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Abstract— Modern supply chain networks (SCN) are becoming
increasingly complex, with vulnerable entities exposed to uncer-
tain disruptions that affect local or global supply chain attributes.
We model a stochastic mixed-integer program to minimize the
overall cost of SCN design and operations, in response to
lead-time and demand uncertainties following given probability
distributions. We formulate a heterogeneous risk-aware model
to trade off between cost and delay/shortage by considering
different risk-attitudes amongst supply chain agents. In par-
ticular, we employ the Conditional Value-at-Risk (CVaR) as
a coherent risk measure for quantifying risk while attaining
solution tractability. We derive managerial insights from our
numerical studies, finding the most benefit from diversifying
agents in the root tier, since their disruptions affect all other
tiers in the SCN. We find that as agents become more risk averse,
the optimal solutions for key agents (such as assemblers), seek
more backup suppliers and allocate extra capacities to achieve
resiliency and reliability. Practitioners can use the outcomes of
our framework and studies to guide SCN design considering
heterogeneous risk attitudes between agents.

Note to Practitioners—With growing uncertainties in global
supply chains, inefficient responses to disruptions can lead to
large penalties and long-term impacts such as customer dissat-
isfaction. This research is motivated by the challenges arising
during the operations of supply chains under both lead-time and
demand uncertainties. We employ optimization and centralized
control approaches to optimize supply-chain network design as
well as response strategies to disruptions, and our framework
can handle heterogeneous risk preferences as it models the risk
attitude of each individual entity or agent in supply chains.
Our model can be utilized to completely or partially re-design
resilient supply chains, to better prepare for unknown features
and uncertainties. Our case study provides insights about risk-
averse supply-chain designs that can reduce response cost, but
increase initial investments on backups and redundancies.

Index Terms— Supply chain network design, risk-averse opti-
mization, conditional value-at-risk (CVaR), stochastic integer
programming.
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I. INTRODUCTION

SUPPLY chain networks (SCN) are complex interconnected
systems that require coordination between all entities, here

called agents. Within a SCN, each agent has specific goals and
responsibilities. However, the heterogeneity between agents’
risk attitudes can lead to discrepancies in these objectives
and can further influence their decisions of choosing suppliers
and prioritizing demand. These differences in the agents’
risk attitudes can result in SCN designs with an unbalanced
structure and ineffective redundancies. When improving the
performance and reliability of a SCN, processing capacities
and fulfillment times (also called the lead times), are key
factors. Not only do they influence SCN operations, but also its
layout and design. Often uncertainties arise given the difficulty
of predicting changes in demand and labor shortages in global
environments adding to the challenge of a SCN with entities
that respond differently to such uncertainty [1].

SCN design and capacity allocation often cannot be easily
changed during the course of supply chain operations, and
therefore, lack of agent redundancy can cause unmet demand
and late deliveries. Nevertheless, excessive agent and capacity
redundancy increase complexity, setup, and operational costs,
as SCN becomes less efficient. As a result, supply chain
agents face conflicting objectives to minimize design and
planning cost, while maximizing SCN reliability [2]. If a set of
agents has different preferences towards their operational costs
amidst uncertainty and the associated risk outcomes, cascading
disruptions can occur as some agents with low risk aversion
might not require redundant capabilities. Undesired disruptions
can impact downstream agents in the SCN [3]. Whenever
planned operations fail to adapt to disruptions, organizations
might incur penalties for not meeting the agreed performance.
In other cases, one might impose hard requirements on a
minimum amount of units to deliver, or the latest delivery
date. Different measures for ensuring high-quality SCN per-
formance under disruptions, may result in diverse supply chain
designs [4].

In our prior work [5], we developed a centralized, determin-
istic optimization model for disruption response with a given
SCN design with deterministic lead time. We concluded that
for some disruption cases with fixed capabilities, the SCN is
unable to respond and adjust its operations to meet demand
or on-time delivery, incurring large penalties. If we consider
SCN design/redesign decisions (e.g., renegotiating contracts),
model in [5] cannot provide such optimal design solutions.
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In this paper, we extend the previous work by incorporating
SCN design variables and heterogeneous risk-aware objectives
of different agents in supply chains. We model uncertain dis-
ruptions and incorporate them into the design phase. We aim
to design SCNs to maximize efficient disruption responses,
whenever layout changes are permitted.

When considering uncertainty, the risk attitudes of supply
chain agents influence optimal solutions. Typically, risk-averse
designs incur higher costs to protect SCN against extreme
disruptions by including redundancies. On the other hand, risk-
neutral designs lower the average cost, biasing the design to
be long-term efficient [6]. Our formulations consider different
risk attitudes for supply chain agents, which we refer to as
risk heterogeneity. A SCN where all agents have the same risk
aversion standard is considered a homogeneous-risk SCN with
a central objective aligning all agents’ attitudes. For SCN with
multiple tiers, there could exist different risk preferences by
the agents, and we call them heterogeneous risk-aware agents.

The three main contributions of our work are as fol-
lows. (i) We formulate a centralized SCN design problem
with heterogeneous agent risk attitudes, where we model
the scheduling dynamics of product flows amidst lead-time
uncertainty using stochastic integer programming. (ii) We
demonstrate the trade-offs between a heuristic strategy and
an optimization model for SCN risk management. (iii) We
derive managerial insights for risk-aware SCN design based
on numerical results of instances from an automotive SCN.

The remainder of the paper is organized as follows.
In Section II, we review the relevant literature and identify
the research gaps. In Section III, we develop and compare
risk-neutral to risk-aware formulations. We introduce and
build an automotive sub supply chain instance under various
disruptions, and present the numerical results in Section IV.
In Section V, we discuss the results and conclude our work.

II. LITERATURE REVIEW

The existing literature on optimization approaches for
SCN management is extensive [7]. In general, the SCN
is described by a graph, for which solutions optimize the
flow of components through the edges. When considering
network design, one can consider variables describing the
graph topology [8]. In the deterministic setting, agent-based
models [9] and optimization-simulation frameworks [10] have
been employed to optimize SCN operations and management.
The work in [11] considers an adaptive agent-based simulation
framework having heterogeneous agents. This work only eval-
uates the performance of fixed response strategies and SCN
designs, but does not study how to optimize these decisions,
nor the effect of the risk attitudes. In this paper, we include
heterogeneity in the agents’ objectives, but from a centralized,
optimization-based perspective, integrating agents’ lead-time
uncertainties.

When modeling more complex operational decisions, one
can consider the scheduling of deliveries, given its relevance
for timely processing and delivery of products. When consider-
ing lead time as part of the optimization process, for example,
in [1], the authors use a mixed-integer program (MIP) to
model delivery of products, which involves hard routing and

scheduling constraints. In [2], only customer lead-time is
modeled, leading to a completely centralized end-customer-
driven solution, that cannot capture the heterogeneous nature
of each agent’s objective. In our prior work [5], we model
SCN schedules as soft-constraints, and if delayed, we incur
penalty costs in the objective function. We reoptimize the
model after disruption realization and find that, as the depth
of the disruption increases with respect to the final-customer,
SCN redesign is encouraged. The work in [10] considers a
multi-stage program by modeling lateness as back-orders that
ship in the next period with penalty. We note that to the best
of our knowledge, no prior work has modeled the arrival time
of product flows explicitly within a stochastic SCN design
optimization problem, which is one of our main contributions.

In terms of the SCN design problem, the work by [12]
defines a deterministic MIP with binary variables for SCN
design and a bi-objective minimizing operational cost and
environmental impact. A similar model was developed in [13],
minimizing procurement costs considering scheduling deci-
sions. The model in [14] solves a capacitated network design
problem by combining transportation lead time with homo-
geneous fixed penalty on late delivery to final customer. The
work in [15] considers fuzzy-logic in a multi-agent supply
chain setup. Other works, such as [16] concentrate on the envi-
ronmental impact for certain SCN designs. The work in [17]
studies the topological structure of SCN based on a multi-
agent framework. In [18], the authors study the effect of faster
communication schemes between agents (RFID technology) in
optimal network design. However, all these formulations are
deterministic without demand or lead-time uncertainty.

Stochastic optimization approaches incorporate uncertainty
in the decision-making process, optimizing the objective with
respect to a risk measure that quantifies the probabilistic
performance of solutions [19]. This has direct impact on SCN
performance and can reduce potential disruption-response
cost [5]. When considering tractable formulations, the benefit
of these models becomes readily available. For example, the
disjunctive MIP in [20] optimizes SCN design by minimizing
the expected lead time for each flow with a probabilistic
linear model. Risk-neutral attitudes adopted by [20] and [21]
minimize an objective in expectation. Similar strategies are
used in [22], where the authors develop a risk-neutral SCN
design optimization, and quantify SCN resilience in the objec-
tive as a function of the response cost and the recovery time
given lead-time disruptions. The work in [23] optimizes the
cost of a single commodity distribution network ensuring a
level of service by means of Lagrangian relaxation. In the
risk-averse regime, [21] introduces a two-stage multi-period
stochastic robust optimization model with a scenario-based
solution approach, to enhance the robustness of SCN design.
However, this formulation only models delivery lateness as
triggered back-orders. We model delivery lateness with a
lateness penalty that is proportional to the lateness magni-
tude. Another robust-optimization approach in [4] assigns an
uncertainty budget for the uncertain parameters, introducing a
central tuning parameter for the conservativeness of solutions,
without risk heterogeneity. In [24], the authors consider box
sets of uncertainty for a risk-homogeneous robust formulation.
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This approach does not consider lead time, and thus cannot
incorporate lateness at different layers of the SCN.

Some risk measures, such as the Conditional Value-at-Risk
(see Section III), can be formulated to combine risk-averse
and risk-neutral attitudes, where solutions can be dependent on
agents’ risk attitudes. The work in [25] shows the challenge
of optimizing the CVaR with a central risk attitude in the
objective. Similarly, the work in [26] considers a two-stage
distributionally robust SCN problem with a central risk param-
eter for cost uncertainty. The authors highlight the importance
of the risk parameters driving the optimal solutions and
the challenges of understanding best parameter setting. This
challenge increases when we consider that different agents can
have different risk preferences. In this work, we allow for a
model with different risk attitudes for each agent, which we
refer to as a heterogeneous SCN. The work in [27] evalu-
ates the performance in a distributed simulation-optimization
framework and describes the importance of a high-quality
initial solution, for which this paper can be used to provide
the required input of such models.

Following the taxonomy in [7], we consider a two-stage
stochastic program, with an objective that incorporates
first-stage planning and operation costs. As the second-stage
objective we consider SCN responsiveness amidst disruptions
by using the conditional value-at-risk measure to quan-
tify its performance. In Table I, we position our work as
compared to different approaches in the literature. Given
the reviewed works, we identify a gap as an exploration
of heterogeneous risk-aware stochastic SCN design prob-
lem under both lead-time and demand uncertainties. Our
work begins by formulating a risk-neutral problem and then
extending it to a heterogeneous risk-aware model, allow-
ing for different risk-attitudes between agents within the
SCN.

III. STOCHASTIC OPTIMIZATION MODEL

A. Assumptions and Notation

We consider a directed graph G(V, E) representing a SCN
with the set V including all candidate agents, and the set E
of potential edges (direct shipping or ordering relationships)
between them. We denote V c

⊂ V as the subset of final-
product customers, V d

⊂ V as the subset of agents that
distribute products, namely, the distributors (with no transfor-
mation of components occurring within them), V o

⊂ V as the
subset of agents in which transformations of products occur,
namely, assemblers, and V s

⊂ V as the subset of agents who
supply products and raw materials, namely, the suppliers who
have no upstream flows. Note that V c

∪ V d
∪ V o

∪ V s
= V .

We denote U (i) ∈ V and D(i) ∈ V as the sets of upstream and
downstream agents of agent i ∈ V , respectively. We have that
(U (i), i) ⊂ E, ∀i ∈ V and (i, D(i)) ⊂ E, ∀i ∈ V , leading
to ∪i∈V ((U (i), i) ∪ (i, D(i))) = E . We denote K as the set
of all products and components within the SCN. Additionally,
for each agent i ∈ V and its related downstream products
k ∈ K (i), we denote a subset K ′(i, k) ⊂ K of upstream
components k ′ ∈ K ′(i, k) required for k ∈ K (i). We define
parameter rk ′k as the conversion rate from component k ′ to

product k for each component k ′ ∈ K ′(i, k). We formulate
a two-stage stochastic program, where in the first stage,
we optimize allocation and order-size decisions. In the second
stage, once disruptions occur, we model recourse component
flow decisions. We allow managers to quantify the impact
of disruptions on the SCN performance given certain design
decisions with this stochastic program.

Throughout this paper, we use bold symbols to represent
vector forms of parameters or decision variables. For flow of
product k through edge (i, j) we consider a unit flow cost
cf

i jk , and a fixed cost ca
i jk for establishing an edge (i, j) to

allow positive flows of product k between agents i and j . The
decision vector x = [xi jk, (i, j) ∈ E, k ∈ K ]⊤ represents the
amount of planned product k flowing through edge (i, j). Vari-
ables in x can only take positive values if the corresponding
binary variables in y = [yi jk, (i, j) ∈ E, k ∈ K ]⊤ take a value
of 1, representing an active contract between agents i and j .
We denote qi jk as the maximum capacity for flowing product
k through edge (i, j). The total, mixed-product, downstream
flow of agent i ∈ V has a maximum capacity q̄ i .

Consider a set � of realizations of the uncertain parameters,
which include demand and lead-time disruptions. For each
scenario ω ∈ �, dω

= [dω
ik, i ∈ V, k ∈ K ]⊤ is the demand for

product k at agent i ∈ V in scenario ω, and we denote lω =
[lωi jk, (i, j) ∈ E, k ∈ K ]⊤ as the lead time of product k flowing
through edge (i, j). We denote the overall random vector
ξ̃ = [d, l], and its realized value for scenario ω ∈ � is given by
ξ̃ω
= [dω, lω]. Likewise, for each scenario ω ∈ �, we compute

the unmet demand of product k ∈ K for each agent i ∈ V via
auxiliary variables uω

= [uω
ik, i ∈ V, k ∈ K ]⊤. With auxiliary

variables vω
= [vω

i jk, (i, j) ∈ E, k ∈ K ]⊤ we compute the units
of lateness for the flow of product k ∈ K through edge (i, j).
As an adaptive mechanism in the SCN operation, in scenario
ω ∈ � we allow for backup/emergent flows with decision
variables in zω

= [zω
i jk, (i, j) ∈ E, k ∈ K ]⊤ to compensate for

insufficient flows from the planned flows x. These emergent
flows incur unit cost ce

i jk , such that ce
i jk > cf

i jk , as emergent
responses are more expensive. We consider SCN operations
that allow partially fulfilled demands, and late deliveries.
For each unit of unmet demand we have the penalty cost
ρd

ik,∀i ∈ V, k ∈ K . Likewise, for each unit of lateness we
have the penalty cost ρ l

i jk,∀(i, j) ∈ E, k ∈ K .
Parameter tik denotes the due date for product k ∈ K at

agent i ∈ V . For each scenario ω ∈ � we denote decision
variables aω

= [aω
i jk, (i, j) ∈ E, k ∈ K ]⊤ representing

the scheduled arrival time of product k through edge (i, j).
Variables oω

= [oω
ik, i ∈ V, k ∈ K ]⊤ model the scheduled

time, at which agent i ∈ V processes product k ∈ K . Auxiliary
variables wω

= [wω
i jk, (i, j) ∈ E, k ∈ K ]⊤ capture the penalty

on lateness for the flow of product k ∈ K through edge
(i, j). We denote the vector of planning decision variables
as X = [x, y]. Likewise, the vector of decision variables for
each scenario ω ∈ � is given by Yω

= [uω, aω, oω, zω, wω
].

We make the following assumptions in this paper. Knowledge
of disruptions and response time are immediate. Flow of
product k through edge (i, j) is treated as an indivisible unit.
Each agent waits until all required upstream flows have been
received before sending their downstream flows.
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TABLE I
CHARACTERIZATION OF RELEVANT WORKS ON OPTIMIZATION FOR SUPPLY CHAIN RISK MANAGEMENT. THIS PAPER FILLS THE IDENTIFIED

GAP IN THE LITERATURE FOR A HETEROGENEOUS RISK AVERSE MODEL FOR A SCN DESIGN AND OPERATION
MODEL APPLIED TO A MULTI-PRODUCT SUPPLY NETWORK

B. Mixed-Integer Stochastic Linear Program for Risk-Neutral
SCN Operation and Design

We first formulate Model (1), a risk-neutral approach to
minimize the total costs of SCN design and product flows (1a),
the expected cost of emergent flows for every edge (i, j) and
product k in (1b). We minimize the expected unmet demand
penalty in (1c) and the lateness penalty in (1d). Following
the Sample Average Approximation (SAA) approach [31],
we assume distributional knowledge of the random vector ξ̃ ,
with a finite set � of scenarios of size N = |�|, where we
model the expectation as the finite weighted summation of
scenarios with their respective probabilities pω, ∀ω ∈ �.

min
X,Yω

∑
(i, j)∈E, k∈K

(
cf

i jk xi jk + ca
i jk yi jk

)
(1a)

+

∑
ω∈�

pω

 ∑
(i, j)∈E, k∈K

ce
i jk zω

i jk

 (1b)

+

∑
ω∈�

pω

( ∑
i∈V, k∈K

ρd
ikuω

ik

)
(1c)

+

∑
ω∈�

pω

 ∑
(i, j)∈E, k∈K

(
ρ l

i jkv
ω
i jk

) (1d)

s.t.
∑

j∈U (i)

rk ′k(x j ik ′ + zω
j ik ′) ≥

∑
j∈D(i)

(xi jk + zω
i jk),

∀ i ∈ V \ V c, k ∈ K , k ′ ∈ K ′(k, i), ω ∈ �, (1e)
xi jk + zω

i jk ≤ qi jk yi jk,∀ (i, j) ∈ E, k ∈ K , ω ∈ �,

(1f)∑
j∈D(i),K

(xi jk + zω
i jk) ≤ q̄ i ,∀ i ∈ V, ω ∈ �, (1g)

uω
ik +

∑
j∈U (i)

(x j ik + zω
i jk) ≥ dω

ik,

∀ i ∈ V c, k ∈ K , ω ∈ �, (1h)
aω

i jk ≥ (lωi jk + oω
ik)yi jk,∀ (i, j) ∈ E, k ∈ K , ω ∈ �,

(1i)
oω

jk ≥ aω
i jk ′ ,

∀ (i, j) ∈ E, k ∈ K , k ′ ∈ K ′(k), ω ∈ �, (1j)
oω

ik = 0,∀ i ∈ V p, k ∈ K , ω ∈ �, (1k)
aω

i jk − vω
i jk ≤ t jk,∀ (i, j) ∈ E, k ∈ K , ω ∈ �, (1l)

xi jk, aω
i jk, oω

ik, zω
i jk, uω

ik, v
ω
i jk ≥ 0,

∀ i ∈ V, (i, j) ∈ E, k ∈ K , ω ∈ �, (1m)
yi jk ∈ {0, 1},∀ (i, j) ∈ E, k ∈ K . (1n)

Here, constraint (1e) balances the flow of products xi jk +

zω
i jk at each edge (i, j) in the SCN, considering the units

rk ′k of downstream components k ′ ∈ K ′(k, i) consumed to
produce one unit of downstream product k. Constraint (1f)
sets the capacity qi jk for the flow of product k through edge
(i, j). Likewise, constraint (1g) bounds the total production
capacity of agent i by q̄ i . Using constraint (1h), we compute
scenario-based unsatisfied demand uω

ik for each product k at
each customer agent i . Constraint (1i) models scenario-based
delivery time aω

i jk of product k at destination agent j based
on the start time oω

ik and lead time lωi jk of the agent of flow
origin i ∈ V , whenever we have a contract setup for the
edge (i, j) (i.e., yi jk = 1). Constraints (1j)–(1k) compute
the scenario-based time oω

ik at which downstream products k
are ready to be processed, depending on required upstream
products k ′ ∈ K ′(k, i) and their corresponding arrivals aω

i jk .
In constraint (1l), we compute the scenario-based delivery
lateness vω

i jk at agent j given due date t jk and the time
of delivery aω

i jk from agent i . Constraint (1m) specifies the
non-negativity of flow variables x and second-stage variables
aω, oω, zω, uω, vω. The SCN design variables y are binary
values as expressed in constraint (1n).
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Fig. 1. Visual comparison of the risk-neutral Model (1) and risk-aware
Model (4) objectives. 10 bins segment the penalty cost in equally spaced
ranges. We overlay the cumulative percentage of scenarios with penalty in the
corresponding penalty decile. The risk-neutral objective in Fig. 1a considers
the expectation of the full support of the realizations (shaded in green) of
the penalties. In contrast, the risk-aware objective in Fig. 1b considers the
expectation of the (1)-α) quantile of the penalty distribution, minimizing the
impact of rare, but large disruptions (shaded in red).

C. Risk-Aware Stochastic Supply Chain Optimization

The two-stage stochastic optimization approach presented
in Section III-B minimizes the expected second-stage cost.
It is fitted for repetitive decisions, prioritizing long-term costs,
being insensitive to rare but large disruptions. We define
the expectation-based objective as a risk-neutral objective.
The SCN design problem considers a single-time design of
the SCN, as we cannot redesign the SCN with any demand or
lead time disruption. We prioritize consequences to disruptions
in extreme cases, as we seek SCNs with reliable performance,
avoiding excessive unmet demand and lateness. We define to
this model as risk aware. To this end, we consider the CVaR,
given its coherent characterization [32]. We describe it by
first defining the Value-at-Risk (VaR) of a random variable
Z at level α ∈ (0, 1) as the smallest number η such that the
probability of Z not exceeding η is at least 1 − α. VaR is
also known as the (1 − α) quantile of the distribution of Z ,
and CVaR is the expected value of realizations of the random
variable Z beyond the VaR. We can reformulate CVaR as a
linear minimization problem defined over variable η, the VaR,
and auxiliary scenario-based variables sω, corresponding to
the non-negative difference between the realizations and η,
representing the excess of the realization with respect to the
VaR as proposed in [33]. We then compute the expectation of
variables sω as the CVaR. We set the parameter α as the risk-
aversion. As α gets closer to zero, we minimize the expectation
of the complete distribution equivalent to Model 1. We note
that α is associated to each agent, and we can set a different
αi for each agent i ∈ V , modelling a heterogeneous SCN.
We minimize over the risk associated to the lateness penalties,
and thus, for each flow of component or product k ∈ K moving
through edge (i, j) we have the following linear optimization
problem (2).

min
ηl

i jk ,s
lω
i jk

ηl
i jk +

1
(1− αi )

∑
ω∈�

pωs lω
i jk (2a)

s.t. s lω
i jk ≥ ρ l

i jkv
ω
i jk − ηl

i jk,∀ ω ∈ �, (2b)

s lω
i jk ≥ 0,∀ ω ∈ �, (2c)

ηl
i jk ∈ R, (2d)

where ηl
i jk is the corresponding VaR for the lateness penalty

distribution represented by the realizations ρ l
i jkv

ω
i jk for each

scenario. Auxiliary scenario-based variables s lω
i jk take positive

values whenever a realization is beyond the VaR ηl
i jk . We illus-

trate the definition of CVaR, associated with the linear program
(LP) (2) where α = 0.9 and compare it to a risk neutral
objective in Fig. 1. The risk-aware objective minimizes the
expected value of the CVaR region, while the risk-neutral
objective minimizes the expected value of the full distribution.

Likewise, for the demand penalty CVaR, we have an LP for
each agent with demand of product k ∈ K . (We assume that
demand comes from final product customers i ∈ V c).

min
ηd

ik ,s
dω
ik

ηd
ik +

1
(1− αi )

∑
ω∈�

pωsdω
ik (3a)

s.t. sdω
ik ≥ ρd

ikuω
ik − ηd

ik,∀ ω ∈ �, (3b)

sdω
ik ≥ 0,∀ ω ∈ �, (3c)

ηd
ik ∈ R. (3d)

Here ηd
ik is the corresponding VaR of the distribution of the

unmet demand penalty in realizations ρd
ikuω

ik for each scenario.
Auxiliary scenario-based variables sdω

ik take positive values
whenever a realization is beyond the VaR ηd

ik .
In our risk-aware formulation, we consider the CVaR as

a convex formulation with bounded VaR. A risk-neutral
objective with a VaR constraint involves the solution of
a chance-constrained program, which is non-convex [34].
We incorporate the CVaR reformulations in (2) and (3) (both
being linear programs), to the SCN design and operation
Model 1. With the parameter αi we gain the flexibility to
set different risk attitudes amongst the supply chain agents
i ∈ V , modeling heterogeneity in the decision making. The
risk-aware Model (4) minimizes setup costs (4a) and (4b),
which are also present in the risk-neutral Model (1) as we
incur them regardless of how we measure risk. We consider
total heterogeneous CVaR costs of unmet demand in (4c) and
delivery lateness in (4d).

min
X,Yω,η,sω

∑
(i, j)∈E, k∈K

(
cf

i jk xi jk + ca
i jk yi jk

)
(4a)

+

∑
ω∈�

pω

 ∑
(i, j)∈E, k∈K

ce
i jk zω

i jk

 (4b)

+

∑
i∈V, k∈K

(
ηd

ik +
1

(1− αi )

∑
ω∈�

pωsdω
ik

)
(4c)

+

∑
(i, j)∈E, k∈K

(
ηl

i jk +
1

(1− αi )

∑
ω∈�

pωs lω
i jk

)
(4d)

s.t. (1e)–(1n)

sdω
ik ≥ ρd

ikuω
ik − ηd

ik,∀ i ∈ V, k ∈ K , ω ∈ �, (4e)

s lω
i jk ≥ ρ l

i jkv
ω
i jk − ηl

i jk,

∀ (i, j) ∈ E, k ∈ K , ω ∈ �, (4f)

ηd
ik, η

l
i jk, sdω

ik , s lω
i jk ≥ 0,

∀ i ∈ V, (i, j) ∈ E, k ∈ K , ω ∈ �. (4g)
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TABLE II
A SUMMARY OF PARAMETERS AND VARIABLES

Here, for each scenario ω ∈ �, we compute the value of
realization of the unmet demand penalty beyond the VaR in
constraint (4e). Likewise, we compute the value of realization
beyond the VaR of the lateness penalty in constraint (4f).
Constraint (4g) specifies the non-negativity of VaR and CVaR
variables given the non-negative nature of penalty costs.
Table II provides a summary of all parameters and decision
variables used Models (1) and (4).

D. Solution Implementation

We model SCN operations via a flow-based formulation
with variable x, generalizing production, inventory holding,
among other agent activities. Our framework can be further
detailed without loss of generality, such that we can formulate
stochastic risk-neutral and risk-aware counterparts to those
more granular SCN models, such as our prior work [5] where
we consider inventory, production, and open/close facility
decisions, having a higher computational complexity.

After solving Models (1) and (4) we attain SCN design
variables y and planned flow variables x that serve as the
here-and-now decisions to be implemented as one initiates the
SCN setup and reconfiguration. The scenario-based variables
z represent wait-and-see decisions, such that they should only
be considered whenever a similar scenario occurs. Given this
structure, at any point in the operation, we fix the layout
variables y and the planned flows x, and optimize over the
other scenario-based supply chain operation variables Y and
constraints, see Section III-A. We only consider the realization

of the uncertain parameters at that point. This subprob-
lem is smaller and can be efficiently solved. Furthermore,
we consider demand and lead-time uncertainty in the form
of disruptions, but we can expand the uncertainty vector with
any other second-stage element in our model. It is possible to
consider cascading or sequential failures in our framework by
incorporating joint probabilities in the scenario set used in the
optimization models. Scenarios will then consider disruptions
in multiple agents. Following the wait-and-see idea, as more
disruptions and the response decisions take place over time,
we can incorporate these decisions in subsequent subproblems.
We then optimize over the remaining variables to obtain the
optimal solutions given the occurred disruptions.

IV. NUMERICAL STUDIES

We first describe the SCN for which we construct our base-
line instance. Later we discuss the several instances we test
as modifications of the baseline representing different types of
disruptions to the SCN. We then describe the greedy heuristic
approach we implement to contrast with our optimization
Models (1) and (4). Following this, we analyze optimal SCN
topologies from the proposed optimization approaches, and
measure their performance with respect to SCN agent disrup-
tions. For all computations, we use an Apple M2 Silicon CPU
with 8 cores and 8 threads (4 cores @ 3.5 GHz and 4 @
2.8 GHz), and 16 GB of memory. As the MILP, MIP and LP
solvers we use the Gurobi 10 API for Python 3.9.13.

A. SCN Baseline

The SCN instance, for which we develop our numerical
studies, is an adapted automotive SCN in [36]. Given the
large size of the complete cockpit assembly SCN instance,
we consider only one of the components of the cockpit.
We concentrate on the In-vehicle infotainment sub-supply
chain, where the customers will be the cockpit assemblers.
We set their demand based on the demand of cockpits for
complete vehicle assembly. We justify the use of this sub-SCN
as it is complex enough to be analyzed as a proper SCN, and in
the context of the complete automotive SCN, infotainment sys-
tems have recently became more popular with their integration
with recent technologies that are constantly changing, and have
been affected by the semiconductor market disruptions, among
others. Furthermore, we can fix many decisions in a large SCN
and allow for reconfiguration of a sub-SCN as we show here.
The network consists of 30 candidate agents, composed of
3 customers, 19 suppliers, 8 assemblers and distributors:
• four wire suppliers (WR-S1 – WR-S4)
• two connector suppliers (CT-S1 – CT-S2)
• four wiring assemblers (WN-A1 – WN-A4)
• one switch supplier (SW-S1)
• four touchscreen suppliers (SN-S1 – SN-S4)
• two buttons suppliers (BN-S1 – BN-S2)
• two chip suppliers (CH-S1 – CH-S2)
• two radio suppliers (RD-S1 – RD-S2)
• two navigation suppliers (NV-S1 – NV-S2)
• four infotainment assemblers (IT-A1 – IT-A4)
• three cockpit assemblers (customers) (CP-A1 – CP-A3)
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Fig. 2. The SCN for the numerical studies consists of five tiers. Tier 5 consists of two suppliers for connectors and four suppliers for wire. Tier 4 consists
of four wiring assemblers, taking connector and wires as the components. The rest of tiers continue this sequential structure up to the cockpit assemblers,
considered to be the customers of the supply chain (we refer the interested readers to the online supplement for more details [35]).

Fig. 3. The product structure for infotainment 2 consists of two possible
suppliers of wiring 2, one supplier for chip 1, two touchscreen 1 and two
navigation system suppliers, and two possible assemblers to send infotainment
2 to cockpit assembler acting as client. Similar structures exist for the rest of
products in the supply chain. (We refer the interested readers to the online
supplement for more details [35].)

The SC consists of 19 products:

• wire (WR), connector (CNTR)
• four types of wiring (WRN1,WRN2,WRN3A,WRN3B)
• three types of touchscreen (SCR1,SCR2A,SCR2B)
• radio (RAD), navigation system (NAV), buttons (BTN)
• switch (SWT), two chip types (CHP1,CHP2)
• four infotainment types (INFT1,INFT2,INFT3A,INFT3B)

We design the instance to include options that process more
than one product (with cheaper cost, higher lead time, and
shared production capacity), and consider uncertainty from
customer demand and lead time. We include agents trading-off
cost, lead-time mean and variance, and/or capacity.

Our instance has a sequential, product-processing topology,
as shown in Fig. 2. The annotations represent product types
that agents can output to downstream agents. Furthermore,
Fig. 3 shows the product structure and available entities
involved in the assembly of one of the infotainment 2 (INFT2).

To perform our case studies, we consider the cost of
emergent flows to be 1.7 times the normal cost for each
flow, that is ce

i jk = 1.7 cf
i jk,∀(i, j) ∈ E, k ∈ K . We set

the risk-attitude parameter α = 0.7,∀i ∈ V , representing a
minimization of the expected value of 0.3-quantile for the
lateness and unmet demand penalties of all agents in the
SCN. We optimize the SCN design instance in Section IV-A

TABLE III
CHARACTERISTICS OF OPTIMAL SCN DESIGN. THE NUMBER WITH

HIGHER CAPACITY IS MARKED IN BOLD. WE OBSERVE THAT THE
RISK AVERSE (α = 0.9) SOLUTION USES MORE AGENTS AND

FLOWS AS A RESPONSE TO DISRUPTIONS. THE RISK NEUTRAL
SOLUTION (α = 0) HAS LESS REDUNDANCIES AND PLANS

FOR AGENTS TO USE MORE OF THEIR CAPACITY, LIM-
ITING THEIR RESPONSE TO INCREASED DEMAND

with N = 60 scenarios. Considering SAA, we perform
Monte-Carlo sampling of the distributions of lead-time and
demand parameters forming independent, joint samples with
equal probabilities pω

=
1
N ,∀ω ∈ �. As a benchmark,

we also consider a deterministic design, which consists of the
risk-neutral optimization Model (1) with one scenario equal
to the mean of the distributions of the uncertain parameters.

We show the SCN design and flow plans for the determin-
istic model, the risk-neutral Model (1), and the risk-aware
Model (4) in Fig. 4. In Table III, we compare the size of
both the risk-averse and risk-neutral designs, and include SCN
utilization statistics. We observe that the risk-averse design
utilizes a larger number of agents and edges. We identify a
strategy to increase the number of redundancies in the SCN,
both in the number of agents used, as well as in the number of
edges that can flow components and products when needed.

B. Disruption Instances

The three disruptions we consider as a test set include:
• Tier 4 disruption (mean lead-time of WN-A1 doubles)
• Tier 3 disruption (mean lead-time of CH-S1 doubles)
• Tier 2 disruption (mean lead-time of IT-A4 doubles)
We test the reliability of the SCN designs obtained from

each approach by following the procedure described in
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Fig. 4. Optimal SCN designs under different risk attitudes. Arcs can have a combination of planned and emergent flows if they are both solid and dashed
lines. The thickness of the line is proportional its flow of product. The deterministic design minimizes the flow volume and number of entities if compared to
the stochastic designs. The node with red outline represents an agent that was added in the stochastic solutions. The black line highlighted in red represents
backup flows that are added to the risk-averse solution.

Section III-D, by fixing the layout and planned variables to the
optimal solutions, and optimizing over the remaining problem,
we measure the disruption response of each approach.

C. Benchmark Approaches

In addition to risk-aware Model (4) and risk-neutral
Model (1), we consider three greedy heuristics based on cost,
capacity and delivery-time criteria. We consider these three
criteria to be simplified, risk-neutral approximations, which
might be reasonable to use as locally-applied criteria in real
environments. In the heuristic algorithms, we start from the
uncertain demand average d̄ generated by customers j ∈ V c,
and greedily fulfill it by choosing the best agent i∗ ∈ U ( j)
based on the selected criterion until we fulfill their demand of
product k or the capacity of i∗ is finished. When we assign
flows, we assign values to variables xi∗, j,k := min{δ j,k, q̄ i∗,k}

and yi∗, j,k := 1. Then, we generate new demands to be fulfilled
for the agents i∗ based on their flow and the conversion rate
of their upstream products as δi∗,k ′ ←− δi∗,k ′ + rk ′k ∗ xi∗ jk,∀k ′ ∈
K ′(i∗, k). Likewise, we remove the assigned flow from the
capacity of the agent, and if the agent has no remaining
capacity, we remove it from the set of available upstream
agents. We move to the next agent i ∈ U ( j) \ i∗ if the
previous flow did not fully cover the demand. We continue
this process until all demand has been met or all capacity has
been assigned.

D. SCN Design Performance

We evaluate the performance of the optimal solution
to Models (1) (Opt-RN) and (4) (Opt-RA) compared to
the greedy heuristics (i.e., cost-minimization (Heu-CST),
lead-time minimization (Heu-LT), and capacity-maximization
(Heu-CAP), and the deterministic counterpart (DET) of (1).

In terms of delivery performance, the DET and Heu-LT fail
to meet the demand, avoiding large lateness penalties. Opt-RN

Fig. 5. Violin plot for distribution of unmet demand for entities across
all scenarios. Lean and tall distributions represent that a large proportion of
customers have a significant amount (y-axis) of their demand not met. Short
and thick distributions are desirable, representing meeting demand. Long tails
in the distribution represent few cases with large unmet demand. The Opt-RA
shows the best performance by having low variance in performance across
disruptions with α = 0.9. As the cost of each design increases with the
robustness to disruptions, we observe a trade off with lateness and unmet
demand penalties.

and Opt-RA have minimal unmet demand. With high lateness
penalties, all approaches prioritize timely deliveries, trading
off high operation cost, and unmet demand. In terms of unmet
demand, we observe in Fig. 5 that Opt-RA solution has a
more reliable demand meeting performance. By comparing
the tail of the violin plots, we observe fewer scenarios with
large unmet demand in Opt-RA. In Table IV we evaluate
approach costs. DET has the least cost, with high penalties
given a minimal SCN design. We observe that the Opt-RN
solution fails to always meet the demand, but the penalties
are lower in comparison to the heuristics. From this analysis,
the multi-objective nature of this problem requires judgment
on the priorities that will be set, as is the case with Opt-RA
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TABLE IV
SCN DESIGN AND OPERATION COSTS UNDER TIER DISRUPTIONS. WE MARK IN BOLD THE HIGHEST QUANTITY OF EACH ROW, WHERE OWER

COSTS ARE BETTER. OPT-RA HAS A HIGHER DESIGN COST (RELATED TO DESIGN VARIABLES y) AND MORE BACKUP FLOW COST (RELATED
TO EMERGENT FLOW VARIABLES z), WITH LOWER PENALTIES. FOLLOWING THE DISCUSSION IN FIG. 5, THE REST OF APPROACHES

MINIMIZE OPERATIONAL COSTS. WITH EXTREME DISRUPTIONS, IMMEDIATE COST MINIMIZATION INCURS
HIGHER PENALTIES, BECOMING AN UNDESIRABLE STRATEGY

Fig. 6. Optimal SCN designs under heterogeneous risk aversion between tiers. Arcs can have a combination of planned and emergent flows if they are both
solid and dashed lines. The thickness of the line is proportional its flow of product. The node outlined in red represents an agent added to the HRA Tier
1 solution, distributing the flow among more agents.

solution, where overly averse attitudes incur larger setup costs
for excessive redundancies.

E. Risk Attitudes and Optimal Designs

Given the risk-attitude parameter αi ,∀i ∈ V , we can
represent heterogeneous risk attitudes in the SCN. We study
the effect of risk attitude heterogeneity on SCN designs and
performance. We consider differences in risk attitudes by tier.
We refer to a tier with α = 0.9 as highly risk-averse (HRA).
Likewise, any tier with α = 0.5 is considered moderately risk-
averse (MRA). We consider a case where the cockpit assembly
(Tier 1) is HRA, and the rest of tiers are MRA. We consider
additional cases with tiers 2 and 3 are HRA and the rest are
MRA. Figure 6 shows the effect of risk-attitude heterogeneity
between tiers on the SCN design. We observe a difference for
the suppliers in Tier 5, having less backup flows for HRA
Tier 2. On the contrary, the HRA Tier 1 design resembles

the design with all tiers with α = 0.7. By setting HRA on
the customer, we induce higher risk-aversion throughout the
SCN, corresponding to the customer-oriented nature of supply
chains. We note that in Fig. 7b, when the emergent and planned
flow cost ratio ce

c f is close to 1, a more risk-averse attitude
of α = 0.7 does not generate a more conservative SCN (in
terms of the number of edges) than an α = 0.3. As this ratio
increases, the difference in SCN sizes increases. In Fig. 7a,
we observe a similar trend in terms of the risk-averse tier,
such that highly risk-averse down-stream agents will seek a
more conservative SCN as the ratio increases. We note that if
the ratio is larger than 2, the optimal SCN reduces its size,
as backup flows become more expensive.

In Table V, we show the performance under disruptions
for the heterogeneous risk attitudes. In accordance to the
observations of the SCN design, we observe how the highly
risk-averse Tier 1 increases the cost of the SCN design as more
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TABLE V
SCN DESIGN PERFORMANCE UNDER HRA TIERS. WE MARK IN BOLD THE LOWEST VALUES FOR EACH ROW. IN GENERAL, THE LOWER THE VALUE,

BETTER THE PERFORMANCE. HIGH-RISK AVERSE CUSTOMERS (TIER 1) INFLUENCE THE SCN DESIGN INTO A MORE CONSERVATIVE DESIGN,
WITH MORE EDGES AND COMPONENT FLOW BETWEEN AGENTS, WITH A HIGHER OPERATION COST, BUT WITH LOWER PENALTIES

UNDER DISRUPTIONS IN CONTRAST TO HIGHER RISK AVERSION IN OTHER TIERS

Fig. 7. Total number of edges (planned and backup) in the SCN as a function of α and the ratio ce

c f . Fig. 7a shows the SCN design for different risk-averse
tiers, while keeping the rest of tiers risk-neutral. We note that for all ratios, risk-averse downstream agents encourage a larger SCN size in terms of planned
edges. Fig. 7b shows the size of SCN for different risk-aversion levels, using the same α for all agents, having a homogeneous risk attitude. We note that
for a ratio closer to 1, with cheaper backup flows, the number of edges for different parameters α of 0.3 and 0.7 are similar, 20 and 21, respectively. As the
ratio goes beyond two, i.e., backup flows costs are double of planned flows, edges are reduced and replaced by planned flows, trading planned edges’ setup
cost for expensive backup flows.

TABLE VI
AVERAGE RUNTIME IN SECONDS OF APPROACHES

backups induce a conservative SCN design, incurring less
penalties. When the highly risk-averse tier is further back the
SCN, its design becomes less customer-oriented, and is biased
towards benefiting the specific tier’s performance, resulting
in more unmet demand penalties. In terms of computation
performance, Table VI shows the average runtime for different
choices of the scenarios and risk attitudes over 5 replica-
tions of the sampling. As we increase the risk-aversion, the

problem becomes more difficult to solve by an off-the-shelf
solver.

V. DISCUSSION AND CONCLUSION

In this paper, we extended our prior work in [5] by for-
mulating stochastic risk-neutral and risk-aware supply chain
optimization models with lead-time awareness. We leveraged
the capabilities of stochastic optimization model structure to
include new decisions related to the SCN design. We incor-
porate heterogeneity in the objective of each agent in the
supply chain by modifying the risk-attitude for each agent.
Through numerical studies, we show that risk-aware objectives
are better suited for environments prone to disruption, such as
complex supply chains. The presented framework provides an
advantage in SCN design as we incorporate both demand and
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lead-time elements into the decision-making process. Under
the possibility of defining the SCN design completely or
partially, we are able to introduce disruption response strate-
gies that reduce the need for costly wait-and-see disruption
strategies which can incur prohibitively large costs.

We identify that a key feature of risk-averse designs consists
of more connected networks. This can be done by leaving idle
capacity for agents in case of disruptions, or including agents
as backup such that no planned flows exist, but allowing for
emergent flows when responding to disruptions. Another form
of reliability comes from having fewer indispensable agents.
By reducing their relative importance in the supply chain
(i.e., by distributing their flow among more agents, or having
multiple agents fulfill part of their production), one can set up
a backup for the network. In this way, available capacities can
be rerouted to adapt to disruptions.

One limitation of our framework is its centralized nature.
We could interpret the execution of this optimization frame-
work as a SCN in which all agents communicate their
disruptions, share objectives and states to a centralized coor-
dinator which prescribes the optimal actions. This model
assumes that all agents act according to the coordinator’s
prescription. Therefore, next steps in this research consider
decentralized optimization approaches, such that we model
multi-agent team and game problems, where each agent solves
their respective stochastic optimization problem under partial
information of the SCN disruptions and other agents’ states.
We can consider decomposition algorithms for large-scale
SCN instances, improving the solution’s runtime of off-the-
shelf MILP solvers.

In this paper, we consider that disruption risks are indepen-
dent. Future extensions of this work can model disruptions
in lead time and demand as correlated random processes to
design response policies and dynamic recovering decisions.
By considering a multi-stage extension on this work, we can
model dynamic supply chain response to more general disrup-
tions, such as cascading failures over time.
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