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Abstract—Supply chain (SC) risk management is influenced
by both spatial and temporal attributes of different entities (sup-
pliers, retailers, and customers). Each entity has given capacity
and lead time to process and transport products to downstream
entities. In disruptive events, lead times and capacities may vary,
which affects the overall performance of SC. There have been
many studies on SC disruption mitigation, but often without
considering lead time and the magnitude of lateness. In this
paper, we formulate a mixed integer programming (MIP) model
to optimize SC operations via a routing and scheduling approach,
to model the delivery time of products at different entities as they
flow throughout the SC network. We minimize a weighted sum
of multiple objectives that involve costs related to transportation,
shortages, and delivery lateness. We further develop a Benders
decomposition algorithm for speeding up the computation of the
NP-hard MIP model. We also develop a discrete-event simulation
framework to evaluate the performance of solutions to the
MIP model under lead time uncertainty. Through extensive
numerical studies, we show how the attributes of SC entities
affect the performance, so that we can improve the SC design
and operations under various uncertainties.

Note to Practitioners—With increasing uncertainty in global
supply chains, inefficient responses to disruptions can lead
to large penalties and long-term impacts, such as customer
dissatisfaction. This research is motivated by the challenges
that arise during supply chain operations under both lead
time and demand uncertainties. We employ optimization and
centralized control approaches to optimize supply chain network
design, as well as response strategies to disruptions, and our
framework can handle multiple objectives involving costs related
to transportation, shortage, and delivery lateness. We develop a
Benders decomposition algorithm for significantly reducing the
computational time. We also provide a discrete-event simulation
framework to evaluate the performance of solutions in out-of-
sample tests, which can be used off-the-shelf by practitioners to
evaluate their decisions before realizing the real-world scenarios.

Index Terms—supply chain risk management, multi-objective
optimization, mixed-integer programming, lead time uncertainty,
discrete-event simulation

I. INTRODUCTION

The design and operations of the supply chain (SC) are
impacted by the capacities and production / processing lead
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times of different entities in an SC network, as well as how
the entities are connected and communicate [1]. The global
modern SC network has become more complex, leading to
more frequent disruptions that affect SC performance [2]. In
addition to capacities, the lead time of procurement and pro-
duction faces increasing uncertainties due to labor shortages
and unpredictable global environments in recent years [3], [4].

To cope with lead-time disruptions, enterprises need to
incorporate both spatial and temporal attributes of flows and
productions into SC design and management [5]. It is crucial
to understand how the lead time impacts the response to
disruption and SC risk management [6]. In this work, we
consider the following decision-making problem: Given a
layout of an SC network, existing flows between different
entities, and disrupted capacities and/or lead time, how do
shortage and lateness penalties, as well as different attributes
of the SC entities, affect response decisions?

Furthermore, understanding how different SC attributes im-
pact performance from both the network and the entity levels is
critical. Most existing work investigates the effects of network
typologies on the resilience of SC, without considering the
lead time [7]-[9]. The study in [6] examines the effect of
lead time on resilience in different stratification in an SC.
However, the authors did not discuss how SC attributes play
a role in the response to disruption. Therefore, disruption
response models that capture both entity productive capability
disruptions and lead-time disruptions are of vital importance to
allow efficient adaptation of nominal operations to disruptions.
Disruption response models can also be used in practice
to perform sensitivity analysis and evaluate investments in
capacity expansion or the incorporation of additional backup
entities.

To address all the above limitations, the main contributions
of this work are as follows. (i) We derive an MIP formulation
that tracks temporal attributes of flows through an SC network,
while incorporating both fixed and additive penalties on de-
livery lateness. (ii) We develop a discrete event simulation
framework to measure the performance of MIP solutions
and the effects of lead-time uncertainty. (iii) We investigate
the effects of lateness penalty and network topology on the
performance of the lead-time disruption response through
several comprehensive SC instances.

The remainder of the paper is organized as follows. In Sec-
tion III, we introduce detailed notation and the multi-objective
MIP model for deriving new flows and response solutions to
given SC disruptions. In Section IV, we present the discrete
event simulation framework to evaluate the performance of
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the MIP model with uncertain lead time. In Section V, we
demonstrate the results of a simulated case study and provide
managerial insights. Finally, in Section VI, we conclude the
paper and propose future research directions.

II. LITERATURE REVIEW

The existing literature on optimization approaches for SCN
management are extensive, but mainly focus on the initial SC
network planning to achieve network-level lead-time reduction
[10]. However, for the disruption response, production and
flows that require to be recovered may exist at any entity
in an SC network. Enterprises must determine whether and
how to vary production and flow plans to meet customer
demands. Therefore, delivery times of products are critical
elements to be tracked through the entire SC network, so that
penalties for product lateness at any point in the SC network
can be considered. To the best of our knowledge, no existing
work fully addresses such needs and challenges. The work in
[11] considers an adaptive agent-based simulation framework
having heterogeneous agents. This work only evaluates the
performance of fixed response strategies and SCN designs
but does not study how to optimize these decisions. In [12],
the authors study the effect of faster communication schemes
between agents (RFID technology) on the optimal network de-
sign. However, all of these formulations do not evaluate SCN
performance in the midst of demand or lead-time uncertainty.

Natural disasters, accidents, and road closures are as well
as inadequate freight capacities. These problems can cause
transportation problems or machine breakdowns, leading to
supply shortages that reduce production capabilities, and
transportation delays [13]. These events have economic and
logistical impacts that are critical to the operation of the
SCN and benefit from models that capture the effect of lead
time on the original plans. The existing literature models
lead-time in SCN operations either as a constraint or as an
element of the objective function. In [14], the authors model
a multiobjective goal programming approach to optimize the
planning of multiperiod SCs given non-negligible lead time; in
[15], the authors propose a two-stage multi-period stochastic
optimization model with a scenario-based solution approach
to enhance the robustness of SC design. However, the formu-
lations in both [14] and [15] only model delivery lateness as
backorders that always ship in the next period. In this paper,
we include heterogeneity in the agents’ objectives from a
centralized, optimization-based perspective, integrating agents’
lead-time uncertainties.

In [3], the authors use a mixed integer programming (MIP)
model for multi-echelon SC considering lead time as hard
constraints. They perform extensive numerical experiments to
study the feasibility of a network-flow problem with hard lead-
time requirements. In [16], authors propose a multi-period,
mixed-integer nonlinear program (MINLP) to optimize SC
design. They minimize the expected lead time of products
by considering the expected lead time of flows. However,
these approaches do not consider lead-time disruptions and the
corresponding SC response. They also do not model penalties
for delivery lateness. The existing literature often models the

lead time only for end customers, instead of each entity in the
SC [17]. For example, [18] introduces a capacitated network
design model that only considers the transport lead time and
penalizes late delivery of products to final clients with a
fixed homogeneous penalty. Similar strategies are used in [19],
where the authors quantify the resilience of the SCN in the
objective as a function of the response cost and the recovery
time given delays.

In this work, we allow for a model with different penal-
ties for each agent, which we refer to as a heterogeneous
SCN. The work in [20] evaluates the performance in a dis-
tributed simulation-optimization framework and describes the
importance of high-quality initial response plans, for which
this paper can be used to provide the input required for
such models. We also note that this work can be viewed
as a lead-time aware extension [4] of the lead-time neutral
centralized MIP formulation presented in our previous work
[21]. Following the taxonomy in [10], we present an inventory
routing problem, with an objective that incorporates arc and
production commitment decisions and operational costs to
optimize the response to disruption.

ITI. MULTI-OBIECTIVE MIP

We first introduce an MIP model that tracks product flows
and arrival time at each entity in an SC network, such
that we can incorporate the magnitude of all late deliveries
in the multi-objective function. This model can be viewed
as schedule-aware extension to the model proposed in our
previous work [21], which only considered a network-flow
problem.

A. Notation and assumptions

Consider a directed graph G(V, A) representing an SC
network with a vertex set V of all SC entities and an arc
set A of all their connections. We denote V¢ C V as the
subset of entities that only demand products, named customers;
V© C V denotes the subset of entities where transformations
of products occur, named OEMs; V* C V is the subset
of entities who supply products and raw materials, named
suppliers (i.e., having no upstream flows). The arcs in the set
A convey potential flows of products and resources between
entities. We denote K as the set of all products and com-
ponents types within the SC. Furthermore, for each k € K,
we have a subset K'(k) C K of components k' required for
the production of k. We make the following assumptions in
this paper: (i) Knowledge of disruptions and response time
are immediate. (ii) The flow of the product k from i to j is
treated as an indivisible unit. (iii) All entities wait until all
required upstream flows have been received before sending
their downstream flows. We summarize the parameters and
decision variables used in this work in Table I.

B. Multi-objective MIP for SC disruption response with lead
time awareness

We compute the objective of our MIP as the total SC
operation cost in (1), where f,I,p, 3,¢, Al, A%, a, o0,z are the
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TABLE 1
A SUMMARY OF NOTATION FOR PARAMETERS AND VARIABLES.

Input Parameters

d; demand of product k at entity i; by convention, d;; < 0.
c fixed transportation cost from entity 4 to entity j.

ij
c! unit transportation cost of flowing product k from entity i to j.

ijk
?,-J- mixed-flow capacity of arc (i, 7).
Py mixed-product production capacity available at entity i.
€ik production cost per unit product k at entity i.
Trk! conversion rate from product k to product &/, i.e., the units of

product k consumed to produce one unit successor product k’.
@; fixed cost of opening a production line at entity i.
I ?k initial inventory of product k at entity ¢ at each period.
hik unit holding cost of product k at entity i.

pfk penalty per unit of unsatisfactory of demand d;j,.
tik time at which entity i requires the demand of product k.

Liik lead time of product k flowing from entity i to entity j.

4 fixed late-delivery penalty of product k& flowing via arc (%, )
Pi;x  penalty for unit of lateness product k flowing via arc (i, 7).
Decision Variables
fijk units of product k flowing from entity 7 to entity j.

Bijk arc utilization, 1 if arc (i, j) € A is used to transport product k&,
and 0 otherwise.

Dik units of product k produced at entity i.

G binary variable, equal to 1 if entity i produces/assembles mate-
rials, and 0 otherwise.

Ik inventory of product k at entity i by the end of time period.

AL units of unsatisfied demand of product k at entity 1.
Ag ji  lateness of product k arriving at entity j from entity i.
Qijk time of delivery of product k to entity j from entity 1.

Oik time at which entity ¢ can process product k.
Zijk binary variable, equal to | if flow from entity i to entity j of
product k is delivered late, and O otherwise.

decision variables shown in Table I. We model the cost of
transportation, manufacturing, and product holding, respec-
tively in (la), fixed costs for transportation route setting,
manufacturing capacity in (1b), and the penalties for unmet
demand and late deliveries in (lc).

J(yllﬁlp'l C)I) A!)Au'l a’! o?'z)

= > difixt+ D halu+ Y ewpi

(i,7)EAkKEK iEV,EEK iEV,EEK
(1a)
+ Y Burt Y it (1b)
(i,7)EA, kEK icv
+ Z P A + Z ngkzw'jk + pzl']jkAgjk:
ieV.keK (i,7)EAkEK

(1c)

We present the overall MIP model to optimize SC network
flows and operations in (2):

min J
x,y

s.t. Z Z fijrr — Z fiik + Z Tk kDik!

ji(i,j)EAKR EK FHEE k'eK
—pik—AY + Lp=dix + 1%, VieV, ke K, (2b)

(2a)

fije < ?ﬁj.ﬁijk: v (i,5) € Ak e K, (2¢)
D fiik < Fijy V¥ (5,5) € A, (2d)
keK
> pik <piGi, VieV, (2¢)
keK

3
aijk = (lijk + o) Bije,V (i,7) € Ak € K, (2f)
Ojk = Qijkr,
¥ (i,j) € A,ie V\V*, ke K,k € K'(j,k), (22)
o =0,Vie V' kekK, (2h)
aijk — Al < i,V (i,5) € Ak €K, (2i)
Aljx < Mz, ¥ (i,5) € A ke K (2j)
fijk,fﬁk, Afk,Aijk, Qijk,0ik = 0,

VieV,(i,5) € A,k e K, (2k)
Ci» Bijrs zigre € {0, 1},
VieV, V¥V (i,j)eA,ke K, (21

We denote the vector of structural decisions as x =
[8,¢]" and the vector of operational decisions as y =
[f,p, A!, A% a,0,z]". The constraints include:

1) Flow balance: Constraints (2b) balance the flow of
products at each entity in the SC and compute unmet demand.

2) Capacities: In (2c), (2d), (2e), flows on each arc and
productions at each entity are restricted by given capacities.

3) Delivery times: With constraints (2f), we model the
delivery time of products at different entities. Note that we can
model products with different processing and transportation
lead times. With constraints (2g)—(2h) we compute the time
at which downstream flows are ready to be processed (i.e.,
variable o;), depending on the readiness of upstream products
the entity requires. In constraints (2i), we compare the delivery
time of products a;j; with the due date ¢;, such that we can
penalize the units of lateness of flow. In constraints (2j) we
use an indicator variable to check whenever the delivery is
late (via a big-M approach) and impose a fixed penalty. We
can introduce heterogeneous delivery deadlines at any entity
of the SC, such that we can model SC networks that not only
require the on-time delivery of products to final customers but
also at intermediate stages of the SC network.

4) Variable domains: Constraints in (2k) and (21) specify
the domain of decision variables.

C. Linearization of bilinear MIP

We note that the size of the MIP (2) can grow significantly
with the number of agents, products, and arcs in the SCN we
model. In particular, the bilinear constraints (2f) are difficult to
solve by MILP solvers. Thus, we linearize these constraints via
McCormick convex estimators [22], by introducing auxiliary
variables m = [myjx, (i,7) € A,k € K| > 0 representing
the product of variables o and 3 via a big-M approach. We
now replace constraints (2f) with the block of constraints (3).

mijk < MBiji,V (1,7) € A, ke K, (3a)
mijk < o,V (i,7) € A, ke K, (3b)
mijk > o — (1 — Bijr) M,V (4,7) € A, ke K, (3¢)
aijk > lijrBijk + mije,V (1,7) € A, ke K, (3d)
mijr > 0,V (1,7) € A, ke K. (3e)

Considering the linearization in (3), we can use off-the-shelf
MILP solvers to solve Model (2) directly. We will now present
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a decomposition formulation admitting an efficient solution
approach.

D. Benders decomposition

Model (2) can be a large MILP to solve, given the number
of binary variables 3, which grows with the number of
arcs and production-capable nodes in the SCN. Our aim is to
decompose the problem such that we solve a series of small
binary linear programs and many larger linear programming
(LP) formulations. If we consider the LP relaxation of (2) with
respect to the binary indicator z, relaxing it into a continuous
variables bounded on [0, 1], then for a fixed 83, associated
with the binary decisions of the arc and production commit-
ment, the rest of the variables and their respective components
in the objective function and constraints form an LP. Therefore,
we can decompose the problem into two stages: a first-stage
formulation that is a binary linear program with a relatively
lower number of variables and constraints and a second-stage
LP with the operational variables. In formulation (5), we
capture the first stage model, where we minimize the arc
utilization and production commitment decisions x = [3,¢] .
To improve the quality of the first-stage solutions, we combine
constraints (2b)—(2c¢), and projecting out the rest of variables
and parameters to have an valid linear constraint of 3:

DD Buw = Bur V(i) €A kK eK. (&)

Ji(ij)eAREK

here, constraints (4) ensure that for any incoming arc into a in
a non-customer agent, an outgoing arc must exist in an optimal
solution. Otherwise, we can reduce the objective by having the
corresponding 3 = 0, while keeping feasibility of the current
product flows. We can encode these constraints, as well as
a similar consistency constraints for production commitment
decisions ¢, in vectorized form

n}{in{[c"]—rx +Q(x): Dx>b}. (5)

We consider the second stage model as a function Q of
structure decisions x. We note that given the unmet demand
and lateness slack variables, for any first-stage variable values,
the second-stage is feasible (relatively complete recourse). We
reformulate the second-stage model in matrix form, such that
we can have B, T, g as the coefficient matrix for the second-
stage variables y, the coefficient matrix for the first-stage
variables x, and the right-hand size vector, respectively. These
matrices encode constraints (2b)—(21), as we model a relaxation
of (2). Thus, we obtain second-stage model (6)

Qx) = Il’l)_jl'l {[e*]"y: By > q—Tx [n]}. (6)

To solve (5), we implement the L-shaped method, also known
as Benders Decomposition [23] such that we can iteratively
lower approximate Model (2) via LP strong duality of the
second stage with a lower computational effort. We will
introduce an auxiliary variable € as the epigraph of Q. We
represent adding linear constraints with respect to X represent-
ing supporting hyperplanes for @ at the evaluated solutions X

Tier 5:

Fig. 1. The SC network for the case study.

in previous iterations. By LP strong duality, we consider the
dual problem (7) of Model (6)

max {7 (q—Tx):7'B<c'}. (7)

At iteration ¢ of the algorithm, for any evaluated first-stage
solution of the algorithm %X* of (6) and associated second-stage
optimal dual 7' maximizing (7), we can add the supporting
hyperplane (8) to the first-stage epigraph

6> [r']" (q—Tx). )

By using the current epigraphic approximation, we can solve
the problem (9) and obtain a lower bound on (2) at iteration
i, given that 8 < Q.

: T

min [c¥]'x+6 (9a)
st. Ax>Db

0> (q—Tx),¥j €1,...,i.  (9b)

We note that we only obtain § = Q in (9) when we have added
enough hyperplanes to represent Q around the optimal solution
by solving the second-stage (6). Similarly, given the first-stage
solution X* and the corresponding second-stage solutions y°,
we can compute the objective corresponding to (2), which is
an upper bound. Given these upper and lower bounds, we can
compute an optimality gap that can be employed to define a
stopping criteria for the decomposition algorithm.

IV. CASE STUDY DESCRIPTION
A. SC instance

The SCN instance, for which we develop our numerical
studies, is an adapted automotive cockpit assembly sub-SCN
for the In-vehicle infotainment system introduced in [24]. We
consider cockpit assemblers to be the customers in this sub-
SCN, considering the demand for cockpits for complete vehi-
cle assembly. This sub-SCN is complex enough to be analyzed
on its own, as infotainment systems constantly evolve with the
integration of new technologies, making them vulnerable to
disruptions of the semiconductor market [25]. In Fig. 1, we
show the structure of the SCN with 5 tiers, considering 10
different product categories, considering the components of
the wiring and infotainment that require assembly within the
SCN. We design the instance to include options that process
more than one product (with cheaper cost, higher lead time,
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Fig. 2. Simulation framework for out-of-sample testing.

and shared production capacity) and consider uncertainty from
customer demand and lead time. We include agents trading-off
cost, lead-time mean and variance, and/or capacity.

B. Simulation framework

Simulation models have been used as an evaluation mech-
anism for resilience to disruption in general supply chains
[26], as well as automotive SCN [27]. Thus, we consider a
simulation model as our method to evaluate the response so-
lutions and compare them to no-response and lead-time neutral
response policies. Fig. 2 depicts inputs for the discrete event
simulation model we consider, the general simulation process,
and the simulation outputs. We initialize the simulation with
the flows from the suppliers (i.e., entities in subset V). We
draw independent samples of the joint realization of the lead
time from a log-normal probability distribution with p = I;;
(i.e., the deterministic lead time [;;, used in Model (2)) and
o = 0.3. We compute the delivery information with variable
ai;r considering flows f;;x. We use the product structure in-
formation to later compute the starting time for processing the
downstream flows, with variable o;,. We continue this process
iteratively until the final products are delivered to all end-
customers. We run the simulation for multiple replications in
parallel to analyze SC performance under different disruption
realizations.

C. Case study scenario design

1) Baseline scenario: We solve the MIP model (2) for the
instance described in Section IV-A, selecting parameters to
ensure a nominal operation. We will compare the performance
of this non-disrupted solution to the solutions of disrupted
instances that are obtained by re-optimizing model (2) under
the new parameter realizations as our baseline results.

2) Delivery lateness policies: We perform a series of stud-
ies to analyze the effect of lateness penalties on SC disruption
responses under uncertain lead time. We interpret different
unit-penalty values as policies chosen by decision makers
and model these policies through different ratios between
the unit and fixed cost of penalizing lateness. Instances in
which lateness does not matter, are considered to have neither
unit nor fixed penalty. This lead-time neutral approach is
equivalent to the model considered in our prior work [21].
For other instances, we consider a policy that only contains a
unit penalty (ratio 1:0), and policies that consider increasing
fixed penalties (ratios 1:5 and 1:20), to model situations in

which being late by any amount is undesirable. The values
5 and 20 as fixed penalty cost are chosen to be proportional
to the volume of flows in the current instance such that the
fixed penalty dominates the total delivery lateness penalization
as the ratio increases. In practice, these different lateness
policies could happen in different industries, e.g., in industries
that frequently allow backorders, industries with perishable
products, or those that fit in a larger SC with tight due dates.

3) SC entity disruptions: We identify the baseline SC
network instance (Fig. 3) as a tiered network structure. Se-
quential connections between different entities exist [7]. This
configuration is justified by the process of assembling different
components to yield products for end customers.

We aim to study the effect of lead-time disruptions in
different depths of the SCN (i.e., how far back in the product
flow process do disruptions occur) on the SC disruption
response. We focus on lead-time disruptions, as they represent
transportation disruptions that can occur along the SCN.
Examples include global disruptions affecting supplier deliv-
ery times and output capabilities, technological disruptions
considering machine breakdown that affect assembly entities
or natural disruptions causing blockages in logistical routes
that can affect the distribution of end products. For a review
of these and other transportation disruptions, see [28]. We
design three scenarios considering the SC network in Fig.
1: (i) Disrupt one wire supplier by reducing their output
capacity in half, representing supplier problems to satisfy
demand that is external to the current supply chain. (ii) Disrupt
two infotainment assembly agents by increasing their lead
time by a factor of 1.5 and increasing their transportation
costs, as alternative logistic routes are required. (iii) Disrupt
the wiring suppliers, by increasing the arc usage costs by
50%, representing greater competition between suppliers that
negotiate to deal with higher volumes of orders.

4) SCtopology: The baseline SC network has multiple enti-
ties capable of providing, assembling, or distributing materials
and final products. Its topology follows a “tree-like™ structure
in which the in-degree of entities reduces as the sequence
of entities gets closer to the end customers. This strategy
has high cost due to multiple contractual relationships with
different suppliers, but can provide the flexibility to respond
to disruptions by choosing backup entities [8].

We study the resiliency of different network configurations
to understand their performance under entity disruption and
lead-time uncertainty. We compare the baseline configuration
with a “chain-like” structure with fewer backup entities, with-
out removing productive capacities in the SC (i.e., we remove
multiple suppliers and assemblers). This configuration has the
least cost, as the economy of scale benefits from having larger
contracts with fewer entities. For both topologies, we have
the same total capacity between all entities and the same
demand. We optimize the non-disrupted instance, and then
disrupt similar agents in each topology setting, to compare out-
of-sample performance of the response given by the original
solution.
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Fig. 3. Optimal flows from solving MIP model (2) for baseline instance.

V. CASE STUDY RESULTS

We perform numerical studies for the instances we de-
scribe in Section IV, testing the performance of solutions of
Model (2). For each instance, we first solve Model (2) and
obtain the optimal flows f;;x and production p;;. Then, we
run 300 replications of the simulation framework in which
we fix fijx and p; to test the average performance given
stochastic lead times [;;x and demand d;;. We compare the
simulated performance of each solution, given different param-
eter configuration (disruption depth, lateness policy, and SC
network structure). We measure SCN effectivity and timeliness
by comparing the delivery lateness of final products and the
percentage of unmet demand.

A. Computational results

We implement the solution approaches and run all instances
using an Apple M2 Silicon CPU with 8 cores and 8 threads
(4 cores 3.5 GHz and 4 2.8 GHz), and 16 GB of memory.
We use Gurobi 11.0 API for Python 3.11.8

We compare the runtime of directly solving Model (2) with
Gurobi and the relaxations we discussed in Section III-D. We
solve the baseline instance and a synthetic instance generated
by increasing the making copies of the entities and the arcs in
the SCN as a larger-scale instance. We set the corresponding
demand and capacities by sampling over a normal distribution
centered around the values in the base instance. The size of
this instance is five times that of the baseline, and we employ
to consider more challenging instances for the computational
comparison.

TABLE II
RUNTIME COMPARISON FOR DIRECT GUROBI SOLVE VS BENDERS
DECOMPOSITION

Base instance Synthetic instance

Solution approach Gap (%) Runtime (s) Gap (%) Runtime (s)
Gurobi - 35.4 - 1214.2
Relaxation Gurobi 24 25.3 6.5 850.3
Relaxation Benders 2.5 12.2 7.1 246.7

In order to solve the instances in the case study, we use the
Benders decomposition to solve the lower bounding problem,
and then use those solutions to warm start the solution of (2).
This procedure leads to an efficient lower bounding procedure
that generates a high-quality initial solution to exactly solve

(2).

B. Case study results

1) Solution of baseline: We solve the MIP model (2) with
the parameter design described in Section IV-C1. Fig. 3 shows
the flow solutions, which we consider as the optimal SC
operational plan.

2) SC network redesign for different lateness policies: We
consider the disruption scenarios described in Section IV-C3
and apply the different lateness penalties described in Sec-
tion IV-C2 to disrupt the baseline instance to optimize model
(2) under the SCN disruption, obtaining optimal solutions for
each scenario. We define three categories to describe how the
network changes compared to the baseline scenario in the
order of SC redesign severity. (i) K: Keep current SC, flow
volumes, and incur the lateness penalty. (ii) E: Interdict arcs
connecting the disrupted entity with downstream entities and
redesign flow solutions. (iii) V: Interdict entity by redesigning
the SC without the disrupted entity. Table III shows that given
the hierarchical structure of the SC network [7], as the depth of
the disrupted agent increases, SC redesign is encouraged. This
explains why in the case of Fig. 4(a) most penalties on lateness
cause the interdiction of the entity, and by the contrary, in Fig.
4(c), only with a very high penalty, the SC layout changes.

TABLE III
IDENTIFIED STRATEGY FROM MIP MODEL (2) OPTIMAL SOLUTION TO
ENTITY DISRUPTIONS UNDER DIFFERENT NETWORK STRUCTURES AND
LATENESS POLICIES

Scenario (Unit penalty : Fixed penalty)
Disruption Structure No penalty 1:0 1:5 1:20
i Tree K E V v
WR_S Chain K K K R
i Tree K K E v
WN_A Chain K K K R
il Tree K K R E
IT_A Chain K K R E

K: keep flows; E: interdict arcs; V: interdict entity; R: reduce flows.

Fig. 4 demonstrates the effectiveness of the strategies pre-
scribed by our lead-time-aware MIP model, to mitigate the
effect of disruptions in the delivery of final products. From
the distribution of days of lateness, MIP model (2) solutions
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Fig. 4. Out-of-sample performance of solutions under different lateness policies and entity disruptions for a final product of the SC.

enjoy shorter lateness, when we simulate the uncertain lead
time in the SC network.

3) Network structure in SC performance and disruption
response: We consider additional SC network structures de-
scribed in Section IV-C4. Fig. V shows the optimal flows for
each topology without disruptions. The chain structure has
lower cost in comparison to the other two structures. The
caveat of this topology, as it relies on most entities being used
at full capacity.

We perform disruption response studies similar to those
in Section V-B2. Fig. 5 illustrates the average lateness and
standard deviation as error bars of each network structure over
all of the lateness policies. We observe that the tree structure,
which establishes backups further back in the SC, shows
higher reliability, with a consistent performance invariant to
the disrupted tier of the SC. The chain structure performance
suffers the most under entity disruptions. Only a limited
number of changes to the structure can take place, making
almost all entities critical.

In addition to the response strategies discussed in Section
V-B2, we identify an additional action shown in the our MIP
model (2). When considering a policy without fixed penalties
(ratio 1:0), the optimal solution prescribes strategy (R) to
reduce the volume of affected flows while keeping the SC
layout. We interpret this as a last-resort strategy, when it is
inevitable to incur in unmet demand penalties, as a trade-off
to use the released capacity to work on other products that
still can be delivered on time. Table III shows the type of
responses we identify for the different scenarios. Results in
Table III demonstrate that the chain structure has the least
flexibility, as in most cases only the strategy (K) to absorb
lateness penalties is possible. Finally, only the tree structure
avoids strategy (R), while meeting demand in all scenarios.

C. Managerial insights

From the previous results shown in Section V, we point out
the following managerial insights.

« Lead time is a critical factor to model. The temporal com-
ponent of material flows can make an optimal solution
with the least cost highly undesirable because of lead-
time disruption and delivery lateness.

o There is a trade-off between the response to disruption
and the mitigation strategies. Fixed penalty policies favor
costly network-wide redesign to keep flows on time and
limit unmet demand. Unit penalty policies mitigate dis-
ruptions with local modifications of the network structure,
with a larger change as penalties become larger.

» Network-wide changes include redesigning a network
by removing arcs associated with disrupted entities. Lo-
cal modifications include minimizing the influence of
disrupted entities by reducing flows through them and
redistributing them to other available entities.

« As the effect of lead-time disruption of entities accu-
mulates over the sequence of flows in the SC network,
entity redundancy further back into the SC (e.g., sup-
pliers) yields more reliability. In contrast, redundancy of
entities closer to end customers (e.g., assembly) shows
less resiliency, since disruptions accumulate less over the
remaining sequence of flows, having a lower influence on
overall SC performance, as they can be easily replaced
by other entities with similar capabilities.

VI. CONCLUSION

In this paper, we develop an MIP model to track the de-
livery time of flows throughout an SC network, incorporating
different lateness and unmet demand penalties for each agent
in the SCN. Via numerical studies, we show that a hierarchical
network structure with backups in the initial suppliers yields
consistent SC performance given lead-time uncertainty of the
SC entities, as opposed to having backups further down the
SC. This framework provides an advantage in SCN operations
as we incorporate both demand and lead time elements into
the decision-making process.

In this paper, we consider the disruption risks to be inde-
pendent. Future extensions of this work can model disruptions
in lead time and demand as correlated random processes to
design response policies and dynamic recovery decisions.

In future research, one can consider communication and
coordination time lags to incorporate real-life environments
which can be modeled by dynamic optimization. Given the
centralized nature in this research, consider decentralized
optimization approaches such that we model multi-agent team
and game problems, where each agent takes actions under
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partial information of the SCN disruptions and other agents’
states.
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