proposition 20.2, LX : Ω(M) → Ω(M) is a derivation.
The properties of d and iX give that iXd + diX : Ω(M) → Ω(M) is
also a derivation. Hence, it is enough to check that both derivations
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take the same values on differential forms of the type ω = f and
ω = dg, where f, g ∈ C∞(M).

On the one hand, the properties in Proposition 20.2, give

LX(f) = X(f), LX(dg) = dLXg = d(X(g)).

On the other hand, the properties of d and iX yield

(iXd + diX)f = iXdf = X(f),

(iXd + diX)dg = d(iXdg) = d(X(g)).

Example 20.4. Let us redo Example 20.2 using Cartan’s Magic
Formula

LXω = iXdω + diXω

= iX(−eydx ∧ dy ∧ dz) + d(xezdz)

= xeydx ∧ dz + ezdx ∧ dz.

Exercises

Exercise 20.1

Show that d defined by formula (20.1), satisfies properties (i)–(iv) in
Theorem 20.1.

Exercise 20.2

Let Φ : M → N be a smooth map. Show that for any form ω ∈
Ωk(M)

Φ∗dω = dΦ∗ω.

Exercise 20.3

Let I ⊂ Ω(M) be an ideal generated by k linearly independent dif-
ferential forms α1, . . . ,αk ∈ Ω1(M) (i.e., such that {α1|p, . . . ,αk|p} is
a linearly independent set for every p ∈M). Show that the following
statements are equivalent:

(a) I is a differential ideal, i.e., if α ∈ I then dα ∈ I;
(b) dαi =

∑
j ωij ∧ αj, for some 1-forms ωij ∈ Ω1(M);
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(c) If ω = α1∧· · ·∧αk, then dω = α∧ω, for some 1-form α ∈ Ω1(M).
(d) The distribution D =

⋂k
i=1 kerαi is involutive.

Exercise 20.4

Prove the properties of the Lie derivative given in Proposition 20.2.

Exercise 20.5

Let X,Y ∈ X(M) be vector fields and ω ∈ Ω(M) a differential form.
Show that

L[X,Y ]ω = LX(LY ω)− LY (LXω).

Exercise 20.6

Let Φ : M → N be smooth. Show that if X ∈ X(M) and Y ∈ X(N)
are Φ-related vector fields, then

Φ∗(LY ω) = LX(Φ∗ω),

for every differential form ω ∈ Ω(N).

Exercise 20.7

Let X ∈ X(M) and ω ∈ Ωk(M). Show that

LX(ω(X1, . . . ,Xk)) = LXω(X1, . . . ,Xk)

+
k∑

i=1

ω(X1, . . . ,LXXi, . . . ,Xk). (20.3)

Exercise 20.8

Let M be a manifold equipped with a volume form µ. Given a vector
field X, the divergence of X is the unique function divµ(X) ∈
C∞(M) that satisfies

LXµ = divµ(X)µ.

Show that

(a) a complete vector field X ∈ X(M) is divergence free (i.e.,
divµ(X) = 0) if and only the flow of X preserves the volume
form µ, i.e., if and only if

(φtX)∗µ = µ, ∀t ∈ R;
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(b) if µ = dx1 ∧ · · · ∧ dxd is the canonical volume form on M = Rd

then for a vector field X =
∑d

i=1 X
i ∂
∂xi one has

divµ(X) =
d∑

i=1

∂Xi

∂xi
;

(c) if (M,g, [µ]) is an oriented Riemannian manifold with associated
volume form µ and Hodge-star operator ∗ (see Exercises 19.6 and
19.7) then

divµ(X) = ∗d ∗X.

Exercise 20.9

Let (M,g, [µ]) be an oriented Riemannian manifold. One defines the
laplacian of f : M → R to be the function ∆f : M → R given by

∆f := − div(grad f),

where grad f denotes the gradient of f (see Exercise 11.10). Let
M = R3 with its canonical Riemannian structure and canonical ori-
entation. Find the divergence and the Laplacian in cylindrical and
in spherical coordinates.

Exercise 20.10

Let Xk(M) denote the space of multivector fields of degree k on M .
Show that there exists a unique R-bilinear operation [ , ] : Xp+1(M)×
Xq+1(M) → Xp+q+1(M) which coincides with the usual Lie bracket
of vector fields when p = q = 0 and satisfies:

(a) [P,Q] = −(−1)pq[Q,P ];
(b) [P,Q ∧R] = [P,Q] ∧R+ (−1)p(q+1)Q ∧ [P,R].

Verify that this bracket satisfies the Jacobi type identity

(−1)pr[P, [Q,R]] + (−1)qp[Q, [R,P ]] + (−1)rq[R, [P,Q]] = 0.

In all these identities, P ∈ Xp+1(M), Q ∈ Xq+1(M) and R ∈
Xr+1(M).
Note: This operation is known as the Schouten bracket and is
the counterpart for multivector fields of the exterior differential for
forms. It is an example of a graded Lie bracket.



June 29, 2024 15:38 Lectures on Differential Geometry 9in x 6in b5406-ch20 FA2 page 202



June 29, 2024 15:39 Lectures on Differential Geometry 9in x 6in b5406-ch21 FA2 page 203

Lecture 21

Integration on Manifolds

Ultimately, our interest in differential forms of degree d lies in the
fact that they can be integrated over oriented d-manifolds, as we now
explain.

Let us start with the case where M = Rd, with the usual orienta-
tion. If U ⊂ Rd is open, then every differential form ω ∈ Ωd(U) can
be written as

ω = f dx1 ∧ · · · ∧ dxd, (f ∈ C∞(U)).

We say that ω is integrable in U and we define its integral by

∫

U
ω :=

∫

U
f(x1, . . . , xd)dx1 · · · dxd,

provided the integral on the right-hand side exists and is finite. The
usual change of variable formula for the integral in Rd yields the
following result.

Lemma 21.1. Let Φ : U → Rd be a diffeomorphism defined in an
open connected set U ⊂ Rd. If ω ∈ Ωd(Φ(U)) is integrable, then
Φ∗ω ∈ Ωd(U) is integrable and

∫

Φ(U)
ω = ±

∫

U
Φ∗ω,

where ± is the sign of det(Φ′(p)) for any p ∈ U .

203
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Therefore the integral is invariant under orientation preserving
diffeomorphisms. For this reason, we will only consider the integral of
differential forms over oriented manifolds. It is possible to define the
integral over non-oriented manifolds, but this requires introducing
densities, a generalization of volume forms.

In order to avoid convergence issues, we consider the following
class of forms.

Definition 21.1. The support of ω ∈ Ωk(M) is the closed set

suppω := {p ∈M : ωp %= 0}.

We denote by Ωk
c (M) the space of compactly supported differential

forms.

If Φ : M → N is a proper map (e.g., a diffeomorphism), pullback
gives a map Φ∗ : Ωk

c (M) → Ωk
c (M). Obviously, if M is compact one

has Ωk
c (M) = Ωk(M).

After these preparations, we can define the integral of a top degree
compactly supported form over an oriented manifold as follows.

Definition 21.2. If M is an oriented d-manifold and ω ∈ Ωd
c(M),

we define its integral over M as follows:

• If suppω ⊂ U , where (U,φ) is a positive coordinate chart, then
∫

M
ω :=

∫

φ(U)
(φ−1)∗ω.

• More generally, we consider an open cover of M by positive charts
(Uα,φα) and a partition of unity {ρα} subordinated to this cover,
and we set

∫

M
ω :=

∑

α

∫

M
ραω.

We remark that the sum in this definition is finite since we assume
that suppω is compact. It is easy to check that the definition is
independent of the choices of covering by positive charts and of
partition of unity. We leave it to the exercises to check all these
details.

The integral shares the properties of the usual integral of functions
in Rd. First, one checks easily that



June 29, 2024 15:39 Lectures on Differential Geometry 9in x 6in b5406-ch21 FA2 page 205

Integration on Manifolds 205

(a) Linearity : If ω, η ∈ Ωd
c(M) and a, b ∈ R, then

∫

M
(aω + bη) = a

∫

M
ω + b

∫

M
η.

(b) Additivity : If M = M1 ∪M2, ω ∈ Ωd
c(M) and M1 ∩M2 has zero

measure, then
∫

M
ω =

∫

M1

ω +

∫

M2

ω.

Moreover, we have the following important property that ulti-
mately justifies the relevance of differential forms.

Theorem 21.1 (Change of Variables Formula). Let M and N
be oriented manifolds of dimension d and let Φ : M → N be an
orientation preserving diffeomorphism. Then, for every differential
form ω ∈ Ωd

c(N), one has
∫

N
ω =

∫

M
Φ∗ω.

Proof. Since Φ is a diffeomorphism and preserves orientations, we
can find an open cover of M by positive charts (Uα,φα), such that
the open sets Φ(Uα) are domains of positive charts ψα : Φ(Uα) →
Rd for N . Let {ρα} be a partition of unity for N subordinated to
the cover {Φ(Uα)}, so that {ρα ◦ Φ} is a partition of unity for M
subordinated to the cover {Uα}. By Lemma 21.1, we find

∫

Φ(Uα)
ραω =

∫

Uα

Φ∗(ραω) =

∫

Uα

(ρα ◦ Φ)Φ∗ω.

Hence, we obtain
∫

N
ω =

∑

α

∫

N
ραω =

∑

α

∫

Φ(Uα)
ραω

=
∑

α

∫

Uα

(ρα ◦Φ)Φ∗ω

=
∑

α

∫

M
(ρα ◦ Φ)Φ∗ω =

∫

M
Φ∗ω.
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The computation of the integral of differential forms using the
definition is not practical since it involves a partition of unity. The
following result can often be applied to avoid the use of a partition
of unity.

Proposition 21.1. Let M be an oriented manifold of dimension d
and let C ⊂M be a closed subset of zero measure. For any differential
form ω ∈ Ωd

c(N), we have
∫

M
ω =

∫

M\C
ω.

Proof. Using a partition of unity we can reduce the result to the
case where M is an open subset of Rd. For an open set U ⊂ Rd, the
result reduces to the equality

∫

U
fdx1 . . . dxd =

∫

U\C
fdx1 . . . dxd,

where f : U → R is smooth and bounded. This is obvious since C
has zero measure.

Example 21.1. Given a volume form µ is a compact manifold M ,
we can define the volume of M relative to µ to be the positive
number:

volµ(M) :=

∫

M
µ,

where the integral is relative to the orientation [µ].
For example, let us find the volume of the sphere S2 relative to

the volume form

µ = (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)|S2 .

By the previous proposition, we have

volµ(S2) =
∫

S2
µ =

∫

S2\pN
µ,

where pN ∈ S2 is the north pole. Stereographic projection πN : S2 \
{pN}→ R2 defines a global chart for S2 \ {pN} whose inverse is the
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parameterization

π−1
N (u, v) =

1

u2 + v2 + 1
(2u, 2v, u2 + v2 − 1).

Using this parameterization we find

(π−1
N )∗µ = − 4

(u2 + v2 + 1)2
du ∧ dv,

which shows that πN is a negative chart. Therefore,
∫

S2
µ =

∫

R2

4

(u2 + v2 + 1)2
du ∧ dv.

The integral on the right can be computed using polar coordinates,
and the final result is

volµ(S2) =
∫

S2
µ =

∫ +∞

0

∫ 2π

0

4r

(r2 + 1)2
dθdr = 4π.

Our next aim is to generalize Stokes Theorem to differential forms.
First, note that the previous discussion about integration makes

sense for manifolds with boundary. For an oriented manifold with
boundary M , as explained in Lecture 19, we have an induced orien-
tation on ∂M .

Theorem 21.2 (Stokes Formula). Let M be an oriented manifold
with boundary of dimension d. If ω ∈ Ωd−1

c (M) then
∫

M
dω =

∫

∂M
ω.

Proof. We divide the proof into several cases.
• M = Rd. In this case, we can write

ω =
d∑

i=1

fidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd,

where fi are compactly supported functions. We find its differential
to be

dω =
d∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxd.
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By Fubini’s Theorem, we conclude that

∫

Rd
dω =

d∑

i=1

(−1)i−1
∫

Rd−1

(∫ +∞

−∞

∂fi
∂xi

dxi
)
dx1 · · · d̂xi · · · dxd = 0,

where we used that fi has compact support. Since ∂Rd = ∅, Stokes
Formula for Rd follows.

• M = Hd. We proceed as in the case of Rn, but this time we obtain

∫

Hd
dω =

d∑

i=1

(−1)i−1
∫

Hd

∂fi
∂xi

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd

=
d−1∑

i=1

(−1)i−1
∫

Hd−1

(∫ +∞

−∞

∂fi
∂xi

dxi
)
dx1 · · · d̂xi · · · dxd

+ (−1)d−1
∫

Rd−1

(∫ +∞

0

∂fd
∂xd

dxd
)
dx1 · · · dxd−1

= (−1)d
∫

Rd−1
fd(x

1, . . . , xd−1, 0)dx1 · · · dxd−1.

On the other hand, ∂Hd = {(x1, . . . , xd) : xd = 0}, hence
∫

∂Hd
ω =

∫

∂Hd
fd(x

1, . . . , xd−1, 0)dx1 ∧ · · · ∧ dxd−1.

In ∂Hd = Rd−1 we must take the induced orientation from the canon-
ical orientation [µ] = [dx1∧ · · ·∧dxd] in Hd. The induced orientation
is given by: [(−1)ddx1 ∧ · · · ∧ dxd−1] so we conclude that

∫

∂Hd
ω = (−1)d

∫

∂Rd−1
fd(x

1, . . . , xd−1, 0)dx1 · · · dxd−1.

Therefore, Stokes Formula also holds for the half-space Hd.

• Any M . We fix an open cover of M by positive charts (Uα,φα) and
we choose a partition of unity {ρα} subordinated to this cover. We
can also assume that the charts have been chosen so that φα(Uα) is
either Rd or Hd. The forms ραω have compact support

supp ραω ⊂ supp ρα ∩ suppω ⊂ Uα.
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Since each Uα is diffeomorphic to either Rd or to Hd, by the change
of variable formula, we already know that

∫

Uα

d(ραω) =

∫

∂Uα

ραω.

Note that ∂Uα = Uα ∩ ∂M , so by the linearity and the additivity of
the integral, we obtain

∫

M
dω =

∑

α

∫

M
d(ραω) =

∑

α

∫

Uα

d(ραω)

=
∑

α

∫

Uα∩∂M
ραω =

∫

∂M

∑

α

ραω =

∫

∂M
ω.

Corollary 21.1. Let M be an oriented, d-dimensional, manifold
without boundary. Then, for any ω ∈ Ωd−1

c (M), one has
∫

M
dω = 0.

Exercises

Exercise 21.1

Show that the integral of differential forms is linear and additive
relative to the region of integration.

Exercise 21.2

In Hd consider the standard orientation [µ] = [dx1 ∧ · · · ∧ dxd].
Show that the induced orientation in ∂Hd = Rd−1 is given by
[∂µ] = [(−1)ddx1 ∧ · · · ∧ dxd−1].

Exercise 21.3

Consider the n-torus Tn as an embedded submanifold of R2n:

Tn = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n : (xi)2+(yi)2 = 1, i = 1, . . . , n},

and let ω ∈ Ωn(Tn) be the form

ω =
(
dx1 ∧ · · · ∧ dxn

)
|Tn .
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Compute the integral
∫
Tn ω for an orientation of your choice, in the

following ways:

(a) using the definition;
(b) using Stokes formula.

Exercise 21.4

Find the volume of Sd for the standard volume form

µ =
d+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1

∣∣∣∣∣
Sd

.

Exercise 21.5

Let (M,g, [µ]) is an oriented Riemannian manifold with boundary,
with associated volume form µ and Hodge-star operator ∗ (see Exer-
cises 19.6 and 19.7). If f : M → R is a smooth, compactly supported
function, define the integral of f over M by

∫

M
f :=

∫

M
∗f.

If X is any vector field, prove the classical Divergence Theorem,
i.e.,

∫

M
divµX =

∫

∂M
X · n,

where n : ∂M → T∂MM is the unit exterior normal vector field along
∂M .

Exercise 21.6

Let M be an oriented Riemannian manifold with boundary. For any
smooth function f : M → R denote by ∂f

∂n the function n(f) : ∂M →
R, where n is the unit exterior normal vector field along ∂M . Verify
the following Green identities

∫

∂M
f
∂g

∂n
=

∫

M
〈grad f, grad g〉 −

∫

M
f∆g,

∫

∂M

(
f
∂g

∂n
− g

∂f

∂n

)
=

∫

M
(g∆f − f∆g),

where f, g ∈ C∞(M).
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Exercise 21.7

Let G be a Lie group of dimension d.

(a) Show that if ω,ω′ ∈ Ωd(G) are left invariant and [ω] = [ω′], then
∫

G
fω = a

∫

G
fω′, ∀f ∈ C∞(G),

for some real number a > 0.

Fix an orientation µ = [ω] for G defined by a left-invariant form
ω ∈ Ωd(G). Define the integral of f : G → R relative to this
orientation by

∫

G
f :=

∫

G
fω.

(b) Show that the integral is left invariant, i.e., for every g ∈ G is
valid the identity

∫

G
f ◦ Lg =

∫

G
f.

(c) Give an example of a Lie group where the integral is not right
invariant.

For each g ∈ G, the differential form R∗
gω is left invariant, hence

R∗
gω = λ̃(g)ω,

for some smooth function λ̃ : G → R. The modular function
λ : G→ R+ is defined to be λ(g) = |λ̃(g)|.

(d) Show that the integral is right invariant if and only if G is uni-
modular, i.e., if and only if λ ≡ 1.

(e) Show that a compact Lie group is unimodular.

Exercise 21.8

Let G be a compact Lie group and let Φ : G → GL(V ) be a repre-
sentation of G. Show that there exists an inner product 〈 , 〉 in V
such that this representation is by orthogonal transformations, i.e.,
such that

〈Φ(g) · v,Φ(g) ·w〉 = 〈v,w〉, ∀g ∈ G.

Hint : Use the fact that a compact Lie group is unimodular.
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Exercise 21.9

Let G be a compact Lie group. Show that G has a bi-invariant
Riemannian metric, i.e., a Riemannian metric which is both right
and left invariant.

Hint : A left-invariant Riemannian metric in G is also right invariant
if and only if the inner product 〈 , 〉 induced in g 0 TeG satisfies:

〈Ad(g) ·X,Ad(g) · Y 〉 = 〈X,Y 〉, ∀g ∈ G,X, Y ∈ g.
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Lecture 22

de Rham Cohomology

The equation d2 = 0, which so far we have made little use, has in
fact some deep consequences, as we shall see in this and the next
lectures.

Definition 22.1. A form ω ∈ Ωk(M) is called

(i) a closed form if dω = 0.
(ii) an exact form if ω = dη, for some η ∈ Ωk−1(M).

We will denote by Zk(M), respectively Bk(M), the subspaces of
closed, respectively exact, differential forms of degree k.

In other words, the closed forms form the kernel of d, while the
exact forms form the image of d. The pair (Ω(M),d) is called the
de Rham complex of M and we will often represent it as

· · · !! Ωk−1(M) d !! Ωk(M) d !! Ωk+1(M) !! · · ·

The fact that d2 = 0 means that every exact form is closed, in other
words

Bk(M) ⊂ Zk(M).

One should think of (Ω(M),d) as a set of differential equations
associated with the manifold M . Finding the closed forms, means to
solve the differential equation

dω = 0.

On the other hand, the exact forms can be thought of as the triv-
ial solutions of this equation. The space of all solutions modulus

213
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the trivial solutions will give important global information about the
manifold.

Definition 22.2. The de Rham cohomology space of degree k
is the vector space

Hk(M) := Zk(M)/Bk(M).

In general, the computation of the cohomology spaces Hk(M)
directly from the definition is very hard. In the next lectures, we will
study several properties enjoyed by the de Rham cohomology which
allows for its computation. For now, we list some easy consequences
of the definition and we look at a very simple example.

Proposition 22.1. Let M be a smooth manifold. Then,

(i) H0(M) = Rl, where l is the number of connected components
of M ;

(ii) Hk(M) = {0}, if k < 0 or k > dimM .

Proof. We have Ω0(M) = C∞(M) and if f ∈ C∞(M) satisfies
df = 0, then f is locally constant. Hence

Z0(M) = Rl,

where l is the number of connected components ofM . Since B0(M) =
{0}, we have that H0(M) = Rl. On the other hand, since Ωk(M) =
{0} if k > dimM , the result follows.

Example 22.1. Let M = S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. Since S1
is connected, it follows that

H0(S1) = R.

In order to compute H1(S1), consider the 1-form

ω := (−ydx+ xdy)|S1 .

Since dim(S1) = 1, ω is closed. On the other hand, consider
the parameterization σ :]0, 2π[→ S1 − {(1, 0)}, given by σ(t) =
(cos t, sin t). Then
∫

S1
ω =

∫

]0,2π[
σ∗ω =

∫

]0,2π[
(− sin t)d cos t+cos td sin t =

∫ 2π

0
dt = 2π.
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By Corollary 21.1, we conclude that ω is not exact, so it represents
a non-zero cohomology class [ω] ∈ H1(S1).

The form ω has a simple geometric meaning. Since σ∗ω = dt, we
have that ω = dθ in S1 − {(1, 0)}, where θ : S1 − {(1, 0)} → R is
the angle coordinate (the inverse of the parameterization σ). So ω
extends dθ to the whole circle and often one denotes ω by dθ. But
note that ω is not an exact form. We claim that [ω] is a basis for
H1(S1).

Since ω is nowhere vanishing, given any α ∈ Ω1(S1) we must have
α = fω, for some function f : S1 → R. Set

c :=
1

2π

∫

S1
α =

1

2π

∫ 2π

0
f(θ)dθ,

and define g : R→ R by

g(t) =

∫ t

0
(α − cω) =

∫ t

0
(f(θ)− c)dθ.

We find

g(t+ 2π) =

∫ t+2π

0
(f(θ)− c)dθ

=

∫ t

0
(f(θ)− c)dθ +

∫ t+2π

t
(f(θ)− c)dθ

= g(t) +

∫ 2π

0
(f(θ)− c)dθ = g(t),

so we can think of g as a smooth function g : S1 → R. In S1−{(1, 0)},
we have that

dg = f(θ)dθ − cdθ = α− cω.

Hence, we must have dg = α−cω in S1 so that [α] = c[ω]. This shows

that [ω] generates H1(S1) so we conclude that H1(S1) % R.

The wedge product ∧ : Ωk(M) × Ωl(M) → Ωk+l(M) induces the
product in the de Rham cohomology of M called the cup product
given by

[α] ∪ [β] := [α ∧ β].
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We leave it as an exercise to check that this definition is independent
of the choice of representatives of the cohomology classes. With this
product the space

H•(M) =
⊕

k∈Z
Hk(M)

becomes a Z-graded ring (in fact, a Z-graded algebra over R).
Given a map Φ : M → N , pull-back gives a linear map Φ∗ :

Ω•(N)→ Ω•(M) which commutes with the differentials

Φ∗dω = d(Φ∗ω).

Therefore, Φ∗ takes closed (respectively, exact) forms to closed
(respectively, exact) forms, and we have an induced map in coho-
mology

Φ∗ : H•(N)→ H•(M), [ω] )−→ [Φ∗ω].

This linear map satisfies:

(i) It is a ring homomorphism: Φ∗([α] ∪ [β]) = Φ∗[α] ∪ (Φ∗[β];
(ii) If Φ : M → N and Ψ : N → Q are smooth maps, then the

composition (Ψ ◦ Φ)∗ : H•(Q) → H•(M) satisfies (Ψ ◦ Φ)∗ =
Φ∗ ◦Ψ∗;

(iii) The identity map Id : M → M induces the identity map
H•(M)→ H•(M).

In particular, when Φ : M → N is a diffeomorphism, the induced
linear map is an isomorphism in cohomology Φ∗ : H•(N)→ H•(M).
Hence, de Rham cohomology ring is an invariant of differentiable
manifolds.

Corollary 22.1. If M and N are diffeomorphic, then H•(M) and
H•(N) are isomorphic rings.

Note that the differential takes a compactly supported form to a
compactly supported form, so we have another complex (Ωc(M),d).

Definition 22.3. The compactly supported de Rham coho-
mology space of degree k is the vector space:

Hk
c (M) := Zk

c (M)/Bk
c (M),
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where Zk
c (M) ⊂ Ωk

c (M), respectively Bk
c (M) ⊂ Ωk

c (M), denotes the
subspaces of closed, respectively exact, compactly supported forms
of degree k.

The inclusion Ωk
c (M) ⊂ Ωk(M) gives a linear map in cohomology:

Hk
c (M)→ Hk(M).

When M is compact this is just the identity map, but for a general
M it may be neither injective nor surjective:

• given a closed form ω ∈ Ωk(M) one may not be able to find a
cohomologous form ω + dη with compact support, and

• given an exact form ω = dη ∈ Ωk
c (M) one may not be able to find

a primitive η′ with compact support.

Hence, Hk
c (M) and Hk(M) can be very different.

Proposition 22.2. Let M be a smooth manifold. Then:

(i) H0
c (M) = Rs, where s is the number of compact connected com-

ponents of M ;
(ii) Hk

c (M) = {0}, if k < 0 or k > dimM .

Proof. If f ∈ C∞
c (M) satisfies df = 0, then f is constant in the

compact connected components of M and is zero in the non-compact
connected components. Since B0

c (M) = {0}, we conclude that

H0
c (M) = Rs,

where s is the number of compact connected components of M .

The wedge product of forms induces a cup product

∪ : Hk
c (M)×H l

c(M)→ Hk+l
c (M), [α] ∪ [β] := [α ∧ β],

so we have a Z-graded ring (in fact, a Z-graded algebra):

H•
c (M) =

⊕

k∈Z
Hk

c (M).
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Pullback by a smooth map Φ : M → N of a form ω with compact
support is a form Φ∗ω that may fail to have compact support. How-
ever, if Φ is a proper map, we do have an induced ring homomorphism

Φ∗ : H•
c (N)→ H•

c (M).

This satisfies properties analogous to (i)–(iii) above. Hence, com-
pactly supported cohomology is also an invariant of differentiable
manifolds.

Remark 22.1 (A Crash Course in Homological Algebra —
Part I ). The de Rham complex (Ω•(M),d) and the compactly
supported de Rham complex (Ω•

c(M),d) are examples of cochain
complexes. In general, a cochain complex is a pair (C,d) where:

(a) C is a Z-graded vector space, i.e., C = ⊕k∈ZCk is the direct sum
of vector spaces1;

(b) d : C → C is a linear transformation of degree 1, i.e., d(Ck) ⊂
Ck+1, and such that d2 = 0.

One represents a complex (C,d) by a diagram

· · · !! Ck−1 d !! Ck d !! Ck+1 !! · · ·

The transformation d is called the differential of the complex.
For any cochain complex, (C,d) one defines the subspace of all

cocycles to be the kernel of d, denoted

Zk(C) := {z ∈ Ck : dz = 0},

and the subspace of all coboundaries to be the image of d, denoted

Bk(C) := {dz : z ∈ Ck−1}.

The relation d2 = 0 implies that Bk(C) ⊂ Zk(C), so one can define
the cohomology of the complex (C,d) by

H•(C) :=
⊕

k∈Z
Hk(C), where Hk(C) :=

Zk(C)

Bk(C)
.

1More generally, one can consider complexes formed by Z-graded modules over
commutative rings with unit (e.g., abelian groups).



June 15, 2024 15:45 Lectures on Differential Geometry 9in x 6in b5406-ch22 FA1 page 219

de Rham Cohomology 219

Given two cochain complexes (A,dA) and (B,dB), a cochain
map of degree d is a linear map f : A→ B such that

(a) f shifts the grading by d, i.e., f(Ak) ⊂ Bk+d;
(b) f commutes with the differentials, i.e., fdA = dBf .

One can represent such a cochain map by the commutative diagram

· · · !! Ak−1 dA !!

f
""

Ak dA !!

f
""

Ak+1 !!

f
""

· · ·

· · · !! Bk+d−1
dB

!! Bk+d
dB

!! Bk+d+1 !! · · ·

A cochain map f : A → B takes cocycles to cocycles and cobound-
aries to coboundaries. Hence, it induces a linear map in cohomology,
denoted by the same letter

f : H•(A)→ H•+d(B).

Most often we consider cochain maps of degree 0, and omit mention-
ing the degree.

The study of cochain complexes and cochain maps is one of the
central themes of Homological Algebra (see, e.g., Weibel, 1994).

Exercises

Exercise 22.1

Show that H1(R) = 0 and H1
c (R) ,= 0.

Exercise 22.2

Show that H1(R2) = H2(R2) = 0.

Exercise 22.3

Show that H1(Td) = Rd.

Hint : Show that a basis for H1(Td) is given by {[dθ1], . . . , [dθd]},
where (θ1, . . . , θd) are the angles on each S1 factor.

Exercise 22.4

Consider the 2-sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

(a) Show that H1(S2) = 0.
(b) Show that the 2-form in R3 given by

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.
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induces by restriction to S2 a non-zero cohomology class [ω] ∈
H2(S2).

Hint : For (a), use the fact that a closed 1-form in R2 is always exact.

Exercise 22.5

Applying de Rham cohomology, prove that T2 and S2 are not diffeo-
morphic manifolds.

Exercise 22.6

Show that if M is a compact, orientable, d-manifold, then
Hd(M) ,= 0.

Exercise 22.7

Prove that H2(RP2) = 0.

Hint : Consider the projection π : S2 → RP2.

Exercise 22.8

Show that the wedge product ∧ : Ωk(M) × Ωl(M) → Ωk+l(M)
induces a well-defined product ∪ in the de Rham cohomology of M ,
which makes H(M) = ⊕kHk(M) into a ring.

Exercise 22.9

A symplectic form on a manifold M of dimension 2n is a 2-form
ω ∈ Ω2(M) such that dω = 0 and ∧nω is a volume form. Show that
if M is compact and admits some symplectic form, then H2k(M) ,= 0
for k = 0, . . . , n.

Hint : Use the ring structure of H•(M).
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Lecture 23

The de Rham Theorem

We saw in the previous lecture that de Rham cohomology is an invari-
ant of differentiable manifolds. Actually, it is a topological invariant:
two smooth manifolds whose underlying topological spaces are home-
omorphic have the same de Rham cohomology. This is a consequence
of the famous de Rham Theorem, which identifies de Rham coho-
mology with singular cohomology. In this lecture, we will present the
ingredients and the statement of this result. We will not give a com-
plete proof, since it requires more advanced material going beyond
the scope of this lecture.

Singular Homology

We recall the definition of the singular homology of a topological
spaceM . Although we will continue to use the letter M , the following
discussion only uses the topology of M . We denote by ∆k ⊂ Rk+1

the standard k-simplex

∆k :=

{
(t0, . . . , tk) ∈ Rk+1 :

k∑

i=0

ti = 1, ti ≥ 0

}
.

Note that ∆0 = {1} has only one element (see Figure 23.1).

221
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210∆ ∆ ∆

Fig. 23.1. The standard k-simplex for k = 0, 1, 2.

Definition 23.1. A singular k-simplex in M is a continuous map
σ : ∆k →M . A singular k-chain is a formal linear combination

c =
p∑

i=1

aiσi,

where ai ∈ R and the σi are singular k-simplices.

We will denote by Sk(M ;R) the set of all singular k-chains. It is
a real vector space. In fact, formally, Sk(M ;R) is the free vector
space generated by the set of all singular k-simplices. One can also
consider other abelian rings as coefficients besides R, but here we
will consider only real coefficients, since this is the case of interest to
relate to differential forms.

We define the i-face map of the standard k-simplex, where 0 ≤
i ≤ k, to be the map εi : ∆k−1 → ∆k defined by

εi(t0, . . . , tk−1) := (t0, . . . , ti−1, 0, ti, . . . , tk−1).

These face maps of the standard k-simplex induce face maps εi of
any singular k-simplex σ : ∆k →M by setting

εi(σ) := σ ◦ εi.

These clearly extend by linearity to any k-chain, yielding linear maps

εi : Sk(M ;R)→ Sk−1(M ;R).

Definition 23.2. The boundary of a k-chain c is the (k−1)-chain

∂c :=
k∑

i=0

(−1)iεi(c).

The geometric meaning of this definition is that we consider the
faces of each simplex with a certain choice of signs, which one should
view as a kind of orientation of the faces (see Figure 23.2).
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σ

ε0(σ)
−ε1(σ)

ε2(σ)

Fig. 23.2. The boundary of a 2-simplex.

Example 23.1. The boundary of the standard 2-simplex σ = id:
∆2 → R3 is the chain

∂σ = ε0(σ)− ε1(σ) + ε2(σ),

where ε0, ε1 and ε2 are the 1-simplices (faces) given by

ε0(σ)(t0, t1) = (0, t0, t1), ε1(σ)(t0, t1) = (t0, 0, t1),

ε2(σ)(t0, t1) = (t0, t1, 0).

The choice of signs can be thought of as orientations of the faces of
the simplex.

Also, the 1-simplices ε0, ε1, and ε2 have boundaries the 0-chains

∂ε0(σ)(1) = ε0(σ)(0, 1) − ε0(σ)(1, 0) = (0, 0, 1) − (0, 1, 0),

∂ε1(σ)(1) = ε1(σ)(0, 1) − ε1(σ)(1, 0) = (0, 0, 1) − (1, 0, 0),

∂ε2(σ)(1) = ε2(σ)(0, 1) − ε2(σ)(1, 0) = (0, 1, 0) − (1, 0, 0).

Note that

∂2σ = ∂(∂σ) = ∂ε0(σ)− ∂ε1(σ) + ∂ε2(σ) = 0.

In this example, we have ∂2σ = 0. This is actually a general fact
which is a consequence of the judicious choice of signs and parame-
terizations of the faces. We leave its proof as an exercise.

Lemma 23.1. For every singular chain c, ∂(∂c) = 0.

In this way, we obtain a complex (S(M ;R), ∂) represented by the
diagram

· · · Sk−1(M ;R)!! Sk(M ;R)∂!! Sk+1(M ;R)∂!! · · ·!!
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One calls (S(M ;R), ∂) the complex of singular chains in M . The
homology of the complex (S(M ;R), ∂) is called the singular homol-
ogy of M with real coefficients, and is denoted

Hk(M ;R) := Zk(M ;R)
Bk(M ;R) .

Remark 23.1 (A Crash Course in Homological Algebra —
Part II ). For a cochain complex, the differential increases the
degree, while for the singular chains above the differential decreases
the degree. In general, we call a complex C = ⊕k∈ZCk where the
differential decreases the degree

· · · Ck−1
!! Ck

∂!! Ck+1
∂!! · · ·!!

a chain complex. We say that z ∈ Ck is a cycle if ∂z = 0 and we
say that z is a boundary if z = ∂b. In this case, one defines the
homology of the complex (C, ∂) to be vector space

H(C) := ⊕k∈ZHk(C), with Hk(C) :=
Zk(C)

Bk(C)
,

where Zk(C) is the subspace of all cycles and Bk(C) is the subspace
of all boundaries. Note the position of the indices as subscripts.

Given a complex (C, ∂) where the differential decreases degrees,
one can define a new complex (C̄,d) by setting C̄k := C−k and
d = ∂, obtaining a complex where the differential increases degrees.
Therefore, these conventions are somewhat arbitrary.

If Φ : M → N continuous map, then for any singular simplex
σ : ∆k → M , we have that Φ∗(σ) := Φ ◦ σ : ∆k → N is a singular
simplex in N . We extend this map to any chain c =

∑
j ajσj by

requiring linearity to hold

Φ∗(c) :=
∑

j

aj(Φ ◦ σj).

It follows that Φ∗ : S(M ;R)→ S(N ;R) is a chain map

· · · Sk−1(M ;R)!!

Φ∗
""

Sk(M ;R)∂!!

Φ∗
""

Sk+1(M ;R)∂!!

Φ∗
""

· · ·!!

· · · Sk−1(N ;R)!! Sk(N ;R)∂!! Sk+1(N ;R)∂!! · · ·!!
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Therefore, Φ∗ induces a linear map in singular homology:

Φ∗ : H•(M ;R)→ H•(N ;R).

One checks easily that this assignment satisfies the following two
properties:

(i) If Φ : M → N and Ψ : N → Q are continuous maps, then

(Ψ ◦ Φ)∗ = Ψ∗ ◦Φ∗;

(ii) The identity map id: M → M induces the identity map in
homology

id∗ = id : H•(M ;R)→ H•(M ;R).

From these, it follows that singular homology is a topological
invariant.

Corollary 23.1. If M and N are homeomorphic then H•(M,R) )
H•(N,R).

Smooth Singular Homology

Assume now that M is a smooth manifold. The chain complex
(S•(M ;R), ∂) has a subcomplex (S∞

• (M ;R), ∂) consisting of the
smooth singular k-chains:

S∞
k (M ;R) =

{
p∑

i=1

aiσi : σi : ∆
k →M is smooth

}

This is a sub complex because if c ∈ S∞
k (M ;R) is a smooth k-chain,

then so is ∂c ∈ S∞
k (M ;R).

Remark 23.2. Even when c is smooth, the use of the term “singu-
lar” is justified by the absence of any assumption on the differentials
of the maps σi: in general, a smooth k-simplex does not parameterize
any submanifold and its image may be a rather pathological subset
of M .
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One has the following important fact:

Proposition 23.1. The inclusion S∞
• (M,R) ↪→ S•(M,R) induces

an isomorphism in homology:

H(S∞
• (M,R)) ) H(S•(M,R)).

This proposition says that

(i) every class in H•(M ;R) has a representative c which is a C∞

cycle, and
(ii) if c and c′ are C∞ cycles such that c− c′ = ∂b for some C0 chain

b, then c− c′ = ∂b′ for some C∞ chain b′.

Hence, smooth singular homology and singular homology coin-
cide. The proof of the previous proposition is beyond the scope of
these notes (see, e.g., Warner, 1983).

Singular Cohomology

One defines the singular cohomology of M by dualizing. First, one
defines the space of singular k-cochains with real coefficients to be
the vector space dual to Sk(M ;R)

Sk(M ;R) := Hom(Sk(M ;R),R).

We have a singular differential obtained by transposing the sin-
gular boundary operator:

d : Sk(M ;R)→ Sk+1(M ;R), (dl)(c) = l(∂c), ∀c ∈ Sk(M ;R).

It follows that d2 = 0, so we have a cochain complex (S•(M ;R),d).
The corresponding cohomology is called the singular cohomology
of M with real coefficients and is denoted by H•(M ;R).

Remark 23.3. A more explicit form of the singular differential is
as follows. Since the k-simplices form a basis for the vector space
Sk(M,R) a linear map l : Sk(M,R) → R amounts to a collection of
real numbers l = (lσ), indexed by all singular simplices (so lσ = l(σ)).



June 29, 2024 15:40 Lectures on Differential Geometry 9in x 6in b5406-ch23 FA2 page 227

The de Rham Theorem 227

Then the singular differential dl ∈ Sk+1(M ;R) is given by the col-
lection ((dl)σ) indexed by k + 1-simplices defined by

(dl)σ =
k+1∑

i=0

(−1)ilεi(σ).

If Φ : M → N we can transpose the map Φ∗ : Sk(M ;R) →
Sk(N ;R), obtaining a linear map Φ∗ : Sk(N ;R) → Sk(M ;R) which
is a cochain map, i.e., that satisfies

Φ∗d = dΦ∗.

This yields a linear map in singular cohomology Φ∗ : H•(N ;R) →
H•(M ;R), which satisfies the obvious functorial properties, and
hence cohomology is a topological invariant.

Proposition 23.2. If M and N are homeomorphic then
H•(M,R) ) H•(N,R).

Of course, one can also consider smooth singular k -cochains

Sk
∞(M ;R) := Hom(S∞

k (M ;R),R).

which form a complex (S•
∞(M ;R),d). There is an obvious restriction

map

Sk(M ;R)→ Sk
∞(M ;R), l +→ l|Sk

∞(M ;R),

which is easily checked to be a cochain map. The induced map in
cohomology is an isomorphism (see Warner, 1983).

Proposition 23.3. The restriction map Sk(M ;R) → Sk
∞(M ;R)

yields an isomorphism in cohomology

H(S•(M ;R),d) ) H(S•
∞(M ;R),d).

For this reason, in the sequel, we will not distinguish between
these cohomologies.

Singular Cohomology vs. de Rham Cohomology

We now take advantage of the fact that singular cohomology and
differentiable singular cohomology coincide to relate it with the
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de Rham cohomology. For that, we start by explaining how one can
integrate differential forms over singular chains.

First, observe that one can parameterize the standard k-simplex
∆k by the map φ : ∆k

0 → ∆k, where

∆k
0 :=

{

(x1, . . . , xk) : xi ≥ 0,
k∑

i=1

xi ≤ 1

}

φ(x1, . . . , xk) :=

(
1−

k∑

i=1

xi, x1, . . . , xk
)
,

Hence, if ω ∈ Ωk(U) is a k-form which is defined in some open set
U ⊂ Rk+1 containing the standard k-simplex ∆k, one can write

φ∗ω = f(x1, . . . , xk)dx1 ∧ · · · ∧ dxk,

and define ∫

∆k
ω :=

∫

∆k
0

fdx1 · · · dxk.

Next, given any differential form ω ∈ Ωk(M) on a smooth man-
ifold M , we define the integral of ω over a smooth simplex
σ : ∆k →M to be the real number∫

σ
ω :=

∫

∆k
σ∗ω.

We extend this definition to any smooth singular k-chain c =∑p
j=1 ajσj by linearity

∫

c
ω :=

p∑

j=1

aj

∫

σj

ω.

Note that, unlike the case of integration over manifolds, there is now
no assumption neither about the orientability of M nor about the
support of ω.

We leave it to the exercises the proof of the following version of
Stokes formula for chains.

Theorem 23.1 (Stokes II). Let M be a smooth manifold, ω ∈
Ωk−1(M) and c a smooth singular k-chain. Then,

∫

c
dω =

∫

∂c
ω.
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Now we can define an integration map I : Ω•(M) → S•
∞(M ;R)

by setting

I(ω)(σ) :=

∫

σ
ω,

for any ω ∈ Ωk(M) and σ ∈ S∞
k (M ;R).

Proposition 23.4. The integration map I : (Ω•(M),d) → (S•
∞(M ;

R),d) is a chain map

I(dω) = dI(ω).

Proof. This follows from the following computation

(I(dω))(σ) =

∫

σ
dω =

∫

∂σ
ω = I(ω)(∂σ) = (dI(ω))(σ),

where we used Stokes formula for chains and the fact that the singular
differential is the transpose of the singular coboundary operator.

Therefore, the integration map descends to the level of
cohomology.

Theorem 23.2 (de Rham). For any smooth manifold the integra-
tion map

I : Hk(M)→ Hk(M ;R), I([ω])([σ]) :=

∫

σ
ω,

is an isomorphism.

There is also a cup product in singular cohomology and one can
show that the integration map is actually a ring isomorphism (see
the exercises). For a proof of de Rham’s theorem see, e.g., Warner
(1983, Chapter 5).

Corollary 23.2. Two homeomorphic manifolds have isomorphic
de Rham cohomologies.

For example, the different exotic smooth structures on the spheres
all have the same de Rham cohomology.
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Exercises

Exercise 23.1

Show that for every singular chain c one has ∂(∂c) = 0.

Exercise 23.2

Give a proof of Stokes formula for singular chains, by showing the
following:

(a) It is enough to prove the formula for chains consisting of a sin-
gular simplex.

(b) It is enough to prove the formula for the standard k-simplex
∆k

0 ⊂ Rk.
(c) It is enough to prove the formula for (k− 1)-differential forms in

Rk of the type:

ω = fdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk.

(d) Show that
∫

∆k
0

dω =

∫

∂∆k
0

ω,

where ω is a differential form of the type (c).

Exercise 23.3

In the torus Td = S1 × · · ·× S1 consider the 1-chains cj : [0, 1]→ Td

given by

cj(t) := (1, . . . , e2πit, . . . , 1) (j = 1, . . . , d).

Show that

(a) The cj ’s are 1-cycles, i.e., ∂cj = 0.
(b) The cj ’s are not 1-boundaries.
(c) The classes {[c1], . . . , [cd]} ⊂ H1(Td,R) form a linearly indepen-

dent set.

Hint : Use the Stokes formula.

Exercise 23.4

By the de Rham’s Theorem, exterior product induces a product

∪ : Hk(M ;R)×H l(M : R)→ Hk+l(M ;R),
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so that H•(M ;R) becomes a ring. This is also called the cup prod-
uct. Here is one way of constructing it directly.

(a) Show that for l < k and 0 ≤ i0 < · · · < il ≤ k one has maps
εi0,...,il : ∆

l → ∆k, defined by

εi0,...,il(t0, . . . , tl) := (s0, . . . , sk),

where

{
sl = 0, if l /∈ {i0, . . . , il}
sij = tj, otherwise.

(b) Show that if c1 ∈ Sk(M ;R) and c2 ∈ Sl(M ;R) the formula

(c1 ∪ c2)(σ) := c1(σ ◦ ε1,...,k)c2(σ ◦ εk+1,...,k+l),

defines an element c1 ∪ c2 ∈ Sk+l(M ;R).
(c) Show that for any chains c1 ∈ Sk(M ;R) and c2 ∈ Sl(M ;R) one

has

d(c1 ∪ c2) = (dc1) ∪ c2 + (−1)kc1 ∪ (dc2).

It follows that one can define ∪ : Hk(M ;R) × H l(M ;R) → Hk+l

(M ;R) by

[c1] ∪ [c2] := [c1 ∪ c2].

If I : Ωk(M)→ Sk
∞(M) is the integration map, in general, I(ω∧η) /=

I(ω) ∪ I(η). However, show that this equality holds at the level of
cohomology, i.e.,

I([ω] ∧ [η]) = I([ω]) ∪ I([η]), [ω] ∈ Hk(M), [η] ∈ H l(M).

Exercise 23.5

Let Sk(M,Z) ⊂ Sk(M,R) be the subgroup consisting of all integral
singular k-simplex, i.e., all formal linear combinations

c =
p∑

i=1

niσi,

where ni ∈ Z and the σi are singular k-simplices. So Sk(M,Z) is the
free abelian group generated by the set of all singular k-simplices.
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(a) Show that Sk(M,Z) ⊂ (Sk(M,R), ∂) is a subcomplex of abelian
groups. The corresponding homology groups are denoted
Hk(M,Z) and are called the integral singular homology
groups of M .

(b) Dually, define the complex of singular integral cochains (Sk(M,
Z),d) by

Sk(M,Z) := Hom(Sk(M,Z),Z), dc(σ) := c(∂σ).

Denoting by Hk(M,Z) the corresponding integral singular
cohomology groups, show that there is a group homomor-
phism:

i : Hk(M,Z)→ Hk(M,R).

Exercise 23.6

Let (S∞
k (M,Z), ∂) be the complex of smooth integral singular chains

and let (Sk
∞(M,Z),d) be the complex of smooth integral singular

cochains (see previous problem). It is a fact that these complexes
still compute the integral singular homology and cohomology of M ,
i.e., we have

Hk(S
∞
• (M,Z), ∂) = Hk(M,Z), Hk(S•

∞(M,Z),d) = Hk(M,Z).
Assuming this, show that

(a) There is a homomorphism of abelian groups

I : Hk(M,Z)→ Hk(M).

(b) For a closed-form ω ∈ Ωk(M), the set

Per(ω) :=

{∫

c
ω : [c] ∈ Hk(S

∞
• (M,Z), ∂)

}
⊂ R,

is an additive subgroup. It is called the group of periods of ω.
(c) A cohomology class [ω] ∈ Hk(M) belongs to the image of

the homomorphism I : Hk(M,Z) → Hk(M) if and only if
Per(ω) ⊂ Z.



June 29, 2024 15:46 Lectures on Differential Geometry 9in x 6in b5406-ch24 FA2 page 233

Lecture 24

Homotopy Invariance and
Mayer–Vietoris Sequence

We shall now study some properties of de Rham cohomology which
are very useful in the computation of these rings in specific examples.

The Poincaré Lemma

We start with the simplest example of manifold, namely M = Rd.
In order to compute its cohomology, we compare the cohomologies
of M and of M × R, for an arbitrary smooth manifold M .

Proposition 24.1. For a manifold M, let π : M × R → M be the
projection and i : M →M × R the inclusion map given by

M ×R
π
!!

M

i

"" i(p) = (p, 0),
π(p, t) = p.

The induced maps i∗ : H•(M × R) → H•(M) and π∗ : H•(M) →
H•(M × R) are inverse to each other.

Since H0(R0) = R and Hk(R0) = 0 if k #= 0, repeated use of the
proposition gives the cohomology of Euclidean space.

233
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Corollary 24.1 (Poincaré Lemma).

Hk(Rd) = Hk(R0) =

{
R if k = 0,

0 if k #= 0.

In other words, in Rd every closed form of positive degree is exact.

We now turn to the proof of Proposition 24.1. For that, we will
need a bit more of homological algebra and the notion of of homotopy
operator.

Remark 24.1 (A Crash Course in Homological Algebra
— Part III ). Given two cochain complexes (A,d) and (B,d), a
homotopy operator between cochain maps f, g : A → B is a lin-
ear map h : A→ B of degree −1, such that

f − g = ±(dh± hd)

(the choice of signs is irrelevant). In this case, we also say that f and
g are homotopic cochain maps and we express it by the diagram

· · · ## Ak−1 d ##

f
!!

g
!!$$②②

②②
②②
②②
②②

Ak d ##

f
!!

g
!!

h

$$②②
②②
②②
②②

Ak+1 ##

f
!!

g
!!

h

$$②②
②②
②②
②②
②

· · ·

$$②②
②②
②②
②②

· · · ## Bk−1
d

## Bk
d

## Bk+1 ## · · ·

Since ±(dh ± hd) maps closed forms to exact forms, it induces
the zero map in cohomology. Hence, homotopic chain maps f and g
induce the same map in cohomology

f∗ = g∗ : H
•(A)→ H•(B).

Proof of Proposition 24.1. Note that π◦i = Id, hence i∗◦π∗ = Id.
To complete the proof, we need to check that π∗ ◦ i∗ = Id. For this,
we construct a homotopy operator h : !•(M × R) → !•−1(M × R)
such that

Id− π∗ ◦ i∗ = dh+ hd.

For that we observe that differential k-form θ ∈ !k(M × R) can be
expressed as a locally finite sum

θ =
∑

i

θi,
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where each θi ∈ !k(M × R) falls into one of the following two
types

f1 π
∗ω1, f2 dt ∧ π∗ω2,

with ω1 and ω2 differential forms in M of degree k and k−1, respec-
tively, and f1, f2 : M × R → R smooth functions. So, we define the
homotopy operator h for each of these types of forms by setting

f1 π
∗ω1 (−→ 0, f2 dt ∧ π∗ω2 (−→

∫ t

0
f2(x, s)ds π

∗ω2.

Then we extend it by linearity to all forms. We need to check that h
is indeed a homotopy operator, i.e., that we have

(Id− π∗ ◦ i∗)θ = (dh+ dh)θ. (24.1)

In order to check this, we show that it holds for each of the two types
of the form above. Since h extends by linearity, it follows that (24.1)
holds for any form θ.

• Let θ = θ1 := f1 π∗ω1 ∈ !k(M × R). Then

(Id− π∗ ◦ i∗)θ1 = θ1 − π∗(f1(x, 0)ω1) = (f1(x, t)− f1(x, 0))π
∗ω1.

On the other hand,

(dh+ hd)θ1 = hdθ1

= h ((df1 ∧ π∗ω1 + f1π
∗dω1)

= h

(
∂f1
∂t

dt1 ∧ π∗ω1

)

=

∫ t

0

∂f1
∂t

(x, s)ds π∗ω1 = (f1(x, t) − f1(x, 0))π
∗ω1.

Hence, (24.1) holds for the first type of forms.
• Let θ = θ2 := f2 dt ∧ π∗ω2. On the one hand,

(Id− π∗ ◦ i∗)θ2 = θ2.
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On the other hand, in any local coordinates (U, xi) for M , we find

(dh+ hd)θ2 = d

(∫ t

0
f2(x, s)ds π

∗ω2

)

+ h

(
∑

i

∂f2
∂xi

dxi ∧ dt ∧ π∗ω2 − f2dt ∧ π∗dω2

)

= f2(x, t)dt ∧ π∗ω2 +
∑

i

∫ t

0

∂f2
∂xi

ds dxi ∧ π∗ω2

+

∫ t

0
f2(x, s)ds dπ∗ω2

−
∑

i

∫ t

0

∂f2
∂xi

ds dxi ∧ π∗ω2 −
∫ t

0
f2(x, s)ds π

∗dω2

= f2(x, t)dt ∧ π∗ω2 = θ2.

Therefore, (24.1) also holds for the second type of forms.

Homotopy Invariance

Proposition 24.1 is actually a very special case of a general property
of cohomology, which loosely says that if a manifold can be contin-
uously deformed into another manifold then their cohomologies are
isomorphic. In order to formulate a precise statement, we make the
following definition.

Definition 24.1. Let Φ,Ψ : M → N be smooth maps. A smooth
homotopy between Φ and Ψ is a smooth map H : M×R→ N such
that

H(p, t) =

{
Φ(p) if t ≤ 0,

Ψ(p) if t ≥ 1.

Often, one defines a smooth homotopy between Φ and Ψ to be a
smooth map H : M × [0, 1] → N such that

H(p, 0) = Φ(p), H(1, p) = Ψ(p), p ∈M.
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It is easy to see that the two definitions are equivalent. We also have
the following less obvious facts (for a proof, see Hirsch, 1994):

(i) two smooth maps are smooth homotopic iff they are
C0-homotopic;

(ii) any continuous map between two smooth manifolds is
C0-homotopic to a smooth map.

Theorem 24.1 (Homotopy Invariance). If Φ,Ψ : M → N are
smooth homotopic maps then Φ∗ = Ψ∗ : H•(N)→ H•(M).

Proof. Denote by π : M × R → M the projection and i0, i1 : M →
M × R the sections

i0(p) = (p, 0) and i1(p) = (p, 1).

By Proposition 24.1, i∗0 and i∗1 are linear maps which both invert π∗,
so they must coincide: i∗0 = i∗1.

Now, let H : M ×R→ N be a homotopy between Φ and Ψ. Then
Φ = H ◦ i0 and Ψ = H ◦ i1. At the level of cohomology, we find

Φ∗ = (H ◦ i0)∗ = i∗0 H∗,

Ψ∗ = (H ◦ i1)∗ = i∗1 H∗.

Since i∗0 = i∗1, we conclude that Φ∗ = Ψ∗.

We say that two manifolds M and N have the same homotopy
type if there exist smooth maps Φ : M → N and Ψ : N → M such
that Ψ ◦ Φ and Φ ◦ Ψ are homotopic to idM and idN , respectively.
A manifold is said to be contractible if it has the same homotopy
type as a point (i.e., R0).

Corollary 24.2. If M and N have the same homotopy type, then
H•(M) + H•(N). In particular, if M is a contractible manifold,
then

Hk(M) =

{
R if k = 0,

0 if k #= 0.

Example 24.1. An open set U ⊂ Rd is called star-shaped if there
exists some x0 ∈ U such that for any x ∈ U , the segment tx+(1−t)x0
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lies in U . We leave it as an exercise to show that a star-shaped open
set U is contractible, so that

Hk(U) =

{
R if k = 0,

0 if k #= 0.

Example 24.2. The manifold M = Rd+1 \ {0} has the same homo-
topy type as Sd. This follows because the inclusion i : Sd ↪→ Rd+1\{0}
and the projection π : Rd+1 \ {0} → Sd, x (→ x

‖x‖ , are homotopic
inverses to each other. Hence,

H•(Sd) = H•(Rd+1 \ {0}).

Note that we don’t know yet how to compute H•(Rd+1 \ {0})!

Mayer–Vietoris Sequence

Let us discuss now another important property of cohomology, which
allows to compute the cohomology of a space by decomposing it into
more elementary pieces of which we already know the cohomology.

Theorem 24.2 (Mayer–Vietoris Sequence). Let M be a smooth
manifold and let U, V ⊂ M be open subsets such that M = U ∪ V .
There exists a long exact sequence:

## Hk(M) ## Hk(U)⊕Hk(V ) ## Hk(U ∩ V )
δ ## Hk+1(M) ##

The proof will require a bit more of homological algebra.

Remark 24.2 (A Crash Course in Homological Algebra —
Part IV ). A sequence of vector spaces and linear maps

· · · ## Ck−1 fk−1 ## Ck fk ## Ck+1 ## · · ·

is called exact if Im fk−1 = Ker fk. An exact sequence of the form

0 ## A
f ## B

g ## C ## 0

is called a short exact sequence. This means that
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(i) f is injective,
(ii) Im f = Ker g, and
(iii) g is surjective.

Given any exact sequence ending in trivial vector spaces

0 ## C0 ## · · · ## Ck ## · · · ## Cd ## 0

the alternating sum of the dimensions of the spaces in the sequence
is zero:

d∑

i=0

(−1)i dimCi = 0.

We leave the (easy) proof for the exercises.
A short exact sequence of complexes

0 ## (A•,d)
f ## (B•,d)

g ## (C•,d) ## 0

can be represented by a large commutative diagram where all rows
are exact

0 ## Ak+1 f ##

""

Bk+1 g ##

""

Ck+1 ##

""

0

0 ## Ak f ##

d

""

Bk g ##

d

""

Ck ##

d

""

0

0 ## Ak−1 f ##

d

""

Bk−1 g ##

d

""

Ck−1 ##

d

""

0"" "" ""

An important basic fact about short exact sequence of complexes is
that they possess an associated long exact sequence in cohomology

· · · ## Hk(A)
f ## Hk(B)

g ## Hk(C) δ ## Hk+1(A) ## · · ·

where δ : Hk(C) → Hk+1(A) is called the connecting homomor-
phism. The fact that Im f = Ker g follows immediately from the
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definition of a short exact sequence. On the other hand, the identities
Im g = Ker δ and Im δ = Ker f follow from the way δ is constructed,
which we will now describe.

For the construction of δ one should keep in mind the large com-
mutative diagram above. Given a cocycle c ∈ Ck so that dc = 0, it
follows from the fact that the rows are exact that there exists b ∈ Bk

such that g(b) = c. Since the diagram commutes, we have

g(db) = dg(b) = dc = 0.

Using again that the rows are exact, we conclude that there exists a
unique a ∈ Ak+1 such that f(a) = db. Note that

f(da) = df(a) = d2b = 0,

and since f is injective, we have da = 0, i.e., a is cocycle. In this way,
we have associated to a cocycle c ∈ Ck a cocycle a ∈ Ak+1.

This association depends on a choice of an intermediate element
b ∈ Ck. If we choose a different b′ ∈ Ck such g(b′) = c, we obtain a
different element a′ ∈ Ak+1. However, noting that

g(b− b′) = g(b′)− g(b) = c− c = 0,

we see that there exist ā ∈ Ak such that f(ā) = b − b′. Hence, we
find

f(a− a′) = f(a)− f(a′) = db− db′ = df(ā) = f(dā).

Since f is injective, we conclude that a−a′ = dā. This shows that dif-
ferent intermediate choices lead to elements in the same cohomology
class.

Finally, note that this assignment associates a coboundary to a
coboundary. In fact, if c ∈ Ck is a coboundary, i.e., c = dc′, then
there exists b′ ∈ Ck−1 such that g(b′) = c′. Moreover,

g(b − db′) = g(b)− dg(b′) = c− dc′ = 0.

Therefore, there exists a′ ∈ Ak such that f(a′) = b− db′, and

f(a− da′) = f(a)− df(a′) = db− db+ d2b′ = 0.

Since f is injective, we conclude that a = da′ is a coboundary, as
claimed.
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In conclusion, there is a well-defined map in cohomology

δ : Hk(C)→ Hk+1(A), [c] (→ [a].

We leave it as an exercise to check, using this definition, that Im g =
Ker δ and Im δ = ker f .

Proof of Theorem 24.2. We claim that we have a short exact
sequence

0 ## !•(M) ## !•(U)⊕ !•(V ) ## !•(U ∩ V ) ## 0

where the first map is given by

ω (→ (ω|U ,ω|V ),

while the second map is defined by

(θ, η) (→ θ|U∩V − η|U∩V .

The corresponding long exact sequence in cohomology yields the
statement of the theorem. It remains to prove the claim:

• Since M = U ∪ V, the first map is injective.
• It is clear from the definitions that the image of the first map is
contained in the kernel of the second map. On the other hand, if
(θ, η) ∈ !•(U) ⊕ !•(V ) belongs to the kernel of the second map,
then

θ|U∩V = η|U∩V .

Hence, we can define a smooth differential form in M by

ωp =

{
θp if p ∈ U,

ηp if p ∈ V.

Therefore, the image of the first map coincides with the kernel of
the second map.

• Finally, let α ∈ !•(U ∩V ) and choose a partition of unity {ρU , ρV }
subordinated to the cover {U, V }. Then ρV α ∈ !•(U) and ρUα ∈
!•(V ) and the effect of the second map on this pair of forms is

(ρV α,−ρUα) (→ ρV α+ ρUα = α.

Therefore, the second map is surjective.
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Example 24.3. We saw in Example 22.1 how to find H•(S1). One
can use the Mayer–Vietoris sequence to compute the cohomology of
Sd for d ≥ 2.

Let U = Sd \ {pN} and V = Sd \ {pS}, where pN , pS ∈ Sd are the
north and south poles. Note that Sd = U ∪ V and:

(i) U and V are contractible, since the stereographic projections
πN : U → Rd and πS : V → Rd are diffeomorphism;

(ii) U ∩ V is diffeomorphic to Rd \ {0} (via any of the stereographic
projections) and by Example 24.2 Rd\{0} as the same homotopy
type as Sd−1.

Therefore,

• If k ≥ 1, the Mayer–Vietoris sequence gives

· · · ## 0⊕ 0 ## Hk(Sd−1)
δ ## Hk+1(Sd) ## 0⊕ 0 ## · · ·

Hence, Hk+1(Sd) + Hk(Sd−1). By induction, we conclude that

Hk(Sd) + Hk−1(Sd−1) + · · · + H1(Sd−k+1).

• Since U , V, and U∩V are connected, the first terms of this sequence
are

0 ## R ## R⊕ R ## R δ ## H1(Sd) ## 0 ## · · ·

Since the alternating sum of the dimensions must be zero, it follows
that dimH1(Sd) = 0, if d ≥ 2.

Since H1(S1) = R, we conclude that

Hk(Sd) =
{
R if k = 0 or d,

0 otherwise.

Compactly Supported Cohomology

As we saw in the previous lecture, compactly supported cohomology
does not behave functorially under smooth maps. Still this cohomol-
ogy behaves functorially under proper maps and, because of this,
compactly supported cohomology still satisfies properties analogous,
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but distinct, to the properties we have studied for de Rham coho-
mology.

Proposition 24.2. Let M be a smooth manifold. Then,

H•
c (M × R) + H•−1

c (M).

Proof. Note that if π : M × R → M is the projection and ω #= 0,
then π∗ω does not have compact support. Instead, we claim that one
has “push-forward” maps

π∗ : !
•+1
c (M ×R)→ !•

c(M), e∗ : !
•
c(M)→ !•+1

c (M × R).

which are cochain maps, homotopic inverse to each other.
We start by constructing π∗, which is known as integration along

the fibers. For that note that every compactly supported k-form in
M × R is a locally finite sum of forms of the types

f1 π
∗ω1, f2 π

∗ω2 ∧ dt,

where ω1 ∈ !k
c (M), ω1 ∈ !k−1

c (M) and f1, f2 : M × R → R are
compactly supported smooth functions. The map π∗ is defined on
these two types of forms by

f1 π
∗ω1 (−→ 0, f2 π

∗ω2 ∧ dt (−→
∫ +∞

−∞
f2(x, t)dt ω2,

and extended by linearity to arbitrary forms.
On the other hand, in order to construct e∗ one chooses some

compactly supported 1-form θ = g(t)dt ∈ !1
c(R) with

∫
R θ = 1 and

sets

e∗ : ω → π∗ω ∧ θ.

It follows from these definitions of π∗ and e∗ that

π∗ ◦ e∗ = Id, dπ∗ = π∗d, e∗d = de∗.

To finish the proof, we check that e∗ ◦π∗ is homotopic to the identity.
We leave it as an exercise to check that the map h : !•

c(M × R) →
!•−1
c (M × R) defined on forms of the two types by

f1 π
∗ω1 (−→ 0,

f2 π
∗ω2 ∧ dt (−→

(∫ t

−∞
f2(x, s)ds−

∫ +∞

−∞
f2(x, s)ds

∫ t

−∞
g(s)ds

)
π∗ω2,

is indeed a homotopy from e∗ ◦ π∗ to the identity.
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The proposition shows that compactly supported cohomology is
not invariant under homotopy. On the other hand, the repeated use
of the proposition shows that the Poincaré Lemma must be modified
as follows.

Corollary 24.3 (Poincaré Lemma for compactly supported
cohomology).

Hk
c (Rd) =

{
R if k = d,

0 if k #= d.

Next, we construct the Mayer–Vietoris sequence for compactly
supported cohomology. Note that if U, V ⊂ M are open sets with
U ∪ V = M , the inclusions U, V ↪→M , U ∩ V ↪→ U and U ∩ V ↪→ V
give a short exact sequence

0 !•
c(M)%% !•

c(U)⊕ !•
c(V )%% !•

c(U ∩ V )%% 0%%

where the two maps are

(θ, η) (→ θ + η, ω (→ (−ω,ω).

Hence, it follows that

Theorem 24.3 (Mayer–Vietoris sequence for compactly sup-
ported cohomology). Let M be a smooth manifold and U, V ↪→M
open subsets such that M = U∪V . There exists a long exact sequence

Hk
c (M)%% Hk

c (U)⊕Hk
c (V )%% Hk

c (U ∩ V )%%

Hk−1
c (M)δ%% %%

Note that in the Mayer–Vietoris sequence for compact supported
cohomology the inclusions U, V ↪→M , U ∩ V ↪→ U and U ∩ V ↪→ V
induce maps in the same direction, while for the ordinary de Rham
cohomology, the inclusions are reversed in the sequence. In the next
lecture, we will relate these two cohomology theories, and this will
explain all the differences of behavior that we have just discussed.
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Exercises

Exercise 24.1

Let h : !k(M ×R)→ !k−1(M ×R) be the homotopy operator used
in the proof of Proposition 24.1. Show that h can be written in either
of the following more invariant forms:

(a) If E = t ∂∂t ∈ X(M×R) is the Euler vector field and ψs : M×R→
M × R the family of maps ψs(x, t) = (x, st), then

h(θ) =

∫ 1

0

1

s
(ψs)∗iEθ ds,

(b) If E is the Euler vector field and φsE(x, t) = (x, est) its flow, then

h(θ) =

∫ 0

−∞
(φsE)

∗iEθ ds,

(c) Use the second expression and Cartan Calculus to prove that h
verifies (24.1).

Hint : The flow φsX of a vector field X satisfies d
ds(φ

s
X)∗ω =

(φsX)∗LXω.

Exercise 24.2

Show that a star-shaped open set is contractible.

Exercise 24.3

Let i : N ↪→M be a submanifold. We say that a map r : M → N is
a retraction of M in N if r ◦ i = IdN and that N is a deformation
retract of M if there exists a retraction r : M → N such that i ◦ r
is homotopic to IdM . Show the following:

(a) If N is a deformation retract of M , then H•(N) + H•(M).
(b) Show that S2 is a deformation retract of R3 \ {0}.
(c) Show that T2, viewed as a submanifold of R3 as in Example 8.4,

is a deformation retract of R3 \{L∪S} where L is the z-axis and
S is the circle in the xy-plane of radius R and center the origin.

Exercise 24.4

In Remark 24.2, show that the connecting homomorphism in the long
exact sequence satisfies Im g = Ker δ and Im δ = ker f .
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Exercise 24.5

Given a long exact sequence of vector spaces

0 ## C0 ## · · · ## Ck ## · · · ## Cd ## 0

show that
d∑

i=0

(−1)i dimCi = 0.

Exercise 24.6

Use the Mayer–Vietoris sequence to compute the cohomology of T2

and RP2.

Exercise 24.7

Complete the construction of the Mayer–Vietoris sequence for com-
pactly supported cohomology, by showing that

0 !•
c(M)%% !•

c(U)⊕ !•
c(V )%% !•

c(U ∩ V )%% 0%%

is a short exact sequence of complexes.

Exercise 24.8

Find H•
c (Rd \ {0}).

Hint : Apply Mayer–Vietoris with M = Sd, U = Sd \ {pN} and V =
Sd \ {pS}.

Exercise 24.9

Let M be the Möbius strip. Find H•
c (M).

Exercise 24.10

Let M be an orientable manifold of dimension d. Show that
Hd

c (M) #= 0.

Hint : Consider a form fω where ω is a volume form and f ∈ C∞
c (M)

is a non-negative compactly supported function.
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Lecture 25

Computations in Cohomology
and Applications

The Mayer–Vietoris sequence yields a very useful technique to com-
pute cohomology by induction. In this lecture, we will see that it also
allows to extract many properties of cohomology. In order to apply
it, it is useful to cover M by open sets whose intersections have trivial
cohomology.

Definition 25.1. An open cover {Uα} of a smooth manifold M is
called a good cover if all finite intersections Uα1 ∩ · · · ∩ Uαk are
diffeomorphic to Rd. We say that M is a manifold of finite type
if it admits a finite good cover.

Proposition 25.1. Every smooth manifold M admits a good cover.
If M is compact then it admits a finite good cover.

Sketch of Proof. Let g be a Riemannian metric for M .1 A clas-
sical result in Riemannian geometry shows that each point p ∈ M
has a strong geodesically convex neighborhood Up, i.e., a neighbor-
hood such that for any two points q, q′ ∈ Up, there exists a unique
length minimizing geodesic in Up which connects q and q′. One checks
that

1This proof requires some knowledge of Riemannian geometry. If you are not
familiar with the notion of geodesics, you may wish to skip the proof and admit
the result as valid.

247
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(i) a strong geodesically convex open set is diffeomorphic to Rd, and
(ii) the intersection of two strong geodesically convex open sets is a

strong geodesically convex open set.

It follows that a cover {Up}p∈M by strong geodesically convex open
neighborhoods is a good cover of M .

If M is compact, then any good cover has a finite subcover which
is also good.

Finite-Dimensional Cohomology

As a first application of good covers and the Mayer–Vietoris
sequence, we show that the cohomology is finite-dimensional under
mild assumptions.

Theorem 25.1. If M is a manifold of finite type, then the cohomol-
ogy spaces Hk(M) and Hk

c (M) have finite dimension.

Proof. For any two open sets U and V, the Mayer–Vietoris sequence:

· · · !! Hk−1(U ∩ V )
δ !! Hk(U ∪ V )

r !! Hk(U)⊕Hk(V ) !! · · ·

shows that

Hk(U ∪ V ) % Im δ ⊕ Im r.

Hence, if the cohomologies of U , V , and U ∩V are finite-dimensional,
then so is the cohomology of U ∪ V.

Now we can use induction on the number of open sets in a cover,
to show that manifolds which admit a finite good cover have finite-
dimensional cohomology:

• If M is diffeomorphic to Rd the Poincaré Lemma shows that M
has finite-dimensional cohomology.

• Now assume that all manifolds admitting a good cover with at most
n open sets have finite-dimensional cohomology. Let M be mani-
fold which admits a good cover with n+1 open sets {U1, . . . , Un+1}.



June 29, 2024 15:48 Lectures on Differential Geometry 9in x 6in b5406-ch25 FA2 page 249

Computations in Cohomology and Applications 249

We observe that the open sets:

Un+1,

U1 ∪ · · · ∪ Un, and

(U1 ∪ · · · ∪ Un) ∩ Un+1 = (U1 ∩ Un+1) ∪ · · · ∪ (Un ∩ Un+1),

all have finite-dimensional cohomology, since they all admit a
good cover with at most n open sets. Hence, the cohomology of
M = U1 ∪ · · · ∪ Un+1 is also finite-dimensional.

The proof for compactly supported cohomology is similar.

Poincaré Duality

We saw in Lecture 22 that the exterior product induces a ring mul-
tiplication in cohomology, denoted

∪ : Hk(M)×H l(M)→ Hk+l(M), [ω] ∪ [η] ≡ [ω ∧ η].

Obviously, if η has compact support then ω ∧ η also has compact
support, hence we also obtain also a “product”

∪ : Hk(M)×H l
c(M)→ Hk+l

c (M).

Now, Stokes formula shows that the integral of differential forms
descends to the level of cohomology. Hence, if M is an oriented man-
ifold of dimension d we obtain a bilinear form

Hk(M)×Hd−k
c (M)→ R, ([ω], [η]) *→

∫

M
ω ∧ η. (25.1)

Theorem 25.2 (Poincaré duality). If M is an oriented manifold
of finite type the bilinear form (25.1) is non-degenerate. In particular,
one has

Hk(M) % Hd−k
c (M)∗.
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Remark 25.1 (A Crash Course in Homological Algebra —
Part V ). For the proof, we recall the following useful fact from
Homological Algebra.

Lemma 25.1 (Five Lemma). Consider a commutative diagram of
homomorphisms of vector spaces where the rows are exact

A
f1 !!

α
""

B
f2 !!

β
""

C
f3 !!

γ
""

D
f4 !!

δ
""

E

ε
""

A′ f ′
1 !! B′ f ′

2 !! C ′ f ′
3 !! D′ f ′

4 !! E′

If α, β, δ, and ε are isomorphisms, then γ is also an isomorphism.

The proof of this lemma is by diagram chasing and is left as an
easy exercise.

Proof of Theorem 25.2. The bilinear form (25.1) yields a linear
map Hk(M) → Hd−k

c (M)∗. Them, if U and V are open sets, one
checks easily that the Mayer–Vietoris sequences for Ω• and Ω•

c give
a diagram of long exact sequences

!! Hk(U ∪ V ) !!

""

Hk(U) ⊕ Hk(V ) !!

""

Hk(U ∩ V )
δ !!

""

Hk+1(U ∪ V )

""

!!

!! Hd−k
c (U ∪ V )∗ !! Hd−k

c (U)∗ ⊕ Hd−k
c (V )∗ !! Hd−k

c (U ∩ V )∗
δ∗!! Hd−k−1

c (U ∪ V )∗ !!

which is commutative up to signs. For example, we have
∫

U∩V
ω ∧ δθ = ±

∫

U∪V
δω ∧ τ.

If we apply the Five Lemma to this diagram, we conclude that if
Poincaré duality holds for U , V , and U ∩ V, then it also holds for
U ∪ V.

Now let M be a manifold with a finite good cover. We show that
Poincaré duality holds using induction on the cardinality of the cover.

• If the cover has only one element, i.e., if M % Rd, the Poincaré
Lemmas give

Hk(Rd) =

{
R if k = 0,

0 if k += 0.
Hk

c (Rd) =

{
R if k = d,

0 if k += d.
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Since (·, ·) : H0(Rd) × Hd
c (Rd) → R is non-zero, it is non-

degenerate.
• Now assume that Poincaré duality holds for any manifold admit-
ting a good cover with at most n open sets. If M is a manifold
which admits an open cover {U1, . . . , Un+1} with n+ 1 open sets,
we note that the open sets:

Un+1, U1 ∪ · · · ∪ Un, and

(U1 ∪ · · · ∪ Un) ∩ Un+1 = (U1 ∩ Un+1) ∪ · · · ∪ (Un ∩ Un+1),

all satisfy Poincaré duality, since they all admit a good cover with
at most n open sets. It follows that M = U1 ∪ · · · ∪ Un+1 also
satisfies Poincaré duality.

Corollary 25.1. If M is a compact oriented manifold, then

Hk(M) % Hd−k(M).

Remark 25.2. IfM does have a finite good cover, so the cohomology
of M may be infinite-dimensional, it is possible to show that one still
has an isomorphism

Hk(M) % (Hd−k
c (M))∗.

However, in general, one does not have a dual isomorphism
Hd−k

c (M) % Hk(M)∗. The reason is that while the dual of direct
product is a direct sum, the dual of an infinite direct sum is not a
direct product. We discuss an example in the exercises.

Corollary 25.2. Let M be a connected manifold of dimension d.
Then,

Hd
c (M) %

{
R if M is orientable,

0 if M is not orientable.

In particular, if M is compact and connected of dimension d, then
M is orientable if and only if Hd(M) % R.

Proof. By Poincaré duality, if M is a connected orientable manifold
of dimension d, then (Hd

c (M))∗ % H0(M) % R. The proof of the
converse is left as an exercise.
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Triangulations and Euler’s Formula

As another application of the Mayer–Vietoris sequence, we show how
the familiar Euler’s formula for regular polygons can be extended to
any compact manifold M admitting a triangulation.2

A regular simplex is a simplex σ : #d → M which can be
extended to a diffeomorphism σ̃ : U → σ̃(U) ⊂ M , where U is
some open neighborhood of #d. We have defined before the (d− 1)-
dimensional faces of a simplex σ : #d → M . For a regular simplex,
these are regular (d − 1)-simplices εi(σ) : #d−1 → M of dimen-
sion (d − 1). By iterating this construction we obtain the (d − k)-
dimensional faces of a simplex, which are regular (d−k)-simplices
εi1,i2,...,id−k(σ) : #

d−k →M .

Definition 25.2. A triangulation of a compact manifold M of
dimension d is a finite collection {σi} of regular d-simplices such
that

(i) the collection {σi} covers M , and
(ii) if two simplices in {σi} have non-empty intersection, then there

intersection σi ∩ σj is a face of both simplices σi and σj.

Figure 25.1 illustrates condition (ii) for dimensions 2 and 3. Note
that on the top subdivisions the condition is satisfied while on the
bottom the condition fails.

If M is a manifold with finite-dimensional cohomology (e.g., if M
is compact) one defines the Euler characteristic of M to be the
integer χ(M) given by

χ(M) := dimH0(M)− dimH1(M) + · · · + (−1)d dimHd(M).

Applying Poincaré duality we conclude this integer must be zero for
odd-dimensional manifolds.

Corollary 25.3. If M is a compact oriented odd-dimensional man-
ifold then χ(M) = 0.

2Actually, one can show that every smooth compact manifold can be triangu-
lated. This result is very technical and we will not be discuss in these lectures.
See Manolescu (2014) for an historical account and references.
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Fig. 25.1. Triangulations vs. non-triangulations in dimensions 2 and 3.

On the other hand, for even-dimensional manifolds the Euler char-
acteristic is, in general, non-zero and can be computed using a tri-
angulation.

Theorem 25.3 (Euler’s Formula). If M is a compact manifold
of dimension d, then for any triangulation

(−1)dχ(M) = r0 − r1 + · · · + (−1)drd,

where ri denotes the number of faces of dimension i of the triangu-
lation.

Proof. Fix a triangulation {σ1,σ2, . . . ,σrd} of M and define open
sets

Vk := M \ {k-faces of the triangulation}.

We claim that for 0 ≤ k ≤ d− 1 we have

χ(M) = χ(Vk) + (−1)d(r0 − r1 + · · ·+ (−1)krk). (25.2)

Assuming this claim, since

Vd−1 =
rd⋃

j=1

int(σj),

and each open set int(σj) is contractible, we have Hk(Vd−1) = 0, for
k > 0. Hence

χ(Vd−1) = dimH0(Vd−1) = rd.

This identity and (25.2) show that Euler’s formula holds.
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U0

Fig. 25.2. The open set U0.

It remains to prove (25.2). We first verify it for k = 0. For
each 0-dimensional face we can choose disjoint open neighborhoods
U0,1, . . . , U0,r0 , each diffeomorphic to the open ball Bd

1 = {x ∈ Rd :
‖x‖ < 1}. We set (see Figure 25.2)

U0 :=
r0⋃

i=0

U0,i.

Note that V0 ∪ U0 = M . Since each U0,i is contractible, we have

dimHk(U0) =

{
r0, if k = 0,

0, if k += 0.

On the other hand, the intersection V0 ∩U0,i deformation retracts in
Sd−1, hence

dimHk(V0 ∩ U0) =

{
r0, if k = 0, d− 1,

0, if k += 0, d− 1.

We can apply the Mayer–Vietoris argument to the pair (U0, V0).
Assuming d > 2, this sequence gives the following information.

(i) The lowest degree terms in the sequence are

0 !! H0(M) !! H0(U0)⊕H0(V0) !! H0(U0 ∩ V0) !!

!! H1(M) !! 0⊕H1(V0) !! 0



June 29, 2024 15:48 Lectures on Differential Geometry 9in x 6in b5406-ch25 FA2 page 255

Computations in Cohomology and Applications 255

so it follows that

dimH0(M)− dimH0(U0)− dimH0(V0)

+dimH0(U0 ∩ V0)− dimH1(M) + dimH1(V0) = 0.

Since M and V0 have the same number of connected components we
find

dimH0(M) = dimH0(V0).

On the other hand, the number of connected components of U0 and
V0 ∩ U0 are also the same, hence we conclude that

dimH1(M) = dimH1(V0).

(ii) For 1 < k < d− 1, the Mayer–Vietoris sequence gives

0 !! Hk(M) !! 0⊕Hk(V0) !! 0

Hence

dimHk(M) = dimHk(V0).

(iii) Finally, the last terms in the sequence give

0 !! Hd−1(M) !! 0⊕Hd−1(V0) !! Hd−1(U0 ∩ V0) !!

!! Hd(M) !! 0⊕Hd(V0) !! 0

Since dimHd−1(U0 ∩ V0) = r0, we conclude that

dimHd−1(M)− dimHd−1(V0)+ dimHd−1(V0)− dimHd(M) = −r0.

When d = 2, we obtain exactly the same results except that we
can consider the whole sequence at once.

In any case, we conclude that

χ(M) =
d∑

i=0

(−1)i dimH i(M)

=
d∑

i=0

(−1)i dimH i(V0) + (−1)dr0 = χ(V0) + (−1)dr0,

which yields (25.2) if k = 0.



June 29, 2024 15:48 Lectures on Differential Geometry 9in x 6in b5406-ch25 FA2 page 256

256 Lectures on Differential Geometry

Fig. 25.3. The open set U1.

In order to prove (25.2) when k = 1, we can proceed as follows.
For each 1-face, we choose open disjoint neighborhoods U1,1, . . . , U1,r1

of the (1-faces)-(0-faces), diffeomorphic to (int #1) × Bd−1
1 , and we

define the open set (see Figure 25.3)

U1 :=
r1⋃

i=0

U1,i.

We have that V0 = U1 ∪ V1. Moreover, U1 is a disjoint union of
r1 contractible open sets, while U1 ∩ V1 as the same homotopy type
as the disjoint union of (d − 2)-spheres. Using the Mayer–Vietoris
sequence, exactly like in the case k = 0. one shows that

χ(V0) = χ(V1) + (−1)d−1r1.

In general, for each k, we choose open disjoint neighborhoods
Uk,1, . . . , Uk,rk of {k-faces} − {(k − 1)-faces}, diffeomorphic to
(int #k)×Bd−k

1 , and define

Uk :=
rk⋃

i=0

Uk,i.

We have that Vk−1 = Uk ∪Vk, where Uk is a union of rk contractible
open sets, while Uk ∩ Vk as the same homotopy type as the disjoint
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union of (d− k − 1)-spheres. Applying Mayer–Vietoris sequence one
then shows that

χ(Vk−1) = χ(Vk) + (−1)d−krk.

This proves (25.2) and finishes the proof of Euler’s formula.

Exercises

Exercise 25.1

Give an example of a connected manifold which is not of finite type.

Exercise 25.2

Prove the Five Lemma. Are there weaker conditions on the maps α,
β, ε and δ, so that the conclusion still holds?

Exercise 25.3

Check the commutativity, up to signs, of the diagram of long exact
sequences that appears in the proof of Poincaré duality.

Exercise 25.4

Show that

(a) dimHk(Td) =
(
d
k

)
;

(b) dimH2k(CPd) = 1 if 2k ≤ d, and 0 otherwise.

Exercise 25.5

Let M be a connected manifold of dimension d, which is not ori-
entable. Prove that

Hd
c (M) = 0,

by proceeding as follows. Let M̃ori denote the orientation cover of M
(see Exercise 19.4). Show the following:

(a) M̃ is a connected orientable manifold of dimension d;

(b) The map Φ : M̃ → M̃ , (p, [µp]) *→ (p,−[µp]) is a diffeomorphism
that changes orientation and satisfies:

, = , ◦Φ, Φ ◦ Φ = Id;
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(c) Given ω̃ ∈ Ωk(M̃), there exists ω ∈ Ωk(M) such that ω̃ = ,∗ω
iff Φ∗ω̃ = ω̃;

(d) Conclude that one must have Hd
c (M) = 0.

Exercise 25.6

Let M1,M2, . . . , be orientable d-dimensional manifolds of finite type
and consider the disjoint union of the Mi:

M =
+∞⋃

i=1

Mi.

Show that

(a) Hk(M) =
∏+∞

i=1 Hk(Mi);
(b) Hk

c (M) =
⊕+∞

i=1 H
k
c (Mi);

(c) Conclude that there exists an isomorphism: Hk(M) %
(Hd−k

c (M))∗;
(d) Give an example of an orientable M with Hd−k

c (M) not isomor-
phic to Hk(M)∗.

Exercise 25.7

Consider the two subdivisions of the square [0, 1] × [0, 1] in
Figure 25.4.

(a) Verify that only one of these subdivisions induces a triangulation
of T2;

(b) Compute r0, r1 and r2 for this triangulation.

Fig. 25.4. Subdivisions of [0, 1]× [0, 1].
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Exercise 25.8

Let M and N be connected compact manifolds of dimension d. The
connected sum ofM andN (see Figure 25.5) is the manifoldM#N
obtained by gluingM and N along the boundary of open sets U ⊂M
and V ⊂ N both diffeomorphic to the ball {x ∈ Rd : ‖x‖ < 1}. Show
that the Euler characteristics satisfy

χ(M#N) = χ(M) + χ(N)− χ(Sd).

Conclude that the Euler characteristic of a compact, oriented, surface
of genus g (i.e., with g holes) is 2− 2g.

Fig. 25.5. Connected sum of M and N .
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Lecture 26

The Degree and the Index

We saw in the previous lecture that a connected manifold M of
dimension d is orientable if and only if Hd

c (M) ! R. Note that a
choice of orientation forM determines a generator of Hd

c (M). In fact,
in this case, integration

Hd
c (M)→ R, [ω] #→

∫

M
ω

gives an isomorphism Hd
c (M) ! R. This isomorphism is really just

Poincaré duality, since M being connected H0(M) is the space
of constant functions in M . In the sequel, we will often use the
same symbol µM to denote the orientation of M and the generator
µM ∈ Hd

c (M) that corresponds to the constant function 1.
Now let Φ : M → N be a proper map between connected, oriented

manifolds of the same dimension d. The induced isomorphism in
cohomology

Φ∗ : Hd
c (N)→ Hd

c (M),

together with the canonical isomorphisms Hd
c (M) ! R and

Hd
c (N) ! R, allow to associate to Φ a real number called the degree

of the map. We formulate this more explicitly as follows.

Definition 26.1. Let Φ : M → N be a proper map between con-
nected, oriented manifolds of the same dimension d. The degree of

261
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Φ is the unique real number degΦ such that
∫

M
Φ∗ω = degΦ

∫

N
ω,

for every differential form ω ∈ Ωd
c(N).

Our next aim is to give a geometric characterization of the degree
which allows also for its computation. For simplicity, we consider
only the case where both manifolds are compact, but you may wish
to try to extend these results to any proper map. First, we observe
the following property of the degree.

Proposition 26.1. Let Φ : M → N be a smooth map between
compact, connected, oriented manifolds of the same dimension d. If
Φ is not surjective then degΦ = 0.

Proof. Let q0 ∈ N \ Φ(M). Since Φ(M) is closed, there is an open
neighborhood of q0 such that U ⊂ N \ Φ(M). Choose ω ∈ Ωd(N)
with support in U such that

∫
N ω &= 0. Then

0 =

∫

M
Φ∗ω = degΦ

∫

N
ω,

hence degΦ = 0.

The following geometric interpretation of the degree shows that
the degree is always an integer, something which is not obvious from
its definition.

Theorem 26.1. Let Φ : M → N be a smooth map between compact,
connected, oriented manifolds of the same dimension d. Let q ∈ N
be a regular value of Φ and for each p ∈ Φ−1(q) define

sgnpΦ :=

{
1 if dpΦ : TpM → TqN preserves orientations,

−1 if dpΦ : TpM → TqN switches orientations.

Then

degΦ =
∑

p∈Φ−1(q)

sgnpΦ.

In particular, the degree is an integer.
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Remark 26.1. If Φ−1(q) is empty then q is a regular value and we
convention that the sum is zero.

Proof. Let q be a regular value of Φ. If Φ−1(q) is empty, then Φ is not
surjective and the result follows from the previous proposition. On
the other hand, if Φ−1(q) is non-empty then it is a discrete subset of
M which, by compactness, must be finite, so Φ−1(q) = {p1, . . . , pN}.
We apply the following lemma.

Lemma 26.1. There exists a neighborhood V of q and disjoint neigh-
borhoods U1, . . . , UN of p1, . . . , pN such that

Φ−1(V ) = U1 ∪ · · · ∪ UN .

Assuming that this lemma holds, since each pi is a regular point,
we can further assume that V is the domain of a chart (y1, . . . , yd)
for N and that the restrictions Φ|Ui : Ui → V are diffeomorphisms.
Let

ω := fdy1 ∧ · · · ∧ dyd ∈ Ωd(N),

where f ≥ 0 has supp f ⊂ V . Obviously, we have

suppΦ∗ω ⊂ U1 ∪ · · · ∪ UN ,

so we find
∫

M
Φ∗ω =

N∑

i=1

∫

Ui

Φ∗ω.

Since each Φ|Ui is a diffeomorphism, the change of variables formula
gives

∫

Ui

Φ∗ω = ±
∫

V
ω = ±

∫

N
ω,

where the sign is positive if Φ|Ui preserves orientations and nega-
tive otherwise. Since Φ|Ui preserves orientations if sgnpi Φ > 0 and
switches orientations if sgnpi Φ < 0, we conclude that

∫

M
Φ∗ω =

N∑

i=1

sgnpi Φ

∫

N
ω.

This yields the formula for the degree of Φ in the statement.
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To finish the proof it remains to prove the lemma. Let O1, . . . , ON

be any disjoint open neighborhoods of p1, . . . , pN , and W a compact
neighborhood of q. The set W̃ ⊂M defined by

W̃ := Φ−1(W ) \ (O1 ∪ · · · ∪ON ),

is compact. Hence, Φ(W̃ ) is a compact set which does not contain q.

Therefore, there exists an open set V ⊂W \Φ(W̃ ) containing q and
we have

Φ−1(V ) ⊂ O1 ∪ · · · ∪ON .

If we let Ui := Oi ∩ Φ−1(V ) the lemma follows.

The degrees of two homotopic maps coincide since such maps
induce the same map in cohomology. This is a very useful fact in
computing degrees and can be explored to deduce the global prop-
erties of manifolds. A classic illustration of this is given in the next
example.

Example 26.1. Consider the antipodal map Φ : Sd → Sd, p #→ −p.
For the canonical orientation of the sphere Sd defined by the form

ω =
d+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1.

we see that Φ preserves or switches orientations if d is odd or even,
respectively. Since Φ−1(q) contains only one point, we conclude that

degΦ = (−1)d−1.

By the way, one can also compute the degree directly from the defi-
nition, since Φ∗ω = (−1)d−1ω so

∫

Sd
Φ∗ω = (−1)d−1

∫

Sd
ω.

One can use this fact to show that every vector field on a even-
dimensional sphere vanishes at some point. Let X ∈ X(S2d) be a
nowhere vanishing vector field. Then for each p ∈ S2d there exists
a unique semi-circle γp joining p to −p with γ′p(0) = X|p. It follows
that the map

H : S2d × [0, 1]→ S2d, (p, t) #→ γp(t),
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is a homotopy between Φ and the identity map. Hence, one would
have

−1 = degΦ = deg(id) = 1,

a contradiction.
Note that, in contrast, any odd degree S2d−1 ⊂ R2d admits the

nowhere vanishing vector field

X = x2
∂

∂x1
− x1

∂

∂x2
+ · · ·+ x2d

∂

∂x2d−1
− x2d−1 ∂

∂x2d
.

As another application of degree theory, we will introduce now the
index of a vector field at a zero. This will lead us to a famous formula
for the Euler characteristic of a manifold known as the Poincaré–Hopf
Theorem.

Consider first a vector field X defined in an open set U ⊂ Rd

which has an isolated zero at x0 ∈ U . We can view it as a map
X : U → Rd which vanishes at x0 and is non-zero in a deleted
neighborhood V \ {x0}. Let Dε(x0) ⊂ U be a closed disk of radius ε
centered at x0, which does not contain any other zero of X, and let
Sε := ∂Dε(x0) be the sphere of radius ε centered at x0. We introduce
the Gauss map

Gε : Sε → Sd−1, x #→ X(x)

‖X(x)‖ ,

and define the index of X at x0 to be the degree of the Gauss map

indx0 X := degGε.

Here, on both domain and target spheres, one considers the induced
orientation from Rd. The following result states that the degree is
independent of ε and is a diffeomorphism invariant.

Proposition 26.2. Let U ⊂ Rd be open and let X ∈ X(U) a vector
field with an isolated zero at x0.

(i) Any two Gauss maps Gε0 and Gε1 have the same degree.
(ii) If Φ : U → U ′ a diffeomorphism and X ′ = Φ∗X then

indx0 X = indΦ(x0)X
′.

Proof. We leave (i) as an exercise. To prove (ii), we assume that
Φ(x0) = x0 = 0 and that U is star-shaped with center 0.
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Assume first that Φ preserves orientations. The map

H(t, x) :=

{
1
tΦ(tx), if t > 0,

d0Φ(x), if t = 0.

is a homotopy between Φ and d0Φ, consisting of diffeomorphisms
that fix the origin. Since d0Φ preserves orientation it is homotopic to
the identity via linear isomorphisms. Hence, we see that there exists
a homotopy, via diffeomorphisms that fix the origin, between Φ and
the identity. It follows that the Gauss maps of X and X ′ = Φ∗X are
homotopic, so the indices of X and X ′ coincide.

If Φ switches orientations, composing with a reflection we obtain
a orientation preserving diffeomorphism. So to finish the proof it
remains to conside the case where Φ is a reflection. In this case, Φ is
a linear map, so

X ′ = Φ∗X = Φ ◦X ◦Φ−1.

The corresponding Gauss maps are then related by

G′
ε = Φ ◦Gε ◦Φ−1,

and so their degrees coincide.

Proposition 26.2 allows us to define the index for an arbitrary
vector field.

Definition 26.2. The index of a vector field X ∈ X(M) at an
isolated zero p0 ∈M is the integer

indp0 X := ind0 φ∗(X|U ),

where (U,φ) is any coordinate system centered at p0.

In some simple cases, it is possible to determine the index of a
vector field from its phase portrait. The pictures in Figure 26.1 give
some examples of planar vector fields with a zero and the value of its
index. You should check that the degree of the corresponding Gauss
maps is indeed the integer in each figure.

In general, it maybe hard to compute the index, but for non-
degenerate zeros of vector fields, there is a simple formula, as we will
now explain.
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Fig. 26.1. Index of vector fields.

Let X ∈ X(M) be a vector field and let p0 ∈ M be a zero of
X. Note that the zero section Z ⊂ TM and the fiber Tp0M ⊂ TM
intersect transversely at 0 ∈ Tp0M , since we have

T0(TM) = Tp0Z ⊕ Tp0(Tp0M) ! Tp0M ⊕ Tp0M,

where the isomorphism in the second factor is given by the differential
dp0π of the projection π : TM →M . Under this decomposition, the
differential of the vector field

dp0X : Tp0M → T0(TM).

has first component the identity, since π ◦X =idM , while the second
component is a linear map Tp0M → Tp0M . This linear map will be
denoted also by dp0X, and is called the linear approximation to
X at the zero p0. One can also view dp0X as a linear vector field on
the tangent space Tp0M .

In a chart (U, x1, . . . , xd) centered at p0 the vector field can be
written

X =
d∑

i=1

Xi ∂

∂xi
, where Xi(0) = 0.
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The linear approximation is the linear vector field on Tp0M

dp0X =
d∑

i,j=1

∂Xi

∂xj
(0)xj

∂

∂xi

∣∣∣∣
p0

,

and can be viewed as a linear map dp0X : Tp0M → Tp0M which
relative to the basis { ∂

∂x1

∣∣
p0
, . . . , ∂

∂xd

∣∣
p0
} represented by the matrix

[
∂Xi

∂xj
(0)

]d

i,j=1

.

Definition 26.3. A zero p0 of X ∈ X(M) is called non-degenerate
if the linear approximation dp0X : Tp0M → Tp0M is an invertible
linear transformation.

Non-degenerate zeros are always isolated and their indices can be
found easily.

Proposition 26.3. Let p0 ∈ M be a non-degenerate zero of X ∈
X(M). Then p0 is an isolated zero and

indp0 X =

{
+1, if det dp0X > 0,

−1, if det dp0X < 0.

Proof. Choose a local chart (U,φ) centered at p0. The vector field
φ∗(X|U ) has an associated Gauss map G : Sε → Sd−1 which is a dif-
feomorphism. This diffeomorphism preserves (respectively, switches)
orientations if and only if det dp0X > 0 (respectively, < 0). Hence
the result follows from Theorem 26.1.

Example 26.2. Consider R3 with coordinates (x, y, z). The vector
field

X = y
∂

∂x
− x

∂

∂y
∈ X(R3),

is tangent to the sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1} and hence
defines a vector field X ∈ X(S2), with exactly two zeros (the north
pole pN and the south pole pS; see Figure 26.2).
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Fig. 26.2. A vector field on S2 with two zeros.

The projection φ = (u, v) : (x, y, z) #→ (x, y) restricts on the upper
and lower hemispheres to local charts on S2 centered at pN and pS.
We have

φ∗X = v
∂

∂u
− u

∂

∂v
.

The matrix representation of the linear approximation to X at pN
and pS relative to the basis { ∂∂u ,

∂
∂v} is then given in both cases by

dpNX = dpSX =

[
0 1

−1 0

]
.

We conclude that pN and pS are non-degenerate zeros and:

indpN X = indpS X = 1.

In the previous example, the sum of the indices of the zeros the
vector field X ∈ X(S2) equals 2, so it coincides with the value of
the Euler characteristic of S2. This is an illustration of the following
famous result.

Theorem 26.2 (Poincaré–Hopf). Let X ∈ X(M) is a vector field
on a compact manifold with a finite number of zeros {p1, . . . , pN}.
Then,

χ(M) =
N∑

i=1

indpi X.

This beautiful theorem connects the topology of M with its
smooth structure, i.e., its tangent bundle. The proof will be given
in the last part of these notes where we will study bundle theory.
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Exercises

Exercise 26.1

Identify M = R2 with the field of complex numbers C. If Φ : C→ C
is a polynomial map of degree d, find degΦ.

Exercise 26.2

Show that for a manifold M of dimension d > 0 the identity map
Id : M →M is never homotopic to a constant map. Use this fact to
prove that there is no retraction of the closed unit disk Dd ⊂ Rd on
its boundary Sd−1 = ∂Dd.

Hint : If there was a retraction r : Dd → Sd−1 consider the map
H(x, t) = r(rx).

Exercise 26.3

Fix a 2× 2 matrix with integer entries

A =

(
a b

c d

)
.

Identifying T2 = R2/Z2, consider the map Φ : T2 → T2 defined by

Φ([x, y]) := [ax+ by, cx+ dy].

Determine degΦ.

Exercise 26.4

Let X : Rd → Rd be a vector field with an isolated zero at x = 0
and associated Gauss map Gε. Define G̃ε : Sd−1 → Sd−1 to be the
composition of Gε : Sε → Sd−1 with the map Sd−1 → Sε, x #→ εx.

(a) Show that deg G̃ε = degGε.
(b) Show that for any ε0, ε1 > 0 the maps G̃ε0 and G̃ε1 are homo-

topic.
(c) Conclude that the degree of the Gauss map Gε is independent

of ε.

Exercise 26.5

Identify M = R2 with the field of complex numbers C. Show that
the polynomial map z #→ zk defines a vector field in R2 which has
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a zero at the origin of index k. How would you change z #→ zk to
obtain a vector field with a zero of index −k?

Exercise 26.6

Find the index of the zeros of the following vector fields in R2:

(a) x ∂
∂x ± y ∂

∂y ;

(b) (x2y + y3) ∂∂x − (x3 + xy2) ∂∂y ;

Exercise 26.7

Show that a vector field on a compact, oriented, surface of genus g
must have at least one zero if g &= 1.

Exercise 26.8

Consider the vector field X ∈ X(S2d) obtained by restriction of the
vector field

X = x2
∂

∂x1
− x1

∂

∂x2
+ · · · + x2d

∂

∂x2d−1
− x2d−1 ∂

∂x2d
∈ X(R2d+1).

Show that there is a vector field Y in RP2d such that π∗X = Y and
apply the Poincaré–Hopf theorem to compute the Euler characteristic
of RP2d. What can you say about the Euler characteristic of RP2d+1?
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Lecture 27

Vector Bundles

A vector bundle is a collection {Ep}p∈M of vector spaces parameter-
ized by a manifold M as in Figure 27.1. The union of these vector
spaces is a manifold E and the map

π : E →M, π(Ep) = p,

must satisfy a local trivialization condition. These properties should
be familiar from our study of the tangent and cotangent bundles of
a manifold.

In order to formalize this concept properly, let π : E → M be a
smooth map between differentiable manifolds. A trivializing chart
of dimension r for π is a pair (U,φ), where U ⊂ M is open and
φ : π−1(U) → U × Rr is a diffeomorphism, such that we have a
commutative diagram

π−1(U)
φ

#
!!

π
""●

●●
●●

●●
●●

U × Rr

π1
##①①
①①
①①
①①
①①

U

,

In this diagram, π1 : U × Rr → U denotes the projection in the
first factor. Note that an arbitrary map π : E → M may not admit
trivializing charts. For example, if (U,φ) is a trivializing chart then
the restriction π : π−1(U)→ U must be a submersion.

Let Ep = π−1(p) be the fiber over p ∈ U . Given a trivializing chart
(U,φ) containing this fiber, we define a diffeomorphism φp : Ep → Rr

275
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Fig. 27.1. Fiber bundle.

as the composition

φp : Ep
φ !! {p}× Rr !! Rr.

Hence, if v ∈ Ep, we have

φ(v) = (p,φp(v)).

Since each φp is a diffeomorphism, we can use it to transport the vec-
tor space structure of Rr to Ep. Given two trivializing charts whose
domains intersect we would like that the induced vector space struc-
tures on the fibers to coincide. This leads to the following definition.

Definition 27.1. A vector bundle of rank r over a manifold M is
a triple ξ = (π, E,M), where π : E →M is a smooth map admitting
a collection of trivializing charts C = {(Uα,φα) : α ∈ A} of dimension
r, satisfying the following properties:

(i) {Uα : α ∈ A} is an open cover of M :
⋃
α∈A Uα = M .

(ii) The charts are compatible: for any α,β ∈ A and every p ∈ Uα ∩
Uβ, the transition functions gαβ(p) ≡ φpα ◦ (φpβ)−1 : Rr → Rr

are linear isomorphisms.
(iii) The collection C is maximal: if (U,φ) is a trivializing chart

of dimension r with the property that for every α ∈ A, the
maps φp ◦ (φpα)−1 and φpα ◦ (φp)−1 are linear isomorphisms, then
(U,φ) ∈ C.
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We will call E the total space, M the basis space, and π the pro-
jection of the bundle ξ. The projection is a surjective submersion.

A collection of charts satisfying (i) and (ii) is called a vector
bundle atlas or a trivialization of ξ. A vector bundle atlas defines
a vector bundle since every atlas is contained in a unique maximal
atlas. As we have already remarked, (ii) implies that the fiber Ep has
a vector space structure such that for any trivializing chart (U,φ)
the map φp : Ep → Rr is a linear isomorphism.

In the definition above all maps are C∞. Of course, one can also
define Ck-vector bundles over Ck-manifold or even topological mani-
folds. Also, one can define complex vector bundles over smooth man-
ifolds by replacing Rr by Cr and where the base is still a real smooth
manifold. In these notes, we will consider mainly real C∞ vector bun-
dles, but complex vector bundles are also important and will appear
occasionally.

Let ξ = (π, E,M) be a vector bundle and U ⊂ M an open set.
A map s : U → E is called a section over U if π ◦ s = IdU . The
sections over U form a real vector space which we denote by ΓU (E).
When U = M we call a section over M a global section of E and
we write Γ(E) instead of ΓM (E). If rank ξ = r, a collection s1, . . . , sr
of sections over U such that {s1(p), . . . , sr(p)} form a basis for Ep

for each p ∈ U is called is called a frame over U .

Definition 27.2. Let ξ1 = (π1, E1,M1) and ξ2 = (π2, E2,M2) be
two vector bundles. A morphism of vector bundles is a smooth
map Ψ : E1 → E2 which maps the fibers of ξ1 linearly in the fibers
of ξ2, i.e., Ψ covers a smooth map ψ : M1 →M2

E1
Ψ !!

π1
$$

E2

π2
$$

M1
ψ !! M2

and the map of the fibers Ψp ≡ Ψ|(E1)p : (E1)p → (E2)ψ(p) is a linear
transformation for each p ∈M1.

In this way, one has the category of all vector bundles.
Often one considers vector bundles over a fixed base manifold M
and morphisms over the identity ψ = IdM : M → M . These form
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the category of vector bundles over M . Two vector bundles
ξ1 = (π1, E1,M1) and ξ2 = (π2, E2,M2) are called:

• equivalent if there exist morphisms Ψ : ξ1 → ξ2 and Ψ′ : ξ2 → ξ1
which are inverse to each other. This means that Ψ is an isomor-
phism in the category of vector bundles — it covers a diffeomor-
phism ψ : M1 → M2 and each fiber map Ψp : (E1)p → (E2)ψ(p) is
a linear isomorphism.

• isomorphic if M1 = M2 = M and there exist morphismsΨ : ξ1 →
ξ2 and Ψ′ : ξ2 → ξ1, covering the identity which are inverse to each
other. This means that Ψ is an isomorphism in the category of
vector bundles over M — it covers the identity ψ = IdM and each
fiber map Ψp : (E1)p → (E2)p is a linear isomorphism.

Example 27.1.

(1) Obviously, for any smooth manifold M , we have the associated
vector bundles TM , T ∗M , ∧kT ∗M , ⊗rTM ⊗s T ∗M , etc. The
sections of these bundles are the vector fields, the differential
forms and general tensor fields, that we have studied before. IfΨ :
M → N is a smooth map, its differential dΨ : TM → TN is a
morphism of vector bundles (note, however, that the transpose
(dxΨ)∗, in general, is not a vector bundle morphism).

(2) The trivial vector bundle of rank r overM is the vector bundle
εrM = (π,M × Rr,M), where π : M ×Rr →M is the projection
in the first factor. The global sections of εrM can be identified
with C∞(M ;Rr). In general, a vector bundle ξ over M of rank r
is said to be trivial if it is isomorphic to εrM . A vector bundle is
trivial if and only if it admits a global frame.

A parallelizable manifold is a manifold M for which TM
is a trivial vector bundle. For example, any Lie group G is par-
allelizable, while S2 is not parallelizable. Actually, one can show
that Sd is parallelizable if and only if d = 0, 1, 3, and 7.

(3) A r-dimensional distribution D in a manifold M , defines a vector
bundle over M of rank r. The fibers are the subspacesDp ⊂ TpM .
A section of this vector bundle is simply a vector field tangent
to the distribution.

(4) A vector bundle of rank 1 is usually refer to as a line bundle.
For example, any non-vanishing vector field X ∈ X(M) defines
a line bundle which is always trivial. More generally, a rank 1
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distribution defines a line bundle which is trivial if and only if
the distribution is generated by a single vector field.

(5) Consider the manifold E formed by pairs ([x],v), where [x] is a
line through the origin in Rd+1 and v is a point in this line, i.e.,

E = {([x],v) ∈ RPd × Rd+1 : v = λx, for some λ ∈ R}.

The map π : E → RPd given by π([x],v) = [x] satisfies the local
triviality condition. To see this, given an open set V ⊂ Sd such
that if x ∈ V then −x +∈ V , denoted by U = {[x] : x ∈ V } ⊂ RPd

the corresponding open set in real projective space. Then the
map defined by

ψ : U × R→ π−1(U), ψ([x], t) = ([x], tx),∀x ∈ V,

is a diffeomorphism, and its inverse φ = ψ−1 defines a trivializing
chart over U . The family of all such charts (U,φ) is a vector
bundle atlas over RPd. This vector bundle is called the canonical
line bundle over RPd and denoted γ1d .

Let ξ = (π, E,M) be a rank r vector bundle. If (Uα,φα) and
(Uβ ,φβ) are trivializing charts, the corresponding transition func-
tion is the map

gαβ : Uα ∩ Uβ → GL(r), p -→ gαβ(p) ≡ φpα ◦ (φ
p
β)

−1,

so that

φα ◦ (φβ)−1(p,v) = (p, gαβ(p) · v).

The transition function satisfies the following fundamental identity

gαβ(p)gβγ(p) = gαγ(p), (p ∈ Uα ∩ Uβ ∩ Uγ). (27.1)

If α = β = γ, this condition reduces to

gαα(p) = I, (p ∈ Uα),

and when γ = α we obtain

gβα(p) = gαβ(p)
−1, (p ∈ Uα ∩ Uβ).

The family of transition functions {gαβ} depends on the choice
of trivializing charts. However, they can be used to describe vector
bundles if one notices the following.
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Lemma 27.1. Let ξ and η be vector bundles over M with trivial-
izations {φα} and {φ′α} subordinated to the same open cover {Uα}.
Denote by {gαβ} and {g′αβ} the corresponding collections of transi-
tion functions. If ξ is isomorphic to η, then there exist smooth maps
λα : Uα → GL(r) such that

g′αβ(p) = λα(p) · gαβ(p) · λ−1
β (p), (p ∈ Uα ∩ Uβ). (27.2)

Proof. Let Ψ : ξ → η be an isomorphism. For each Uα we define
smooth maps λα : Uα → GL(r) by

λα(p) = φ′pα ◦Ψ ◦ (φpα)−1.

If p ∈ Uα ∩ Uβ, we have

g′αβ(p) = φ′
p
α ◦ (φ′

p
β)

−1 = λα(p) ◦ φpα ◦ (φ
p
β)

−1 ◦ (λβ(p))−1

= λα(p) ◦ gαβ(p) ◦ λβ(p)−1.

Given a manifold M and an open cover {Uα}α∈A we call a family
of maps gαβ : Uα ∩ Uβ → GL(r) satisfying (27.1) a cocycle subor-
dinated to the cover. Two cocycles {gαβ} and {g′αβ} subordinated
to the same cover are said to be equivalent if they are related by
(27.2) for some family of smooth maps λα : Uα → GL(r).

We saw above that (i) a trivialization of a vector bundle deter-
mines a cocycle and that (ii) two trivializations of isomorphic vector
bundles subordinated to the same cover determine equivalent cocy-
cles. Moreover, we have the following converse:

Proposition 27.1. Let {gαβ} be a cocycle subordinated to an open
cover {Uα} of M . There exists a vector bundle ξ = (π, E,M)
admitting a trivialization {φα} with collection of transition functions
{gαβ}. Two equivalent cocycles {gαβ} and {g′αβ} determine isomor-
phic vector bundles.

Proof. Given a cocycle {gαβ}, subordinated to the cover {Uα} of M ,
we construct the manifold E as the quotient

E =
⊔

α∈A
(Uα × Rr)

/
∼
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where ∼ is the equivalence relation defined by

(p,v) ∼ (q,w) iff

{
p = q and

∃α,β ∈ A : gαβ(p) · v = w.

We leave it as an exercise to check that this equivalence relation
satisfies the conditions of Godement’s Criterion (Theorem 10.1) so
E is a smooth manifold.

The obvious projection π : E → M , π([p,v]) = p is a smooth
map. Also, the maps

φα : π−1(Uα)→ Uα × Rr, φα([p,v]) = (p,v),

give trivializing charts for π : E →M and the corresponding transi-
tion functions are exactly the {gαβ}. Hence, we have a vector bundle
ξ = (π, E,M) as in the statement.

If {g′αβ} is another cocycle equivalent to {gαβ} through the family
{λα} and ξ′ = (π′, E′,M) denotes the vector bundle associated with
{g′αβ}, we have a vector bundle isomorphism Ψ : ξ → ξ′ defined on

each open set π−1(Uα) by

Ψ([p,v]) = [p,λα(p) · v].

Remark 27.1. If two cocycles are subordinated to different covers
we can refine the covers and obtain cocycles subordinated to the
same cover. Hence, one obtains a 1:1 correspondence





vector bundles ξ = (π, E,M)

up to isomorphism






←̃→





cocycles

{
gαβ : Uα ∩ Uβ → GL(r)

}

up to equivalence and refinement




 .

We will see later that a vector bundle over a contractible space is
always trivial. Hence, if one fixes an open cover of M consisting of
contractible open set {Uα}, one does not need refinements in this
correspondence.
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We now turn to constructions with vector bundles. We have the
following general principle:

For every functorial construction with vector spaces there is a
similar construction with vector bundles.

This principle can be made precise. However, instead of following the
abstract route, we will describe explicitly the constructions that are
most relevant for us.

Subbundles and Quotients

Every vector bundle ξ = (π, E,M) can be restricted to a submanifold
N ⊂M . The restriction ξN is the vector bundle with total space

EN = {Ep : p ∈ N},

and projection πN : EN → N the restriction of π to EN . The restric-
tion is an example of a vector subbundle.

Definition 27.3. A vector bundle η = (τ, F,N) is called a vector
subbundle of a vector bundle ξ = (π, E,M) if F is a submanifold
of E, and the inclusion F ,→ E is a morphism of vector bundles.

If Ψ : η → ξ is a morphism of vector bundles covering the identity,
in general, its image and its kernel are not vector subbundles: these
are made of vector spaces of varying dimension. This issue disappears
if we assume that Ψ has constant rank, i.e., if all linear maps
Ψp : Ep → Fp have the same rank. In this case, we have

• The kernel of Ψ is the vector subbundle KerΨ := {v ∈ E :
Ψ(v) = 0} ⊂ E.

• The image of Ψ is the vector subbundle ImΨ := {Ψ(v) ∈ F : v ∈
E} ⊂ F .

• The co-kernel of Ψ is the vector bundle coKerΨ := F/∼, where
∼ the equivalence relation w1 ∼ w2 if and only if w1−w2 = Ψ(v),
for some v ∈ E.

Note that if Ψ is a monomorphism (i.e., each Ψp is injective) or if Ψ
is an epimorphism (i.e., each Ψp is surjective) then Ψ has constant
rank. Therefore, the kernel, image, and cokernel of monomorphisms
and epimorphisms are vector subbundles.



June 15, 2024 15:46 Lectures on Differential Geometry 9in x 6in b5406-ch27 FA1 page 283

Vector Bundles 283

The notions associated with exact sequences can be easily
extended to vector bundles and morphisms of constant rank. For
example, a short exact sequence of vector bundles is a sequence of
vector bundle morphisms

0 !! ξ Φ !! η Ψ !! θ !! 0

where Φ is a monomorphism, Ψ is an epimorphism, and ImΦ =
KerΨ. In this case, we have vector bundle isomorphisms ξ 1 KerΨ
and θ 1 coKerΨ. We say that θ is the quotient vector bundle of
the monomorphism Φ and we will denote it by η/ξ. Note that the
fibers of η/ξ are the quotient vector spaces Ep/Fp.

Example 27.2. Let M be a manifold and N ⊂ M a submanifold.
The restriction of TM to N is denoted TNM . The tangent bundle
TN is a vector subbundle of TNM and the quotient bundle .(N) ≡
TNM/TN is usually called the normal bundle to N in M .

Similarly, given a foliation F of M , we have the vector subbundle
TF ⊂ TM . The quotient bundle .(F) ≡ TM/TF is usually called
the normal bundle of F in M . If L is a leaf of F , the restriction
of .(F) to L is the normal bundle .(L).

Direct Sums and Tensor Products

Let ξ = (π, E,M) and η = (τ, F,M) be vector bundles over the same
manifold M . The Whitney sum or direct sum of ξ and η is the
vector bundle ξ ⊕ η whose total space is

E ⊕ F := E ×M F = {(v,w) ∈ E × F : π(v) = τ(w)},

and whose projection is

E ⊕ F →M, (v,w) -→ π(v) = τ(w).

Note that the fiber of ξ⊕η over p ∈M is the direct sum Ep⊕Fp. The
local triviality condition is easily verified: if {φα} and {ψα} are trivi-
alizations of ξ and η, subordinated to the same covering, with corre-
sponding cocycles {gαβ} and {hαβ}, then we have the trivialization
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of ξ⊕ η given by {(φα×ψα)|E⊕F }, to which corresponds the cocycle
defined by

gαβ ⊕ hαβ =

[
gαβ 0

0 hαβ

]
.

Similarly, we can define:

• The tensor product ξ ⊗ η: the fibers are the tensor products
Ep ⊗ Fp and the transition functions are gαβ ⊗ hαβ .

• The dual vector bundle ξ∗: the fibers are the dual vector spaces
E∗

p and the transition functions are the inverse transpose maps

(gαβ)−T .
• The exterior product ∧kξ: the fibers are the exterior products
∧kEp and the transition functions are the exterior powers ∧kgαβ .

• TheHom(ξ, η)-bundles: the fibers are the space of all linear mor-
phisms Hom(Ex, Fx). We leave as an exercise to show that there
is a natural isomorphism Hom(ξ, η) 1 ξ∗ ⊗ η.

Orientations

A vector bundle ξ = (π, E,M) of rank r is called an orientable
vector bundle if the exterior product ∧rξ has a section which never
vanishes. Note that this section corresponds to a smooth choice of
an orientation in each vector space Ep. We call an orientation for
ξ an equivalence class [s], where two non-vanishing sections s1, s2 ∈
Γ(∧rξ) are equivalent if and only if s2 = fs1 for some smooth positive
function f ∈ C∞(M). We leave as an exercise to check that ξ is
orientable if and only if it admits a trivialization {φα} for which
the associated cocycle {gαβ} takes values in GL+(r), the group of
invertible r × r matrices with positive determinant

gαβ : Uα ∩ Uβ → GL+(r) ⊂ GL(r).

For a manifoldM , the notion of orientation that we studied before
corresponds to the notion of orientation of the vector bundle TM .
For a vector bundle ξ = (π, E,M), the possible orientations for ξ, E
and M are related as follows:

Lemma 27.2. Let ξ = (π, E,M) be a vector bundle. If two among
the vector bundles TM, TE and ξ are orientable so is the third one.

The proof is left as an exercise.
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Riemmanian Structures

A Riemmanian structure in a vector bundle ξ = (π, E,M) is
a choice of an inner product 〈 , 〉 : Ep × Ep → R in each fiber
which varies smoothly, i.e., for any sections s1, s2 ∈ Γ(E) the map
p -→ 〈s1(p), s2(p)〉 is smooth. This condition is equivalent to say that
the section of the vector bundle ⊗2ξ∗ defined by 〈 , 〉 is smooth.

It is easy to see that a vector bundle always admits a Riemann
structure. Given a trivialization {(Uα,φα)}, one chooses a partition of
unity {/α} subordinated to the cover {Uα} and defines a Riemmanian
structure by

〈v,w〉 :=
∑

α

/α(p)(φ
p
α(v),φ

p
α(w))Rr (v,w ∈ Ep).

For this reason, any vector bundle admits a trivialization {φα} whose
associated cocycle {gαβ} take values in the orthogonal group O(r)

gαβ : Uα ∩ Uβ → O(r) ⊂ GL(r).

This follows also from the polar decomposition

GL(r) = O(r)× {positive definite symmetric matrices}.

If ξ = (π, E,M) is a vector bundle and 〈 , 〉 is a Riemann structure
in ξ, then for any vector subbundle η = (τ, F,N) we can define the
orthogonal vector bundle η⊥ over N as the subbundle of ξ with
total space F⊥, where

F⊥
p ≡ {v ∈ Ep : 〈v,w〉 = 0,∀w ∈ Fp}.

When M = N , we obtain

ξ = η ⊕ η⊥.

It follows that η⊥ 1 ξ/η, since the natural projection ξ → ξ/η
restricts to an isomorphism on η⊥.

Exercises

Exercise 27.1

Show that a vector bundle is trivial if and only it admits a global
frame.
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Exercise 27.2

Let Gr(Rd) be the Grassmannian manifold of r-planes in Rd.
Consider the submanifold E ⊂ Gr(Rd)×Rd defined by

E = {(S, x) : S is a subspace of Rd and x ∈ S},

and the smooth map

π : E → Gr(Rd), (S, x) -→ S.

Show that γrd = (π, E,Gr(Rd)) is a vector bundle of rank r. It is
called the canonical bundle over Gr(Rd).

Exercise 27.3

Let Ψ : η → ξ be a morphism of vector bundles which covers the iden-
tity. Show that the kernel and the image of Ψ are vector subbundles
if the rank of the linear maps Ψp is constant. Give counterexamples
when the rank is not constant.

Exercise 27.4

Let ξ = (π, E,M) and η = (τ, F,M) be vector bundles.

(a) Show that there exists a vector bundle Hom(ξ, η) whose fibers
are the vector spaces Hom(Ex, Fx).

(b) Find the transition function of Hom(ξ, η) in terms of the transi-
tion functions of ξ and η.

(c) Find an isomorphism Hom(ξ, η) 1 ξ∗ ⊗ η.

Exercise 27.5

Given a vector bundle, ξ show that there exists a trivialization of ξ
for which the transition functions take values in O(r).

Exercise 27.6

Consider a short exact sequence of vector bundles

0 !! ξ1 !! ξ2
Ψ !! ξ3 !! 0

Show that

(a) Such a short exact sequence always splits, i.e., there exists a
morphism of vector bundles Φ : ξ3 → ξ2 such that Ψ ◦Φ = Id.
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(b) There is an isomorphism of vector bundles: ξ2 1 ξ1 ⊕ ξ3.
(c) If two among the vector bundles ξ1, ξ2, and ξ3 are orientable, so

is the third one.

Exercise 27.7

Let ξ = (π, E,M) be a vector bundle. Show the following:

(a) There exists a natural isomorphism of vector bundles TME 1
ξ ⊕ TM .

(b) If two among the vector bundles TM , TE, and ξ are orientable
so is the third one.

Exercise 27.8

For a vector bundle, ξ show that the following statements are equiv-
alent:

(a) ξ is orientable.
(b) There exists a trivialization of ξ for which the transition functions

take values in GL+(r).
(c) There exists a trivialization of ξ for which the transition functions

take values in SO(r).

Exercise 27.9

Let M be a manifold with fundamental group π1(M), q : M̃ →M its
universal covering space and / : π1(M) → GL(V ) a representation.

Consider the action of π1(M) on M̃ × V given by

γ · (p, v) := (γ · p, /(γ)(v)).

Show that there is a vector bundle ξ = (π, E,M) with total space
and projection

E := (M̃ × V )/π1(M), π([p, v]) = q(p).

Exercise 27.10

Let M be a manifold with fundamental group π1(M), q : M̃ → M

its universal covering space and f : π1(M) × M̃ → C a smooth
function.
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(a) Show that one has a group action of π1(M) on M̃ × C defined
by

γ · (p, z) := (γ · p, f(γ, p)z),

if and only if

f(γ1 · γ2, p) = f(γ1, γ2 · p)f(γ2, p), (27.3)

for all γi ∈ π1(M) and p ∈ M̃ .
(b) Show that if (27.3) holds, then one has a complex line bundle

ξ = (π, L,M) with total space and projection

L := (M̃ × C)/π1(M), π(p, z) := q(p).

(c) Let M = T2, so π1(M) = Z2 and M̃ = R2. Show that

f : Z2 × R2 → C, f((n1, n2), (x, y)) := ei2πn2x,

satisfies (27.3) and that the resulting line bundle from (b) is
non-trivial.
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The Thom Class and the Euler Class

The homotopy invariance of de Rham cohomology relied crucially on
the isomorphism

H•(M ×Rr) " H•(M).

One can interpret this isomorphism as relating the cohomology of
the total space of the trivial bundle pr1 : M × Rr → M with the
cohomology of its base. Indeed, this holds for any vector bundle.

Proposition 28.1. For any vector bundle ξ = (π, E,M),

H•(E) " H•(M).

Proof. Let s : M → E be the zero section. Scalar multiplication on
the fibers, gives a deformation retract of E on its image. Therefore,
by homotopy invariance we see that s∗ : H•(E) → H•(M) is an
isomorphism.

One may guess that the corresponding statement for compactly
supported cohomology, namely

H•
c (E) " H•−r

c (M),

should also hold. The following example shows that one must be
careful.

Example 28.1. Consider the canonical line bundle γ11 over RP1 = S1
(see Exercise 27.2). The total space E of this bundle is the Möbius

289
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band, a non-oriented manifold of dimension 2, so we have H2
c (E) = 0.

On the other hand, for the base we find

H2−1
c (S1) = H1(S1) " R $= 0.

The issue with this example is exactly the lack of orientability.

Proposition 28.2 (Thom Isomorphism — First version). Let
ξ = (π, E,M) be a vector bundle of rank r, where E is orientable and
M is of finite type. Then

H•
c (E) " H•−r(M).

Proof. Since M is of finite type, so is E. Hence, E is both orientable
and of finite type and we can apply Poincaré duality to conclude that

H•
c (E) " Hd+r−•(E) (by Poincaré duality for E),

" Hd+r−•(M) (by Proposition 28.1).

The isomorphism behind the Thom isomorphism in the previous
proposition can be described explicitly. It relies on a push-forward
map

π∗ : Ω
•
c(E)→ Ω•−r(M)

called integration along the fibers. For the case of the trivial line
bundle, this map appeared in the proof of Proposition 24.2. Using
a local trivialization, we can extend the description given in that
proof to any vector bundle. We start by covering M by trivializing
oriented charts (Uα,φα) for the vector bundle ξ, where each Uα is
the domain of a chart (x1, . . . , xd) of the base M . This yields a chart
(x1, . . . , xd, t1, . . . , tr) for the total space E with domain π−1(Uα),
where (t1, . . . , tr) are linear coordinates on the fibers. If ω ∈ Ω•

c(E),
then ωα = ω|π−1(Uα) is a linear combination of two kinds of forms

f1(x, t)π
∗θ1 ∧ dti1 ∧ · · · ∧ dtik , with k < r

f2(x, t)π
∗θ2 ∧ dt1 ∧ · · · ∧ dtr

where θi are differential forms in M and the functions fi(x, t) have
compact support. Integration along the fibers π∗ : Ω•

c(E)→ Ω•−r(M)
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is the unique linear map defined by

f1(x, t)π
∗θ1 ∧ dti1 ∧ · · · ∧ dtik '−→ 0, (k < r),

f2(x, t)(π
∗θ2) ∧ dt1 ∧ · · · ∧ dtr '−→ θ2

∫

Rr
f2(x, t

1, . . . , tr) dt1 · · · dtr.

We leave it as an exercise to check that this definition is independent
of the choices made.

Remark 28.1 (Differential forms with compact vertical
support). The description above of fiber integration π∗ shows that

(i) π∗ is defined as long as the vector bundle ξ is oriented, so the
base and/or the total space can be non-orientable.

(ii) π∗ can be defined for any differential form ω in E with compact
vertical support, i.e., such that suppω ∩ π−1(K) is compact for
every compact set K ⊂M .

We denote by Ω•
cv(E) the space of differential forms with compact

vertical support so for any oriented vector bundle of rank r fiber
integration is a linear map

π∗ : Ω
•
cv(E)→ Ω•−r(M).

Another exercise using the definition above shows that fiber inte-
gration satisfies the following properties.

Proposition 28.3. Fiber integration π∗ : Ω•
cv(E) → Ω•−r(M)

satisfies:

(i) π∗ is a cochain map: dπ∗ω = π∗dω.
(ii) Projection formula: for any θ ∈ Ω•(M) and ω ∈ Ω•

cv(E):

π∗(π
∗θ ∧ ω) = θ ∧ π∗ω. (28.1)

(iii) If Ψ : ξ1 → ξ2 is a vector bundle map covering a map ψ :
M1 → M2, which is a fiberwise isomorphism and preserves
orientations, then for any ω ∈ Ω•

cv(E):

(π1)∗Ψ
∗ = ψ∗(π2)∗. (28.2)

The space Ω∗
cv(E) of differential forms with compact vertical sup-

port is a subcomplex of the de Rham complex and gives rise to a
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cohomology H•
cv. By property (i), fiber integration induces a map in

cohomology

π∗ : H
•
cv(E)→ H•−r(M).

The general version of the Thom isomorphism can then be stated as
follows.

Proposition 28.4 (Thom Isomorphism). Let ξ = (π, E,M) be
an oriented vector bundle of rank r over a manifold of finite type.
Then fiber integration gives an isomorphism

H•
cv(E) " H•−r(M).

Proof. For a trivial vector bundle, the proof is the same as Propo-
sition 24.2.

Using a partition of unity argument, one sees that the cohomology
H•

cv(E) satisfies the Mayer–Vietoris sequence property. Then, given
open sets U, V ⊂M , one obtains a commutative diagram of Mayer–
Vietoris sequences

!! Hk
cv(E|U∪V ) !!

π∗

""

Hk
cv(E|U ) ⊕ Hk

cv(E|V ) !!

π∗

""

Hk
cv(E|U∩V )

δ !!

π∗

""

Hk+1
cv (E|U∪V )

π∗

""

!!

!! Hk−r(U ∪ V )∗ !! Hk−r
c (U)∗ ⊕ Hk−r

c (V )∗ !! Hk−r
c (U ∩ V )∗

δ∗!! Hk+1−r
c (U ∪ V )∗ !!

If the vector bundle ξ is trivial over U and V , then in the previous
diagram one obtains that π∗ is an isomorphism for U , V and U ∩ V .
By the Five Lemma, it follows that π∗ is an isomorphism also over
U ∪ V . Then the proof proceeds by an induction argument over the
number of elements of a good cover, as in the proof of Poincaré
duality.

We can now introduce a cohomological invariant of a vector
bundle.

Definition 28.1. The Thom class of an oriented vector bundle ξ =
(π, E,M) of rank r is the image of 1 under the Thom isomorphism
H0(M) " Hr

cv(E). We will denote this class by U ∈ Hr
cv(E).

The Thom class allows one to write, in a more or less explicit way,
the inverse to the fiber integration π∗ : H•

cv(E)→ H•−r(M). In fact,
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since π∗U = 1, the projection formula (28.1) shows that the inverse
is the linear map

(π∗)
−1 : H•(M)→ H•+r

cv (E), [ω] '→ [π∗ω] ∪ U.

The following result gives an alternative characterization of the
Thom class.

Theorem 28.1. The Thom class of an oriented vector bundle ξ =
(π, E,M) of rank r is the unique class U ∈ Hr

cv(E) whose pullback to
each fiber Ep is the canonical generator of Hr

c (Ep), i.e., that satisfies
∫

Ep

i∗U = 1, ∀p ∈M,

where i : Ep ↪→ E is the inclusion.

Proof. Since π∗U = 1, we see that the restriction i∗U to each fiber
Ep is a compactly supported form with

∫
Ep

i∗U = 1.

Conversely, let U ′ ∈ Hr
cv(E) be a class such for each p ∈ M

the restriction i∗U ′ ∈ Hr
c (Ep) is the canonical generator. By the

projection formula (28.1), we obtain

π∗(π
∗[θ] ∪ U ′) = [θ] ∪ π∗U ′ = [θ], ∀[θ] ∈ H•(M).

Hence, [θ] '→ π∗[θ]∪U ′ inverts π∗. The image of 1, which is U ′, must
then coincide with the Thom class.

From now on, to simplify the presentation, we will assume that
M is compact so that it is of finite type. Moreover, it follows that
for a vector bundle ξ = (π, E,M) we have H•

cv(E) = H•
c (E).

The Thom class of a vector bundle ξ = (π, E,M) is an invariant
of the bundle, but it lies in the cohomology of the total space. We
can use a global section to obtain an invariant which lies in the
cohomology of the base. For that observe that given a section s :
M → E we have an induced map in cohomology

s∗ : H•
c (E)→ H•(M),

which we can view as the composition of two maps

H•
c (E) !! H•(E) s∗ !! H•(M) .
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On the other hand, any two sections s0, s1 : M → E are homotopic
via

H(p, t) := ts1(p) + (1− t)s0(p)

From the homotopy invariance of cohomology, we conclude that the
maps induced in cohomology by any two sections are identical

s∗0 = s∗1 : H
•
c (E)→ H•(M).

Therefore, the following definition makes sense.

Definition 28.2. Let ξ = (π, E,M) be an oriented vector bundle of
rank r over a compact manifold M . The Euler class of ξ is the class
e(ξ) ∈ Hr(M) defined by

e(ξ) := s∗U,

where U is the Thom class of ξ and s : M → E is any global section
of ξ.

Note that, in particular, we can define the Euler class by pulling
back along the zero section. The following proposition lists some
properties of the Euler class. We leave its proof for the exercises.

Proposition 28.5. Let ξ = (π, E,M), ξ′ = (π′, E′,M) and η =
(π, F,N) be oriented vector bundles of rank r over compact manifolds.

(i) If the rank r is odd, then e(ξ) = 0.
(ii) If ξ̄ denotes ξ with the opposite orientation, then e(ξ̄) = −e(ξ).
(iii) If ξ ⊕ ξ′ has the direct sum orientation, then e(ξ ⊕ ξ′) = e(ξ) ∪

e(ξ′).
(iv) If a vector bundle map Ψ : η → ξ, covering a map ψ : M → N,

is a fiberwise isomorphism and preserves orientations, then
e(η) = ψ∗e(ξ).

The Euler class of a vector bundle is an obstruction to the exis-
tence of a non-vanishing global section.

Theorem 28.2. Let ξ = (π, E,M) be an oriented vector bundle over
a compact manifold M . If ξ admits a non-vanishing section then
e(ξ) = 0.

Proof. Let s : M → E be a non-vanishing section. If ω ∈ Ωr
c(E) is a

compactly supported form representing the Thom class, then there
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exists c ∈ R such that the image of the section cs does not intersect
suppω. Hence:

e(ξ) = (cs)∗U = [(cs)∗ω] = 0.

Note that there are examples of oriented vector bundles ξ with
e(ξ) = 0, for which every global section has a zero.

The next example gives some additional intuition to the meaning
of the Euler class for rank 2 vector bundles.

Example 28.2. Consider an oriented vector bundle ξ = (π, E,M)
of rank 2. Fix some Riemannian metric on ξ and cover M by charts
{(Uα, xiα)} over which we have a positive orthonormal frame {sα1 , sα2 }.
These define coordinates (π∗xiα, rα, θα) on

(E − {0M})|Uα " Uα × (R2 − {0})

where (rα, θα) are polar coordinates on R2 − {0}. On an overlap
Uα ∩Uβ the radial functions coincide rα = rβ, while the angles differ
by a rotation, i.e.,

θα − θβ = π∗ϕαβ , ϕαβ : Uα ∩ Uβ → S1.

Note that on triple intersections Uα ∩ Uβ ∩ Uγ we have

ϕαβ + ϕβγ = ϕαγ .

Let {ρα} be a partition of unity subordinated to the cover {Uα}.
We obtain a 1-form on each open Uα defined by

,α :=
∑

γ

ργdϕαγ ∈ Ω1(Uα).

On a double intersection Uα ∩ Uβ we find

,α − ,β =
∑

γ

ργ(dϕαγ − dϕβγ) =
∑

γ

ργdϕαβ = dϕαβ .

Hence, it follows that there is a well-defined 2-form , ∈ Ω2(M) such
that

,|Uα = d,α.

On the other hand, on (E − 0M )|Uα∩Uβ , we have

dθα − dθβ = π∗dϕαβ = π∗,α − π∗,β.
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Hence, we also have a global “angular form” φ ∈ Ω1(E − 0M ) such
that

φ = dθα − π∗,α on (E − 0M )|Uα .

Note that

dφ = −π∗,.

Finally, let δ > 0 and choose a smooth function ρ : R→ R which
is non-decreasing, ρ(r) = − 1

2π for t < δ, ρ(r) = 0 for t ≥ 1 and∫
R ρ

′(r)dr = 1
2π . We can promote it to a function ρ : E → R of the

radius

ρ(v) = ρ(||v||) (v ∈ E).

Then we define the 2-form

u := d(ρφ) = dρ ∧ φ− ρ π∗, ∈ Ω2
cv(E).

A priori this form is only defined outside the zero section, but the
second expression shows that it extends smoothly to E, since ρ is
constant in a neighborhood of 0M . The restriction of u to a fiber Ep

is the compactly supported 2-form (dρ ∧ φ)|Ep , which is positively
oriented and has integral 1. Hence, U = [u] is the Thom class of the
bundle ξ. Moreover, if we pullback u by the zero section s0 : M → E
we obtain

s∗0u = −ρ(0)s∗0π∗, =
1

2π
,.

So we conclude also that e(ξ) = 1
2π [,].

The name Euler class is related with the special case where ξ =
TM . LetM be an oriented, connected, manifold with dimM = d and
denote the orientation by µ. The corresponding canonical generator
in cohomology will also be denoted by µ ∈ Hd

c (M) and it can be
represented by any top degree form ω ∈ Ωd

c(M) such that
∫

M
ω = 1.

If we assume that M is of finite type, then µ is the image of 1 under
Poincaré duality H0(M) " Hd

c (M). Recalling from Lecture 26, the
notion of index of an isolated zero of a vector field one finds the
following result.
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Theorem 28.3. Let M be a compact, oriented, connected manifold
of dimension d. If X ∈ X(M) is a vector field with a finite number
of zeros {p1, . . . , pN}, then

e(TM) =

(
N∑

i=1

indpi X

)
µ ∈ Hd(M),

where µ ∈ Hd(M) is the class defined by the orientation of M .

Proof. Let ω ∈ Ωd
c(TM) be a compactly supported form represent-

ing the Thom class. We need to show that

∫

M
X∗ω =

(
N∑

i=1

indpi X

)
.

Choose charts (Ui,φi) centered at pi and consider Di the closed
balls

Di := φ−1
i ({x ∈ Rd : ||x|| ≤ 1}).

We have identifications TUi " Ui × Rd provided by the charts, and
we denote by p : TUi → Rd the projection on the second factor.
Using a partition of unity argument, it follows from Theorem 28.1
that we can choose the representative ω so that on each coordinate
system Ui we have

ω|TDi = p∗dθ where

∫

Sd−1
θ = 1.

For any c > 0, the vector fields X and cX have the same zeros
and the same indices. Hence, by choosing c sufficiently large we can
assume that

Xp $∈ suppω, ∀ p $∈
N⋃

i=1

Di.

Therefore,
∫

M
X∗ω =

N∑

i=1

∫

Di

X∗ω,

and so it is enough to verify that
∫

Di

X∗ω = indpi X.
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Recall that indpi(X) = degGi where the Gauss map Gi is obtained
using the identification TUi " Ui × Rd provided by the charts

X|Ui : Ui → TUi, p '→ (p,Xi(p)), Gi =
Xi

||Xi||
: .Di → Sd−1 ⊂ Rd.

Since the maps Xi : .Di → Rd and Gi : .Di → Rd are homotopic,
we find

∫

Di

X∗ω =

∫

Di

d(X∗p∗θ) =

∫

∂Di

X∗
i θ

=

∫

∂Di

G∗
i θ = (degGi)

∫

Sd−1
θ = indpi(X).

Corollary 28.1. Let X and Y be vector fields with a finite number
of zeros on an oriented, compact, connected manifold M . The sum of
the indices of the zeros of X coincides with the sum of the indices of
the zeros of Y.

Theorem 28.4 (Poincaré–Hopf). Let M be an oriented, compact,
connected manifold of dimension d. Then for any vector field X ∈
X(M) with a finite number of zeros {p1, . . . , pN}, one has

χ(M) =
N∑

i=1

indpi X.

In particular, e(TM) = χ(M)µ, where µ ∈ Hd(M) is the orientation
class.

Remark 28.2. As we remarked before, there exist vector bundles
with e(ξ) = 0, but where every section has a zero. However, in the
case of the tangent bundle one can show that e(TM) = 0 if and only
if there exists a non-vanishing vector field in M — see the Exercises
at the end of this lecture. This result admits a “dual result” due
to Thurston: a compact, oriented manifold admits a codimension 1
foliation if and only if e(TM) = 0. Thurston’s Theorem is much
harder to prove.

Proof. By the corollary above, it is enough to construct a vector
field X in M , with a finite number of zeros, for which the equality
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holds. For that, we fix a triangulation {σ1, . . . ,σl} of M , and we
construct a vector field X with the following properties:

(a) X has exactly one zero pi in each face of the triangulation.
(b) The zero pi is non-degenerate and indpi X = (−1)k, where k is

the dimension of the face containing pi.

Hence, if rk is the number of faces of dimension k, we have

N∑

i=1

indpi X = r0 − r1 + · · ·+ (−1)drd,

so the result follows from Euler’s Formula — see Theorem 25.3. To
construct X we describe its phase portrait in each face of the trian-
gulation:

• In each face of dimension 0, the vector field X has a zero.
• In each face of dimension 1, we put a zero in the center of the face
and connect it by orbits to the zeros in the vertices.

• In each face of dimension 2, we put a zero in the center of the face
and connect it by heteroclinic orbits to the zeros in the faces of
dimension 1. See Figure 28.1.

• Then, we complete the phase portrait of X in the face of dimen-
sion 2, so that the zero in its interior becomes an attractor of the
vector field restricted to the face. See Figure 28.2.

• In general, once one has constructed the phase portrait in the faces
of dimension k − 1, we construct the phase portrait in a face of
dimension k, putting a zero in the center of the face and connecting
it by heteroclinic orbits to the zeros in the faces of dimension k−1.
We then complete the phase portrait so that the new zero is an
attractor of the vector field restricted to the face of dimension k.

The vector field one constructs in this way has exactly one zero
in each face. Moreover, we can assume that they are non-degenerate

Fig. 28.1. Phase portrait in 2-dimensional faces.
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Fig. 28.2. Phase portrait in 2-dimensional faces.

zeros. For a zero pi in the face of dimension k, the linearization of
the vector field at pi is a real matrix with k eigenvalues with negative
real part, corresponding to the directions along the face, and n − k
eigenvalues with positive real part, corresponding to the directions
normal to the face. The sign of the determinant of this matrix is
(−1)k. Hence, we have that

indpi X = (−1)k.

Hence, the vector field X satisfies (a) and (b) and this completes the
proof of the Poincaré–Hopf Theorem.

Exercises

Exercise 28.1

Prove the properties of fiber integration given in Proposition 28.3.

Exercise 28.2

Let E1 →M and E2 →M be oriented vector bundles over a compact
manifold M . Consider their Whitney sum with the direct sum of the
orientations. Denoting the projections:

E1 ⊕ E2

π1

##✉✉
✉✉
✉✉
✉✉
✉

π2

$$■
■■

■■
■■

■■

E1 E2
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show that the Thom classes of E1, E2 and E1 ⊕ E2 are related by

UE1⊕E2 = π∗1UE1 ∪ π∗2UE2 .

Use this property to prove that

e(ξ ⊕ ξ′) = e(ξ) ∪ e(ξ′).

Exercise 28.3

Let ξ = (π, E,M) and η = (τ, F,N) be oriented vector bundles
of rank r over compact manifolds M and N . If Ψ : η → ξ is a
morphism of vector bundles covering a map ψ : N → M , which
preserves orientations and is a fiberwise isomorphism, show that

e(η) = ψ∗e(ξ).

Use this property to conclude that

(a) e(ξ̄) = −e(ξ), where ξ̄ denotes the vector bundle ξ with the
opposite orientation.

(b) e(ξ) = 0 whenever rank ξ is odd.

Exercise 28.4

Let M = CP1 " S2 embedded in CP2 as the submanifold:

CP1 ↪→ CP2, [x : y] '→ [x : y : 0].

Find the Euler class of the normal bundle ν(CP1) and conclude that
this vector bundle is non-trivial.

Exercise 28.5

Consider the canonical complex line bundle γ1d(C) over CP
d, defined

analogously to the canonical real line bundle γ1d over RPd — see
Exercise 27.2. Show that it is orientable and that is Euler class is
non-trivial.

Exercise 28.6

Let M be a compact manifold of dimension d. One can show that

(a) If p1, . . . , pN ∈M there exists an open set U ⊂M , diffeomorphic
to the ball {x ∈ Rd : ||x|| < 1}, such that p1, . . . , pn ∈ U .
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(b) If ψ : Sd−1 → Sd−1 is a map with degree zero, then it is homotopic
to the constant map.

Use these facts to show that if χ(M) = 0, then there exists a nowhere
vanishing vector field in M .

Exercise 28.7

Sketch the portrait of a vector field, with a finite number of zeros, of
your choice on a compact, oriented, surface Σg of genus g and use it
to find χ(Σg).
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Pullbacks of Vector Bundles

The following pullback construction for vector bundles plays a crucial
role.

Definition 29.1. Let ψ : M → N be a smooth map and ξ =
(π, E,N) a vector bundle over N of rank r. The pullback of ξ by ψ
is the vector bundle ψ∗ξ = (π̂,ψ∗E,M) of rank r, with total space

ψ∗E := {(p,v) ∈M × E : ψ(p) = π(v)},

and projection π̂ : ψ∗E →M , (p,v) $→ p.

Note that in a pullback vector bundle ψ∗ξ for each point in the
preimage ψ−1(q) one takes a copy of the fiber of ξ over q.

We still need to check that the construction in the definition above
does indeed produce a vector bundle. First of all, note that

ψ∗E = (ψ × π)−1(∆),

where ∆ ⊂ N ×N is the diagonal. Since π : E → N is a submersion,
we have that (ψ × π) ! ∆, so ψ∗E ⊂ M × E is a submanifold. To
cheek local triviality of ψ∗ξ, let {(Uα,φα)} be a trivialization of ξ.
Then we obtain a trivialization {(ψ−1(Uα), φ̃α)} for ψ∗ξ, where

φ̃α : π̂−1(ψ−1(Uα))→ ψ−1(Uα)× Rr

(p,v) $−→ (p,φψ(p)α (v)).

This proves the local triviality. Moreover, if {gαβ} is the cocy-
cle of ξ associated with the trivialization {(Uα,φα)}, then

303
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{ψ∗gαβ} = {gαβ ◦ ψ} is the cocycle of ψ∗ξ associated with the trivi-

alization {(ψ−1(Uα), φ̃α)}.
The map

Ψ : ψ∗ξ → ξ (p,v) $→ v,

is a morphism of vector bundles covering ψ. Hence, the pullback
construction allows to complete the following commutative diagram
of morphisms of vector bundles

ψ∗E

π̂
!!
✤
✤
✤

Ψ ""❴❴❴❴❴❴ E

π
!!

M
ψ "" N

The following universal property characterizes the pullback up to
isomorphism.

Proposition 29.1. Let ψ : M → N be a smooth map, η = (τ, F,M)
and ξ = (π, E,N) vector bundles and Φ : η → ξ a morphism of
vector bundles covering ψ. Then there exists a unique morphism of
vector bundles Φ̃ : η → ψ∗ξ, covering the identity, which makes the
following diagram commutative:

F
Φ

##

Φ̃

$$●
●

●
●

τ
!!

M

●●
●●

●●
●●

●●
●●

●●
●●

ψ∗E Ψ ""

π̂
!!

E

π
!!

M
ψ

"" N

Moreover, Φ̃ is a vector bundle isomorphism iff Φp : Fp → Eψ(p) is a
linear isomorphism for all p ∈M .

Proof. The map Φ̃ : η → ψ∗ξ is given by Φ̃(w) := (τ(w),Φ(w)).
We leave the details as an (easy) exercise.

One can also pullback morphisms covering the identity: if
ξ = (π, E,N) and η = (τ, F,N) are vector bundles and Φ : ξ → η
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is a morphism covering the identity, then for any smooth map
ψ : M → N, we define a morphism of vector bundles ψ∗(Φ) : ψ∗ξ →
ψ∗η by

ψ∗(Φ)(p,v) = (p,Φ(v)).

Obviously, this morphism makes the following diagram commute

ψ∗E
ψ∗(Φ)

""❴❴❴❴❴❴❴

!!

%%❏
❏❏

❏❏
❏❏

ψ∗F

!!

%%❏
❏❏

❏❏
❏❏

E

!!

Φ "" F

!!

M
ψ

%%❑
❑❑

❑❑
❑❑

M
ψ

%%❑
❑❑

❑❑
❑❑

N N

Proposition 29.2. Let ψ : M → N and φ : Q → M be smooth
maps, ξ, η and θ vector bundles over N, and Φ : ξ → η and Ψ : η → θ
morphisms of vector bundles over the identity. Then:

(i) ψ∗(Idξ) = Idψ∗ξ;
(ii) ψ∗(Ψ ◦ Φ) = ψ∗(Ψ) ◦ ψ∗(Φ);
(iii) ψ∗(εrN ) = εrM ;
(iv) (Id)∗ξ = ξ;
(v) (ψ ◦ φ)∗ξ = φ∗(ψ∗ξ).

Remark 29.1. Some of the equalities in the previous proposition
are actually isomorphisms. However, they are canonical, i.e., they do
not depend on any choices. So we still use the symbol “=” instead of
“(” to ease the notation. This same remark applies to many of the
“equalities” that follow.

The previous result shows that if we fix a smooth map ψ : M →
N , then:

• Pullback defines a covariant functor from the category of vector
bundles over N to the category of vector bundles over M .

On the other hand, if we denote by Vectr(M) the set of isomorphism
classes of vector bundles of rank r over a manifold M , there is a
distinguished point in Vectr(M), namely the class of the trivial vector
bundle. Given a smooth map ψ : M → N , pullback ψ∗ : Vectr(N)→
Vectr(M) preserves this distinguished point, so we also have:
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• Pullback defines a contravariant functor from the category of
smooth manifolds to the category of sets with a distinguished
point.

All the functorial constructions with vector bundles are preserved
under pullbacks. For example, one finds that

(i) ψ∗(ξ ⊕ η) = ψ∗ξ ⊕ ψ∗η;
(ii) ψ∗(ξ∗) = (ψ∗ξ)∗;
(iii) ψ∗(∧kξ) = ∧kψ∗ξ.

One can also commute the operations of restriction and pullback,
under a transversality assumption. Namely, if the map ψ : M → N
is transverse to the submanifold Q ⊂ N , so that ψ−1(Q) ⊂ M is a
submanifold, then

ψ∗(ξ|Q) = ψ∗(ξ)|ψ−1(Q).

There is also an operation of pullback of sections, taking sec-
tions of a vector bundle ξ = (π, E,N) to sections of the pullback
ψ∗ξ = (π̂,ψ∗E,M), namely

ψ∗E Ψ ""

π̂
!!

E

π
!!

M
ψ

""

ψ∗s

&&

N

s

''

with ψ∗s(p) := (p, s(φ(p))).

In particular, if rank ξ = r then ψ∗∧r ξ = ∧rψ∗ξ, and the pullback
of a non-vanishing section of ∧rξ is a non-vanishing section of ∧rψ∗ξ.
Hence, the pullback ψ∗ξ of an oriented vector bundle ξ has a natural
pullback orientation.

Proposition 29.3. Let ψ : M → N be a smooth map and let
ξ = (π, E,N) be an oriented vector bundle. For any form ω ∈ Ω•

cv(E),

π̂∗Ψ
∗ω = ψ∗π∗ω,

where ψ∗ξ = (π̂,ψ∗E,M) has the pullback orientation and
Ψ : ψ∗ξ → ξ is the canonical vector bundle map covering ψ.

We leave the proof as an exercise. Another fundamental property
of the pullback of vector bundles is the following.
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Theorem 29.1 (Homotopy invariance). If ψ,φ : M → N are
homotopic maps and ξ is a vector bundle over N, then ψ∗ξ and φ∗ξ
are isomorphic vector bundles.

Proof. Let H : M × [0, 1] → N be a homotopy between φ and ψ.
Then,

φ∗ξ = H∗
0ξ = H∗ξ|M×{0},

ψ∗ξ = H∗
1ξ = H∗ξ|M×{1}.

Hence, it is enough to show that for any vector bundle η over
M× [0, 1], the restrictions η|M×{0} and η|M×{1} are isomorphic. Note
that H is only C0, but one can show that

(a) a vector bundle morphism of class C0 covering a map of class
C∞ can be approximated by a morphism of classe C∞ covering
the same map.

(b) a vector bundle morphism which is close enough to an isomor-
phism is also an isomorphism.

Hence, it is enough to proof that for any vector bundle η = (π, E,M×
[0, 1]), there exists a C0-morphism of vector bundles ∆ : η → η,
covering the map

δ : M × [0, 1]→M × [0, 1], (p, t) $→ (t, 1),

and such that the induced maps in the fibers are isomorphisms. In
order to construct ∆, we use the following lemma, whose proof is left
as an exercise.

Lemma 29.1. Let η be a vector bundle over M × [0, 1]. There exists
an open cover {Uα}α∈A of M such that the restrictions η|Uα×[0,1] are
trivial vector bundles.

Now choose a locally finite countable open cover {Uk}k∈N of M
such that each η|Uk×[0,1] is trivial, with trivialization

E|Uk×[0,1]
φk ""

π
((◆◆

◆◆◆
◆◆

◆◆◆
(Uk × [0, 1]) × Rr

π1))♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

Uk × [0, 1]
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Denote by {ρk}k∈N an envelope of unity subordinated to the cover
{Uk}k∈Nn, i.e., a collection of continuous maps ρk : M → R such
that 0 ≤ ρk ≤ 1, suppρk ⊂ Uk and, for all p ∈M ,

max{ρk(p) : k ∈ N} = 1.

Such an envelope of unity can be constructed starting with a partition
of unity {θk} and defining

ρk(p) :=
θk(p)

max{θk(p) : k ∈ N} .

For each k ∈ N, we define vector bundle morphisms ∆k : η → η by

(a) ∆k cover the map δk : M × [0, 1] →M × [0, 1] given by

δk(p, t) = (p,max(ρk(p), t));

(b) In π−1(Uk × [0, 1]), ∆k is defined by

∆k(φ
−1
k (p, t,v)) ≡ φ−1

k (p,max(ρk(p), t), v),

and ∆k is the identity outside π−1(Uk × [0, 1]).

Finally, one defines ∆ : η → η by composition

∆ = · · · ◦∆k ◦ · · · ◦∆1.

Since each p ∈M has a neighborhood which intersects a finite num-
ber of open sets Uk, this is a well-defined vector bundle morphism
∆ : η → η, which locally is the composition of vector bundle maps
that are isomorphisms on the fibers. Hence, ∆ is a vector bundle
isomorphism which covers δ : M × [0, 1]→M × [0, 1].

Corollary 29.1. Any vector bundle over a contractible manifold is
trivial.

Proof. Let ξ = (π, E,M) be a vector bundle and let φ : M → {∗}
and ψ : {∗} → M be smooth maps such that ψ ◦ φ is homotopic to
idM . The theorem gives

ξ ( (ψ ◦ φ)∗ξ ( φ∗(ψ∗ξ).
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Since ψ∗ξ is a vector bundle over a set which consist of a single point,
it is a trivial vector bundle. Hence ξ ( φ∗(ψ∗ξ) is also a trivial vector
bundle.

Hence, when M is contractible the space Vectr(M) consisting of
isomorphism classes of vector bundles of rank r over M has only one
point.

Example 29.1. Given a line bundle ξ = (π, E,S1), we can cover S1
by the two contractible open sets U = S1−{pN} and V = S1−{pS}.
By the corollary, over each open set U and V the vector bundle
trivializes: φU : E|U ( U × R and φV : E|V ( V ×R. Therefore, the
line bundle is completely characterized by the transition function
gUV : U ∩ V → R, so that

φV ◦ φ−1
U : U × R→ V × R, (p, v) $→ (p, gUV (p)v).

The intersection U ∩V has two connected components, and we leave
it as an exercise to check that if gUV (x) has the same sign in both
components, then ξ is trivial, while if gUV (x) has the opposite signs
in the two components then the line bundle is isomorphic to the
line bundle whose total space is the Möbius band. In other words,
the space Vect1(S1) consisting of isomorphism classes of line bundles
over S1 has two elements.

This allows is to define the first Stiefel–Whitney class w1(ξ) ∈
H1(M,Z2) of a line bundle ξ over a manifold M . Namely, if [,] ∈
H1(M,Z) is represented by a loop , : S1 →M , then one sets

〈w̃1(ξ), [,]〉 :=
{
0 if ,∗ξ is trivial,

1 if ,∗ξ is not trivial.

We leave as an exercise to check that w1 gives a bijection

w1 : Vect1(M) ( H1(M,Z2).

so a line bundle ξ is uniquely determined, up to isomorphism, by its
first Stiefel–Whitney class.

For example, one has H1(RPd,Z2) = Z2. So Vect1(RPd) has two
elements: the class of the trivial bundle and the class of the canonical
line bundle ,1d .
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Exercises

Exercise 29.1

Give a proof of the universal property of pullbacks in Proposition
29.1. Show that this property characterizes the pullback of vector
bundles up to isomorphism.

Exercise 29.2

Verify the properties of the pullback of vector bundles given by
Proposition 29.2.

Exercise 29.3

Let Ψ : η → ξ be a vector bundle map covering a map ψ : M → N .
Show that if Ψ is a fiberwise isomorphism then η is isomorphic to
φ∗η. Use this to conclude that Proposition 29.3 follows from Propo-
sition 28.3.

Exercise 29.4

Let φ : M → N be a submersion and denote by F the foliation
of M by the fibers of φ. Show that the normal bundle ν(F) and
the conormal bundle ν∗(F) are naturally isomorphic to the pulback
bundles φ∗TN and φ∗T ∗N , respectively.

Exercise 29.5

Let ξ be a vector bundle over M × [0, 1]. Show that there exists an
open cover {Uα}α∈A of M such that the restrictions ξ|Uα×[0,1] are
trivial.

Hint : If ξ is a vector bundle over M × [a, c] which is trivial when
restricted to both M × [a, b] and M × [b, c], for some a < b < c, then
ξ is a trivial vector bundle.

Exercise 29.6

Complete the details of Example 29.1, showing that Vect1(S1) ( Z2.

Exercise 29.7

For a line bundle ξ denote by w1(ξ) ∈ H1(M,Z2) its first Stiefel–
Whitney class.
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(a) Given a class c ∈ H1(M,Z2) show that there exists a line bundle
ξ whose first Stiefel–Whitney class is w1(ξ) = c.

(b) Conclude that w1 : Vect1(M)→ H1(M,Z2) is a bijection.
(c) Show that the tensor product makes Vect1(M) into a group.

What is the group structure induced on H1(M,Z2)?

Exercise 29.8

Let Γ be a discrete group that acts properly and free on a manifold
N and by linear transformations on R. Then Γ acts diagonally on
the trivial line bundle pr1 : N ×R→ N . Show that the induced map
between the quotients

p : (N × R)/Γ→ N/Γ,

defines a line bundle. Conversely, show that every line bundle over M
is the quotient of a trivial line over the universal covering space M̃ .

Exercise 29.9

Let ξ = (π, E,M) be a vector bundle and let φ : N → M be a
smooth map. Show that the Euler classes of ξ and φ∗ξ are related by

φ∗e(ξ) = e(φ∗ξ).

Exercise 29.10

Denote by Pic(M) the space of isomorphism classes of complex line
bundles over a manifold M . Show that the tensor product turns
Pic(M) into a group, called the Picard group of M . Find Pic(S1).
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Lecture 30

The Classification of Vector Bundles

The problem of determining Vectk(M) can be reduced to a problem
in homotopy theory. We will only sketch this briefly since this topic
belongs to the realm of algebraic topology. For a detailed discussion,
we refer, e.g., to Husemoller (1994) and Milnor and Stasheff (1974).

Recall from Exercise 27.2 that γrn denotes the canonical bundle
over the Grassmannian Gr(Rn). It has total space and projection

E := {(S, x) : S ⊂ Rn is r-dimensional subspace and x ∈ S},

π(S, x) := S.

This is a rank r subbundle of the trivial vector bundle εnGr(Rn).

Over the Grassmannian Gn−r(Rn) there is another rank r vector
bundle, called the universal quotient bundle and denoted ηrn,
which can be defined as follows. It has total space

F := {(S, x+ S) : S ⊂ Rn is (n− r)-dimensional subspace and x ∈ Rn},

and projection π : F → Gn−r(Rn), (S, x + S) %→ S. In other words,
the fiber over S is the normal space Rn/S.

These vector bundles are related via the short exact sequence of
vector bundles

0 !! γn−r
n

!! εnGn−r(Rn)
!! ηrn !! 0

313
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where the last map is the projection (S, x) %→ (S, x + S). In par-
ticular, choosing n global sections of the trivial bundle εnGn−r(Rn)
yields n global sections of ηrn which at each point S generate the
fiber Rn/S.

The reason for the name universal is justified by the following
proposition.

Proposition 30.1. Let ξ be a rank r vector bundle over a mani-
fold M . If ξ admits n global sections s1, . . . , sn which generate Ep

for all p ∈ M, then there exists a smooth map ψ : M → Gn−r(Rn)
such that

ξ & ψ∗(ηrn).

Proof. Let

V :=
n⊕

i=1

Rsi & Rn.

By assumption, the sections si generate Ep, for each p ∈ M , so
evaluation of these sections at p give a linear surjective map

V
evp !! Ep

!! 0 .

The kernel of this map is a subspace of V of codimension r.
Define a smooth map:

ψ : M → Gn−r(V ), p %→ Ker evp.

Then we have a vector bundle map:

ξ %→ ψ∗ηrn, v %→
(
π(v), ev−1

π(v)(v)
)
.

This is a fiberwise isomorphism covering the identity, so it is a vector
bundle isomorphism. Choosing a basis for V, one obtains the desired
map ψ : M → Gn−r(Rn).

A map ψ : M → Gn−r(Rn) such that ξ & ψ∗ηrn is called a classi-
fying map for the vector bundle ξ. We leave as an exercise to check
that any such classifying map arises from the choice of n global sec-
tions s1, . . . , sn ∈ Γ(ξ) generating each fiber Ep, as in the previous
proof.
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The next result shows that a rank r vector bundle over a
manifold M of finite type always admit a classifying map ψ : M →
Gn−r(Rn), provide one takes n sufficient large.

Proposition 30.2. Let ξ be a rank r vector bundle over a mani-
fold M . If M admits a finite good cover with k open sets, then for
n ≥ rk:

(i) There exist classifying maps ψ : M → Gn−r(Rn) for ξ.
(ii) Any two classifying maps are homotopic.

Proof. (i) We claim that ξ admits global sections s1, . . . , sn which
generate Ep, for all p ∈ M , so (i) follows from Proposition 30.1. To
see this, let U1, . . . , Uk be a finite good cover of M . Since each Ui

is contractible, the restriction ξ|Ui is trivial. Hence, we can choose

a basis of local sections {si1, . . . , sir} for Γ(ξ|Ui). Note that there are

open sets V1, . . . , Vk, with V i ⊂ Ui which still cover M . If we choose
smooth functions fi : Ui → R such that fi|Vi = 1 and fi = 0 out-
side Ui, then {fisi1, . . . , fisir : i = 1, . . . , k} are the desired global
sections.

(ii) Let ψ : M → Gn−r(V ) and ψ : M → Gn−r(V ′) be two classify-
ing maps constructed from two choices of global sections {s1, . . . , sn}
and {s′1, . . . , s′n}, as in the proof of the previous proposition. Then we
have a canonical identification between V and V ′ and also between
Gn−r(V ) and Gn−r(V ′). It follows that the classifying map is well-
defined up to a choice of identification V & Rn. If we fix this choice,
then we conclude that two classifying maps ψ : M → Gn−r(Rn) and
ψ : M → Gn−r(Rn) differ by the action of an element A ∈ GL(n),
i.e., ψ′ = A ◦ ψ, where A is the matrix relating the two bases.

Note that the order of the basis is irrelevant to construct the
classifying map, so we can assume that A has a positive determinant.
Since GL+(n) is connected, we can choose a continuous path At ∈
GL+(n) with A1 = A and A0 = I, so that the map

ψt := At ◦ ψ : M → Gn−r(Rn),

is a homotopy between ψ and ψ′.

Denote by [M,N ] the set of homotopy classes of maps φ : M → N .
The classification of vector bundles mentioned before can be stated
as follows.
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Theorem 30.1 (Classification of vector bundles). Let M be a
manifold which admits a good open cover with k open sets. For every
n ≥ rk, there exists a bijection

Vectr(M) & [M,Gn−r(Rn)].

Proof. We saw above that the homotopy class of a classifying map
for ξ is determined by the isomorphism class of ξ, so we have a well-
defined map

Vectr(M)→ [M : Gn−r(Rn)],

which to an isomorphism class of ξ associates the homotopy class of
its classifying map.

On the other hand, the homotopy invariance of the pullbacks
implies that pullback of the universal bundle yields a map

[M : Gn−r(Rn)]→ Vectr(M), ψ %→ ψ∗ηrn.

We leave as an exercise to show that these maps are inverse to each
other, so the result follows.

This result reduces the classification of vector bundles to a homo-
topy problem. We illustrate this in the next example, which assumes
some knowledge of homotopy theory.

Example 30.1. Recall that if X is a path connected topological
space then the free homotopies and the homotopies based at x0 ∈ X
are related by

πk(X,x)/π1(X,x) & [Sk,X],

where the left-hand side is the orbit space for the natural action of
π1(X,x) in πk(X,x). Therefore, we have

Vectr(Sk) = [Sk, Gn−r(Rn)] & πk(Gn−r(Rn))/π1(Gn−r(Rn)),

for n large enough. On the other, since the Grassmannian can be
described as the homogeneous space

Gn−r(Rn) = O(n)/(O(n − r)×O(r)),

and πk(O(n)/O(n − r)) = 0, if n is large enough, the long exact
sequence in homotopy yields

πk(Gn−r(Rn)) = πk−1(O(r)).
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Hence, we conclude that

Vectr(Sk) = πk−1(O(r))/π0(O(r)) = πk−1(O(r))/Z2.

In order to understand this quotient, one needs to figure out the
action of π0(O(r)) on πk−1(O(r)). If g ∈ O(r), the action by conjuga-
tion ig : O(r)→ O(r), ig(h) = ghg−1, induces an action in homotopy

(ig)∗ : πk−1(O(r))→ πk−1(O(r)).

If g1 and g2 belong to the same connected component, then (ig1)∗ =
(ig2)∗. Hence, we obtain an action of π0(O(r)) = Z2 on πk−1(O(r)),
which is precisely the action above.

For example, if r is odd then −I represents the non-trivial class in
π0(Or). Since the action by conjugation of −I is trivial, we conclude
that

Vectr(Sk) = πk−1(O(r)), if r is odd.

For instance, we have

Vect3(S4) = π3(SO(3)) = π3(S3) = Z.

On the other hand, when r is even, the action maybe non-trivial.
Take for instance r = 2, so we have π1(O(2)) = Z. The action of
π0(O2) = Z2 in Z is just ±1 · n = ±n. Hence, we have

Vect2(Sk) = πk−1(O(2))/Z2 = πk−1(S1)/Z2 =

{
Z/Z2 if k = 2,

0 if k ≥ 3.

Remark 30.1. If a manifold is not of finite type, there still exists
a classification of vector bundles over M . In this case, we need to
consider the space

R∞ =
∞⊕

d=0

Rd,

which is the direct limit of the increasing sequence of vector spaces

· · · ⊂ Rd ⊂ Rd+1 ⊂ Rd+2 ⊂ · · ·

This is an example of a so-called profinite manifold, a class of infinite-
dimensional manifolds sharing many properties with the class of
finite-dimensional manifolds.
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In R∞ we can still consider the Grassmannian

G̃r(R∞) = G∞−r(R∞)

= {S ⊂ R∞ : linear subspace of codimension r}.

Over this infinite-dimensional Grassmannian there is a tautological
vector bundle ηr∞ = (π, E, G̃r(R∞)), called the universal bundle
of rank r. It has total space

E = {(S, x) : S ⊂ R∞ subspace of codimension r, x ∈ R∞/S},

and projection

π : E → G̃r(R∞), (S, x) %→ S.

One can show that every vector bundle of rank r over a manifold M
is isomorphic to a pullback ψ∗ηr∞ for some classifying map

ψ : M → G̃r(R∞).

Has before, any two classifying maps are homotopic and one obtains
for any manifold M a bijection

Vectr(M) & [M, G̃r(R∞)].

This approach, via infinite-dimensional Grassmanian, has the
advantage of avoiding any reference to “large enough n”, as we did
before in the case of a manifold of finite type. On the other had,
it forces one to deal with vector bundles over infinite-dimensional
manifolds.

Exercises

Exercise 30.1

Let ξ = (π, E,M) be a vector bundle and N ⊂M a closed submani-
fold. Show that every section s : N → E over N , admits an extension
to a section s̃ : U → E defined over an open set U ⊃ N .

Exercise 30.2

Let ψ : M → Gn−r(Rn) be a classifying map for a vector bundle
ξ = (π, E,M). Show that ψ is obtained from the choice of n global
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sections s′1, . . . , s
′
n ∈ Γ(ξ) generating each fiber Ep, as in the proof of

Proposition 30.1.

Exercise 30.3

Let M admit a finite good cover with k open sets and let n ≥ kr.
Show that the map

Vectr(M)→ [M : Gn−r(Rn)], [ξ] %→ f,

associating to an isomorphism class of a vector bundle ξ the homo-
topy class of a classifying map f , and the map

[M : Gn−r(Rn)]→ Vectr(M), ψ %→ ψ∗ηrn,

are inverse to each other.

Exercise 30.4

Determine Vectr(S1), Vectr(S2) and Vectr(S3). Give representatives
for each equivalence class of vector bundles.
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Lecture 31

Connections and Parallel Transport

In general, there is no natural way to di!erentiate sections of a vector
bundle. The reason is that there is no canonical way of comparing
fibers of a vector bundle over di!erent points of the base. We need to
fix some auxiliary structure on the vector bundle, and this is provided
by the notion of connection.

Definition 31.1. A connection on a vector bundle ξ =
(π, E,M) is a map

∇ : X(M)× Γ(E)→ Γ(E), (X, s) $→ ∇Xs,

which for any f ∈ C∞(M), X,Xi ∈ X(M) and s, si ∈ Γ(E) satisfies:

(i) ∇X1+X2s = ∇X1s+∇X2s;
(ii) ∇X(s1 + s2) = ∇Xs1 +∇Xs2;
(iii) ∇fXs = f∇Xs;
(iv) ∇X(fs) = f∇Xs+X(f)s.

Properties (iii) and (iv) show that a connection ∇ can be
restricted to any open set U ⊂ M , yielding a connection on ξ|U .
On the other hand, the map X $→ ∇X is C∞(M)-linear, hence,
for any section s defined in a neighborhood U of p ∈ M and any
v ∈ TpM , we can define

∇vs := ∇Xs(p) ∈ Ep,

where X is any vector field defined in a neighborhood of p such that
Xp = v. Note, however, that ∇vs depends on the values of s in a
neighborhood of p.

321
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Let U ⊂ M be a trivializing open set for ξ, so we can choose a
basis of sections {s1, . . . , sr} for ξ|U . Given any section s ∈ Γ(ξ) we
have that

s|U =
r∑

a=1

fasa,

for unique smooth functions fa ∈ C∞(U). By the properties above,
the connection ∇ is then completely determined on the open set U by
its e!ect on the sections sa, namely, for any vector field X ∈ X(M)
we have

(∇Xs)|U =
r∑

a=1

(fa∇Xsa +X(fa)sa).

By properties (i) and (iii), there exists a unique ωb
a ∈ Ω1(U) express-

ing the local section ∇Xsa in terms of the local basis as

∇Xsa =
r∑

b=1

ωb
a(X)sb.

One calls the matrix of 1-forms ω = [ωa
b ] the connection 1-form.

It determines completely the connection on U by the formula

(∇Xs)|U =
r∑

a=1

(
r∑

b=1

f bωa
b (X) +X(fa)

)

sa.

The dependence of the connection 1-form on the choice of trivializing
sections is discussed in an exercise at the end of this lecture.

Assume, additionally, that U is the domain of a chart (x1, . . . , xd).
Then there exists unique functions Γb

ia ∈ C∞(U) such that

∇ ∂
∂xi

sa =
r∑

b=1

Γb
ia sb.

The functions Γb
ia are called the Christoffel symbols of the con-

nection relative to the coordinate systems and basis of local sections.
They are related to the connection 1-form by

ωa
b =

r∑

i=1

Γa
ibdx

i.
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If we write X =
∑d

i=1X
i ∂
∂xi , then the local form for the connection

becomes

(∇Xs)|U =
r∑

a=1

d∑

i=1

(
r∑

b=1

f bXiΓa
ib +Xi∂f

a

∂xi

)

sa.

Example 31.1. Recall that the vector bundle ξ = (π, E,M) of
rank r is trivial if and only if it admits a basis of global sections
{s1, . . . , sr}. For such a trivial vector bundle, each choice of basis
determines a unique connection on ξ satisfying

∇Xsa := 0, (a = 1, . . . , r).

In other words, the connection 1-form relative to this basis vanishes.
Note that this connection depends on the choice of basis.

The collection of all connections on a fixed vector bundle ξ has
an affine structure. If ρ ∈ C∞(M) is any smooth function, ∇1 and
∇2 are connections, then the affine combination

ρ∇1 + (1− ρ)∇2,

also defines a connection on ξ. This fact that allows us to show that
connections always exist.

Proposition 31.1. Every vector bundle ξ = (π, E,M) admits a
connection.

Proof. Let {Uα} be an open cover of M by trivializing open sets
of ξ. The previous example shows that in each Uα we can choose a
connection ∇α. We define a connection ∇ in M by “gluing” these
connections: if {ρα} is a partition of unity subordinated to the cover
{Uα}, then

∇ :=
∑

α

ρα∇α

defines a connection on ξ.

If one equips vector bundles with connections, the usual construc-
tions lead to vector bundles with connections. The proof is left as an
exercise.
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Proposition 31.2. Let ξ and ξ′ be vector bundles over M, furnished
with connections ∇ and ∇′. Then the associated bundles ξ ⊕ ξ′, ξ∗
and ∧kξ, have induced connections which are uniquely determined by
requiring

∇X(s1 ⊕ s2) = ∇Xs1 ⊕∇′
Xs2,

∇X(s1 ∧ · · · ∧ sk) = ∇Xs1 ∧ · · · ∧ sk + · · ·+ s1 ∧ · · · ∧ ∇Xsk

X(〈s, η〉) = 〈∇Xs, η〉+ 〈s,∇Xη〉.

If ψ : N → M is a smooth map, then ψ∗ξ has a unique connection
such that

(∇Xψ
∗s)(p) = (p,∇dpψ(Xp)s), ∀p ∈ N, s ∈ Γ(ξ).

Connections can be used to compare di!erent fibers of a vector
bundle. Let ξ = (π, E,M) be a vector bundle with a connection ∇.
If c : [0, 1] → M is a smooth curve then the pullback bundle c∗ξ
has an induced connection which we still denote by ∇. Note that a
section s of the bundle c∗ξ is just a section of ξ along c, i.e., a smooth
map s : [0, 1]→ E such that π(s(t)) = c(t), for all t ∈ [0, 1].

E

π
!!

[0, 1]

s

""③③③③③③③③

c
## M

Definition 31.2. The covariant derivative of a section s along a
curve c is the section Dcs along c given by

Dcs := ∇ d
dt
s.

A section s along c is called a parallel section if it has vanishing
covariant derivative: Dcs = 0

The operation of covariant derivative enjoys the following prop-
erties:

(i) Dc(s1 + s2) = Dcs1 +Dcs2;
(ii) Dc(fs) = (f ◦ c)Dcs+ df(ċ)s.

One can also express it in a local chart (U, xi) admitting trivializing
sections {sa}. Given a curve c(t) in U , if we set ci(t) = xi(c(t)), we
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can express any section s along c as s(t) =
∑d

a=1 v
a(t)sa(c(t)). Then

the covariant derivative of s along c is given by

Dcs(t) =
r∑

a=1

(
dva

dt
(t) +

r∑

b=1

ωa
b (ċ(t))v

b(t)

)
sa(c(t)), (31.1)

where ωa
b ∈ Ω1(U) are the components of the connection 1-form.

Remark 31.1. One can define the covariant derivative alternatively
as follows. Given a section s(t) along a curve c(t) one can choose a
time-dependent section s̃t ∈ Γ(E) such that

s̃t(c(t)) = s(t), ∀t ∈ I.

Then the covariant derivative is given by

Dcs(t) := ∇c(t)s̃t +
d

dt
s̃t(p)

∣∣∣∣
p=c(t)

. (31.2)

One can show that this is independent of the choice of extension s̃t,
either by working in a local chart or by showing that it coincides
with our first definition.

Note, in particular, that even for a constant curve c(t) = p0
the covariant derivative along c may not be zero! In fact, in this
case, a section along c is just a curve s : [0, 1] → Ep0 in the
fiber over p0 and the covariant derivative is the usual derivative of
this curve.

Lemma 31.1. For any curve c : [0, 1] → M and any v0 ∈ Ec(0),
there exists a unique parallel section s along c with initial condition
s(0) = v0.

Proof. Since an interval is contractible, the pullback bundle c∗ξ is
trivial. This means that we can find sections {s1, . . . , sr} along c
such that any section s along c can be uniquely written as s(t) =∑r

a=1 v
a(t)sa(t), for some smooth functions va : [0, 1] → R. In par-

ticular, if we define ωa
b (t) by

Dcsb(t) =
r∑

a=1

ωa
b (t)sa(t),
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we find that

Dcs =
r∑

a=1

(
dva

dt
(t) +

r∑

b=1

ωa
b (t)v

b(t)

)

sa(t).

Hence, the parallel sections along c are the solutions of the linear
system of ODEs:






dva

dt (t) = −
∑r

b=1 ω
a
b (t)v

b(t),

va(0) = va0

(a = 1, . . . , r).

Hence, the lemma follows from the well-known results about exis-
tence and uniqueness of solutions of linear ODEs with time depen-
dent coefficients.

Under the conditions of this lemma, we say that the vectors s(t) ∈
Ec(t) are obtained by parallel transport along the curve c. We denote
the operation of parallel transport along c by

τt : Ec(0) → Ec(t), τt(v0) := s(t).

The next result shows that parallel transport contains all the infor-
mation about the connection ∇.

Proposition 31.3. Let ξ = (π, E,M) be a vector bundle with a
connection ∇ and let c : [0, 1]→M be a smooth curve. Then,

(i) Parallel transport τt : Ec(0) → Ec(t) along c is a linear
isomorphism.

(ii) If v = c′(0) ∈ Tc(0)M, then for any section s ∈ Γ(ξ):

∇vs = lim
t→0

1

t

(
τ−1
t (s(c(t))) − s(c(0))

)
.

Proof. Since the di!erential equation defining parallel transport is
linear, it depends linearly on the initial conditions, so τt is linear. On
the other hand, τt is invertible, since its inverse is parallel transport
along the curve c̄ : [0, t]→M , given by c̄(ε) = c(t− ε).

For the proof of (ii), first we use Lemma 31.1 to produce a family
{s1, . . . , sr} consisting of parallel sections along c that for each t
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generate the fiber Ec(t). Then there are functions va : [0, 1]→ R such
that

s(c(t)) =
r∑

a=1

va(t)sa(t),

and we find that

lim
t→0

1

t

(
τ−1
t (s(c(t))) − s(c(0))

)

= lim
t→0

r∑

a=1

1

t

(
va(t)τ−1

t (sa(t))− va(0)sa(0)
)

= lim
t→0

r∑

a=1

1

t
(va(t)− va(0)) sa(0)

=
r∑

a=1

dva

dt
(0)sa(0) = Dc

(
r∑

a=1

vasa

)
(0) = ∇vs,

where in the last line we have used (31.2) and that Dcsa = 0.

Consider now the tangent bundle ξ = TM of a manifold M . For
a connection ∇ in TM , the notions above have a more geometric
meaning. For example, in M = Rd, there is a canonical connection
∇ in TRd = Rd × Rd, which corresponds to the usual directional
derivative. A vector field X (i.e., a section of TM) is parallel for this
connection along a curve c(t) if and only if the components of the
vectors Xc(t) are constant.

For a connection on the tangent bundle TM, there are additional
notions that do not make sense for connections on a general vector
bundle. This is because a connection on TM di!erentiates vector
fields along vector fields, so we have a more symmetric situation.
Here is a first example:

Definition 31.3. Let ∇ be a connection on TM . A geodesic is a
curve c(t) for which its derivative ċ(t) (a vector field along c(t)) is
parallel, i.e., that satisfies

Dcċ(t) = 0.
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If we choose local coordinates (U, x1, . . . , xd), we have trivializing
vector fields { ∂

∂x1 , . . . ,
∂
∂xd } for TM |U , and we can write:

∇ ∂
∂xi

∂

∂xj
=
∑

k

Γk
ij
∂

∂xk
.

A curve c(t) with components ci(t) = xi(c(t)) is a geodesic if and
only these satisfy

d2ck

dt2
(t) = −

∑

ij

Γk
ij(c(t))

dci

dt
(t)

dcj

dt
(t), (k = 1, . . . , n).

Using these equations, it should be clear that given p0 ∈ M and
v ∈ Tp0M , there exists a unique geodesic c(t) such that c(0) = p0 and
ċ(0) = v. Given v, this geodesic is defined for small time 0 ≤ t < ε.
If we choose v sufficiently small we can assume that ε > 1 and in
this case, we set

expp0(v) := c(1).

In this way, we obtain the exponential map expp0 : U →M , which
is defined in a sufficiently small open neighborhood of the origin
U ⊂ Tp0M .

Another notion which only makes sense for connections ∇ in TM
is the torsion of a connection. This is the map T : X(M)×X(M)→
X(M) defined by

T (X,Y ) := ∇XY −∇Y X − [X,Y ].

The properties of∇ show that T is C∞(M)-linear in both arguments,
so it defines a vector bundle morphism T : TM ⊗ TM → TM called
the torsion tensor of the connection. A symmetric connection
is a connection whose torsion vanishes.

In order to give a geometric characterization of the torsion con-
sider a smooth map φ : [0, 1] × [0, 1] → M , which one can think as
a parameterized surface. Denoting the parameters by (x, y), we have
the following maps [0, 1] × [0, 1]→ TM covering φ

∂φ

∂x
:= φ∗

(
∂

∂x

)
,

∂φ

∂y
:= φ∗

(
∂

∂y

)
.

One may think of these maps as vector fields along φ. If one fixes y,
they give vector fields along the curve t $→ φ(t, y), and similarly if
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one fixes x. So we may consider the covariant derivatives:

• Dx
∂φ
∂y := covariant derivative along the curve t $→ φ(t, y) at t = x;

• Dy
∂φ
∂x := covariant derivative along the curve t $→ φ(x, t) at t = y.

Proposition 31.4. Consider a parameterized surface φ : [0, 1] ×
[0, 1]→M . The torsion of a connection ∇ in TM satisfies:

Dx
∂φ

∂y
−Dy

∂φ

∂x
= T

(∂φ
∂x

,
∂φ

∂x

)
.

Proof. The proof is similar (but simpler!) to the proof of Proposition
32.1, and so is left as an exercise.

The most classical example of a connection is the Levi–Civita
connection in the tangent bundle of a Riemannian manifold, which
we now describe.

Definition 31.4. Let ξ be a vector bundle over M with a fiber
metric 〈 , 〉. A connection on ξ is said to be compatible with the
metric if

LX〈s1, s2〉 = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉,

for every vector field X ∈ X(M) and every pair of sections s1, s2 ∈
Γ(ξ).

For a Riemannian manifold we have a natural choice of compatible
metric.

Proposition 31.5. Let (M, 〈 , 〉) be a Riemannian manifold. There
exists a unique symmetric connection on TM compatible with the
metric.

Proof. Let X,Y,Z ∈ X(M) be vector fields in M . The compatibility
of ∇ with the metric gives

LX〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉,

LY 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇Y X〉,

LZ〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉.
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Adding the first two equations and subtracting the third one, one
finds

LX〈Y,Z〉+ LY 〈Z,X〉 − LZ〈X,Y 〉

= 2〈∇XY,Z〉 − 〈X, [Z, Y ]〉 − 〈Y, [Z,X]〉 − 〈Z, [X,Y ]〉,

where we have used the symmetry of the connection. This relation
shows that the two conditions completely determine the connection
by the formula

〈∇XY,Z〉 = 1

2
(LX〈Y,Z〉+ LY 〈Z,X〉 − LZ〈X,Y 〉)

+
1

2
(〈X, [Z, Y ]〉+ 〈Y, [Z,X]〉 + 〈Z, [X,Y ]〉) .

On the other, one checks easily that this formula does define a connec-
tion on TM which is symmetric and compatible with the metric.

The connection in the proposition is known as the Levi–Civita
connection of the Riemannian manifold. This allows to define par-
allel transport, geodesics, exponential map, etc., for a Riemannian
manifold. The fact that this connection comes from a metric leads
to additional properties of these concepts. We will not go into any
deeper discussion of Riemannian geometry and refer the reader to
any textbooks on the subject such as do Carmo (1992) or Gallot
et al. (2004).

Exercises

Exercise 31.1

Let ξ and ξ′ be vector bundles over M , furnished with connections
∇ and ∇′. Show that the associated bundles ξ⊕ ξ′, ξ∗ and ∧kξ carry
unique connections satisfying:

∇X(s1 ⊕ s2) = ∇Xs1 ⊕∇′
Xs2,

∇X(s1 ∧ · · · ∧ sk) = ∇Xs1 ∧ · · · ∧ sk + · · ·+ s1 ∧ · · ·∇X ∧ sk

X(〈s, η〉) = 〈∇Xs, η〉+ 〈s,∇Xη〉.
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Determine the connection 1-form of these connections in terms of
the original connection 1-forms.

Exercise 31.2

Let ξ be a vector bundle over M with a connection ∇. If ψ : N →M
is a smooth map, show that ψ∗ξ has a connection induced from ∇
such that

(∇vψ
∗s) = ψ∗(∇dpψ(v)s), ∀v ∈ TpN, s ∈ Γ(ξ).

Determine the connection 1-form of the pullback connection in terms
of the connection 1-form of the original connection.

Exercise 31.3

Let {s1, . . . , sr} and {s′1, . . . , s′r} be two bases of local sections for
a vector bundle ξ = (π, E,M) over a common open set U ⊂ M .
Denote by A = (aji ) : U → GL(r) the matrix of change of basis so

that s′i =
∑

j a
j
i sj. Show that the corresponding connection 1-forms

ω and ω′ are related by

ω′ = A−1ωA+A−1dA.

Exercise 31.4

Deduce formula (31.1) for the local expression of the covariant
derivative.

Exercise 31.5

Show that the covariant derivative of a section s(t) along a curve
c(t), as given in Definition 31.2, can be computed by choosing a
time-dependent section extending s and applying formula (31.2). In
particular, conclude that this formula does not depend on the choice
of extension.

Exercise 31.6

Let ξ be a vector bundle overM with a fiber metric g := 〈 , 〉. Viewing
the metric as a section g ∈ Γ(⊗2E∗), verify that the condition that
the connection ∇ is compatible with the metric g is equivalent to

∇Xg = 0, ∀X ∈ X(M).

Show that one can always find such a compatible connection ∇.
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Exercise 31.7

Let ξ = (π, E,M) be a vector bundle with a fiber metric 〈 , 〉. For a
connection ∇ in ξ, show that the following are equivalent:

(i) ∇ is compatible with the metric.
(ii) Parallel transport τt : Ec(0) → Ec(t) along any curve c is an

isometry.
(iii) For any basis of orthonormal trivializing sections the connection

1-form ω = [ωb
a] is a skew-symmetric matrix.

Exercise 31.8

Let M ⊂ Rn be an embedded submanifold so that TpM ⊂ Rn has
the inner product induced from the standard inner product on Rn.
Show that these yield a Riemannian metric g in M , whose associated
Levi–Civita connection is given by

(∇XY )(p) = prTpM

(
dpY (Xp)

)
,

where prTpM : Rn → TpM denotes the orthogonal projection and in
the right-side we view Y ∈ X(M) as a map Y : M → Rn.

Exercise 31.9

Let G be a connected Lie group with Lie algebra g. Show that there
exists a unique torsion-free connection ∇ in TG, which is invariant
under left and right translations, and under inversion. Show also that
∇ satisfies the following properties:

(a) For any left-invariant vector fields X,Y ∈ g

∇XY =
1

2
[X,Y ];

(b) The exponential map of ∇ at the identity expe coincides with
the Lie group exponential map exp : g→ G;

(c) Parallel transport along the curve c(t) = exp(tX), X ∈ g, is
given by

τt(v) = dLexp( t
2X) · dRexp( t

2X) · v, ∀v ∈ TeG;

(d) The geodesics are translations of the 1-parameter subgroups
of G.
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Exercise 31.10

A connection ∇ is called complete if all its geodesics γ(t) are defined
for all t ∈ R. Give an example of a compact manifold M with a non-
complete connection.

Note: One can show that the Levi–Civita connection of a compact
Riemannian manifold is always complete.
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Lecture 32

Curvature and Holonomy

A trivial vector bundle carries natural connections defined in terms
of trivializing sections si, for which ∇si = 0. In general, given some a
vector bundle ξ = (π, E,M) with a connection ∇, it is not possible to
choose a basis of local sections si such that ∇si = 0. The obstruction
is given by the curvature of ∇, which is the map

R : X(M)× X(M)× Γ(ξ)→ Γ(ξ)

defined by

R(X,Y )s = ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s.

A simple computation shows that R is C∞(M)-linear in all the
arguments, so we can think of R as a vector bundle map R :
TM⊗TM⊗E → E. For this reason, one also calls R the curvature
tensor.

The local expression for the curvature over a chart (U, xi) admit-
ting a basis of sections {s1, . . . , sr} for ξ is

R

(
∂

∂xi
,
∂

∂xj

)
sa =

r∑

b=1

Rb
ijasb,

where the components Rb
ija can be expressed in terms of the

Christoffel symbols Γb
ia by

Rb
ija =

∂Γb
ja

∂xi
− ∂Γb

ia

∂xj
+

r∑

c=1

(
Γc
iaΓ

b
jc − Γc

jaΓ
b
ic

)
.

335
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We can also codify the curvature in terms of a matrix of differential
forms by setting

Ωb
a :=

∑

i<j

Rb
ijadx

i ∧ dxj.

One calls Ω = [Ωb
a] the curvature 2-form of the connection. This

matrix-valued 2-form is independent of the choice of local coordi-
nates, and it can also be defined from the relation

R(X,Y )sa =
r∑

b=1

Ωb
a(X,Y )sb.

The dependence of Ω on the choice of trivializing sections is discussed
in the Homework.

Theorem 32.1. For a connection on a vector bundle ξ, the con-
nection 1-form ω and the curvature 2-form Ω associated with some
trivializing sections, are related by the structure equations

Ωb
a = dωb

a +
∑

c

ωc
a ∧ ωb

c ⇐⇒ Ω = dω + ω ∧ ω,

and one has the Bianchi’s identity

dΩb
a =

∑

c

(
Ωc
a ∧ ωb

c − ωc
a ∧Ωb

c

)
⇐⇒ dΩ = Ω ∧ ω − ω ∧ Ω.

Proof. Direct computation.

Let us turn now to the geometric interpretation of curvature
in terms of parallel transport. For that we choose a smooth map
φ : [0, 1] × [0, 1] → M , as in the discussion leading to Proposi-
tion 31.4. We use the same notations as in that proposition. Given
a section s of the vector bundle ξ along φ, we have the covariant
derivatives:

• Dxs(x, y) := covariant derivative of s along the curve t )→ φ(t, y)
at t = x.

• Dys(x, y) := covariant derivative of s along the curve t )→ φ(x, t)
at t = y.

We these notations, we have the following interpretation of the cur-
vature tensor.



June 15, 2024 15:46 Lectures on Differential Geometry 9in x 6in b5406-ch32 FA1 page 337

Curvature and Holonomy 337

Proposition 32.1. Fix a parameterized surface φ: [0, 1]×[0, 1] →M .
For any section s of ξ along φ, the curvature of the connection
satisfies

DxDys−DyDxs = R

(
∂φ

∂x
,
∂φ

∂x

)
s.

Proof. One can choose (x, y)-dependent vector fields Xx,y, Yx,y ∈
X(M) extending ∂φ

∂x and ∂φ
∂y , i.e., satisfying

Xx,y(φ(x, y)) =
∂φ

∂x
(x, y), Yx,y(φ(x, y)) =

∂φ

∂y
(x, y).

We will need the following result whose proof we leave as an exercise:

Lemma 32.1.
(

d

dy
Xx,y −

d

dx
Yx,y

) ∣∣
φ(x,y) = [Xx,y, Yx,y]

∣∣
φ(x,y)

.

We choose also a (x, y)-dependent section sx,y ∈ Γ(ξ) extending s,
so that

sx,y(φ(x, y)) = s(x, y).

Using Remark 31.1, we can compute the covariant derivatives of s

Dxs(x, y) =

(
∇Xx,ysx,y +

d

dx
sx,y

) ∣∣∣
φ(x,y)

,

Dys(x, y) =

(
∇βx,ysx,y +

d

dy
sx,y

) ∣∣∣
φ(x,y)

.

It follows that

DxDys(x, y) =

(
∇Xx,y∇Yx,ysx,y +

d

dx
∇Yx,ysx,y

+ ∇Xx,y

dsx,y
dy

+
d2sx,y
dxdy

) ∣∣∣
φ(x,y)

,

DyDxs(x, y) =

(
∇βx,y∇Xx,ysx,y +

d

dy
∇Xx,ysx,y

+ ∇Yx,y

dsx,y
dx

+
d2sx,y
dydx

) ∣∣∣
φ(x,y)

.
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Taking the difference of these two equations, we obtain

DxDys(x, y)−DyDxs(x, y)

=
(
∇Xx,y∇Yx,ysx,y −∇Yx,y∇Xx,ysx,y +∇ d

dx
Yx,y− d

dy
Xx,y

sx,y
) ∣∣∣

φ(x,y)
.

Finally, applying the lemma above, we obtain

DxDys(x, y)−DyDxs(x, y) = (R(Xx,y, Yx,y)sx,y)
∣∣∣
φ(x,y)

= R

(
∂φ

∂x
,
∂φ

∂x

)
s(x, y).

A flat connection is a connection for which the curvature tensor
vanishes. We will often refer to a vector bundle with a flat connec-
tion as a flat vector bundle. Clearly, if around each point one can
choose coordinates and trivializing sections for which the Christoffel
symbols vanish, the connection is flat. The converse is also true, as
a consequence of the following local normal form for flat bundles.

Corollary 32.1. Let ξ = (π, E,M) be a vector bundle of rank r
with a flat connection ∇. For each p ∈M, there exists a base of local
sections {s1, . . . , sr} defined in a neighborhood U of p, such that

∇Xsi = 0, ∀X ∈ X(M).

Hence, ξ|U is isomorphic to the trivial vector bundle εrU with the
canonical flat connection.

In the case of Riemannian manifolds, Corollary 32.1 takes the
following more geometric meaning.

Corollary 32.2. Let (M, 〈 , 〉) be a Riemannian manifold with van-
ishing curvature tensor: R = 0. For each p ∈M, there exists a neigh-
borhood U of p which is isometric to an open in Rd furnished with
the Euclidean metric.

For the proofs of these corollaries, we refer to the exercises at the
end of this lecture. Note that these results describe flat connections
locally. To describe what happens with a flat connection globally, we
need to introduce the notion of holonomy of a connection.
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Given a vector bundle ξ = (π, E,M) of rank r with a connection
∇ fix a base point p0 ∈M . For each closed path γ : [0, 1]→M based
at p0, so γ(0) = γ(1) = p0, parallel transport along the curve γ(t)
gives a linear isomorphism of Ep0 , called the holonomy of γ and
denoted by

Hp0(γ) := τ1 : Ep0 → Ep0 .

If we extend this definition in the obvious way to closed paths which
are only piecewise smooth, it is clear that

Hp0(γ1 · γ2) = Hp0(γ1) ◦Hp0(γ2),

where γ1 · γ2 denotes the concatenation of the two paths defined by

γ1 · γ2(t) :=
{
γ2(2t) if 0 ≤ t ≤ 1

2 ,

γ1(2t− 1) if 1
2 ≤ t ≤ 1.

When the connection is flat holonomy only depends on the homotopy
class of the path.

Proposition 32.2. Given a flat connection, any two path-homotopic
closed curves γ0 and γ1 have the same holonomy: Hp0(γ0) = Hp0(γ1).

Proof. One can show that two smooth curves which are C0 path-
homotopic are also smooth path-homotopic (see, e.g., Hirsch, 1994).
So let γ : [0, 1]× [0, 1]→M be a smooth path-homotopy between γ0
and γ1, so that

γ(t, 0) = γ0(t), γ(t, 1) = γ1(t), γ(0, ε) = γ(1, ε) = p0.

Fix v0 ∈ Ep0 . We define a section s : [0, 1] × [0, 1] → E along γ :
[0, 1] × [0, 1]→M by

s(t, ε) := τγ(·,ε)t (v0) =

{
parallel transport of v0 along

s )→ γ(s, ε) with s ∈ [0, t].

Note that, by construction, for each fixed ε one has

Dts := Dγ(·,ε)s = 0.

We claim that for each fixed t one also has

Dεs := Dγ(t,·)s = 0.
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Indeed, since γ(0, ε) = 0 and s(0, ε) = v0, we have

Dεs(0, ε) = Dγ(0,·)s(0, ε) =
d

dε
s(0, ε) = 0.

On the other hand, using Proposition 32.1, we find

DtDεs = R

(
∂γ

∂t
,
∂γ

∂ε

)
+DεDts = 0.

Hence, Dεs is parallel along the curve t )→ γ(t, ε) so we must have
Dεs(t, ε) = 0, as claimed.

Now, applying our claim, and the fact that γ(1, ε) = p0, we con-
clude that

0 = Dεs(1, ε) =
d

dε
s(1, ε).

Hence,

τγ01 (v0) = s(1, 0) = s(1, 1) = τγ11 (v0).

Since v0 ∈ Ep0 was an arbitrary vector, we conclude that Hp0(γ0) =
Hp0(γ1).

Every element in π1(M,p0) has a smooth a representative, so for
a flat connection holonomy gives a group homomorphism

Hp0 : π1(M,p0)→ GL(Ep0).

This homomorphism is called the holonomy representation of ∇
with base point p0. If q0 ∈ M is a different base point in the same
connected component of M , we can choose a smooth path c : [0, 1]→
M with c(0) = p0 and c(1) = q0. Then parallel transport along c(t)
gives an isomorphism τ : Ep0 → Eq0 and one has

Hq0 = τ ◦Hp0 ◦ τ−1.

Hence, the holonomy representations for different base points in the
same connected component are related by conjugacy.

Theorem 32.2. Let M be a connected manifold with base point
p0 ∈M, there is a 1 : 1 correspondence

{isomorphism classes of flat vector bundles of rank r over M}

←̃→Hom(π1(M,p0),GL(r))/GL(r).

where GL(r) acts on Hom(π1(M,p0),GL(r)) by conjugation.
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Proof. We already know that a flat vector bundle (ξ,∇) induces
a representation of the fundamental group, namely the holonomy
representation

Hp0 : π1(M,p0)→ GL(Ep0).

Fixing a basis for the fiber Ep0 , we obtain a group homomorphism

Hp0 : π1(M,p0)→ GL(r).

Two different basis for Ep0 are related by conjugation of an element
of GL(r). It follows that two isomorphic vector bundles (ξ1,∇1) and
(ξ1,∇2) induce homomorphisms which are related by conjugation
too. Hence, one can associate to an isomorphism class of vector bun-
dles an element in the quotient

Hom(π1(M,p0),GL(r))/GL(r).

Conversely, given a representation H : π1(M,p0)→ GL(r) repre-
senting some element in this quotient, we construct a flat vector bun-
dle as follows: on the one hand, the representation gives an action of
π(M,p0) in Rr. On the other hand, the fundamental group π1(M,p0)

acts in the universal cover M̃ by deck transformations: identifying
M̃ with the set of homotopy classes of paths [c] with initial point

c(0) = p0, the action of π1(M,p0) in M̃ is given by concatenation:

π1(M,p0)× M̃ → M̃, ([γ], [c]) )→ [γ · c].

Since this action is proper and free, the resulting diagonal action of
π1(M,p0) in M̃×Rr is also proper and free. Hence, the quotient space

E = (M̃ ×Rr)/π1(M,p0) is a manifold, and we have the projection

π : E →M, [[c],v] )→ c(1).

The triple ξ = (π, E,M) is a vector bundle. Moreover, the canoni-

cal flat connection on M̃ × Rr induces a connection on ξ for which
the holonomy with base point p0 is precisely H : π1(M,p0) →
GL(r). Finally, one checks that given two homomorphisms H0,H1 :
π1(M,p0) → GL(r) in the same conjugacy class this construction
produces isomorphic flat vector bundles.

Remark 32.1. The space appearing in the previous result is an
example of a character variety. More general, given a Lie group G
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and a finitely generated group Γ, the G-character variety of Γ is the
space of equivalence classes of group homomorphisms:

Hom(Γ, G)/G.

Exercises

Exercise 32.1

Show that the connection 1-form and the curvature 2-form of a
connection satisfy the structure equations and Bianchi’s identity of
Theorem 32.1.

Exercise 32.2

Prove Lemma 32.1.

Exercise 32.3

Let {s1, . . . , sr} and {s′1, . . . , s′r} be two bases of local sections for
a vector bundle ξ = (π, E,M) over a common open set U ⊂ M .
Denote by A = (aji ) : U → GL(r) the matrix of change of basis so

that s′i =
∑

j a
j
i sj. Show that the corresponding curvature 2-forms

Ω and Ω′ are related by

Ω′ = A−1ΩA.

Exercise 32.4

Show that if ∇ is a flat connection on a vector bundle ξ = (π, E,M),
then around every point p ∈ M one can find a local basis of flat
sections for ξ.

Hint : Using Exercise 3 in the previous section and the previous exer-
cise, show that the condition ω′ = 0 defines an integrable distribution
in U ×GL(r), so one can apply Frobenius.

Exercise 32.5

Let (M, 〈 , 〉) be a Riemannian manifold whose curvature tensor van-
ishes: R = 0. Show that for each p ∈M , there exists a neighborhood
U isometric to an open in Rd with the Euclidean metric.

Exercise 32.6

Let G be a connected Lie group with Lie algebra g. As in Exercise
31.9, consider the unique connection ∇ in TG which for any two left
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invariant vector fields X,Y ∈ g satisfies

∇XY =
1

2
[X,Y ].

Show that this connection has a curvature tensor

R(X,Y ) · Z =
1

4
[[X,Y ], Z], ∀X,Y,Z ∈ g).

Exercise 32.7

On the trivial line bundle over S1, fix a base point and a non-
vanishing section e. Find the holonomy representation for the con-
nection defined by ∇ ∂

∂θ
e = e.

Exercise 32.8

On the tangent bundle of the 2-torus T2 with coordinates (θ1, θ2)
consider the flat connection defined by

∇ ∂
∂θ1

∂

∂θ1
=

∂

∂θ2
, ∇ ∂

∂θ1

∂

∂θ2
= ∇ ∂

∂θ2

∂

∂θ1
= ∇ ∂

∂θ2

∂

∂θ2
= 0.

Find the holonomy representation for a base point of your choice.

Exercise 32.9

Let F be a foliation of a manifold M and consider the normal bundle
ν(F) = TM/TF . Given a vector field tangent to the foliation X ∈
X(F) and a section s ∈ Γ(ν(F)) define:

∇Xs := prν(L)[X,Y ],

where Y ∈ X(M) is any vector field such that prν(L)(Y ) = s. Show
the following:

(a) ∇ is well-defined, i.e., it does not depend on the choice of lift Y
of s.

(b) ∇ satisfies all the properties in the definition of a connection,
except that it only differentiates along the directions of F .

(c) L, ∇ induces a flat connection ∇L on the normal bundle of each
leaf L.

The connection ∇L is called the Bott connection and its holonomy
is called the linear holonomy of the leaf L.
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Exercise 32.10

Let L be a manifold, L̃ its universal covering space, and ρ : π1(L)→
GL(V ) a representation. The diagonal action of π1(L) on L̃ × V is
proper and free so

M := (L̃× V )/π1(L)

is a smooth manifold.

(a) Show that the foliation {L̃× v : v ∈ V } projects onto a foliation
F of M having L 2 (L̃× {0})/π1(L) as a leaf.

(b) Find the linear holonomy of the leaf L (see previous exercise).
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The Chern–Weil Homomorphism

We saw in the previous section that a flat vector bundle is globally
characterized by its holonomy representation. We will now study vec-
tor bundles with connections not necessarily flat, a situation that is
more complicated but more interesting. Eventually, we will see that
one can use a connection on a vector bundle to construct cohomology
classes which are invariants of the vector bundle, and which charac-
terize certain properties of the vector bundle up to isomorphism.

Let π : E →M be a vector bundle. We consider di!erential forms
in M with values in E, which we denote by

Ω•(M ;E) := Γ(∧kT ∗M ⊗ E).

So a di!erential form of degree k with values in E is a C∞(M)-
multilinear alternating map

ω : X(M)× · · ·× X(M)︸ ︷︷ ︸
k-times

→ Γ(E).

In particular, Ω0(M ;E) is the space Γ(E) of global sections of the
vector bundle π : E →M . Note that we also have

Ω•(M ;E) = Ω•(M)⊗ Γ(E),

where ⊗ denotes here the tensor product of C∞(M)-modules. This
last interpretation shows that we have a well-defined wedge product
ω ∧ η ∈ Ωk+l(M ;E), for any ω ∈ Ωk(M) and η ∈ Ωl(M ;E).

345
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A choice of connection ∇ in π : E → M allows us to take the
di!erential of E-valued di!erential forms as follows. The connection
determines an operator d∇ : Ω0(M ;E) → Ω1(M ;E) through the
formula

(d∇s)(X) = ∇Xs.

The map d∇ is R-linear and satisfies the Leibniz identity

d∇(fs) = df ⊗ s+ fd∇s.

One can extend d∇ to arbitrary forms by requiring that for any
form ω ∈ Ω•(M) and section s ∈ Γ(E) the following general Leibniz
identity holds

d∇(ω ⊗ s) = d∇(ω)⊗ s+ (−1)deg ωω ∧ d∇(s). (33.1)

The following proposition gives an explicit expression for the linear
operator d∇.

Proposition 33.1. Given a connection ∇ on a vector bundle E, for
ω ∈ Ωk(M ;E) define d∇ω ∈ Ωk+1(M ;E) by

d∇ω(X0, . . . ,Xk) :=
k+1∑

i=0

(−1)i∇Xi(ω(X0, . . . , X̂i, . . . ,Xk))

+
∑

i<j

(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk). (33.2)

This defines a linear operator d∇ : Ω•(M ;E) → Ω•+1(M ;E) which
is uniquely determined by the following two properties:

(i) For any 0-form s ∈ Γ(E), one has (d∇s)(X) = ∇Xs.
(ii) d∇ is R-linear and satisfies the Leibniz identity (33.1).

Proof. One checks easily that the operator d∇ defined by (33.2)
satisfies (i) and (ii). Since any E-valued k-form η can be written as
a linear combination:

η =
l∑

i=1

ωi ⊗ si (ωi ∈ Ωk(M), si ∈ Γ(E)),

it is clear that (i) and (ii) determined completely d∇.
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Example 33.1. Let ∇0 and ∇ be two linear connections on E. Note
that End(E) is a vector bundle and we can define a End(E)-valued
form ω ∈ Ω1(M,End(E)) by

ω(X)(s) := ∇Xs−∇0
Xs.

Conversely, given a linear connection ∇0 and a End(E)-valued form
ω ∈ Ω1(M,End(E)), one obtains a new connection by setting

∇Xs := ∇0
Xs+ ω(X)(s).

In this way we see that, after fixing a reference connection ∇0, there
is a 1:1 correspondence between linear connections on E and elements
of Ω1(M,End(E)). In other words, the linear connections on E form
an affine space modeled on the vector space Ω1(M,End(E)).

If {s1, . . . , sr} is a basis of local sections for E over an open set
U ⊂M , one has a flat connection ∇0 on E|U determined by

∇0
Xsa = 0, (a = 1, . . . , r).

Hence, given any connection ∇ one obtains End(E)-valued form ω ∈
Ω1(U,End(E)), which on the local basis {s1, . . . , sr} has the form

ω(X)(sa) =
r∑

b=1

ωb
a(X)sb,

for certain 1-forms ωb
a ∈ Ω1(U). The matrix [ωb

a] is, of course, the
connection 1-form we saw before. Moreover, if α ∈ Ωk(M,End(E)),
then α|U =

∑r
b=1 α

asa with αb ∈ Ωk(U) and one finds

(d∇α)|U =
r∑

b=1

(
dαb +

r∑

a=1

αa ∧ ωb
a

)
sb.

Note that, in general, d2∇ )= 0, so d∇ is not a di!erential. In fact,
the curvature of∇ can be seen as the failure in d∇ being a di!erential.

Proposition 33.2. Let ∇ be a connection on a vector bundle ξ =
(π, E,M) with curvature tensor R. Then



June 29, 2024 15:52 Lectures on Differential Geometry 9in x 6in b5406-ch33 FA2 page 348

348 Lectures on Differential Geometry

(i) For any 0-form s ∈ Γ(E)

d2∇s(X,Y ) = R(X,Y )s, (X,Y ∈ X(M)).

(ii) Viewing the curvature as a 2-form R ∈ Ω2(M,EndE), for the
connection on End(E) induced by ∇:

d∇R = 0. (33.3)

Proof. Using the definition of d∇ one finds that

d2∇s(X,Y ) = ∇X(d∇s(Y ))−∇Y (d∇s(X))− d∇s([X,Y ]))

= ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s = R(X,Y )s.

The proof of (ii) is left as an exercise..

Remark 33.1. The previous result shows that d∇ is a di!erential
if and only if the connection is flat. In this case, one calls the coho-
mology of the complex (Ω•(M ;E),d∇) the de Rham cohomology
of M with coefficients in E and denotes it by H•(M ;E). Notice
that the usual de Rham cohomology corresponds to the case where
E = M × R is the trivial flat line bundle.

The Bianchi identity (33.3) can be used to define certain cohomol-
ogy classes. For that we need first to recall that for a finite dimen-
sional vector space V one has the following canonical identification
between the homogeneous polynomials and the multilinear symmet-
ric functions:

(i) Every k-multilinear symmetric map P : V × · · ·× V → R deter-
mines a degree k homogeneous polynomial P̃ : V → R by the
formula

P̃ : v *→ P (v, . . . , v).

(ii) Conversely, every homogeneous polynomial P̃ : V → R of degree
k determines a k-multilinear symmetric map P : V ×· · ·×V → R
by polarization

P (v1, . . . , vk) =
1

k!

∂

∂t1
· · · ∂

∂tk
P̃ (t1v1 + · · ·+ tkvk)

∣∣∣∣
t1=···=tk=0

.
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These correspondences are inverse to each other, and the usual prod-
uct of polynomials corresponds to the product of k-multilinear, sym-
metric maps, defined by

P1 ◦ P2(v1, . . . , vk+l)

=
1

(k + l)!

∑

σ∈Sk+l

P1(vσ(1), . . . , vσ(k))P2(vσ(k+1), . . . , vσ(k+l)).

Example 33.2. If one fixes a base ξ1, . . . , ξr for V ∗, then one can
think of the polarization of the polynomial P̃ : V → R as follows.
One can write

P̃ (v) =
r∑

i1,....ik=1

ai1···ikξ
i1(v) · · · ξik(v),

where the coefficients ai1···ik are symmetric in the indices. Then the
corresponding k-multilinear, symmetric map P : V × · · ·× V → R is
given by

P (v1, . . . , vk) =
r∑

i1,...,ik=1

ai1···ikξ
i1(v1) · · · ξik(vk).

For example, let V = R3 with linear coordinates (x, y, z). The
homogeneous polynomial of degree 2

P̃ (x, y, z) := x2 + xy + z2 = x2 +
1

2
(xy + yx) + z2,

corresponds to the bilinear symmetric map

P (v,w) = v1w1 +
1

2
(v1w2 + v2w1) + v3w3.

We are interested in the case where V = g is the Lie algebra of
a Lie group G. We will denote by Ik(G) the space of k-multilinear,
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symmetric maps P : g × · · · × g → R which are invariant under the
adjoint action

P (Ad g · v1, . . . ,Ad g · vk) = P (v1, . . . , vk), ∀g ∈ G, v1, . . . , vk ∈ g.

If we let

I(G) =
∞⊕

k=0

Ik(G),

we obtain a ring for the usual addition and the symmetric product
of multilinear symmetric maps. Under the correspondence above, we
can identify I(G) with the algebra of polynomials in g which are
Ad-invariant.

For now, we are only interested in the case where G = GL(r),
so that g = gl(r) is the space of all r × r-matrices. In this case, the
adjoint action is given by matrix conjugation

AdA ·X = AXA−1, A ∈ GL(r), X ∈ gl(r).

Then the invariance condition is just invariance under conjugation,
i.e,

P (AX1A
−1, . . . , AXkA

−1) = P (X1, . . . ,Xk),

which must hold for any invertible matrix A ∈ GL(r) and any
X1, . . . ,Xk ∈ gl(r).

Example 33.3. A collection of AdGL(r)-invariant polynomials on
gl(r) can be obtained by taking traces of powers

X *→ tr(Xk).

Actually, these polynomials generate the ring of AdGL(r)-invariant
polynomials. We will come back to this issue in the next lecture.

Returning to the discussion of vector bundles with connection,
the key remark is now the following result.

Proposition 33.3. Let ∇ be a connection on a rank r vector bundle
E over M . Every element P ∈ Ik(GL(r)) determines a map

P : Ω•(M ;⊗k End(E))→ Ω•(M), ω *→ P ◦ ω, (33.4)
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which satisfies

dP = Pd∇.

Proof. Note that if s1, . . . , sr is a base of local of sections of E then
for any section A ∈ Γ(End(E)), we have

Asi =
r∑

j=1

Aj
i sj,

for some functions Aj
i . Given P ∈ Ik(GL(r)), we define P :

Γ(⊗k End(E))→ C∞(M) by

P (A1 ⊗ · · ·⊗Ak) := P ([(A1)
j
i ], · · · , [(Ak)

j
i ]).

The invariance condition shows that this expression is independent
of the choice of base of local of sections, so this map is well-defined.
A degree l form ω ∈ Ωl(M ;⊗k End(E)) can be seen as an
l-multilinear alternating map

ω : X(M) × · · ·× X(M)→ Γ(⊗k End(E)),

so composing with P determines an l-multilinear alternating map

P ◦ ω : X(M) × · · ·× X(M)→ C∞(M).

Hence, P (ω) ∈ Ωl(M), and an elementary computation using the
definitions of d, d∇ and the fact that P is multilinear, shows that
dP = Pd∇.

Now let R denote the curvature tensor of the connection ∇. The
k-symmetric power of R is the element Rk ∈ Ω2k(M ;⊗k End(E))
defined by

Rk(X1, . . . ,X2k) :=
1

(2k)!

∑

σ∈S2k

(−1)σR(Xσ(1),Xσ(2))

⊗ · · ·⊗R(Xσ(2k−1),Xσ(2k)).

Therefore, given P ∈ Ik(GL(r)) we obtain a di!erential form

P (Rk) ∈ Ω2k(M). If one fixes a local basis of sections {s1, . . . , sr}
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and lets Ω = [Ωb
a] denote the curvature 2-form of the connection

relative to this basis, this form is given explicitly by

P (Rk)(X1, . . . ,X2k)

=
1

(2k)!

∑

σ∈S2k

(−1)σP (Ω(Xσ(1),Xσ(2)), . . . ,Ω(Xσ(2k−1),Xσ(2k))).

Using this expression, one checks that if P1 ∈ Ik(GL(r)) and P2 ∈
I l(GL(r)), then

P1 ◦ P2(R
k+l) = P1(R

k) ∧ P2(R
l) ∈ Ω2(k+l)(M).

On the other hand, applying Bianchi’s identity (33.3), one finds

dP (Rk) = P (d∇R
k) = kP (Rk−1d∇R) = 0.

We conclude that P (Rk) ∈ Ω2k(M) is a closed form.

Theorem 33.1 (Chern–Weil). Let ∇ be a connection on a
rank r vector bundle E over M, with curvature tensor R. The map
I(GL(r))→ H(M) defined by

Ik(GL(r))→ H2k(M), P *−→ [P (Rk)],

is a ring homomorphism. This homomorphism is independent of the
choice of connection.

Proof. All that it remains to be checked is that the homomorphism
is independent of the choice of connection. For that we claim that, if
∇0 and ∇1 are two connections on E and P ∈ Ik(GL(r)), then the
di!erential forms P (Rk

∇0
) and P (Rk

∇1
) di!er by an exact form.

To prove the claim, consider the projection p : M × [0, 1] → M .
The pullback bundle p∗E carries a connection ∇ defined by requiring
that on pullback sections

∇ ∂
∂t
p∗s = 0, ∇Xp∗s := tp∗(∇1

Xs)+(1−t)p∗(∇0
Xs), (X ∈ X(M)).

On the other hand, we have an integration along the fibers of p

∫ 1

0
: Ω•(M × [0, 1]) → Ω•−1(M),
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which is explicitly given by
(∫ 1

0
ω

)
(X1, . . . ,Xl−1) =

∫ 1

0
ω

(
∂

∂t
,X1, . . . ,Xl−1

)
dt.

One defines the Chern–Simons transgression form by setting

P (∇0,∇1) := k

∫ 1

0
P (Rk

∇) ∈ Ω2k−1(M). (33.5)

We leave as an exercise to check that

dP (∇0,∇1) = P (Rk
∇1

)− P (Rk
∇0

),

so the claim follows.

The ring homomorphism given by the previous result

CW[ξ] : I(GL(r))→ H•(M),

is called the Chern–Weil homomorphism of the vector bundle
ξ = (π, E,M). This homomorphism depends only on the isomor-
phism class of ξ. This follows from the following more general result,
which expresses the functoriality of the Chern–Weil homomorphism
relative to pullbacks. This will be very useful later in the study
of characteristic classes of vector bundles. The proof is left for the
exercises.

Proposition 33.4. Let ψ : N → M be a smooth map and let ξ =
(π, E,M) be a vector bundle of rank r. For any P ∈ I•(GL(r)) and
any connection ∇ one has

ψ∗P (Rk
∇) = P (Rk

ψ∗∇).

Hence, the following diagram is commutative

H•(M)

φ∗

!!

I(GL(r))

CW[ξ]
""!!!!!!!!!!

CW[φ∗ξ] ##▲
▲▲

▲▲
▲▲

▲▲
▲

H•(N)
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Exercises

Exercise 33.1

Prove Bianchi’s identity (33.3).

Exercise 33.2

Let E = M × R be the trivial vector bundle over M with global
section e. Given a connection ∇ on E let ω ∈ Ω1(M) be the (global)
connection 1-form defined by

∇Xs = ω(X)s.

Show that ∇ is flat if and only if ω is closed. For a flat ∇, prove that

(a) The complex (Ω•(M ;E),d∇) = (Ω•(M),d∇) is given by

d∇α = dα+ ω ∧ α.

(b) H•(M ;E) is isomorphic to H•(M) whenever the cohomology
class [ω] trivial.

Hint : If ω = df , consider the map Φ : Ω•(M ;E)→ Ω•(M), α *→ efα.

Exercise 33.3

Let E be a vector bundle over M of rank r. Given P ∈ Ik(GL(r)),
show that the map P : Ω•(M ;⊗k End(E))→ Ω•(M) given by (33.4)
satisfies dP = Pd∇.

Exercise 33.4

Show, by direct computation, that the Chern–Simons transgression
form (33.5) satisfies

dP (∇0,∇1) = P (Rk
∇1

)− P (Rk
∇0

).

Exercise 33.5

Let ψ : N →M be a smooth map and ξ = (π, E,M) a vector bundle
of rank r with a connection ∇. Show that, for all P ∈ I•(GL(r)),
one has

ψ∗P (Rk
∇) = P (Rk

ψ∗∇).
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Exercise 33.6

Let M be a manifold of dimension ≤3. Show that the Chern–Weil
homomorphism of any vector bundle over M is trivial.

Hint : Show that the curvature form Ω of a connection that preserves
a metric is a skew-symmetric matrix relative to a orthonormal frame.
Then use that a AdGL(r)-invariant polynomial of degree one is of the
form P (X) = a trX, for some a ∈ R.

Exercise 33.7

Show that the Chern–Weil homomorphism of the tangent bundle of
S4 is trivial.

Hint : Consider the invariant polynomials σ1(X) = trX, σ2(X) =
trX2, and the Levi–Civita connection of the metric induced by the
canonical embedding S4 ⊂ R4.
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Characteristic Classes

A cohomology class in the image of the Chern–Weil homomorphism
is called a characteristics class of ξ. There are certain canonical
characteristic classes that arise from natural choices of elements in
the ring of invariant polynomials I(GL(r)).

The Pontrjagin Classes of a Real Vector Bundle

We have already observed that traces of powers yield invariant poly-
nomials. One can show that any homogeneous polynomial P ∈
Ik(GL(r)) can be written as a R-linear combination of invariant poly-
nomials of the form:

X "→ tr(Xk1) · · · tr(Xks), k1 + · · ·+ ks = k.

However, these are not algebraically independent.

Theorem 34.1. The coefficients of the characteristic polynomial

det(λI −X) = λr + σ1(X)λr−1 + · · ·+ σr(X) (X ∈ gl(r)),

are algebraically independent and generate the ring I(GL(r)).

Remark 34.1. The coe!cients σk : gl(r) → R can be expressed
using the elementary symmetric functions. Recall that if x1, . . . , xr

357
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denote r indeterminates then the polynomial p(x) =
∏r

i=1(x − xi)
with coe!cients in the field of fractions R(x1, . . . , xn) is given by

p(x) =
r∏

i=1

(x− xi) = xr − s1x
r−1 + · · ·+ (−1)rsr,

where the coe!cients are the elementary symmetric functions

s1 =
∑

i

xi, s2 =
∑

i<j

xixj, . . . sr = x1 · · · xr.

Applying this to the characteristic polynomial, one obtains

σ1(X) = − trX,

σ2(X) = +
1

2

(
(trX)2 − trX2

)
, . . . , σr(X) = (−1)r detX.

One can show that the field R(x1, . . . , xr) is a Galois extension
of the field R(s1, . . . , sr) with Galois group the symmetric group
Sn. In other words, any symmetric expression in the indeterminates
x1, . . . , xr is a polynomial in the elementary symmetric functions
s1, . . . , sr. Applying this to the invariant polynomials, one obtains
the theorem above. Note that in this discussion one can replace R by
C, or any other field of characteristic zero.

The previous discussion suggest to apply the Chern–Weil homo-
morphism to the invariant polynomials σ1, . . . ,σr. Before we do that,
let us recall that one can equip any vector bundle ξ with a fiber met-
ric, and then one can choose a connection ∇ compatible with the
metric. We leave as an exercise to check that for such a connec-
tion the curvature 2-form relative to an orthonormal frame is always
skew-symmetric

Ω = −ΩT .

Since for a skew-symmetric X one has σ2k+1(X) = 0, it follows that
for such a metric connection one has

σ2k+1(R
2k+1) = 0.

This explains why in the following definition we only consider even-
dimensional classes.
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Definition 34.1. The Pontrjagin classes of a vector bundle ξ =
(π, E,M) of rank r are

pk(ξ) :=

[
σ2k

((
1

2π
R

)2k
)]
∈ H4k(M), (k = 1, 2, . . .),

where R is the curvature of any connection ∇ in ξ. The total
Pontrjagin class of the vector bundle ξ is

p(ξ) = 1 + p1(ξ) + · · ·+ p[r/2](ξ),

where [r/2] denotes the largest integer less or equal to r/2.

Remark 34.2. The normalization factor 1
2π is included so that the

Pontrjagin classes belong to the image of the natural homomorphism

H•(M,Z)→ H•(M).

If one fixes a local basis of sections {s1, . . . , sr} and lets Ω = [Ωb
a]

denote the curvature 2-form of the connection relative to this basis,
one obtains that the kth Pontrjagin class is (locally) represented by
the closed 4k-form

pk(ξ) =
1

(2π)k(2k)!

∑

i1<i2<···<i2k

∑

σ∈S2k

(−1)σΩi1
σ(i1)
∧ · · · ∧ Ωi2k

σ(i2k)
.

This type of formula, although being very explicit, it is not the
most effective way to determine these characteristic classes in specific
examples. It is usually more e!cient to apply the basic properties of
the Pontrjagin classes that will be discussed in the next paragraphs.

Proposition 34.1. Let M be a smooth manifold, ξ and η vector
bundles over M . The Pontrjagin classes satisfy:

(i) p(ξ ⊕ η) = p(ξ) ∪ p(η);
(ii) p(ψ∗ξ) = ψ∗p(ξ), for any smooth map ψ : N →M ;
(iii) p(ξ) = 1, if ξ admits a flat connection.

The proof follows from the construction of the Pontrjagin classes
and is left as an exercise.
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The Pontrjagin classes pi = pi(TM) of the tangent bundle give
an important invariant of a smooth manifold M . Although from its
definition it seems that these classes are only invariants of diffeomor-
phism type, Novikov proved that these classes are in fact topological
invariants: two smooth manifolds which are homeomorphic have the
same Pontrjagin classes pi. Here it is important that we are deal-
ing with classes in de Rham cohomology. Using classifying bundles,
one can also define integral cohomology versions of the Pontrjagin
classes. The integral Pontrjagin classes of TM are not topological
invariants.

Over a compact oriented manifold of dimension dimM = 4m
one can also define Pontrjagin numbers of a vector bundle ξ. One
chooses non-negative integers a1, . . . , a[r/2] such that

4(a1 + 2a2 + · · ·+ [r/2]a[r/2]) = 4m,

and defines a Pontrjagin number of ξ by

∫

M
pa11 (ξ) ∧ pa22 (ξ) ∧ · · · ∧ p

a[r/2]
[r/2] (ξ).

The Pontrjagin numbers of M , where M is compact, oriented, of
dimension 4m are, by definition, the Pontrjagin numbers of its tan-
gent bundle. For example, a compact, oriented manifold of dimension
4 has only one Pontrjagin number

∫
M p1, while in dimension 8 there

are two Pontrjagin numbers, namely,

∫

M
p21,

∫

M
p2.

Example 34.1. Let M = Sd ↪→ Rd+1 and denote by ν(Sd) =
TSdRd+1/TSd the normal bundle of Sd. Note that the Whitney sum

TSd ⊕ ν(Sd) = TSdRd+1,

is the trivial vector bundle over Sd. On the other hand, the normal
bundle ν(Sd) is also trivial, for it is a line bundle which admits a
nowhere vanishing section. By properties (i) and (iii) in the proposi-
tion, we conclude that p(TSd) = 1. Note that Sd has trivial tangent
bundle only for d = 1, 3, 7.
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Example 34.2. LetM = CPd. Recall that we have CPd = S2d+1/S1,
where S2d+1 ⊂ Cd+1 and S1 acts by complex multiplication: θ·z = eiθ.
The Euclidean metric in Cd+1 = R2d+2 induces a Riemannian metric
in S2d+1 which is invariant under the S1-action. Hence, this induces
a Riemannian metric in the quotient CPd = S2d+1/S1, called the
Fubini–Study metric. One can use the connection associated with
this metric to compute the Pontrjagin classes p(TCPd).

For example, in the exercises we sketch how in the case of CP2

one finds that CP2 with its canonical orientation (the one induced
from the standard orientation of S5) has Pontrjagin number

∫

M
p1 = 3.

The Chern Classes of a Complex Vector Bundle

So far, all our vector bundles were real vector bundles. It is also
useful to consider complex vector bundles ξ = (π, E,M), where
the fibers Ex are now complex vector spaces of complex dimension r
and the transition functions are maps

gαβ : Uα ∩ Uβ → GL(r,C).

Every complex vector bundle of rank r can be viewed as a real vector
bundle of rank 2r equipped with a complex structure J , i.e., an endo-
morphism of (real) vector bundles J : ξ → ξ such that J2 = −id.
The complex structure J and the complex structure in the fibers
determine each other by

(a+ ib)v = av + bJ(v), ∀v ∈ E.

On a complex vector bundle ξ one can consider C-connections,
i.e., connections ∇ such that for each vector field X ∈ X(M) the map
s "→ ∇Xs is C-linear:

∇X(λs) = λ∇Xs, ∀λ ∈ C, s ∈ Γ(ξ).

Using the endomorphism J , this condition can be expressed as

∇X(Js) = J∇Xs, ∀ s ∈ Γ(ξ), X ∈ X(M).



June 29, 2024 15:53 Lectures on Differential Geometry 9in x 6in b5406-ch34 FA2 page 362

362 Lectures on Differential Geometry

Hence, a C-connection is just an ordinary connection which is com-
patible with the complex structure J , i.e., that satisfies

∇J = 0.

We leave as an exercise to check that any complex vector bundle
admits a C-connection.

The connection 1-form ω and the curvature 2-form Ω of a
C-connection relative to any local C-basis of sections, defined over
an open U ⊂M , are matrices of complex-valued forms

ω = [ωb
a] ∈ Ω1(U, gl(r,C)), Ω = [Ωb

a] ∈ Ω2(U, gl(r,C)).

Hence, using a C-connection, one defines the Chern–Weil homo-
morphism much the same way as in the real case, obtaining now a
ring homomorphism into the complex-valued de Rham cohomology

I(GL(r,C))→ H•(M,C).

Again, the ring of invariant polynomials I(GL(r,C)) is generated
by the elementary invariant polynomials now viewed as polynomials
σ1, . . . ,σr in gl(r,C)

det(λI−X) = λr+σ1(X)λr−1+· · ·+σr(X)λ+σr(X), X ∈ gl(r,C).

Therefore, one can define a new set of characteristic classes.

Definition 34.2. Let ξ = (π, E,M) be a complex vector bundle of
rank r. For k = 1, . . . , r, the kth Chern class of ξ is

ck(ξ) =

[

σk

((
1

2πi
R

)k
)]

∈ H2k(M),

where R is the curvature of any C-connection ∇ in ξ. The total
Chern class of ξ is the sum

c(ξ) = 1 + c1(ξ) + · · ·+ cr(ξ) ∈ H(M).

Note that, a priori, the Chern classes are cohomology classes lying
in complex de Rham cohomology H•(M,C). However, the presence of
i in the normalization factor makes them real cohomology classes. To
see this, we use the following lemma which is the complex analogue of
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the fact that real vector bundles admit fiber metrics and compatible
connections. The proof is left as an exercise.

Lemma 34.1. Every complex vector bundle ξ = (π, E,M) admits a
fiber Hermitian metric h = 〈·, ·〉 and a compatible C-connection ∇,
i.e., one satisfying ∇h = 0.

Choosing a connection as in the lemma, for any orthonormal
C-basis of local sections {s1, . . . , sr} of E, the connection 1-form ω
and the curvature 2-form Ω take values in the Lie algebra

u(r) = {X ∈ gl(r,C) : X +X
T
= 0}.

In particular, the eigenvalues of Ω are purely imaginary. Hence,
iΩ has real eigenvalues and it follows that σk((R/2πi)k) is a real
form, showing that the Chern classes are real cohomology classes, as
claimed.

Similar to the real case, the Chern classes enjoy the following
properties.

Proposition 34.2. Let M be a smooth manifold, ξ and η complex
vector bundles over M . The Chern classes satisfy:

(i) c(ξ ⊕ η) = c(ξ) ∪ c(η);
(ii) c(ψ∗ξ) = ψ∗c(ξ), for any smooth map ψ : N →M ;
(iii) c(ξ) = 1, if ξ admits a flat C-connection;
(iv) c(γ11) = 1−µ where µ denotes the canonical orientation of CP1.

Remark 34.3. One can show that properties (i)–(iv) above deter-
mine completely the Chern class.

Proof. We leave the proof of properties (i)–(iii) to the exercises. To
prove (iv), we define a C-connection ∇ on the canonical (complex)
line bundle γ11 over CP1 = S2 as follows. First, since γ11 is a subbundle
of the trivial bundle,

γ11 ⊂ CP1 × C2,

a section of γ11 can be viewed as map s : CP1 → C2. We define the
connection ∇ by

(∇Xs)(p) := prEp
(dps(X)),

where Ep ⊂ C2 is the fiber over p, and prEp
: C2 → Ep denotes the

projection relative to the standard Hermitian inner product on C2.
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The bundle γ11 trivializes over the open set

U0 := {[z0 : z1] ∈ CP1 : z0 /= 0}.

Namely, we have a non-vanishing section s : U0 → γ11 defined by

s([1 : z]) := ([1, z], (1, z)).

The C-valued connection 1-form of ∇ is defined by ∇Xs = ω(X)s.
Denoting by (x, y) the coordinates on U0 given by z = x + iy, a
straightforward computation yields

ω =
1

1 + x2 + y2
((xdx+ ydy) + i(−ydx+ xdy)) .

It follows from the structure equations that the curvature 2-form is

Ω = dω =
2i

(1 + x2 + y2)2
dx ∧ dy.

We conclude that the 1st Chern class c1(γ11) is represented by the
closed 2-form

σ1

(
1

2πi
R

)
= − 1

2πi
Ω = − dx ∧ dy

π(1 + x2 + y2)2
.

To prove (iv), observe that, since U0 is an open dense set and
(U0, (x, y)) is a positive chart, we have

∫

M
c1(γ

1
1) = −

∫

R2

1

π(1 + x2 + y2)2
dxdy

= −
∫ 2π

0

∫ +∞

0

r dr

π(1 + r2)2
dθ

= −
∫ +∞

0

2r dr

(1 + r2)2
=

1

1 + r2

∣∣∣∣
+∞

0

= −1.

One natural way of obtaining complex vector bundles is to start
with a complex manifold M . Such a manifold is specified by an
atlas {(Uα,,α)}, where the charts are homeomorphisms

,α : Uα → Cd, x "→ (z1α(x), . . . , z
d
α(x))
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and the transition functions are holomorphic maps

,β ◦ ,−1
α : ,α(Uα ∩ Uβ)→ ,β(Uα ∩ Uβ),

defined on open subsets of Cd. Such charts are called holomorphic
charts. If we write the coordinates in a holomorphic chart as zkα =
xkα + iykα, then we obtain real charts (xkα, y

k
α) : Uα → R2d. Hence,

every complex manifold of dimension d has an underlying real smooth
structure of dimension 2d. A basic example of a complex, compact,
manifold is the complex projective space CPd.

For a complex manifold M the tangent bundle TM is a com-
plex vector bundle over M , viewed as a real manifold. This can be
seen either by constructing local C-trivializations, using holomorphic
charts, or by observing that there is a well defined endomorphism
J : TM → TM with J2 = −Id, which in local holomorphic coordi-
nates zkα = xkα + iykα is given by

J

(
∂

∂xk

)
=

∂

∂yk
, J

(
∂

∂yk

)
= − ∂

∂xk
.

Similarly, the cotangent bundle and all the associated bundles are
also complex vector bundles over M . Hence, one can define the Chern
classes of these bundles. For example, you are asked to show in one
exercise at the end of this lecture that the total Chern class of the
complex projective space is

c(TCPd) = (1 + a)d+1,

where a ∈ H2(CPd) is an appropriate generator.
A holomorphic map preserves the canonical orientation of Cd,

so every complex manifold has a canonical orientation. Hence, for
a compact complex manifold M of (complex) dimension d, one can
define Chern numbers by

∫

M
ca11 ∧ ca22 ∧ · · · ∧ cadd ,

where ci = ci(TM) and a1, . . . , ad are any non-negative integers such
that

2(a1 + 2a2 + · · · + dad) = 2d.

Another class of examples of complex vector bundles arises by
complexification of a real vector bundle. If ξ = (π, E,M) is a real
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vector bundle of rank r we can form its tensor product with the trivial
real rank 2 vector bundleM×C→M . The resulting bundle, denoted
ξ⊗C, is a real vector bundle of rank 2r admitting the endomorphism
J : ξ ⊗ C→ ξ ⊗C given by

J(v ⊗ λ) := v ⊗ iλ.

Since J2 = −Id, this defines a complex structure in ξ ⊗C. One calls
the resulting complex vector bundle ξ ⊗ C the complexification
of ξ.

Proposition 34.3. Let ξ be a real vector bundle. Then the
Pontrjagin classes of ξ and the Chern classes of ξ⊗C are related by

pk(ξ) = (−1)kc2k(ξ ⊗ C).

Proof. Immediate from the formulas defining them!

Our discussion of the Pontrjagin classes suggests that the odd
classes c2k+1(ξ ⊗ C) vanish. To see this, one defines the complex
conjugate of a complex vector bundle ξ = (π, E,M) to be the com-
plex vector bundle ξ̄ which, as a real vector bundle, coincides with ξ,
but with a complex structure Jξ̄ := −Jξ. Note, e.g., that the identity
map id: ξ → ξ̄ satisfies

id(λv) = λ̄ id(v), ∀v ∈ E,λ ∈ C.

Proposition 34.4. Let ξ = (π, E,M) be a complex vector bundle.
The Chern classes of ξ and ξ̄ are related by ck(ξ̄) = (−1)kck(ξ) so
that

c(ξ̄) = 1− c1(ξ) + c2(ξ)− · · ·+ (−1)rcr(ξ).

Proof. Let ∇ be a C-connection on ξ. It defines also a C-connection
on ξ̄ which we denote by ∇. If one fixes local trivializing sections
{s1, . . . , sr} for ξ, then we have

∇Xsa =
∑

b

ωb
a(X)sb, ∇Xsa =

∑

b

ωb
a(X)sb.

Hence, the curvature 2-forms of these two connections relative to this
basis are related by

Ω∇(X,Y ) = Ω∇(X,Y ),
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and it follows that

σk

((
1

2πi
R∇

)k
)

= σk

((
− 1

2πi
R∇

)k
)

= (−1)kσk

((
1

2πi
R∇

)k
)

= (−1)kσk

((
1

2πi
R∇

)k
)

so that ck(ξ̄) = (−1)kck(ξ).

The complexification ξ⊗C and its conjugate complex vector bun-
dle ξ ⊗ C are isomorphic complex vector bundles. An explicit isomor-
phism is given by the complex conjugation map

ξ ⊗C→ ξ ⊗ C, v ⊗ λ "→ v ⊗ λ.

Hence, from Proposition 34.4, we deduce the following.

Corollary 34.1. Let ξ = (π, E,M) be a real vector bundle. Then

ck(ξ ⊗ C) = 0, if k is odd.

Different choices of invariant function lead to other interest-
ing characteristic classes. For example, the invariant function . :
gl(r,C)→ C given by

.(X) := tr(exp(X)),

gives rise to the Chern character of the vector bundle

ch(ξ) =

[
.

(
1

2πi
R

)]
∈ H•(M).

The Chern character satisfies

ch(ξ1 ⊕ ξ1) = ch(ξ1) + ch(ξ2), ch(ξ1 ⊗ ξ1) = ch(ξ1) ∪ ch(ξ2),

i.e., it is a semi-ring homomorphism. For this reason, it is impor-
tant in K-theory. Other examples of characteristic classes include
the Todd class of a complex vector bundle that appears in the
Hirzebruch–Riemann–Roch formula in algebraic geometry, or the
L-class of a real vector bundle that appears in Hirzebruch’s signa-
ture formula in differential topology — see, e.g., Hirzebruch (1995)
or Husemoller (1994). For a leisurely historical note on Chern classes
see also Hirzebruch (2011).
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The Euler Class of an Oriented Real Vector Bundle

The presence of extra data on a vector bundle can also lead to special
characteristic classes. For example, the Euler class of an oriented
vector bundle ξ = (π, E,M) can be viewed as a characteristic class.
For that, fix a fiberwise metric g and a connection ∇ compatible with
the metric g. Then for any local positive orthonormal basis of sec-
tions {s1, . . . , sr} the corresponding connection 1-form ω takes values
in the Lie algebra so(r) consisting of all skew-symmetric matrices.
If we change to a new basis of sections {s′1, . . . , s′r} the two bases are
related by

s′a =
r∑

b=1

Ab
asb, A = [Ab

a] : U → SO(r).

Hence, we now look for invariant functions in I(SO(r)) to produce
characteristic classes.

The restriction of the elementary invariant polynomials σk to
so(r) give obvious elements in I(SO(r)). When r is odd, one can
show that these generate all invariant polynomials, but when r is
even, this is not true anymore and one needs to add an extra poly-
nomial to obtain a set of generators. This can already be seen for
r = 2.

Example 34.3. The Lie algebra

so(2) =

{(
0 x

−x 0

)
: x ∈ R

}
⊂ gl(2,R)

is abelian, so the invariance condition is empty. The elementary
polynomial σ1(X) = − trX restricts to zero, while σ2(X) = detX
restricts to a perfect square

det(X) = x2.

We also have the degree 1 invariant polynomial Pf : so(2) → R
defined by

Pf(X) = x,

which is not generated by {σ1,σ2}.
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One can define for any r = 2m ≥ 2 an analogous invariant poly-
nomial Pf, called the Pfaffian. For that, observe that any skew-
symmetric matrix X ∈ so(2m) is conjugate to a block diagonal
matrix

X = ADAT , D =





S1

S2

. . .

. Sm




, where Sk =

(
0 xk
−xk 0

)
.

It follows that the determinant of X is a perfect square

det(X) =

(
det(A)

m∏

i=1

xk

)2

.

and one defines the Pfa!an of X to be the function given by

Pf(X) := det(A)
m∏

i=1

xk.

The fact that this is a well-defined degree m polynomial follows from
the following explicit formula, whose proof is left as an exercise

Pf(X) =
1

2mm!

∑

σ∈S2m

(−1)σ
m∏

k=1

Xσ(2k−1)σ(2k) .

On the other hand, given B ∈ SO(2m), so that B−1 = BT and
detB = 1, we find

Pf(BXB−1) = det(BA)
m∏

i=1

xk = det(A)
m∏

i=1

xk = Pf(X).

Hence, Pf ∈ Im(SO(2m)). One can show that the invariant poly-
nomials {σ2,σ4, . . . ,σ2m,Pf} are algebraically independent and gen-
erate I(SO(2m)). They define characteristic classes of an oriented
vector bundle.

Theorem 34.2. Let ξ = (π, E,M) be an oriented vector bundle of
rank r = 2m. Then its Euler class e(ξ) is represented by the form

Pf

((
1

2π
R

)m)
∈ Ω2m(M),
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where R the curvature tensor of any connection ∇ compatible with a
fiberwise metric.

We will not go into any more details in the theory of characteristic
classes and we will omit the proof of this result. We refer the reader
to Husemoller (1994), Kobayashi and Nomizu (1996), or Milnor and
Stasheff (1974).

Exercises

Exercise 34.1

Show that every complex vector bundle ξ = (π, E,M) admits a
C-connection ∇ compatible with a fiber Hermitian metric h = 〈·, ·〉.

Exercise 34.2

Prove the properties of the Pontrjagin classes and the Chern classes
stated in Propositions 34.1 and 34.2.

Exercise 34.3

Let ξ = (π, E,M) be a complex vector bundle. Show that its C-dual
ξ∗ = Hom(ξ,C) is a complex vector bundle and that their Chern
classes are related by

ck(ξ
∗) = (−1)kck(ξ).

Hint : Use a fiber Hermitian metric.

Exercise 34.4

Let γ1d be the canonical complex line bundle over CPd. Show that

c(γ1d) = 1− a,

where a ∈ H2(CPd) is an appropriate generator.

Exercise 34.5

Denote by /d+1
CPd = CPd × Cd+1 → CPd, the trivial complex vector

bundle equipped with the standard Hermitian inner product h on
the fibers. Let (γ1d)

⊥ ⊂ /d+1
CPd denote the h-orthogonal bundle to the

canonical complex line bundle γ1d , so that

/d+1
CPd = γ1d ⊕ (γ1d)

⊥.
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(a) Show that there is an isomorphism of complex vector bundles:

TCPd 3 HomC(γ
1
d , (γ

1
d)

⊥).

(b) Show that there are isomorphisms of complex vector bundles:

TCPd ⊕ /1CPd 3 HomC(γ
1
d , /

d+1
CPd) = HomC(γ

1
d , /

1
CPd ⊕ · · · ⊕ /1CPd).

(c) Conclude that the total Chern class of the tangent bundle to
CPd is

c(TCPd) = (1 + a)d+1,

where a ∈ H2(CPd) is an appropriate generator.

Exercise 34.6

Let ξ = (π, E,M) be an oriented vector bundle of rank r. Show that

e(ξ)2 = p[r/2](ξ).

Exercise 34.7

Prove that if a compact, oriented, manifold M of dimension 4m can
be embedded in R4m+1 then all its Pontrjagin classes must vanish:
p(TM) = 1.

Hint : The normal bundle ν(M) is trivial.

Exercise 34.8

Two oriented manifolds M1 and M2 are said to be cobordant if
dimM1 = dimM2 and there exists an oriented manifold with bound-
ary N such that, as oriented manifolds,

∂N = M1 −M2,

where −M2 denotes M2 with the opposite orientation. Show that if
M1 and M2 are compact oriented cobordant manifolds of dimension
4m then they must have the same Pontrjagin numbers.

Hint : Show first that if M = ∂N , where N is compact, oriented,
then the Pontrjagin numbers of M must vanish. For this, choose a
connection ∇ on N with the property that ∇XY is tangent to ∂N
whenever X and Y are tangent to ∂N .
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Fiber Bundles

Bundles with fiber which are not vector spaces also occur frequently
in Di!erential Geometry. We will study them briefly in these last two
lectures.

Let π : E →M be a surjective submersion. A trivializing chart
for π with fiber type F is a pair (U,φ), where U ⊂M is an open set
and φ : π−1(U)→ U ×F is a di!eomorphism such that the following
diagram commutes

π−1(U)
φ !!

π
""●

●●
●●

●●
●●

U × F

prU
##②②
②②
②②
②②
②

U

Each fiber Ep = π−1(p) is di!eomorphic to F via the di!eomorphism

φp : Ep
φ !! {p}× F !! F .

Using this map, we can write φ(v) = (p,φp(v)) if v ∈ Ep. Given two
trivializing charts (Uα,φα) and (Uβ ,φβ), we have a transition map

φα ◦ φ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F,

(p, f) '→ (p,φpα ◦ (φ
p
β)

−1(f)).

The second component of this map yields the transition functions

gαβ : Uα ∩ Uβ → Di!(F ), gαβ(p) := φpα ◦ (φ
p
β)

−1.

373
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If one is given a covering of M by trivializing charts
{(Uα,φα) : α ∈ A}, this leads to a cocycle {gαβ} with values in the
group Di!(F ), generalizing the cocycles for vector bundles discussed
in Lecture 27. We would like this to determine the fiber bundle and
recover the bundle from the cocycle. However, Di!(F ) is infinite
dimensional which poses some difficulties. For this reason, we will
restrict our attention to fiber bundles for which the transition func-
tions take values in a finite-dimensional Lie group G ⊂ Di!(F ), so
we consider cocycles

gαβ : Uα ∩ Uβ → G ⊂ Di!(F ).

Equivalently, we assume that we have an effective action of a Lie
group G on F and that the transition functions take the form:

φpα ◦ (φ
p
β)

−1(f) = gαβ(p) · f,

for a map gα,β : Uα ∩ Uβ → G. Our formal definition of a G-fiber
bundle is then the following.

Definition 35.1. Let G be a Lie group and G× F → F a smooth,
e!ective, action. A G-fiber bundle over M with fiber type F is a
triple ξ = (π, E,M), where π : E → M is a smooth map admitting
a collection of trivializing charts C = {(Uα,φα) : α ∈ A} with fiber
type F , satisfying the following properties:

(i) {Uα : α ∈ A} is an open cover of M :
⋃
α∈A Uα = M ;

(ii) For any α,β ∈ A there are smooth maps gαβ : Uα ∩ Uβ → G
such that the transition functions take the form

(p, f) '→ (p, gαβ(p) · f);

(iii) The collection C is maximal: if (U,φ) is a trivializing chart of
fiber type F with the property that for every α ∈ A, there exist
gα : U ∩ Uα → G such that

φp ◦ (φpα)−1(f) = gα(p) · f, ∀f ∈ F,

then (U,φ) ∈ C.

We shall use the same notation as in the case of vector bundles,
so we have the total space, the base space, and the projection
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of the G-fiber bundle. Also, one calls G the structure group of the
fiber bundle. Given a G-fiber bundle ξ a subcollection of charts of
C which still covers M is called an atlas or a trivialization of ξ.
We define a section over an open set U in the obvious way and
we denote the set of all sections over U by ΓU(E). Although a fiber
bundle always has local sections, it may fail to have global sections.

A morphism of G-fiber bundles can be defined in a fashion similar
to the definition of a morphism of vector bundles, where we replace
GL(r) by the structure group G.

Definition 35.2. Let ξ = (π, E,M) and ξ′ = (π′, E′,M ′) be two
G-fiber bundles with the same fiber F and structure group G. Amor-
phism of G-fiber bundles consists of a pair of maps

E Ψ !!

π
$$

E′

π′
$$

M
ψ

!! M ′

such that for each p ∈M , the map between the fibers

Ψp := Ψ|Ep : Ep → E′
q, (q = ψ(p)),

satisfies

φ′qβ ◦Ψ
p ◦ (φpα)−1 ∈ G,

for any trivializations {φα} of ξ and {φ′β} of ξ′.

In this way, we have the category of fiber bundles with fiber type
F and structure group G. Just like in the case of vector bundles,
we shall also distinguish between equivalence and isomorphism of
G-fiber bundles, according to wether the base map is the identity
map or not.

Among the most important classes of G-fiber bundles we have:

• Vector bundles: In this case, the fiber F is a vector space and
the structure group is the group of linear invertible transformations
G = GL(V ). These are precisely the bundles that we have studied
in the previous lectures.
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• Principal G-bundles: In this case, the fiber F is itself a Lie group
G and the structure group is the same Lie group G acting on itself
by translations G × G → G, (g, h) '→ gh. Principal bundles play
a central role among all G-fiber bundles for reasons that will be
clear later.

The set of transition functions associated with an atlas of aG-fiber
bundle completely determined the bundle. The discussion is entirely
analogous to the case of vector bundles. First, if ξ = (π, E,M) is a
G-fiber bundle, the transition functions gαβ : Uα ∩ Uβ → G relative
to some trivialization {(Uα,φα)} satisfy the cocycle condition

gαβ(p)gβγ(p) = gαγ(p), (p ∈ Uα ∩ Uβ ∩ Uγ).

We say that two cocycles {gαβ} and {g′αβ} are equivalent if there
exist smooth maps λα : Uα → G such that

g′αβ(p) = λα(p) · gαβ(p) · λ−1
β (p), (p ∈ Uα ∩ Uβ).

One checks easily the following analogue of Proposition 27.1.

Proposition 35.1. Let M be a manifold and G a Lie group acting
on another smooth manifold F . Given a cocycle {gαβ} with values
in G, subordinated to a covering {Uα} of M, there exists a G-fiber
bundle ξ = (π, E,M) with fiber type F which admits an atlas {φα},
for which the set of transition functions is {gαβ}. Two equivalent
cocycles determine isomorphic G-fiber bundles.

Let ξ = (π, E,M) be a G-fiber bundle with fiber type F and
let {gαβ} be a cocycle associated with a trivialization {φα} of ξ. If
H ⊂ G is a Lie subgroup, we say that the structure group of ξ
can be reduced to H if the cocycle is equivalent to a cocycle {g′αβ}
which take values in H

g′αβ : Uα ∩ Uβ → H ⊂ G.

We will see later how to describe this notion independently of choice
of trivializations. The next examples illustrate how the structure
group and its possible reductions are intimately related to geometric
properties of the bundle.
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Example 35.1. G-fiber bundle ξ = (π, E,M) with fiber type F and
is called trivial if it is isomorphic to the trivial bundle pr : M ×
F → M . This is the case if and only if its structure group can be
reduced to the trivial group {e}.

Example 35.2. We saw before that a vector bundle of rank r is ori-
entable if and only if its structure group can be reduced to GL+(r).
Similarly, a vector bundle admits a fiber metric if and only if its struc-
ture group can be reduced to O(r) (and by the polar decomposition,
this can always be achieved). A further reduction of its structure
group to SO(r) amounts to an additional choice of orientation for
the bundle (which may or may not be possible).

Remark 35.1. The specification of the structure group is crucial.
For example, a G-cocycle may take values in a subgroup H ⊂ G and
be trivial as a G-cocycle, but not as an H-cocycle. An example is
discussed in the exercises.

The cocycles associated with a G-fiber bundle, as well as the
notion of equivalence of cocycles, do not make any use of a G-action
on F . For this reason principal G-bundles play a fundamental role
among all G-fiber bundles. In fact, they can be used to build any
other G-fiber bundle. At the level of cocycles one has:

• Given a principal G-bundle ξ = (π, P,M), a trivialization {φα} of
ξ determines a cocycle {gαβ} with values in G. If G acts in F we
obtain a G-fiber bundle ξF = (π, E,M) with fiber type F .

• Conversely, given a G-fiber bundle ξF = (π, E,M) and fixing a
trivialization {φα} of ξF , the associated cocycle {gαβ} takes values
in G. Since G acts on itself by translations this cocycle defines a
principal G-bundle ξ = (π, P,M).

To make this more explicit, we observe that principal G-bundles
can also be described more succinctly as follows.

Proposition 35.2. A fiber bundle ξ = (π, P,M) is a principal
G-bundle if and only if there exists a right action P ×G→ P satis-
fying the following properties:

(i) The action is free and proper.
(ii) M is diffeomorphic to P/G and under this identification π: P →

M ) P/G is the quotient map.
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(iii) The local trivializations (U,φ) are G-equivariant: φp(v · g) =
φp(v)g.

Proof. Given a principal G-bundle ξ = (π, P,M) one constructs a
right action P × G → P working on trivializing charts (U,φ): the
action of G on π−1(U) is defined by

u · g := φ−1(p,φp(u)g), (p = π(u)).

One checks easily that this definition is independent of the choice of
trivialization. The rest of the statements are left as an exercise.

Conversely, by an exercise in Lecture 17, if one is given a free and
proper right action P × G → P , one obtains a principal G-bundle
ξ = (π, P,M) by setting M = P/G and letting π : P → M be the
quotient map. We will call a free and proper right action a principal
action. So principal bundles amount simply to principal actions.

If one is given a principal action P×G→ P and an action G×F →
F one can form the associated fiber bundle ξF = (πF , E,M). This
is the G-fiber bundle with total space

E := P ×G F,

the quotient space for the right action of G on P × F defined by

(u, f) · g := (u · g, g−1 · f)

(recall that G acts on the right in P and on the left in F ). The
projection map πF : E → M is given by: πF ([u, f ]) = π(u), where
π : P →M is the quotient map of the action.

These descriptions of principal G-bundles and the associated bun-
dles allows one to give many examples of G-fiber bundles.

Example 35.3. For any Lie group G and manifold M , the trivial
principal G-bundle over M is prM : M × G → M . Sections of this
bundle are just smooth maps M → G. Moreover, if G acts on some
space F , then the associated bundle is the trivial bundle prM : M ×
F →M .

Example 35.4. For any Lie group G and any closed subgroup
H ⊂ G the right action of H on G is principal, so the quotient
G → G/H is a principal H-bundle. For example, if we let S3 be
the group of unit quaternions and let S1 ⊂ S3 be the subgroup of
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unit complex numbers, then we obtain a principal S1-bundle, which
is easily seen to be isomorphic to the Hopf fibration.

Example 35.5. If π : M̃ → M is the universal covering space of a
manifold M , the triple (π, M̃ ,M) is a principal bundle with struc-
ture group the fundamental group π1(M), equipped with the discrete
topology. More generally, if H ⊂ π1(M) is a normal subgroup then
the covering space P := M̃/H →M with group of deck transforma-
tions G := π1(M)/H is also a principal G-bundle.

Example 35.6. Let M be a manifold of dimension d. The frame
bundle is the principal bundle π : F (M)→M with structure group
GL(d) whose fiber over p ∈M consists of the set of all ordered basis
(i.e., frames) of TpM

F (M)p = {(v1, . . . ,vd) : v1, . . . ,vd is a basis of TpM}.

The group GL(d) acts principally on the right on F (M): if u =
(v1, . . . ,vd) is a frame and A = (aji ) is an invertible matrix, then
u ·A = (w1, . . . ,wd) is the frame

wi =
d∑

j=1

ajivj , (i = 1, . . . , d).

The group GL(d) acts (on the left) in Rd by matrix multiplication.
Hence, we can form an associated fiber bundle with fiber Rd, i.e.,
a vector bundle. We leave it as an exercise to check that this bundle
is canonically isomorphic to the tangent bundle T (M). Similarly, one
obtains the cotangent bundle, exterior bundles, tensor bundle, etc.,
if one considers instead the natural actions of GL(d) on (Rd)∗, ∧kRd,
⊗kRd, etc.

Example 35.7. More generally, for any (real) vector bundle π :
E → M of rank r, the frames of the fibers form a principal bundle
with structure group GL(r), denoted F (E). For the usual action
of GL(r) on Rr one obtains an associated bundle to F (E) with
fiber Rr, which is canonically isomorphic to the original vector bun-
dle π : E → M . Similarly, one can obtain as associated bundles
E∗, ∧kE, ⊗kE, etc. One can also consider complex vector bun-
dles and the bundle of complex frames where GL(d) is replaced
by GL(d,C).
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The description of a G-fiber bundle as the associated bundle to
a principal G-bundle, allows one to express properties of the G-fiber
bundle in terms of the principalG-bundle. The next proposition illus-
trates this.

Proposition 35.3. Let ξ = (π, P,M) be a principal G-bundle
and G × F → F a smooth action. The sections of the associated
bundle ξF = (π, E,M) are in one-to-one correspondence with the
G-equivariant maps h : P → F .

Proof. The total space of the associated bundle is

E = P ×G F = (P × F )/G.

An element v ∈ Ep is an equivalence class in Pp ×G F , which can be
written as

v = [(u, hp(u))], ∀u ∈ Pp,

for a unique, G-equivariant, map hp : Pp → F . The G-equivariance
means that hp(u · g) = g−1 · hp(u), for all g ∈ G. Hence, a section
s : M → E can be written in the form

s(p) = [(u, h(u))] with u ∈ P such that π(u) = p,

for a unique G-equivariant map h : P → F . Conversely, any
G-equivariant map h : P → F determines a section of ξF through
this formula.

A general G-fiber bundle ξF = (π, E,M) may not have any sec-
tions. Moreover, if it admits a section, the bundle need not be trivial
(consider, e.g., vector bundles). However, a principal G-bundle is
trivial if and only if it admits a section, a fact which we leave as an
exercise. Another important general fact, which we will not prove, is
the following.

Theorem 35.1. Let ξF = (π, E,M) be a G-fiber bundle with con-
tractible fiber F . Then ξF admits a section and any two sections of
ξF are homotopic.

In order to understand the issue of reduction of the structure
group without referring to cocycles, it is convenient to enlarge the
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concept of morphism of principal bundles to allow for di!erent struc-
ture groups.

Definition 35.3. Let ξ′ = (π′, P ′,M ′) be a principal G′-bundle,
ξ = (π, P,M) a principal G-bundle and φ : G′ → G a Lie group
homomorphism. A φ-morphism Ψ : ξ′ → ξ is a map Ψ : P ′ → P
such that

Ψ(u · g) = Ψ(u)φ(g), ∀u ∈ P ′, g ∈ G′.

A φ-morphism of principal bundles Ψ : ξ′ → ξ takes fibers to
fibers so it covers a smooth map ψ : M ′ → M making the following
diagram commute

P ′ Ψ !!

π′
$$

P

π
$$

M ′
ψ

!! M

If Ψ : P ′ → P and φ : G′ → G are both embeddings, one can identify
P ′ and G′ with its images Ψ(P ′) ⊂ P and H := Φ(G′) ⊂ G. We
then say that ξ′ is a subbundle of the principal bundle ξ. When
M ′ = M and ψ =id we say that ξ′ is a reduced subbundle of ξ. It
is not hard to check that this matches the notion of reduction of the
structure group from G to H that we have introduced before using
cocycles.

Example 35.8. If M carries a Riemannian structure, then we can
consider the orthogonal frame bundle whose fiber is

OF (M)p = {(v1, . . . ,vd) an orthonormal basis of TpM}.

This is a principal O(d)-bundle, which is a reduced subbundle of
F (M), obtained by reduction of the structure group from GL(d) to
O(d). In general, a reduction of F (M) to a closed subgroup G ⊂
GL(d) is called a G-structure on M . We leave the details as an
exercise.
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Exercises

Exercise 35.1

Give a proof of Proposition 35.1

Exercise 35.2

Consider the covering of M = S1 by the open sets:

U± = {(x, y) ∈ R2 : x2 + y2 = 1}− {(±1, 0)}.

Define a cocycle {g±} (with only one element!) relative to this cov-
ering by

g±(x, y) =






I if (x, y) ∈ y > 0,

−I if (x, y) ∈ y < 0.

where I is the 2× 2 identity matrix Show that this cocycle defines:

(a) a G-fiber bundle with fiber type S1 and structure group SO(2)
which is isomorphic, as an SO(2)-bundle, to the trivial bundle.

(b) a G-fiber bundle with fiber type S1 and structure group Z2 =
{I,−I} which is not isomorphic, as a Z2-bundle, to the trivial
bundle.

Exercise 35.3

Complete the proof of Proposition 35.2.

Exercise 35.4

Given a principal action P ×G→ P and an action G×F → F show
that the associated fiber bundle ξF = (πF , E,M) satisfies the axioms
of a G-fiber bundle of Definition 35.1.

Exercise 35.5

Show that a principal bundle is trivial if and only if it has a global
section.

Note: This exercise is a very special case of the next exercise.
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Exercise 35.6

Let ξ = (π, P,M) be a principal G-bundle and H ⊂ G a closed
subgroup. Since G acts in the quotient G/H, there is an associate
bundle ξG/H = (π′, P ×G (G/H),M). Show that this bundle can be
identified with the quotient (π′, P/H,M), where π′ : P/H → M is
the map induced by π : P → M , and that the following statements
are equivalent:

(a) The structure group of ξ can be reduced to H;
(b) The associated bundle ξG/H has a section;
(c) There exists a G-equivariant map h : P → G/H.

Exercise 35.7

Let M be a Riemannian manifold and let π : OF (M) → M be the
principal O(d)-bundle formed by the orthogonal frames:

OF (M)p = {(v1, . . . ,vd) an orthonormal base of TpM}.

Show that OF (M) is a reduced bundle of F (M) relative to the nat-
ural inclusion O(d) ⊂ GL(d). Conversely, prove that any reduction
of the frame bundle F (M) to a O(d)-bundle P → M is canoni-
cally isomorphic to the orthogonal frame bundle OF (M) for a unique
Riemannian metric on M .

Exercise 35.8

Let M be a manifold of dimension 2d. An almost complex struc-
ture on M is an endomorphism J : TM → TM such that J2 = −Id,
so such a structure makes TM into a complex vector bundle. Con-
sider the natural inclusion GL(d,C) ⊂ GL(2d), arising from the
canonical identification Cd ) R2d. Show that a reduction of F (M) to
a GL(d,C)-bundle is canonically isomorphic to the bundle of complex
frames for a unique almost complex structure J on M .



June 29, 2024 15:54 Lectures on Differential Geometry 9in x 6in b5406-ch35 FA2 page 384



June 29, 2024 15:55 Lectures on Differential Geometry 9in x 6in b5406-ch36 FA2 page 385

Lecture 36

Principal Fiber Bundles

If ξ = (π, P,M) is a principal G-bundle and G×F → F is a smooth
action, it is natural to expect that any functorial construction in the
associated bundle ξF = (π, E,M) can be expressed in terms of ξ and
F . We have seen examples of this principle in the last lecture — see,
e.g., Proposition 35.3. As another instance of this principle, we will
now discuss a notion of connection on a principal G-bundle, which,
as we will see later, induces a connection on any associated vector
bundle.

Definition 36.1. Let ξ = (π, P,M) be a principal G-bundle.
A principal bundle connection in ξ is a distribution H ⊂ TP
such that

(i) H is horizontal, i.e., for all u ∈ P

TuP = Hu ⊕ ker duπ;

(ii) H is G-invariant, i.e., for all g ∈ G, and u ∈ P

Hug = (Rg)∗Hu,

where Rg : P → P , u &→ ug, denotes translation by g.

Given a connection H on a principal G-bundle ξ = (π, P,M),
we call Hu the horizontal space and Vu := ker duπ the vertical
space at u ∈ P . An arbitrary tangent vector v ∈ TuP has a unique

385
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decomposition

v = h(v) + v(v) where h(v) ∈ Hu, v(v) ∈ Vu.

Hence, any vector field X ∈ X(P ) on the total space of the bundle
also splits into a horizontal vector field h(X) and a vertical vector
field v(X).

Example 36.1. Let ξF = (π, E,M) be a vector bundle furnished
with a connection ∇. Denote by ξ = (π, F (E),M) the bundle of
frames of ξF (see Example 35.6). If u = (v1, . . . ,vr) ∈ F (E) is
a frame and c : I → M is a curve with c(0) = π(u), then the
vector fields X1, . . . ,Xr along c(t) obtained by parallel transport of
v1, . . . ,vr determine a curve u(t) = (X1(t), . . . ,Xr(t)) in F (E). We
consider all the curves u(t) obtained in this way and we define the
subspace

Hu :=
{
u′(0) ∈ TuF (E) : for all curves u(t)

}
.

This yields a C∞ distribution u &→ Hu which satisfies conditions
(i) and (ii) of Definition 36.1. Hence, every connection ∇ in a vector
bundle determines a principal bundle connection H in the corre-
sponding bundle of frames.

Let ξ = (π, P,M) be a principal G-bundle. The G-action on P
induces an infinitesimal Lie algebra action ψ : g → X(P ). For each
X ∈ g the vector field ψ(X) is vertical, and the map X &→ ψ(X)|u
gives a linear isomorphism g ( Vu. Therefore, given a principal bun-
dle connectionH, for any v ∈ TuP we can take its vertical component
v(v) and find a unique Xv ∈ g is such that ψ(Xv)|u = v(v).

Definition 36.2. The connection 1-form of a principal bundle
connection H on ξ = (π, P,M) is the g-valued 1-form ω ∈ Ω1(P ; g)
given by

ω(v) := Xv.

Note that ω(v) = 0 iff v is a horizontal vector, so ω uniquely deter-
mines the distribution H. Indeed, the following proposition states
that the connection 1-form completely characterizes the connection
H. The proof is left as an exercise.
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Proposition 36.1. Let ξ = (π, P,M) be a principal G-bundle.
Given a principal bundle connection H on P its connection 1-form
ω satisfies:

(i) ω(ψ(X)) = X, for all X ∈ g;
(ii) (Rg)∗ω = Adg−1 ω, for all g ∈ G.

Conversely, if ω ∈ Ω1(P ; g) satisfies (i) and (ii), there exists a unique
principal bundle connection H in P whose connection 1-form is ω.

We leave as an exercise to show that the previous description of
principal bundle connections in terms of connections 1-forms implies
the existence of connections on any principal bundle using a partition
of unity.

Let us introduce now the curvature of a connection H on a
principal G-bundle ξ = (π, P,M). For that, we define the exterior
covariant derivative associated with H to be the differential opera-
tor D : Ωk(P ; g)→ Ωk+1(P ; g) given by

(Dθ)(X0, . . . ,Xk) = (dθ)(h(X0), . . . , h(Xk)), (X0, . . . ,Xk ∈ X(P )).

Definition 36.3. The curvature 2-form of a connection H with
connection 1-form ω ∈ Ω1(P, g) is the g-valued 2-form

Ω := Dω ∈ Ω2(P, g).

Fix a trivialization {(Uα,φα)} of the principal G-bundle ξ =
(π, P,M). Then we have local sections

sα : Uα → P, p &→ φ−1
α (p, e),

where e ∈ G denotes the identity element. The connection 1-form ω
determines a family of local connection 1-forms

ωα := (sα)
∗ω ∈ Ω1(Uα; g).

On the other hand, the curvature 2-form Ω determines a family of
local curvature 2-forms

Ωα := (sα)
∗Ω ∈ Ω2(Uα; g).

An exercise at the end of this lecture discusses how these local forms
are related to overlaps.
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Example 36.2. We saw in Example 36.1 that a connection ∇ on a
vector bundle π : E →M determines a connection H on the principal
GL(r)-bundle of frames π : F (E) → M . The associated connection
1-form and curvature 2-form takes values in the Lie algebra gl(r).

A trivialization {(Uα,φα)} for the vector bundle π : E → M
yields also a trivialization for the bundle of frames π : F (E) → M .
The matrices of connection 1-forms ωα = [ωb

a] and curvature 2-forms
Ωα = [Ωb

a] associated with ∇ agree with the local connection 1-form
and curvature 2-form of the principal connection H.

In order to discuss the structure equations of a principal connec-
tion, we define the bracket of two g-valued 1-forms η1, η2 ∈ Ω1(P, g)
to be the g-valued 2-form [η1, η2] given by

[η1, η2](X,Y ) := [η1(X), η2(Y )]− [η1(Y ), η2(X)].

Theorem 36.1. Let H be a connection on a principal G-bundle ξ =
(π, P,M), with connection 1-form ω and curvature 2-form Ω. Then
the following hold:

(i) Structure equation: Ω = dω + 1
2 [ω,ω].

(ii) Bianchi’s identity: DΩ = 0.

There is also a notion of parallel transport for principal bundle
connections. Given a connection H on a principal G-bundle ξ =
(π, P,M), if X ∈ X(M) is a vector field on the base M , there exists
a unique vector field X̃ in the total space P which is horizontal and
is π-related to X:

π∗X̃ = X.

One calls X̃ ∈ X(P ) the horizontal lift of X ∈ X(M). The following
result, stating the most important properties of the horizontal lift,
follows immediately from the definitions.

Proposition 36.2. Let X,Y ∈ X(M) and f ∈ C∞(M). Then,

(i) X̃ + Ỹ is the horizontal lift of X + Y ;
(ii) (π∗f)X̃ is the horizontal lift of fX;
(iii) h([X̃, Ỹ ]) is the horizontal lift of [X,Y ].
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Note that, by property (iii), the vector field

[X̃, Ỹ ]− [̃X,Y ] ∈ X(P ),

is vertical. This leads to a geometric interpretation of curvature,
whose proof we also leave as an exercise.

Theorem 36.2. Let H be a connection on a principal G-bundle ξ =
(π, P,M), with curvature 2-form Ω ∈ Ω2(P ; g). For any local section
s : U → P and vector fields X,Y ∈ X(U) we have

(s∗Ω)(X,Y )∗p =
(
[X̃, Ỹ ]− [̃X,Y ]

)

s(p)
.

A flat connection is a connection whose curvature form vanishes
identically. Since the horizontal lifts X̃ of vector fields X in X(M)
generate the horizontal distribution of the connection, we deduce the
following.

Corollary 36.1. A connection is flat if and only if its horizontal
distribution is integrable.

In order to define parallel transport we define the horizontal
lift of of a curve c : I → M to be a curve u : I → P such that
π(u(t)) = c(t) and u̇(t) is horizontal for all t ∈ I.

Proposition 36.3. Let H be a connection on a principal G-bundle
ξ = (π, P,M). If c : I → M is a curve and u0 ∈ π−1(c(0)), there
exists a unique horizontal lift u : I → P of c(t) with u(0) = u0.

Proof. Local triviality of the bundle shows that we can always lift
c(t) to a curve v : I → P , such that v(0) = u0 and π(v(t)) = c(t).
The horizontal lift u : I → P through u0, if it exists, takes the form

u(t) = v(t)g(t),

for some curve g : I → G with g(0) = e. If ω denotes the connection
1-form of H, differentiating the last expression gives

ω(u̇(t)) = Adg(t)−1 ω(v̇(t)) + g(t)−1ġ(t),

where t &→ g(t)−1ġ(t) := dg(t)Lg(t)−1 ġ(t) is a curve in the Lie algebra
g. The curve u(t) will be horizontal iff g(t) satisfies the equation

g(t)−1ġ(t) = −Adg(t)−1 ω(v̇(t)).

Hence, the proof is completed by applying the following lemma.
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Lemma 36.1. Let G be a Lie group with Lie algebra g. If t &→ X(t)
is a curve in g, then there exists a unique curve g : I → G, with
g(0) = e, satisfying:

g(t)−1ġ(t) = X(t), (t ∈ I).

The equation appearing in the lemma is a linear o.d.e. with time
dependent coefficients. By general results about such o.d.e. it has
solutions for all times t for which the coefficients are defined. We
leave the details to the reader.

Using the previous proposition, given a curve c : I → M , we
can proceed to define parallel transport along c to be the map
τt : Pc(0) → Pc(t) given by

τt(u0) := u(t),

where u(t) is the unique horizontal lift u : I → P of c(t) such that
u(0) = u0. Note that we can also define parallel transport along
curves which are only piecewise smooth, by making parallel transport
successively along its smooth components.

Proposition 36.4. Parallel transport along a piecewise smooth
curve c : [0, 1]→M commutes with the G-action, i.e.,

τt ◦Rg = Rg ◦ τt, ∀g ∈ G.

Moreover,

(i) τ1 is an isomorphism with inverse parallel transport along c̄(t) :=
c(1− t).

(ii) If c1 and c2 are piecewise smooth curves and c1(1) = c2(0), then
parallel transport along the concatenation c1 · c2 coincides with
the composition of the parallel transports along c1 and c2.

Proof. The first statement follows by observing that Rg takes hori-
zontal curves to horizontal curves. The rest is obvious.

Let ξ = (π, P,M) be a principal G-bundle and fix a base point
p0 ∈M . The holonomy group Φ(p0) of a connection on ξ consists of
all the isomorphisms τ1 : Pp0 → Pp0 obtained by performing parallel
transport along piecewise smooth curves c : I → M with c(0) =
c(1) = p0. Choosing u0 ∈ π−1(p0), one can identify the group Φ(p0)
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with a subgroup Φ(u0) ⊂ G by associating to τ ∈ Φ(p0) the unique
element g ∈ G such that τ(u) = u0g. Given two points u0, u′0 ∈
π−1(p0) there exists a unique element g0 ∈ G such that u′0 = u0g0,
and we have

Φ(u′0) = g0Φ(u0)g
−1
0 .

Hence, the subgroups Φ(u), as u varies in π−1(p0), are all conjugate.
The holonomy of a connection is, in a sense, a global version of

the curvature of the connection. This can be made precise as follows.
We refer to Kobayashi and Nomizu (1996) for a proof.

Theorem 36.3 (Ambrose–Singer). Let H be a connection on a
principal G-bundle ξ = (π, P,M) with curvature 2-form Ω. Given
u ∈ P denote by P (u) ⊂ P the set of all u′ ∈ P which can be
connected to u through a horizontal curve. The holonomy group Φ(u)
is a Lie subgroup of G with Lie algebra

{
Ωu′(v,w) : u′ ∈ P (u),v,w ∈ Hu′

}
⊂ g.

Let ξ = (π, P,M) be a principal G-bundle and assume one is
given a linear action G× Rr → Rr. The resulting associated bundle
E := P ×G Rr → M is then a vector bundle, which we denote by
ξRR . Given a connection on the principal bundle ξ, parallel transport
in P → M induces a parallel transport operation in the associated
bundle ξRr as we explain next.

If c : I →M is a piecewise smooth curve, a horizontal lift of c(t)
in the associated bundle is, by definition, a curve v(t) ∈ E of the
form

v(t) = [(u(t),v)] ∈ P ×G Rr := E,

where u(t) is a horizontal lift of c(t) in P . It is easy to see that for
any v0 ∈ Ec(0) there exists a unique horizontal lift v(t) of c(t) such
that v(0) = v0. As before, one can then define the parallel transport
τt : Ec(0) → Ec(1) along c(t).

Now let s be a section of ξRr . Given v ∈ TpM let c : I →M be a
curve such that c(0) = p and ċ(0) = v. The covariant derivative of s
in the direction v is

∇vs := lim
t→0

1

t

[
τ−1
t (s(c(t)) − s(p)

]
∈ Ep. (36.1)
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It is easy to check that this definition is independent of the choice of
curve c. Also, we define the covariant derivative of a section s along
a vector field X ∈ X(M) to be the section

(∇Xs)(p) := ∇Xps.

Proposition 36.5. The covariant derivative ∇ : X(M) × Γ(E) →
Γ(E) associated with a connection H in ξ is a vector bundle connec-
tion on ξRr .

Proof. One needs to check that the operator defined by (36.1) sat-
isfies the defining properties of a vector bundle connection. For that,
one uses the following alternative definition of (36.1). Given a section
s of ξRr let h : P → Rr be the corresponding G-equivariant map —
see Proposition 35.3. Then for any vector field X, the map

LX̃h := (LX̃h1, . . . ,LX̃hr) : P → Rr,

is G-equivariant, where X̃ ∈ X(P ) denotes the horizontal lift of X.

Lemma 36.2. Let X ∈ X(M) be a vector field and s a section of
ξRr corresponding to a G-equivariant map h : P → Rr. Then the
G-equivariant map LX̃h : P → Rr corresponds to the section ∇Xs
defined by (36.1).

Using this lemma, one checks easily that ∇ satisfies the properties
of a connection.

As a corollary, we obtain the correspondence between the princi-
pal bundle connections and vector bundle connections mentioned at
the beginning of this lecture.

Corollary 36.2. Let E → M be a vector bundle. Every principal
bundle connection H on the bundle of frames F (E)→M determines
a vector bundle connection ∇ on E. Moreover, every vector bundle
connection on E arises in this way from a unique principal bundle
connection on F (E).

Proof. The first part of the theorem follows from the proposition.
The second part follows from Example 36.1.
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This correspondence suggests that the theory of characteristics
classes for vector bundles, that we studied before, can be generalized
to principal bundles. Indeed, if H is a connection in the principal
G-bundle ξ = (π, P,M) with curvature form Ω, one defines the
Chern–Weil homomorphism similarly to the way it was defined
for vector bundles

CW[ξ] : Ik(G)→ H2k(M), P &→ [P (Ωk)],

This homomorphism is independent of the choice of connection.
One can use the Chern–Weil homomorphism to associate charac-

teristics classes to the principal bundle. For example, if ξ is a principal
bundle with structure group GL(r,R) the Pontrjagin classes of ξ
are obtained by considering the elementary symmetric polynomials

pk(ξ) :=

[
σ2k

(
1

2π
Ω

)2k
]
∈ H4k(M).

These classes coincide with the Pontrjagin classes of the associated
vector bundle ξRr , arising from the canonical action GL(r,R) on Rr.
Similarly, if ξ is a principal bundle with structure group GL(r,C),
the Chern classes of ξ are given by

ck(ξ) :=

[

σk

(
1

2πi
Ω

)k
]

∈ H2k(M).

These classes coincide with the Chern classes of the associated com-
plex vector bundle ξCr , arising from the canonical action GL(r,C)
on Cr.

Exercises

Exercise 36.1

Show that a principal G-bundle is trivial if and only if it admits a
section. Moreover, given any principal G-bundle ξ = (π, P,M):

(a) Prove that there is an open cover {Uα : α ∈ A} of M over which
ξ admits local sections sα : Uα → P ;
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(b) Given an open cover as in (a), show that any two sections sα and
sβ with overlapping domains are related by

sβ(p) = sα(p)gαβ(p) (p ∈ Uα ∩ Uβ),

for unique functions gαβ : Uα ∩ Uβ → G forming a cocycle.

Exercise 36.2

Show that a principal G-bundle always admits a connection.

Exercise 36.3

If H is a connection on a principal G-bundle ξ = (π, P,M), with
curvature 2-form Ω ∈ Ω2(P ; g). For any local section s : U → P ,
show that

(s∗Ω)(X,Y )∗ = [X̃, Ỹ ]− [̃X,Y ].

Exercise 36.4

Let ξ = (π, P,M) be a principal G-bundle with connection H, and
denote by ω its connection 1-form and by Ω its curvature 2-form.
Let {Uα : α ∈ A} be an open cover of M over which ξ admits local
sections sα : Uα → P and denote by gαβ : Uα∩Uβ → G the associated
cocycle (see the previous exercise). Show that the local connection
1-forms ωα = s∗αω and local curvature 2-forms Ωα = s∗αΩ satisfy

ωβ = Adg−1
αβ
ωα + g∗αβωMC , Ωβ = Adg−1

αβ
Ωα,

where ωMC ∈ Ω1(G, g) is the Maurer–Cartan form of G, defined by

ωMC(v) = dgLg−1(v) (v ∈ TgG).

Exercise 36.5

Let G be a Lie group with Lie algebra g. If t &→ X(t) is a curve in
g, show that there exists a unique curve g : I → G, with g(0) = e,
satisfying

g(t)−1ġ(t) = X(t), (t ∈ [0, 1]).

Exercise 36.6

Complete the details of the proof of Proposition 36.5 and, in partic-
ular, prove Lemma 36.2.
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Exercise 36.7

Let π : P →M be a principal S1-bundle and identify the Lie algebra
of S1 with iR.

(a) Given a connection on P with curvature 2-form Ω show that
there exists a real closed 2-form ω ∈ Ω2(M) such that 1

2πiΩ =
π∗ω;

(b) Check that the cohomology class [ω] ∈ H2(M) coincides with
the first Chern class c1(P );

(c) Conclude that the Chern class c1(P ) is trivial if and only if P
admits a flat connection.
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action
fixed point, 172

adjoint representation, 170
Ado’s theorem, 145
Ambrose–Singer theorem, 391
associated bundle, 378
atlas, 14

B

Bianchi’s identity, 336, 388
Bott connection, 343
boundary point, 24
bump function, 31

C

canonical bundle, 279, 286
Cartan’s magic formula, 198
chain complex, 224
chart, 4, 11, 14

boundary, 24
interior, 24
trivializing, 275, 373

Chern character, 367
Chern class, 362, 393
Chern numbers, 365
Chern–Simons transgression form,

353
Chern–Weil homomorphism, 352,

362, 393

Christoffel symbols, 322
classifying map, 314
cochain complex, 218
codimension, 69
connecting homomorphism, 239
connection

compatible with metric, 329
complete, 333
flat, 338, 389
horizontal lift, 388
horizontal space, 385
on a principal bundle, 385
on a vector bundle, 321
symmetric, 328

connection 1-form, 322, 386
constant rank theorem, 53
coordinate functions, 11
coordinate system, 4, 11
cotangent bundle, 49
cotangent space, 48
covariant derivative, 324
cup product, 215
curvature 2-form, 336, 387
curvature tensor, 335
cylinder, 15

D

de Rham cohomology, 214
compactly supported, 216
homotopy invariance, 237
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Mayer–Vietoris sequence, 238
with coefficients, 348

de Rham complex, 213
de Rham differential, 195
de Rham theorem, 229
degree of a map, 261
diffeomorphism, 16

between subsets in euclidean space,
4

orientation preserving, 189
positive, 189

differential, 47, 50
differential form, 177

basic, 185
closed, 213
exact, 213
exterior product, 179
G-invariant, 185
group of periods, 232
interior product, 183
left invariant, 184
pull-back by a map, 181
restriction to submanifold,

182
direct sum, 283
distribution, 125

integrable, 128
involutive, 129

divergence theorem, 210

E

Einstein convention sum, 179
embedding, 56
equivariant map, 162
étale map, 53
Euler characteristic, 252
Euler class, 294, 368
Euler’s formula, 253
exact sequence, 238

long, 239
short, 238

exponential map, 153
of a connection, 328

exterior algebra, 175
exterior bundle, 177

exterior product, 175
of differential forms, 179

exterior tangent vector, 191

F

face map, 222
fiber bundle, 374

atlas, 375
cocycle, 374, 376
morphism, 375
reduction of structure group,

376
trivialization, 373, 375

five lemma, 250
fixed point, 113
flow box theorem, 113
foliated chart, 79
foliation, 79

chart, 79
leaf, 79
plaque, 79
product, 84
pull-back, 84
simple, 96

frame, 277
frame bundle, 379

orthogonal, 381
Frobenius theorem, 129
Fubini–Study metric, 361

G

G-structure, 381
Gauss map, 265
general linear Lie algebra, 133
general linear Lie group, 135
geodesic, 327
germ, 39
Godement’s criterion, 92
good cover, 247
gradient of a function, 116
Grassmann algebra, 180
Grassmannian manifold, 166
group action, 97

by diffeomorphisms, 97
free, 97
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proper, 98
properly discontinuous, 102

group of transformations, 159

H

half-space
closed, 23

boundary of, 23
open, 23

Hodge star operator, 193
holonomy group, 390
holonomy of a closed path, 339
holonomy representation, 340
homogeneous space, 164
homotopy operator, 234
homotopy type, 237
Hopf fibration, 164

I

ideal, 170
immersion, 53
index of vector field, 265–266
induced orientation, 191
infinitesimal action, 167
infinitesimal generators, 168
integral, 204
integral manifold, 127
integration along the fibers,

290
interior point, 24
interior product

of differential forms, 183
isotropy subalgebra, 172
isotropy subgroup, 98, 159

J

Jacobian matrix, 47

K

Klein bottle, 73

L

laplacian, 201
Levi-Civita connection, 330

Lie algebra, 133
abelian, 133
homomorphism, 137
ideal, 170
representation, 169

Lie algebra action, 167
linear, 169

Lie bracket, 117, 133
Lie derivative

of a function, 120
of a vector field, 120
of differential form, 197

Lie group, 134
homomorphism, 137
representation, 169
universal covering, 146

Lie group action, 159, 162
equivalence, 163
linear, 169

Lie subalgebra, 138
Lie subgroup, 139
Lie’s theorems, 149
line with two origins, 101
linear derivation, 107
linear holonomy, 343
local diffeomorphism, 53

M

manifold
abstract, 14
of finite type, 247
analytic, 7, 15
boundary, 24
closed, 27
complex, 364
connected sum, 259
contractible, 237
deformation retract, 245
diffeomorphic, 16
embedded, 15
embedded in Rn, 4
interior, 24
of class Ck, 7, 15
open, 27
orientable, 187
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oriented, 189
parallelizable, 278
topological, 7, 11

with boundary, 23
volume of, 206
with boundary, 26

Mayer–Vietoris sequence, 238, 244
Möbius band, 290
modular function, 211
multivector field, 177

N

normal bundle, 283

O

orientation
canonical for Rd, 189
canonical for Sd, 189
manifold, 189
vector space, 187

orientation cover, 192
orientation preserving, 189
orthogonal frame bundle, 381
orthogonal group, 140
orthogonal vector bundle, 285

P

paracompact, 31
parallel transport, 326, 390
parameterization, 4
partition of unity, 29
path, 107
Pfaffian, 369
Picard group, 311
plaque, 79
Poincaré duality, 249
Poincaré lemma, 234

for compactly supported
cohomology, 244

Poincaré–Hopf Theorem, 269, 298
Pontrjagin class, 359, 393
Pontrjagin numbers, 360
positive

diffeormorphism, 189
principal bundle, 376

connection, 385
morphism, 381
reduction of structure group, 381

projective space, 12, 16
complex, 19

proper action, 160
proper map, 92

Q

quotient vector bundle, 283

R

Reeb foliation, 81–82
regular point, 67
regular simplex, 252
regular value, 67
representation

of a Lie algebra, 169
of a Lie group, 169

retraction, 245
Riemannian structure, 115, 177, 186,

285
right action, 162

S

Sard’s theorem, 77
Schouten bracket, 201
section

parallel, 324
singular chain, 222

boundary of, 222
smooth, 225

singular cochains, 226
singular cohomology, 226

integral, 232
singular homology, 224

integral, 231
singular point, 67
singular simplex, 222
singular value, 67
smooth Gk

d -structure, 85
smooth function, 16

support, 29
smooth homotopy, 236
smooth map, 3, 16–17
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between subsets in euclidean space,
3

smooth structure, 14
equivalent, 18
exotic, 15, 18
for manifold with boundary, 26

special linear group, 140
special orthogonal group, 140
special unitary group, 140
spherical coordinates, 45
standard k-simplex, 221

face map, 222
star-shaped, 237
Stiefel manifold, 171
Stiefel–Whitney class, 309
Stokes formula, 207, 228
structure equations, 336, 388
submanifold, 56

embedded, 56
equivalent, 59
immersed, 56
proper, 92
regularly immersed, 62

submersion, 53
surface of genus g, 6

T

tangent bundle, 43
tangent space, 37, 39

for manifold with boundary,
50

tangent vector, 37–39
components, 42

Taylor formula, 112
tensor algebra, 175
tensor bundle, 177
tensor field, 177

contraction, 184
tensor product, 175
Thom class, 292
Thom Isomorphism, 290, 292
torsion tensor, 328
torus, 15, 72
transition function, 14

for a vector bundle, 276

transition functions
for a fiber bundle, 373

transitive action, 164
transpose of linear map,

176
transversal map, 70
transverse intersection, 70
triangulation, 252

U

unimodular, 211
unit sphere, 5
unitary group, 140
universal bundle, 313, 318

V

vector bundle, 276, 375
atlas, 277
classification, 316
cocycle, 280
complex, 361
complexification, 366
connection, 321
direct sum, 283
dual, 284
equivalence, 278
exterior product, 284
flat, 338
homotopy invariance, 307
isomorphism, 278
morphism, 277
orientation, 284
pullback, 303
Riemannian structure, 285
section, 277
tensor product, 284
trivial, 278
trivialization, 277
universal, 313, 318

vector field, 105
Φ-related, 111
complete, 110
flow, 109
index at zero, 266
integral curve, 108
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left invariant, 135
Lie bracket, 117
linear, 169
linear approximation at zero,

267
non-degenerate zero, 268
projectable, 123
right invariant, 135
singular point, 113
vertical, 123

vector subbundle, 282

volume form, 187
for oriented Riemannian manifold,

193

W

Whitney sum, 283
Whitney’s Embedding Theorem, 74

Z

zero measure, 64


	b5406-fm
	*-20pt
	1. Preface
	2. About the Author
	3. Contents

	b5406-ch01
	Basic Concepts
	*-20pt
	1. Manifolds as Subsets of Euclidean Space


	b5406-ch02
	2. Abstract Manifolds

	b5406-ch03
	3. Manifolds with Boundary

	b5406-ch04
	4. Partitions of Unity

	b5406-ch05
	5. The Tangent Space

	b5406-ch06
	6. The Differential

	b5406-ch07
	7. Immersions, Submersions, and Submanifolds

	b5406-ch08
	8. Embeddings and Whitney's Theorem

	b5406-ch09
	9. Foliations

	b5406-ch10
	10. Quotients

	b5406-ch11
	Lie Theory
	11. Vector Fields and Flows


	b5406-ch12
	12. Lie Bracket and Lie Derivative

	b5406-ch13
	13. Distributions and the Frobenius Theorem

	b5406-ch14
	14. Lie Groups and Lie Algebras

	b5406-ch15
	15. Integrations of Lie Algebras

	b5406-ch16
	16. The Exponential Map

	b5406-ch17
	17. Groups of Transformations

	b5406-ch18
	Differential Forms
	18. Differential Forms and Tensor Fields


	b5406-ch19
	19. Volume Forms and Orientation

	b5406-ch20
	20. Cartan Calculus

	b5406-ch21
	21. Integration on Manifolds

	b5406-ch22
	22. de Rham Cohomology

	b5406-ch23
	23. The de Rham Theorem

	b5406-ch24
	24. Homotopy Invariance and Mayer–Vietoris Sequence

	b5406-ch25
	25. Computations in Cohomology and Applications

	b5406-ch26
	26. The Degree and the Index

	b5406-ch27
	Fiber Bundles
	27. Vector Bundles


	b5406-ch28
	28. The Thom Class and the Euler Class

	b5406-ch29
	29. Pullbacks of Vector Bundles

	b5406-ch30
	30. The Classification of Vector Bundles

	b5406-ch31
	31. Connections and Parallel Transport

	b5406-ch32
	32. Curvature and Holonomy

	b5406-ch33
	33. The Chern–Weil Homomorphism

	b5406-ch34
	34. Characteristic Classes

	b5406-ch35
	35. Fiber Bundles

	b5406-ch36
	36. Principal Fiber Bundles

	b5406-bib
	*-20pt
	1. Bibliography

	b5406-index

