
Energy-Efficient Neural Network Training for
Scientific Datasets with Advanced Similarity

Analytics and Orchestration

Kin Wai NG1[0000−0001−9784−8427], Orcun Yildiz2[0009−0006−5910−9221], Tom
Peterka2[0000−0002−0525−3205], Florence Tama3,4[0000−0003−2021−5618], Osamu

Miyashita3[0000−0002−2530−5674], Catherine Schuman1[0000−0002−4264−8097], and
Michela Taufer1[0000−0002−0031−6377]

1 University of Tennessee, Knoxville, TN 37996, USA
2 Argonne National Laboratory (ANL), IL 60439, USA

3 Center for Computational Science, RIKEN, Kobe, Hyõgo, JP
4 Nagoya University, Nagoya, Aichi, JP

Abstract. Scientific computing increasingly depends on neural archi-
tecture search (NAS) to identify accurate neural networks (NNs) that
facilitate breakthroughs in various fields, from protein classification to
material discovery. However, conventional NAS workflows face challenges
due to excessive training times and inefficient energy consumption result-
ing from redundant computations and inflexible orchestration. In this pa-
per, we present A4NN.2, the next generation of the Analytics for Neural
Network (A4NN) workflow, which overcomes these challenges by intro-
ducing a structural similarity engine and advanced orchestration using
the Wilkins framework. These enhancements eliminate redundant train-
ing and enable modular high-performance workflow executions. A4NN.2
accelerates NN training, reduces energy consumption, and demonstrates
broad applicability across benchmark datasets and scientific domains.
When used to train NNs to classify protein configurations from X-ray
images, A4NN.2 achieves significant efficiency gains by reducing compu-
tational costs while maintaining high accuracy, thus accelerating scien-
tific discovery in structural biology.

Keywords: Workflows · Flow control · Energy efficiency · CIFAR10 ·
CIFAR100 · Protein XFEL diffraction dataset

1 Introduction

Scientific computing increasingly depends on neural architecture search (NAS)
to identify accurate neural network (NN) configurations, driving advancements
in fields such as protein classification and material discovery. However, long
training times and inefficient energy use often hinder traditional NAS workflows
due to redundant computations and inflexible orchestration frameworks. This
paper presents A4NN.2, the latest version of the Analytics for Neural Network
(A4NN) workflow, designed to overcome these challenges. A4NN.2 integrates



2 K. NG et al.

a structural similarity engine and advanced orchestration capabilities, using the
Wilkins framework to improve efficiency. Building on its predecessor, A4NN.1 [4],
which featured a prediction engine to estimate NN accuracy and terminate un-
derperforming networks early, A4NN.2 introduces two key enhancements. First,
it automatically identifies and eliminates structural similarities and redundancies
among NNs, reducing unnecessary computations. Second, it optimizes workflow
flexibility through advanced orchestration using the Wilkins framework [19], en-
hancing the modularity of tasks and overall efficiency. By reducing redundant
computations, A4NN.2 significantly lowers the total FLOPs during the NAS
search process—a key proxy for energy consumption—thereby enhancing the sus-
tainability of NAS. We present our findings on the efficiency of A4NN.2, particu-
larly in terms of its reduced energy consumption, while maintaining the accuracy
level of NNs. This is demonstrated across two widely recognized benchmarks,
CIFAR10 and CIFAR100, in addition to a dataset involving protein diffraction
generated by X-ray Free Electron Laser (XFEL).

Identifying structural similarity and redundancy. A4NN.1 relied on a predic-
tion engine that used parametric modeling methods to determine when to stop
training early, but it did not address potential structural redundancies among
candidate NNs. This oversight resulted in unnecessary training of similar net-
works, thereby increasing both computational demands and energy consump-
tion. A4NN.2 introduces a new similarity engine that uses graph edit distance
techniques to assess and identify structural similarities among NNs. By omit-
ting networks that are structurally similar, we reduce redundant computations,
optimize resource usage and improve energy efficiency.

Optimizing workflow flexibility with advanced orchestration. A4NN.1 used a
tightly coupled workflow, which limited the flexibility to integrate new tasks or
modify existing components without substantial rework. This rigidity hindered
the ability to adapt the workflow to different NAS algorithms or evolving re-
search needs. In A4NN.2, we integrate the Wilkins framework [19], a modular
workflow orchestrator that decouples NAS algorithms from the task engines used
for prediction and similarity. This modularization enhances flexibility, allowing
for easy swapping of components, such as replacing the prediction engine with
a more advanced model or adding new analytics tasks. The result is a flexi-
ble workflow specification, now configured through a high-level specification file,
making it easier to customize and adapt to various research needs.

Demonstrate efficiency in energy consumption Although A4NN.1 reduced
training time by early stopping, it did not fully optimize energy consumption,
as redundant models were still being trained. Furthermore, it lacked a com-
prehensive evaluation of energy proxies beyond FLOPs. We transform A4NN.2
to achieve significant efficiency gains through the early termination of converg-
ing models combined with the exclusion of redundant models, minimizing both
training time and energy usage, and comprehensive evaluation of energy proxies,
including training time per epoch, total training time per model, and FLOPs per
model. We validate the gains of A4NN.2 by applying the workflow to two bench-
mark datasets (CIFAR10 and CIFAR100) to evaluate its effectiveness across



Energy-Efficient NN Training 3

varying complexity levels. The experimental results show up to 64.3% reduction
in FLOPs and 59% reduction in training time in CIFAR10 and 53.4% reduction
in FLOPs and 45% reduction in training time in CIFAR100. The well-known
benchmarks are used to generate trust in the outcome of A4NN.2. More impor-
tantly, we demonstrate the impact of A4NN.2 in searching for accurate NNs for
spectroscopy databases and in identifying protein types from X-ray diffraction
images, reducing FLOPs by as much as 47.4% to 53.5% across varying beam
intensities while preserving accurate solutions.

A4NN.2 addresses the reproducibility concerns of the AI community by open-
source workflow configuration files, task codes, and orchestration scripts for full
transparency and reproducibility, and integration with Data Commons to store
and share training metadata, fostering community collaboration and validation.
The code is available at: https://github.com/TauferLab/A4NN_workflow

2 The A4NN Workflow

We design and implement an ecosystem for accelerating NAS by integrating mod-
ular analytic engines that enhance search efficiency and reduce computational
overhead. This modularization enables A4NN.2 to support a suite of engines, al-
lowing for extensibility and incorporating additional analytical tasks beyond the
core workflow. Figure 1 shows the A4NN.2 workflow orchestrated by the Wilkins
workflow system. This workflow consists of three main tasks, the NAS algorithm
(red), the parametric prediction engine (blue), and the similarity engine (green).

Fig. 1: Main components of the A4NN.2 workflow. Wilkins orchestrates the
workflow, managing communication between three main tasks: NSGANET NAS
(red), the similarity engine (green), and the prediction engine (blue). The similar-
ity engine identifies and removes redundant NNs based on structural similarity,
while the prediction engine estimates NN fitness to enable early termination.
The entire workflow is configurable through high-level specification files.



4 K. NG et al.

A4NN.2 is compatible with various NAS frameworks, allowing flexibility in
selecting search algorithms. In this study, we use NSGANET [12], a multi-
objective approach that optimizes NNs for accuracy and computational effi-
ciency. NSGANET evolves NN architectures iteratively, generating an initial
population and refining it across generations through mutation and crossover
operations. It prioritizes FLOPs minimization to encourage energy-efficient mod-
els. FLOPs are estimated by the number of floating-point operations needed to
perform a single forward pass through the NN architecture. A4NN.2 accelerates
NSGANET by introducing two key areas. The prediction engine estimates the fit-
ness trajectory of NNs, enabling early termination when performance stabilizes.
The similarity engine detects and eliminates structurally similar NNs, prevent-
ing redundant training and improving search efficiency. The Wilkins orchestrator
facilitates seamless communication between these components, ensuring efficient
data exchange and workflow execution.

To support diverse configurations with different NAS strategies, A4NN.2 pro-
vides configurable settings for each component. Users can specify parameters
that control the NAS settings, the A4NN engines (i.e., prediction and similarity),
and the Wilkins orchestrator settings. NAS and A4NN engines configurations are
specified in JSON format, and Wilkins in YAML.

NAS Conf. File Users set the NSGANET parameters via a JSON file,
which includes paths for input datasets, the initial population size, nodes per
phase, offspring per generation, total generations, and training epochs.

A4NN Engine Files Users set up the A4NN engines via JSON files, defining
parameters for the prediction and similarity engines. For the prediction engine,
the configuration outlines the parametric function selection, the number of re-
quired data points, the epoch for predicting fitness, the count of predictions
for early stopping, and the permitted prediction variance. The similarity engine
settings specify the similarity metric and threshold for structural comparisons.

Wilkins Conf. File Users define data and resource needs in a YAML con-
figuration file. Input and output file needs for each task are outlined, and data
transfers occur via files. Resource allocation includes one process per task.

2.1 Identification of Structural Similarity and Redundancy

A4NN.2 augments the workflow with a similarity engine that identifies and re-
moves structurally similar architectures before training begins. This prevents
redundant computation and improves the overall efficiency of the search. The
similarity engine is designed for comparison across NNs. It operates alongside
NAS, analyzing architectures and signaling whether a given NN should proceed
to training or be ignored. The similarity engine consists of two steps: the struc-
ture similarity computation and the similarity analyzer.

Following the encoding scheme of NSGANET, NNs are represented as di-
rected acyclic graphs. Each NN consists of a sequence of phases, where compu-
tational operations (e.g., convolution, pooling, or batch normalizations) within a
phase are encoded as a binary string. We decode the binary string into a graph,
where vertices are computational operations, and edges are connections between



Energy-Efficient NN Training 5

them. To quantify structural similarity, we use the approximated graph edit dis-
tance (GED) metric [1]. GED measures the minimum number of edit operations
(e.g., vertex or edge insertions or deletions) required to transform one graph in
to the other. A lower GED indicates a high degree of similarity between two NN
graphs, while a higher GED suggests less similarity. GED has been widely used
in many applications requiring graph comparisons [6, 3]. The similarity engine
is designed for extensibility, and in future work, we can explore more advanced
metrics, including kernel-based [9], or embedding-based approaches [13].

The similarity analyzer step evaluates whether a NN scheduled for training
is structurally similar to an already trained network. If the similarity measure
indicates redundancy, the analyzer signals the NAS to discard the architecture,
thus avoiding redundant computation. If no similar architecture is found, train-
ing proceeds as usual, with the prediction engine determining whether early
termination is possible. By filtering similar NNs, the similarity engine accel-
erates the NAS process, reducing computational cost of model search without
compromising diversity in candidate NNs.

2.2 Decoupling and Modularization of Workflows for Flexibility

A4NN.1 used a plug-in that was not optimized for scalable communication, which
led to rigid communication patterns. This limitation constrained the efficient
execution of decoupled tasks in distributed environments. To address this, we
empower A4NN.2 with the Wilkins orchestrator, introducing three key features:
(i) High-performance HDF5-based data transport for scalable communication
between NAS and decoupled tasks; (ii) Adaptive flow control mechanisms to
manage data dependencies dynamically, minimizing idle time and optimizing
resource utilization; and (iii) Automatic communication channel creation by
matching data requirements between NAS and workflow tasks, streamlining ex-
ecution. These features significantly improve scalability and reduce execution
overhead, enabling the workflow to leverage larger HPC systems efficiently.

As shown in Figure 1, Wilkins orchestrates A4NN.2 by launching its tasks
concurrently, and managing their communication and dependencies transpar-
ently to the user. In this workflow, the NSGANET task sends NN architecture
information to the similarity engine, and receives similarity data, m(, ), from
previously trained NNs to determine whether the NN should be eliminated from
training. Next, the NSGANET task sends NN architecture information to the
prediction engine, and receives fitness predictions, f(), to assess the potential for
early termination. Data exchanges occur over HDF5 files, ensuring interoperabil-
ity and structured storage of A4NN’s generated data. Wilkins also allows tasks
to communicate in situ using MPI message passing; however, we chose file-based
communication to ensure reproducibility and facilitate the integration of the re-
sults with Data Commons. Wilkins leverages the LowFive data model [16], an
HDF5-VOL plugin, which enables seamless integration with existing A4NN task
codes with minimal modification. By decoupling workflow tasks and managing
their execution through a modular framework, Wilkins provides the flexibility
needed to adapt A4NN to diverse NAS implementations and research objectives.



6 K. NG et al.

3 Evaluating A4NN on Benchmark Datasets

We evaluate A4NN on benchmark datasets to assess its efficiency, accuracy, and
overall performance. Our evaluation is structured around four key questions:
(i) Runtime performance: How much does A4NN reduce the time required for
NAS compared to NSGANET; (ii) Energy efficiency proxies: How effectively
does A4NN reduce training epochs, training time, and FLOPs compared to NS-
GANET?; (iii) Impact of model complexity: How does model complexity influ-
ence energy efficiency metrics such as FLOPs per epoch?; and (iv) Balancing
accuracy and efficiency: How does A4NN balance model accuracy and compu-
tational efficiency, and what trade-offs exist between these metrics? We present
our results on CIFAR10 and CIFAR100 datasets.

3.1 Benchmark Datasets and Evaluation Settings

We evaluate A4NN using the CIFAR10 and CIFAR100 datasets, two widely used
computer vision benchmarks that differ in complexity, allowing for a thorough
assessment across varying task difficulties. Both datasets were introduced in
2009 [10] as a subset of the 80 Million Tiny Images dataset [18].

CIFAR10: It contains 60,000 color images (32x32 pixels) divided into 10
categories, each with 6,000 images. It is divided into 50,000 training images and
10,000 test images, providing a balanced and straightforward classification task.

CIFAR100: This dataset is a more intricate version, consisting of 60,000
images divided into 100 detailed classes, each with 600 images. It is partitioned
into 50,000 for training and 10,000 for testing. The increased class count and
variability within classes present added classification difficulties.

We configure our experiments based on the NSGANET setup from our pre-
vious work [4], initializing a population of 10 NNs, generating 10 offspring per
generation, and evolving over 10 generations, resulting in 100 trained models.
Each model is trained for 25 epochs.

For the prediction engine, we use a concave function of the form F(x) =
a−bc−x to extrapolate a candidate fitness prediction at future epochs. We require
three predictions within a variance threshold of 0.5 to determine convergence. For
the similarity engine, we use GED with a threshold of 2 to determine structural
similarity. We maintain consistent experimental parameters across all runs and
repeat each workflow five times to assess variability. Experiments were run on
the DARWIN HPC cluster at the University of Delaware, using one NVIDIA
Tesla V100 GPU and four CPU cores from a 32-core AMD EPYC 7002 Series
processor. The cluster features a high-performance Lustre filesystem.

3.2 Runtime Performance

To answer the question "How much does A4NN accelerate NAS compared to
NSGANET?", we evaluate the total runtime required to explore and identify
best-performing NNs. Our analysis focuses on two key aspects: overall wall time
and detailed runtime breakdowns to pinpoint efficiency gains.



Energy-Efficient NN Training 7

(a) CIFAR10 (b) CIFAR100

Fig. 2: Wall times for NNs trained with standalone NAS and A4NN (with and
without Wilkins orchestrator) on CIFAR10 and CIFAR100 datasets.

Figure 2 shows the total wall times for the CIFAR10 and CIFAR100 datasets,
comparing NSGANET (independently) with the three A4NN configurations (i.e.,
A4NN.1 using only the prediction engine, A4NN.1-W using Wilkins and the
prediction engine, and A4NN.2-W using Wilkins, the prediction engine, and the
similarity engine). Our results demonstrate a substantially reduced runtime for
all A4NN configurations compared to NSGANET. On CIFAR10 (Figure 2a),
A4NN.1-W achieves a 2x speedup, while A4NN.2-W, which incorporates both
the prediction and similarity engines, improves further with a 2.7x speedup.
Similarly, for CIFAR100 (Figure 2b), A4NN.1-W provides a 1.4x speedup, and
A4NN.2-W achieves a 2x improvement over NSGANET.

Table 1 provides a detailed decomposition of the runtime, highlighting the
impact of the prediction and similarity engines of A4NN and the integration of
Wilkins on overall efficiency. The results highlight two key points. First, Wilkins
does not add overhead to the A4NN workflow, as shown by the minimal difference
in execution time between A4NN.1 and A4NN.1-W. Second, as expected, NN
training accounts for most of the total runtime, while the time spent on A4NN’s
task engines is relatively minimal. The results also confirm that A4NN can effec-
tively accelerate NAS by reducing redundant computations, with the similarity
engine providing additional runtime savings. The integration of Wilkins also
ensures efficient and scalable orchestration without penalizing performance.

3.3 Energy-Efficiency Proxies

To answer the question How effectively does A4NN reduce training epochs, train-
ing time, and FLOPs compared to NSGANET?, we evaluate energy efficiency
using three key proxies: the number of training epochs required per model, the
total training time per model, and the computational cost in FLOPs per model.
Our analysis focuses on comparing the distributions of these metrics to quantify
reductions in training effort and computational cost.

Figures 3a and 3d show the distribution of epoch counts per model for CI-
FAR10 and CIFAR100, where NSGANET trains models to the maximum epoch



8 K. NG et al.

Table 1: Runtime breakdown per workflow component (in hours) for each
method, comparing standalone NSGANET and A4NN variants across the CI-
FAR10 and CIFAR100 benchmarks.

Dataset Method NAS Time A4NN Task Time Other Time Total Time
CIFAR10 NSGANET 3.6± 0.01 N/A 0.09± 0.0 3.69± 0.01

A4NN.1 1.78± 0.01 0.004± 0.0 0.06± 0.0 1.85± 0.01
A4NN.1-W 1.77± 0.02 0.004± 0.0 0.06± 0.0 1.84± 0.02
A4NN.2-W 1.25± 0.01 0.03± 0.0 0.06± 0.0 1.34± 0.01

CIFAR100 NSGANET 4.4± 0.02 N/A 0.1± 0.0 4.5± 0.01
A4NN.1 3.05± 0.01 0.007± 0.0 0.09± 0.0 3.14± 0.01
A4NN.1-W 3.05± 0.04 0.006± 0.0 0.09± 0.0 3.15± 0.04
A4NN.2-W 2.1± 0.03 0.03± 0.0 0.09± 0.0 2.21± 0.04

limit (i.e., 25) while A4NN methods adaptively terminate training earlier. We
observe that A4NN methods significantly reduce the number of training epochs
compared to NSGANET. A4NN.2-W achieves the lowest median epoch count,
reducing training epochs by 58% on CIFAR10 and 44% on CIFAR100. Simi-
larly, A4NN achieves substantial reductions in training time (Figures 3b and 3e),
with A4NN.2-W reducing the median training time per model by 59% on CI-
FAR10 and 45% on CIFAR100. We observe a similar trend for FLOPs (Figures 3c
and 3f), where A4NN.2-W achieves the highest efficiency, reducing FLOPs by
55% on CIFAR10 and 47% on CIFAR100 compared to NSGANET.

Moreover, the shape of the distributions in Figure 3 provides further insights
into the variability between workflows. The NSGANET distributions are narrow
across all metrics, unsurprisingly, since all models train for the maximum number
of epochs, resulting in consistently high computational costs. In contrast, A4NN
methods exhibit wider distributions, particularly A4NN.2-W, which shows a
concentration of models near zero due to the elimination of redundant train-
ing for similar models. Differences in distribution shapes across datasets further
highlight the impact of task complexity. On CIFAR10, many models fall in the
lower range of the distributions, indicating a tendency to train less complex ar-
chitectures. Conversely, CIFAR100 distributions show a greater proportion of
models in the upper range, suggesting a preference for more complex architec-
tures. Given the similar reduction trends and the consistent distribution shapes
across energy proxies, we conclude that FLOPs serve as a reliable proxy for en-
ergy consumption and efficiency. Our results demonstrate that A4NN methods,
especially A4NN.2-W, achieve substantial efficiency gains by reducing training
epochs, training time, and FLOPs compared to NSGANET. These observed
trends hold on both CIFAR10 and CIFAR100, despite differences in dataset
complexity.

3.4 Impact of Model Complexity on Energy Proxies

To answer the question How does model complexity influence energy efficiency
metrics such as FLOPs per epoch?, we evaluate the relationship between model



Energy-Efficient NN Training 9

(a) CIFAR10 Epochs (b) CIFAR10 Training (c) CIFAR10 FLOPs

(d) CIFAR100 Epochs (e) CIFAR100 Training (f) CIFAR100 FLOPs

Fig. 3: Distribution of training epochs per model, training time (in seconds) per
model, and FLOPs per model for four workflow methods.

complexity, measured by the number of trainable parameters, and FLOPs per
epoch, our proxy for energy consumption. Our analysis focuses on identifying
correlation between these variables to provide insights into training dynamics
and their impact on reducing computational costs in NAS.

(a) CIFAR10 (b) CIFAR100

Fig. 4: Model complexity, measured by parameter numbers, correlates with
epoch-wise FLOPs. Models are colored to denote structural uniqueness: blue
dots for unique models, and red dots for models similar to past trained ones.

Figure 4 shows the relationship between model complexity and FLOPs per
epoch for both CIFAR10 and CIFAR100 datasets. Each point represents a trained
NN, color coded to distinguish between unique models (blue) and similar mod-
els (red). For CIFAR10, there are 28 similar models out of 100. For CIFAR100,
there are 31 similar models out of 100. We observe a strong positive correlation



10 K. NG et al.

between model complexity and FLOPs per epoch. For CIFAR10, the correlation
coefficient is 0.84, while for CIFAR100 is 0.72. These results indicate that com-
putational cost increases with model complexity, which is expected. However,
despite these strong correlations, models with similar parameter counts exhibit
considerable variability in FLOPs. This variability suggests that models with the
same parameter count can have significantly different architectures (e.g., differ-
ing in layer arrangement, types, and connectivity patterns) directly impacting
computational cost.

Furthermore, we observe that similar models are not concentrated in a spe-
cific region but are instead dispersed across the parameter space. This distribu-
tion indicates that structurally similar networks can have different computational
costs despite having a similar number of parameters. These findings highlight
the importance of our similarity engine in identifying redundant models, and
reducing unnecessary computational costs associated with training them.

3.5 Balancing Accuracy and Efficiency

To answer the question "How does A4NN balance model accuracy and computa-
tional efficiency, and what trade-offs exist between these metrics?", we analyze
the relationship between validation accuracy and FLOPs across trained NNs.
Our analysis focuses on two key aspects: constructing Pareto frontiers to cap-
ture optimal trade-offs and quantifying FLOPs reductions achieved by A4NN to
pinpoint efficiency gains.

Figure 5 presents the Pareto optimal solutions identified by A4NN variants
and NSGANET, where each point represents a model, with symbol shape in-
dicating the workflow method and symbol size corresponding to the number of
parameters. By analyzing these frontiers, we evaluate A4NN’s ability to bal-
ance accuracy and efficiency compared to NSGANET. For CIFAR10, A4NN
models (blue and red) achieve validation accuracy comparable to NSGANET
(gray) while requiring fewer FLOPs. It is important to note that A4NN.2 pre-
serves most of the solutions identified by A4NN.1, even when similar models are
dropped from training. Furthermore, A4NN models often reach high accuracy
models with fewer parameters than NSGANET. We observe a similar pattern
for CIFAR100 (Figure 5b), where A4NN models maintain efficiency gains over
NSGANET, achieving similar accuracy at a lower computational cost. This is
evident from the leftward shift of Pareto optimal solutions generated by A4NN
compared to those of NSGANET. We did not tune hyper-parameters or apply
data augmentation, keeping settings aligned with A4NN.1 for fair comparison.
Despite this, A4NN.2 reliably selects competitive architectures.

We further quantify these improvements in Figure 6 by aggregating total
FLOPs across all 100 evaluated architectures. A4NN.2-W achieves a 64.3% re-
duction in FLOPs in CIFAR10 and a 53.4% reduction on CIFAR100 compared
to NSGANET. Overall, these findings demonstrate that A4NN.2 effectively bal-
ances accuracy and efficiency, reducing computational costs significantly while
retaining high-performing solutions.



Energy-Efficient NN Training 11

(a) CIFAR10: Pareto Frontiers (b) CIFAR100: Pareto Frontiers

Fig. 5: Pareto-optimal frontiers for NNs illustrating the trade-off between valida-
tion accuracy and total FLOPs. Models produced by NSGANET (gray circles),
A4NN.1-W (red triangles), and A4NN.2-W (blue stars) are shown as markers.
Each marker is a Pareto-optimal model where enhancing one metric (accuracy
or FLOPs) reduces the other. Marker size denotes the model’s parameter count.

(a) CIFAR10 (b) CIFAR100

Fig. 6: Total FLOPs for training 100 NN architectures and FLOPs percentages
saved by A4NN vs. standalone NSGANET for CIFAR10 and CIFAR100.

4 Applying A4NN to Scientific Datasets

We compare A4NN’s performance to NSGANET to evaluate the trade-off be-
tween accuracy and computational cost in a real-world scenario. Specifically, we
use A4NN with the Protein XFEL Diffraction dataset [14] to assess its ability to
reduce power consumption while training NNs for classifying protein conforma-
tions within the dataset. The dataset consists of diffraction patterns generated
by XFEL experiments, where proteins are exposed to intense laser beams, pro-
ducing photo scattering patterns that capture structural information. The spsim
simulator was used to generate different diffraction patterns for two conforma-
tions of EF2 with PDB ID 1n0u and 1n0v from the Protein Data Bank. In this
study, we generate, train, and evaluate NNs to classify these protein confor-
mations (i.e., differentiate between 1n0u and 1n0v). The dataset includes three
subsets generated by varying intensities of the XFEL beam on the same proteins:



12 K. NG et al.

(a) Low (b) Medium (c) High

Fig. 7: Pareto-optimal frontiers for NNs using (a) Low, (b) Medium, and (c) High
beam intensity protein diffraction datasets, illustrating the balance between vali-
dation accuracy and total FLOPs. Models by NSGANET (gray circles), A4NN.1-
W (red triangles), and A4NN.2-W (blue stars) are depicted as markers. Each
marker is a Pareto-optimal model, where enhancing one metric affects the other.
Marker size indicates the number of model parameters.

Low (1×1014 photons/µm2/pulse), Medium (1×1015 photons/µm2/pulse), and
High (1×1016 photons/µm2/pulse). The XFEL beam’s intensity directly affects
the resultant images’ signal-to-noise ratio and low beam intensities are a proxy
for noise. The lower the intensity, the higher the noise.

Figure 7 shows the FLOPs of the Pareto optimal models selected by each
workflow method across all intensity levels, where lower values indicate better
performance. At Low beam intensity, A4NN.2-W achieves comparable valida-
tion accuracy to NSGANET while reducing FLOPs by approximately 47.4%,
demonstrating a more efficient search for optimal architectures even in noisy
data scenarios. Specifically, A4NN.2-W models consistently require fewer than
10,000 MFLOPs, compared to NSGANET models that exceed 15,000 MFLOPs.
This reduction not only accelerates training, but also conserves energy, high-
lighting the capability of A4NN to handle low signal-to-noise ratios efficiently.
At Medium beam intensity, A4NN.2-W continues outperforming NSGANET by
achieving the same high validation accuracy with up to 48.8% fewer FLOPs.
The Pareto front shows that A4NN models cluster around 10,000 MFLOPs,
whereas NSGANET models require up to 20,000 MFLOPs. This efficiency gain
accelerates the convergence to high accuracy, highlighting A4NN’s adaptabil-
ity to medium noise levels. Even at High beam intensity, where data quality
is improved and training naturally converges faster, A4NN.2-W maintains a
FLOPs reduction of 53.3% compared to NSGANET. The Pareto frontiers reveal
that A4NN models consistently achieve high accuracy with FLOPs below 5,000
MFLOPs, while NSGANET models demand higher computational costs.

Figure 8 shows the total FLOPs required for training 100 NN architec-
tures and percentages of FLOPs saved by A4NN compared to standalone NS-
GANET for the protein diffraction datasets. Figure 8 shows the total FLOPs
required for training 100 NNs and the corresponding percentages of FLOPs saved
by A4NN compared to standalone NSGANET for protein diffraction datasets.
Lower FLOPs indicate better energy efficiency and reduced computational cost.



Energy-Efficient NN Training 13

(a) Low (b) Medium (c) High

Fig. 8: Total FLOPs for training 100 NN architectures and FLOPs percentages
saved by A4NN vs. standalone NSGANET for the protein diffraction datasets.

At low beam intensity, A4NN.2-W achieves the highest savings, reducing total
FLOPs by 47.4% compared to NSGANET. This significant reduction is due to
the effective elimination of redundant models and the early termination of con-
verging architectures. Both A4NN.1 and A4NN.1-W achieve a 29.1% reduction,
highlighting the impact of early termination even without the similarity engine.
The considerable savings in FLOPs at low beam intensity demonstrate the abil-
ity of A4NN to efficiently handle noisy data sets where signal-to-noise ratios
are low and training is typically more resource intensive. For medium inten-
sity, A4NN.2-W demonstrates superior performance by reducing total FLOPs
by 48. 8%, maintaining high precision while requiring fewer computations. Both
A4NN.1 and A4NN.1-W achieve a 35.7% reduction, showcasing the benefits of
modular orchestration and early stopping. The medium-intensity efficiency gains
highlight A4NN’s adaptability to datasets with moderate noise levels, optimizing
training cycles without sacrificing model performance. At high beam intensity,
where data quality improves and training naturally converges faster, A4NN.2-W
achieves a remarkable 53.3% reduction in total FLOPs compared to NSGANET,
the highest savings across all intensity levels. In contrast, both A4NN.1 and
A4NN.1-W yield a 31.1% reduction. The superior performance of A4NN.2-W
at high beam intensity illustrates its capability to maximize resource utilization
even under optimal data conditions. This efficiency gain is attributed to the syn-
ergy between the structural similarity engine and advanced orchestration, which
collectively eliminate redundant computations.

Figures 7 and 8 demonstrate that A4NN.2-W consistently achieves signifi-
cant energy savings across all intensity levels, reducing total training costs while
maintaining high accuracy.

5 Related Work

This study builds upon the previous works of Olaya et al. [14], Patel et al. [15],
Rorabaugh et al. [8], and Channing et al. [4]. We also take inspiration from other
studies leveraging NAS for scientific datasets, such as Kandasamy et al. [7] and
Balaprakash et al. [2]. Olaya et al. [14] introduced the XPSI framework to predict
protein types and orientations from 2D diffraction patterns, but required signif-



14 K. NG et al.

icant human intervention and did not address computational efficiency. Patel et
al. [15] expanded XPSI by employing NSGANET for NAS, reducing manual tun-
ing. However, their approach still faced long runtimes and lacked distribution.
Rorabaugh et al. [8] introduced the PENGUIN fitness prediction engine to de-
couple search and prediction strategies, improving efficiency in NAS workflows.
Channing et al. [4] proposed the A4NN workflow which laid the foundation for a
more efficient workflow in NN training. These studies, however, do not address
potential architectural redundancies among candidate NNs in NAS. Other NAS
applications for scientific datasets, like DENSE [7] and cancer modeling on HPC
machines [2], face similar challenges of time and resource consumption, limiting
accessibility for domain scientists. Efforts to improve NAS efficiency have led to
methods like early stopping [11], learning curve extrapolation [5], and training
speed estimation [17], which reduce computation time and resource usage. This
work addresses these challenges by augmenting the A4NN workflow to further
reduce wall times and energy consumption.

6 Conclusion

This paper demonstrates the effectiveness of A4NN.2 in accelerating NAS while
significantly reducing energy consumption across diverse datasets. Integrating
a structural similarity engine and advanced orchestration, A4NN.2 eliminates
redundant training and optimizes resource usage. Our experiments on a Pro-
tein XFEL Diffraction dataset show that A4NN.2 achieves up to 47.4% FLOPs
savings at Low beam intensity, 48.8% at Medium beam intensity, and 53.3% at
High beam intensity compared to NSGANET, while maintaining high accuracy.
These gains are especially prominent in noisy datasets, where A4NN.2 acceler-
ates convergence with fewer training epochs. Overall, A4NN.2 balances accuracy
and efficiency, paving the way for sustainable scientific computing.

Acknowledgments

This work was supported by the National Science Foundation (NSF) under grant num-
bers 2331152 and 2223704. This work was supported by Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

References

1. Abu-Aisheh, Z., et al.: An Exact Graph Edit Distance Algorithm for Solving Pat-
tern Recognition Problems. In: 4th International Conference on Pattern Recogni-
tion Applications and Methods (2015)

2. Balaprakash, P., et al.: Scalable Reinforcement-Learning-Based Neural Architec-
ture Search for Cancer Deep Learning Research. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (2019)



Energy-Efficient NN Training 15

3. Bunke, H., Allermann, G.: Inexact Graph Matching for Structural Pattern Recog-
nition. Pattern Recognition Letters (1983)

4. Channing, Georgia and et al.: Composable Workflow for Accelerating Neural Archi-
tecture Search Using In Situ Analytics for Protein Classification. In: Proceedings
of the 52nd International Conference on Parallel Processing (2023)

5. Domhan, T., et al.: Speeding up Automatic Hyperparameter Optimization of Deep
Neural Networks by Extrapolation of Learning Curves. In: Proceedings of the 24th
International Conference on Artificial Intelligence (2015)

6. Ferrer, M., Bunke, H.: Graph Edit Distance–Theory, Algorithms, and Applications.
Image Processing and Analysis with Graphs: Theory and Practice (2012)

7. Kasim, M.F., et al.: Building High Accuracy Emulators for Scientific Simulations
with Deep Neural Architecture Search. Machine Learning: Science and Technology
(2021)

8. Keller Rorabaugh, A., et al.: Building High-Throughput Neural Architecture
Search Workflows via a Decoupled Fitness Prediction Engine. IEEE Transactions
on Parallel and Distributed Systems (2022)

9. Kriege, N.M., et al.: A Survey on Graph Kernels. Applied Network Science (2020)
10. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images.

Tech. rep., University of Toronto, Toronto, Ontario (2009)
11. Li, L., et al.: Hyperband: A Novel Bandit-based Approach to Hyperparameter

Optimization. Journal of Machine Learning Research 18(185), 1–52 (2018)
12. Lu, Z., et al.: NSGA-Net: Neural Architecture Search using Multi-Objective Ge-

netic Algorithm. In: Proceedings of the Genetic and Evolutionary Computation
Conference. pp. 419–427 (2019)

13. Makarov, I., et al.: Survey on Graph Embeddings and their Applications to Machine
Learning Problems on Graphs. PeerJ Computer Science 7, e357 (2021)

14. Olaya, P., et al.: Identifying Structural Properties of Proteins from X-ray Free
Electron Laser Diffraction Patterns. IEEE 18th International Conference on e-
Science (e-Science) (2022)

15. Patel, R., et al.: A Methodology to Generate Efficient Neural Networks for Clas-
sification of Scientific Datasets. IEEE 18th International Conference on e-Science
(e-Science) (2022)

16. Peterka, T., et al.: Lowfive: In Situ Data Transport for High-performance Work-
flows. In: IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2023)

17. Ru, R., et al.: Speedy Performance Estimation for Neural Architecture Search.
Advances in Neural Information Processing Systems (2021)

18. Torralba, A., et al.: 80 Million Tiny Images: A Large Dataset for Nonparamet-
ric Object and Scene Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2008)

19. Yildiz, O., et al.: Wilkins: HPC in Situ Workflows Made Easy. Frontiers in High
Performance Computing (2024)


