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ABSTRACT: Clouds constitute a large portion of uncertainty in predictions of equilibrium climate sensitivity (ECS).
While low cloud feedbacks have been the focus of intermodel studies due to their high variability among global climate
models, tropical high cloud feedbacks also exhibit considerable uncertainty. Here, we apply the cloud radiative kernel tech-
nique of Zelinka et al. to 22 models across the CMIP5 and CMIP6 ensembles to survey tropical high cloud feedbacks and
analyze their relationship to ECS. We find that the net high cloud feedback and its altitude and optical depth feedback
components are significantly positively correlated with ECS in the tropical mean. On the other hand, the tropical mean
high cloud amount feedback is not correlated with ECS. These relationships are most pronounced outside of areas of
strong climatological ascent, suggesting the importance of thin cirrus feedbacks. Finally, we explore connections between
high cloud feedbacks, climate sensitivity, and mean state high cloud properties. In general, high ECS models are cloudier
in the upper troposphere but have a thinner high cloud population. Moreover, we find that having more thin cirrus in the
mean state relates to more positive high cloud altitude and optical depth feedbacks, and it either amplifies or dampens the
high cloud amount feedback depending on the large-scale dynamical regime (amplifying in descent and dampening in as-
cent). In summary, our analysis highlights the importance of tropical high cloud feedbacks for driving intermodel spread in
ECS and suggests that mean state high cloud characteristics might provide a unique opportunity for observationally con-
straining high cloud feedbacks.

SIGNIFICANCE STATEMENT: Clouds play an important role in modulating the effects of climate change through
feedback processes involving changes to their amount, altitude, and opacity. In this study, we seek to understand how
changes to tropical high clouds under warming are related to the magnitude of warming that global climate models sim-
ulate. We find that tropical high cloud feedbacks robustly relate to the amount of warming a model predicts and that
warmer models tend to have a thinner tropical high cloud climatology. Our results highlight a potential opportunity to
form a new constraint using these relationships in order to narrow the spread of warming estimates among global
climate models.
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1. Introduction

Cloud feedbacks represent the largest contributor to overall
uncertainty in climate sensitivity and the transient climate re-
sponse to greenhouse gas forcing (Soden and Held 2006;
Dufresne and Bony 2008; Vial et al. 2013; Caldwell et al.
2016), increasing in spread from phase 5 of the Coupled
Model Intercomparison Project (CMIP) to CMIP6 (Zelinka
et al. 2020). The net cloud feedback is calculated as the sum-
mation of longwave and shortwave cloud radiative effects that
result from changes to clouds with warming. Thus, decompo-
sition techniques are often employed to isolate the physical
processes underlying these changes and distinguish between
feedback components that have a consistent sign and magni-
tude across models and components that exhibit intermodel
spread. Commonly, cloud feedbacks are divided into the
cloud amount, altitude, and optical depth feedbacks. These

cloud feedback components describe the radiative effect of
changes to total cloud amount, redistribution of cloud fraction
across altitudes, and redistribution across optical thicknesses
with warming, assuming the other components are held cons-
tant (Zelinka et al. 2012b). In addition to decomposition by
physical process, cloud feedbacks are often separated by their
prevalence at different altitudes. For example, the low cloud
amount feedback has garnered significant attention because
its magnitude and sign vary among global climate models
(GCMs) and it contributes the most variance to the global
cloud feedback (Bony and Dufresne 2005; Caldwell et al.
2016; Zelinka et al. 2016) despite the general consensus that
its value is positive (Ceppi et al. 2017; Sherwood et al. 2020).

Although low cloud feedbacks are highly variable, high
cloud feedbacks also exhibit substantial intermodel spread.
For example, using cloud radiative kernels, Zelinka et al. (2022)
found that the high cloud altitude feedback has the largest num-
ber of models that fall outside of the expert-assessed ranges pub-
lished by Sherwood et al. (2020), which serve as a best estimate
of feedback values by combining historical data, the paleoclimate
record, and current process understanding in a Bayesian frame-
work. Tropical high clouds have risen in observations over the
last two decades (Richardson et al. 2022; Raghuraman et al.
2024) and have been shown to increase in altitude in response to
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interannual surface warming (Zhou et al. 2014; Zelinka and
Hartmann 2011). The decrease in cloud-top pressure (CTP) with
warming is grounded in physical theory first explained by
Hartmann and Larson (2002). They put forth the fixed anvil tem-
perature (FAT) hypothesis, which argues that convective detrain-
ment preferentially occurs at a fixed temperature that coincides
with the temperature at which the efficacy of clear-sky radiative
cooling by water vapor declines. This implies that cloud tops
should remain at the same temperature under climate change,
maintaining a constant longwave emission to space despite rising
surface temperatures, which results in a positive feedback.
This argument was later modified by Zelinka and Hartmann
(2010), who proposed the proportionally higher anvil tempera-
ture (PHAT) hypothesis. They argue that an increase in upper-
tropospheric static stability under warming results in a slight
warming of cloud tops as they rise but less than the magnitude of
the surface. The combination of observational evidence and sup-
port from theory has led to a consensus that the high cloud alti-
tude feedback is robustly positive (Zelinka et al. 2016; Ceppi
et al. 2017), and CMIP6 models accurately reflect this (Zelinka
et al. 2022). However, the magnitude of the altitude feedback
varies significantly among models despite a solid comprehension
of its underlying mechanisms, suggesting that further work is
needed to understand the source of its intermodel variability.

In addition to the high cloud altitude feedback, Zelinka
et al. (2022) conclude that tropical anvil cloud feedbacks re-
main uncertain, finding that 8 out of 19 GCMs produce values
above the expert-assessed value noted in Sherwood et al.
(2020). Reduction in anvil cloud fraction under warming has
been supported by thermodynamic arguments first referred to
as an “Iris Feedback” by Lindzen et al. (2001). They postulate
that high clouds in the tropics contract with surface warming
due to enhanced precipitation efficiency, which acts as an
adaptive mechanism to allow for enhanced longwave cooling.
Later, Zelinka and Hartmann (2010) and Bony et al. (2016)
formed the “Stability Iris” hypothesis, which argues that in-
creased upper-tropospheric static stability reduces convective
outflow, resulting in a reduction in high cloud fraction at the
altitude of peak high cloud coverage. While observations indi-
cate that high clouds reduce with warming (Saint-Lu et al.
2020; Su et al. 2017; Liu et al. 2017), idealized modeling stud-
ies show mixed results (Cronin and Wing 2017; Wing et al.
2020; Ohno et al. 2019), and several recent studies infer a
near-neutral high cloud amount feedback (McKim et al. 2024;
Chao et al. 2024). Furthermore, factors such as model resolu-
tion (Jeevanjee and Zhou 2022), sensitivity of cloud lifetime
to warming (Seeley et al. 2019; Beydoun et al. 2021), and in-
termodel variability in changes to ascent area (Su et al. 2017;
Schiro et al. 2019) contribute to the intermodel spread of the
response of tropical anvil cloud extent to warming across
models, complicating the analysis of the iris feedback among
GCMs. Additionally, because the radiative effect of tropical
high clouds varies significantly across clouds of different opti-
cal thicknesses, changes in the relative abundance of tropical
high clouds across different opacities under warming can also
contribute to the anvil feedback. While there is observational
evidence that cirrus fraction reduces with interannual warm-
ing in the tropical western Pacific (Choi et al. 2017), the sign

of the anvil optical depth feedback remains inconclusive
(Gasparini et al. 2021; Sokol et al. 2024; Zelinka et al. 2022),
with limited analysis of the optical depth feedback across
GCMs (as also pointed out by Ceppi et al. 2017) and a lack
of theoretical support unlike the high cloud altitude and
amount feedbacks. Thus, despite improved understanding
of models’ representation of the climate system and the de-
velopment of physical theories, persistent uncertainty exists
around tropical high cloud feedbacks in GCMs.

Analyzing relationships between the intermodel spread in
climate sensitivity and present-day climate variability, or vari-
ability in mean state characteristics across models, can be a
powerful tool to constrain the spread of equilibrium climate
sensitivity, the long-term global mean change in surface tem-
perature following a doubling of CO2, through an emergent
constraint framework (Klein and Hall 2015). Several mean
parameters related to tropical clouds have been highlighted
for their relationship to climate sensitivity, including relative
cloud fraction between the tropics and midlatitudes (Volodin
2008) and tropical cloud albedo (Siler et al. 2018). Character-
istics of tropical boundary layer clouds have been a particular
area of interest for establishing connections between mean
state parameters and ECS (Zhai et al. 2015; Brient et al. 2016;
Brient and Schneider 2016). However, Po-Chedley et al.
(2019) highlight a relationship between changes in tropical
upper-tropospheric cloud fraction and model climatology,
successfully predicting the rise of high clouds in the tropics
from the mean state cloud field assuming that clouds track
with isotherms and that warming in the tropics follows a dilute
moist adiabat. This finding suggests that mean state tropical
high cloud fraction relates to the behavior of high clouds un-
der warming, which produce cloud feedbacks. Thus, further
analysis of how climatological high cloud fields in the tropics
relate to high cloud feedbacks and the resulting intermodel
spread in climate sensitivity presents an opportunity to ex-
pand on the existing emergent constraint literature.

This paper aims to explore whether a relationship exists be-
tween the intermodel spread in tropical high cloud feedbacks
and the intermodel spread in climate sensitivity. We use the
cloud radiative kernel technique of Zelinka et al. (2012a,
2013) to visualize cloud feedback components across different
cloud types and isolate differences between relatively high
and low ECS models across our ensemble. We conclude by
examining differences in mean state high cloud characteristics
across models as they may relate to the intermodel spread in
high cloud feedbacks.

2. Methods

We analyze output from 22 models from the CMIP5 (8 models)
and CMIP6 (14 models) model ensembles. Models were cho-
sen based on availability of variables necessary for the appli-
cation of the cloud radiative kernels of Zelinka et al. (2012a).
We chose 22 models that provided necessary output for years
1–10 and 131–140 of the abrupt-4xCO2 runs. To remove the
effects of cloud rapid adjustments from our feedback calcula-
tion and isolate temperature-mediated changes to clouds, we
choose to compute feedbacks relative to years 1–10 of the
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abrupt-4xCO2 experiment. Hereafter, years 1–10 of the
abrupt-4xCO2 experiment will be referred to as the “control”
run and years 131–140 will be referred to as the “perturbed”
run. To characterize mean state high cloud fraction, we uti-
lize output from piControl for 17 models and piClim-Control
for five additional models as was done in Zelinka et al.
(2022), averaging from years 121 to 130 for piControl runs or
from the closest available 10-yr period and years 21–30 for
the piClim-control runs.

The radiative kernel computations utilize the cloud fraction
variable clisccp produced by the International Satellite Cloud
Climatology Project (ISCCP) simulator run inline with model
experiments (Klein and Jakob 1999). The ISCCP simulator
applies a cloud detection algorithm that considers only radia-
tively relevant cloud coverage in terms of top-of-atmosphere
fluxes, eliminating issues of intermodel differences in cloud
overlap assumptions (Zelinka et al. 2012a). The clisccp vari-
able yields a cloud fraction matrix representing 49 cloud types
in CTP–optical depth t space across seven discretized CTP
categories and seven t groups. The use of this metric of cloud
fraction allows for decomposition of mean state cloud fraction
and radiative feedbacks into specific cloud types rather than
reporting a bulk quantity.

Normalized cloud fraction anomaly matrices were pro-
duced by subtracting the control run clisccp matrix from the
perturbed run clisccpmatrix and normalizing by the global av-
erage change in surface temperature dTs following interpola-
tion to a common 28 3 2.58 grid. We computed longwave and
shortwave feedbacks by multiplying the normalized cloud
fraction anomaly histograms by the cloud radiative kernels
from Zelinka et al. (2012a), mapping the kernels to the corre-
sponding latitude and surface albedo at each grid point. The
net cloud feedback was calculated as the sum of the longwave
and shortwave cloud feedback histograms. Each bin of the ra-
diative kernels represents the radiative effect in W m22 result-
ing from a percent increase in cloud fraction of that cloud
type. As a result, this computation produces the radiative im-
pact of a change in a particular cloud type between the con-
trol and perturbed scenarios.

We further decompose the total cloud feedback into cloud
amount, altitude, and optical depth feedbacks using the meth-
ods of Zelinka et al. (2013). The cloud feedback decomposi-
tion was performed by dividing the cloud fraction anomaly
histograms into two components and the radiative kernel into
four components, yielding a four-term decomposition of the
net cloud feedback into the cloud amount, altitude, and opti-
cal depth feedbacks in addition to a residual term. We per-
form this computation separately for the clouds higher than
680 hPa and lower than 680 hPa, represented by the five rows
of lowest pressure and the two rows of highest pressure of the
cloud fraction matrix as was done by Zelinka et al. (2016).
This division separates free tropospheric from boundary layer
clouds, allowing for their feedbacks to be computed sepa-
rately and devoid of unrealistic influence from the other cloud
grouping. Due to the anomalous assignment of partly cloudy
pixels to low optical depth bins by the ISCCP product (Pincus
et al. 2012), we choose to consider only clouds of optical
depths 0.3 , t , 380.

We analyze the net high cloud feedback, high cloud altitude
feedback, high cloud optical depth feedback, and the high
cloud amount feedback. We consider tropical mean correla-
tions between each cloud feedback component and ECS in
addition to the spatial distribution of the correlation between
values of the cloud feedbacks at each grid box and ECS. The
net feedback, which in part determines the magnitude of
climate sensitivity, is traditionally decomposed into Planck,
water vapor, lapse rate, albedo, and cloud feedback terms
(Caldwell et al. 2016). Thus, while all cloud feedback compo-
nents contribute to the net feedback as summed parts, cloud
feedback components may be correlated or anticorrelated
with ECS. Due to the causal relationship between the cloud
feedback magnitude and ECS, we interpret a positive correla-
tion between a cloud feedback component and ECS as indica-
tion that the intermodel spread in the cloud feedback is
driving intermodel variability in ECS; an anticorrelation be-
tween a cloud feedback component and ECS suggests that,
while serving as a portion of net feedback, the variability in
the cloud feedback component among models is not strongly
influencing the intermodel spread in ECS. This isolates partic-
ular cloud feedback components and regions as the most im-
portant for determining the magnitude of ECS and highlights
opportunities for constraint.

To analyze the differences in cloud feedbacks and mean
state cloud fraction between high and low ECS models, the
ensemble was divided into high and low ECS groups and
averages were taken across the highest seven and lowest
seven models falling into these categories, respectively, corre-
sponding to ECS values of$4.7 and#3.7 K. ECS values were
taken from Zelinka et al. (2020) or calculated using the stan-
dard Gregory method (Gregory et al. 2004) when not avail-
able. We analyze mean state cloud fraction across thick, thin,
and total high cloud fraction. Here, we define high cloud frac-
tion and high cloud feedbacks as the lowest five pressure bins
of the ISCCP matrix, representing the region from 680 to
50 hPa. Feedbacks are scaled by their fractional coverage of
Earth’s surface. Thick high cloud fraction is treated as the
sum of high clouds in the highest three optical depth bins
(9.4 , t , 380), thin high cloud fraction is defined as high
clouds in the lowest three optical depth bins (0.3 , t , 9.4),
and total high cloud fraction is the sum across all six optical
depth categories (0.3 , t , 380). Finally, when considering
feedbacks and mean state cloud characteristics across differ-
ent dynamical regimes, we consider tropical ascent regions
to be where vertical pressure velocity at 500 hPa (v500) is less
than 0 hPa day21 and descent regions as v500 . 0 hPa day21.

3. Results

a. High cloud feedbacks

To analyze the relationship between the tropical net high
cloud feedback and climate sensitivity, we correlate the net
high cloud feedback with ECS at each grid box across the
tropics (Fig. 1a) and tropics-wide (Fig. 1b), yielding strongly
positive, statistically significant relationships throughout much
of the tropics, especially outside of areas of strongest ascent.
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The strongest positive correlations exist in areas of climatolog-
ical descent, such as in the eastern equatorial Pacific. Correlat-
ing the net high cloud feedback constrained to each model’s
control run descent region and ECS yields a coefficient of
R 5 0.71 (Fig. S1b in the online supplemental material).
Within areas of deep convection, where climatological abun-
dance of high clouds is greatest, the net high cloud feedback is
more weakly correlated or anticorrelated with ECS (Fig. 1a),
albeit the tropics-wide ascent region correlation is R 5 0.53
(Fig. S1a). These results suggest that high cloud feedbacks
on convective margins and in areas of climatological descent
are more strongly related to the magnitude of simulated
warming within a model than high cloud feedbacks in the
deep tropics.

Next, we decompose the tropical mean net high cloud feed-
back into its amount, altitude, and optical depth components
and correlate these feedbacks with ECS (Fig. 2). The total
high cloud altitude feedback is positively correlated with ECS
(R 5 0.55; Fig. 2a). The high cloud altitude feedback is ex-
pected to be robustly positive based on physical arguments
posited by the FAT hypothesis (Hartmann and Larson 2002)
and the PHAT hypothesis (Zelinka and Hartmann 2010) in
addition to observations (Zelinka and Hartmann 2011; Xu
et al. 2007) and evidence from GCMs that show an increase in
high cloud altitude under warming (Bony et al. 2016; Zelinka
and Hartmann 2010). Zelinka et al. (2022) confirm this in
GCMs, finding that the global mean high cloud altitude

feedback is either positive or near zero across an ensemble of
19 models. In line with these results, we find that the tropical
mean high cloud altitude feedback is positive in 20 models
and near zero in the remaining two models. Of greatest signif-
icance to our analysis is the significant positive correlation
shown here, which suggests that the spread of the tropical
high cloud altitude feedback is a nontrivial driver of the inter-
model variability in climate sensitivity.

The high cloud optical depth feedback is also positively cor-
related with ECS (R5 0.54; Fig. 2b), with 10 out of 22 models
exhibiting a positive high cloud optical depth feedback corre-
sponding to a net thinning of high clouds with warming.
Increases in upper-tropospheric stability (Bony et al. 2016;
Zelinka and Hartmann 2010) and a reduction in convective
mass flux (Hartmann 2016) in GCMs under warming have been
linked to a loss of anvil coverage. However, these arguments do
not address the potential changes in the distribution of high
clouds across different optical depths as they reduce in spatial ex-
tent. The disagreement in the ensemble on the sign of the high
cloud optical depth feedback aligns with the uncertainty of
the net radiative impact of changing high cloud opacity in
GCMs that has been noted only in recent studies of inter-
model variability of the optical depth feedback (Zelinka
et al. 2022; Sokol et al. 2024).

The high cloud amount feedback is uncorrelated with ECS
in the tropical mean (R 5 0.14; Fig. 2c). This weak relation-
ship suggests that variability in the tropical high cloud amount

FIG. 1. (a) Spatial correlation of the local net high cloud feedback and ECS. The multimodel
mean control experiment v500 5 0 hPa day21 contour is depicted by the thick black line. Signifi-
cance at a 5 0.05 is indicated by stippling. (b) Tropical mean relationship between the net high
cloud feedback and ECS. The Pearson correlation coefficient is in bold, and statistical signifi-
cance at a 5 0.05 is indicated by an asterisk. Models are listed in order of increasing ECS.
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feedback is not a primary driver of intermodel spread in cli-
mate sensitivity. We find that 15 models have a positive
amount feedback, of which 11 show a net loss of tropical
high clouds with warming (not shown). Additionally, we
note that the range of the amount feedbacks across models
is smaller than the range of values produced by the high
cloud altitude and optical depth feedbacks, with many mod-
els clustering around 0 W m22 K21. This is not surprising
given that anvils have an approximately neutral radiative ef-
fect resulting from the cancellation between the large posi-
tive longwave and negative shortwave radiative effects of
thin and thick clouds (Hartmann and Berry 2017). More-
over, recent observational results show a near-zero radiative
effect from the contraction of high clouds (Raghuraman
et al. 2024; McKim et al. 2024).

In summary, we find that the tropical mean net high cloud
feedback is strongly correlated with climate sensitivity, arising
from significant tropical mean correlations between the high
cloud altitude feedback and high cloud optical depth feedback
and ECS. Additionally, the net high cloud feedback relation-
ship to ECS is strongest outside of the deep tropics. Next, we
consider the correlation between the high cloud altitude, opti-
cal depth, and amount feedbacks with ECS in space to identify
regions contributing to the tropical mean relationships of each
feedback component.

1) HIGH CLOUD ALTITUDE FEEDBACK

We correlate the high cloud altitude feedback at each grid
box with ECS (Fig. 3a) to identify the areas that drive the
tropical mean relationship (Fig. 2a). The spatial pattern of the
correlation of the high cloud altitude feedback to ECS mimics

the correlation pattern of the net high cloud feedback with
ECS (Fig. 1a), albeit with some variations. Similar to the net
high cloud feedback, the high cloud altitude feedback is corre-
lated with ECS on convective margins and in areas of climato-
logical descent and anticorrelated or uncorrelated with ECS
across the areas of strongest ascent, particularly equatorial
land regions. The exception to this pattern is the Maritime
Continent and warm pool region, where the high cloud alti-
tude feedback exhibits broad, modest correlations with ECS
extending to the central and eastern Pacific. The high cloud
altitude feedback composited for the seven highest ECS mod-
els (Fig. 3b) demonstrates positive high cloud altitude feed-
backs across most of the tropics with the largest magnitude in
the Pacific ITCZ, Congo, andWest Africa regions. In contrast,
the high cloud altitude feedback composited for the seven lowest
ECSmodels (Fig. 3c) shows strong, positivehigh cloudaltitude feed-
backs that are limited to the deep convective regions of the ITCZ,
Congo, and West Africa. Additionally, the low ECS composite
yields modest negative high cloud altitude feedbacks in Pacific de-
scent regions. We subtract the low ECS composite from the high
composite to assess where the high cloud altitude feedback differs
themost between the two groups (Fig. S2b). The central and eastern
Pacific display the greatest relative difference in the high cloud alti-
tude feedback between the composites (red shading), as is also
shown for the net high cloud feedback (Fig. S2a), confirming that
the local correlations in these areas previously highlighted are
the main contributors to the tropical mean relationship to ECS.
Further reflecting this spatial pattern, the descent region corre-
lation between the high cloud altitude feedback and ECS is
stronger (R5 0.63; Fig. S1d) than the ascent region correlation
(R 5 0.50; Fig. S1c), though both are statistically significant.

FIG. 2. As in Fig. 1b, but for tropical mean relationships between the (a) net high cloud altitude feedback, (b) net
high cloud optical depth feedback, and (c) net high cloud amount feedback and ECS. The Pearson correlation coeffi-
cient is in bold, and statistical significance at a 5 0.05 is indicated by an asterisk.
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Maps of the high cloud altitude feedback for all 22 models, in
order of increasing ECS, are displayed in Fig. S3.

2) HIGH CLOUD OPTICAL DEPTH FEEDBACK

Similar to the net high cloud feedback, the high cloud opti-
cal depth feedback is correlated with ECS on convective mar-
gins and in areas of climatological descent and anticorrelated
or uncorrelated with ECS across the areas of strongest ascent
(Fig. 4a). Local correlations of the optical depth feedback to

ECS are weaker than the net high cloud feedback correlations
to ECS, but they have a similar spatial arrangement. This pat-
tern suggests that variability in changes to the opacity of clouds
in the deep tropics under warming is a weaker driver of the
spread in climate sensitivity than changes to high cloud thickness
outside of ascent regions. While the deepest convective cores are
found in observations primarily across tropical South America,
Africa, and the Maritime Continent (Houze et al. 2015), thinner
high clouds are spread more ubiquitously across the tropics
(Sassen et al. 2009), which is reflected by the multimodel

FIG. 4. As in Fig. 3, but for the high cloud optical depth feedback.

FIG. 3. (a) As in Fig. 1a, but for the spatial correlation of the local net high cloud altitude feed-
back and ECS. The multimodel mean control experiment v500 5 0 hPa day21 contour is de-
picted by the thick black line. Significance at a 5 0.05 is indicated by stippling. (b),(c) High cloud
altitude feedback for the (b) high ECS ($4.7 K) group and (c) low ECS (#3.7 K) group.
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mean climatological distribution of high cloud opacity of
our ensemble (Fig. S4). Thus, we hypothesize that changes
to anvils extending away from areas of deep convection or
isolated thin cirrus are primarily responsible for the overall
correlation between the tropical high cloud optical depth
feedback and climate sensitivity. This inference aligns with
the conclusions of Sokol et al. (2024), who argue that the
uncertainty in the net radiative effect of changes to anvils
under warming comes primarily from changes to thin high
cloud opacity in cloud-resolving models. Comparing the high
and low ECS composite maps (Figs. 4b,c) shows that both sets of
models experience a net thinning of high clouds along the Pacific
ITCZ and equatorial Africa and South America (red shading).
High ECS models experience a weaker and less extensive thick-
ening of high clouds (blue shading) along the equatorial Pacific
and Atlantic than low ECS models, which produces the greatest
relative difference in the optical depth feedback between the
composited groups (Fig. S2c). As with the high cloud altitude
feedback, this yields a stronger correlation between the descent
region high cloud optical depth feedback and ECS (R 5 0.64;
Fig. S1f) than the ascent region high cloud optical depth feed-
back and ECS (R 5 0.44; Fig. S1e). Additionally, we note that
the spatial pattern of the high cloud altitude feedback composite
maps qualitatively matches the pattern of the high cloud optical
depth feedback composite maps, which is reflected by significant
positive correlations between the two feedbacks across the
tropics (Fig. S5). This aligns with the findings of Zelinka et al.
(2022), who suggest that a common mechanism may be driving
the covariability of the cloud altitude and optical depth feed-
backs. Maps of the high cloud optical depth feedback for all
22 models are shown in Fig. S6.

3) HIGH CLOUD AMOUNT FEEDBACK

Finally, we consider the spatial arrangement of the correla-
tion between the local high cloud amount feedback and ECS

(Fig. 5a). The spatial pattern of the correlations between the
high cloud amount feedback and ECS qualitatively mimics
the patterns previously shown for the relationships of the net
high cloud feedback, high cloud optical depth feedback, and
high cloud altitude feedback with ECS. Generally, ascent
regions are dominated by anticorrelations while convective
margins or descent regions display correlations, though the
strength of the relationships is weak, and the ascent region
correlations are more negative here for the amount feedback
than the other feedbacks. We gather that the opposing signs
in ascent and descent regions contribute to the tropical mean
high cloud amount feedback being weakly correlated with
ECS (Fig. 2c).

Comparing the high and low ECS composite maps (Figs. 5b,c)
shows that both groups of models generally see a positive high
cloud amount feedback in ascent regions, corresponding to
a net loss of high clouds in the deep tropics with warming
(Fig. S7). Given that deep convective clouds have a high al-
bedo, resulting in a negative cloud radiative effect, the anticor-
relations in ascent regions suggest that high ECS models tend
to see a lesser decrease in high cloud amount under warming
in deep convective zones than low ECS models. Additionally,
both groups of models see a negative high cloud amount feed-
back across descent regions; correlations in these areas can be
interpreted as a greater increase in high cloud amount with
warming for low ECS models than high ECS models (Fig. S7).
We caveat these conclusions by noting that neither the ascent
region correlation (R 5 20.24; Fig. S1g) nor the descent re-
gion correlation (R 5 0.44; Fig. S1h) is particularly strong.
Maps of the high cloud amount feedback for all 22 models are
shown in Fig. S8.

In summary, our analysis suggests that variability in tropical
high cloud feedbacks is significantly related to the spread in
climate sensitivity, especially outside of regions of strongest
climatological ascent. The high cloud altitude and optical

FIG. 5. As in Fig. 3, but for the high cloud amount feedback.
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depth feedbacks contribute most strongly to this relationship.
Next, we analyze how mean tropical high cloud characteristics
vary with climate sensitivity and tropical high cloud feedbacks
to evaluate the potential for mean state cloud fraction to ob-
servationally constrain the feedbacks.

b. Mean state relationships

Su et al. (2014) suggest that high ECS models have higher
mean state high cloud fraction than low ECS models. Since
we found robust correlations between high cloud feedbacks
and ECS, we therefore test whether the intermodel spread in
mean state high cloud characteristics relates to the intermodel
spread in high cloud feedbacks. To assess differences in mean
state tropical high cloud fraction among models, we compare
high cloud fraction averaged from 308N to 308S and condition-
ally sampled on vertical pressure velocity at 500 hPa (v500)
and pressure using output from the cl variable (Fig. 6a) from
the piControl/piClim-control experiments. Here, the models
with the highest seven ECS values ($4.7 K) and the models
with the lowest seven ECS values (#3.7 K) are averaged into

groups, and the composited conditional sampling plots are dif-
ferenced. Both groups see a maximum of high cloud fraction
around 200 hPa (Fig. S9), which corresponds roughly to the
level of maximum detrainment (Hartmann and Larson 2002;
Zelinka and Hartmann 2011). The high ECS composite demon-
strates greater high cloud coverage in the upper troposphere
in areas of ascent, particularly between 400 and 100 hPa.
We also assess the difference in mean state tropical high
cloud fraction in CTP–t space by differencing the average
piControl/piClim-control experiment cloud fraction histo-
grams between the high and low ECS groups using output
from the clisccp variable (Fig. 6b). While high ECS models
have fewer thin high clouds than low ECS models in the
180–50 hPa bin, in sum, they exhibit greater thin high cloud
fraction while low ECS models have greater thick high
cloud fraction.

To understand how these mean state high cloud relation-
ships arrange across the tropics, we visualize the spatial corre-
lations between high cloud fraction and ECS. Thin high cloud
fraction is significantly correlated with ECS in areas of strong
ascent, such as the Maritime Continent, ITCZ, Amazon,
West Africa, and Congo (Fig. 7a). This yields a correlation of
R 5 0.50 across areas of ascent (Fig. S10). In contrast, thick
high cloud fraction is significantly anticorrelated to ECS
across both areas of ascent and descent (Fig. 7b), producing a
tropical mean correlation of R 5 20.60 (Fig. S11). To con-
sider mean high cloud opacity separate from high cloud
amount, we combine thick and thin high cloud fraction by tak-
ing the ratio of thick to thin high cloud fraction and correlat-
ing it with ECS (Fig. 7c), with a higher ratio signifying thicker
high clouds. The tropical mean ratio of thick to thin high cloud
fraction is significantly anticorrelated to ECS, with a correla-
tion coefficient of R5 20.63 (Fig. S12), albeit this relationship
is influenced strongly by three MIROC models with low ECS
values clustering together. This result suggests that high ECS
models tend to have thinner high clouds with respect to low
ECS models. Anticorrelations are strongest in areas of deep
convection (Fig. 7c), but significant relationships extend across
broad descent regions.

FIG. 6. (a) Difference of composited piControl/piClim-control
experiment tropical mean (308N–308S) cloud fraction conditionally
averaged on pressure and v500 between the high ECS ($4.7 K)
and low ECS (#3.7 K) groups from the cl output. (b) Difference in
piControl/piClim-control experiment cloud fraction histograms be-
tween the high ECS and the low ECS groups from the clisccp out-
put. Only the free tropospheric (680–50 hPa) portion of the histo-
gram is shown.

FIG. 7. As in Fig. 1a, but for (a) mean state thin HCF and ECS,
(b) mean state thick HCF and ECS, and (c) mean state ratio of
thick to thin HCF and ECS.
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Having assessed the relationship between mean state high
cloud characteristics and climate sensitivity, we next analyze
connections between mean state high cloud fraction and the
tropical high cloud feedbacks to see if climatological high
clouds may mechanistically relate to ECS. First, we analyze
ways in which the tropical high cloud altitude feedback is cor-
related with mean state variables. Ceppi et al. (2017) sug-
gested that the high cloud altitude feedback might be related
to free tropospheric cloud fraction, though this was beyond
the scope of their review. To assess this hypothesis, we corre-
late cloud fraction between 680 and 180 hPa with the high
cloud altitude feedback (Fig. 8). Because of the discretization
of altitude bins using cloud fraction output from the ISCCP
simulator, mean state clouds in the lowest pressure category
(180–50 hPa) cannot rise to a lower pressure, so we exclude
them from our quantification of mean state high cloud frac-
tion and instead sum cloud fraction in the four pressure bins
below it (680–560, 560–440, 440–310, and 310–180 hPa). Posi-
tive correlations between high cloud fraction and the altitude
feedback are found in areas of deep convection such as the
Amazon, equatorial Africa, and the Maritime Continent.
However, these correlations are not ubiquitous across areas
of ascent and are also found in subsidence regions such as the
subtropical North and South Pacific basins.

Therefore, our results provide support for a relationship be-
tween mean high cloud fraction and the altitude feedback, yet
this relationship is not ubiquitous throughout the tropics.
Hints of this result have also been suggested in two recent
studies. Findings from Po-Chedley et al. (2019) demonstrate
that the rise of high clouds in GCMs can be predicted from a
model’s climatology, similarly suggesting that a component of
the altitude feedback is related to the climatological distribu-
tion of cloud fields across altitudes. Although not explicitly
computing an altitude feedback, Zelinka et al. (2022) provide
additional support for this mean state relationship by showing
that weather regimes dominated by high clouds see a more
pronounced increase in cloud altitude under warming in com-
parison to regimes dominated by other cloud types. Although
we find that high cloud amount correlates well with the alti-
tude feedback in some deep convective areas, this does not
fully explain the altitude feedback relationship to climate sen-
sitivity, which we identified as being strongest across the cen-
tral and eastern Pacific (Fig. 3). As a result, we suspect that
other factors are acting as additional drivers of intermodel
variability. Tropical upper-tropospheric warming has been
shown to vary significantly across models (Mitchell et al. 2020;
Keil et al. 2021), so some of the unexplained variability in our
results may be related to differences in the degree of upward

shifting of high clouds, as is suggested by Ceppi et al. (2017).
Different representations of cloud microphysics may be play-
ing an additional role, but analysis of this contribution is be-
yond the scope of this work.

As with the high cloud altitude feedback, we consider ways
in which the high cloud amount and optical depth feedbacks
may be related to mean state variables. We find a relationship
between mean state high cloud opacity and the high cloud
amount feedback, though this relationship varies between re-
gimes of ascent and descent (Fig. 9). In areas of deep convec-
tion, the ratio of thick to thin high clouds is positively
correlated with the high cloud amount feedback. We interpret
this as models that simulate thicker high clouds in the mean
state demonstrating a greater loss of high clouds under warm-
ing. This pattern flips outside of deep convective regions.
While the strength of the correlations between the high cloud
amount feedback and ECS (Fig. 5a) is weaker than the
strength of the correlations between mean high cloud opacity
and the high cloud amount feedback (Fig. 9), the spatial ar-
rangement of the patterns roughly aligns. These results point
to mean high cloud opacity as a potential modulator of the
high cloud amount feedback wherein models with thicker
high clouds in areas of climatological descent see a greater in-
crease in high cloud amount under warming, which is mod-
estly associated with lower climate sensitivity within our
ensemble.

We speculate that different mechanisms may be driving the
opposing relationships between the high cloud amount feed-
back and ratio of thick to thin high clouds across areas of as-
cent and descent. Hartmann et al. (2001) propose that a
feedback process acts to maintain similar net radiation values
between clear and cloudy areas in the tropics. They posit that
cloud albedo and convective intensity are sensitive to changes
in large-scale circulation such that a convective region with a
positive radiative imbalance will experience enhanced convec-
tion and an increase in cloud opacity, thus reducing sea sur-
face temperature (SST) gradients through a “cloud shading
feedback” (Wall et al. 2019). To elaborate and place our re-
sults in the context of this purported cloud shading feedback,
thin cirrus and anvils have a smaller shortwave effect than
thicker high clouds (Ramanathan et al. 1989; Zelinka et al.
2012a; Hartmann and Berry 2017), allowing more incident ra-
diation to reach the surface. Thus, alongside the expectations
that tropical high clouds will decrease (Zelinka and Hartmann
2010; Bony et al. 2016) and the atmospheric overturning circu-
lation will weaken under warming (Held and Soden 2006),
the cloud shading feedback suggests that GCMs with thinner
mean state high cloud fraction would experience enhanced

FIG. 8. Spatial correlation of 680–180 hPa cloud fraction and the
total high cloud altitude feedback. The multimodel mean control
experiment v500 5 0 hPa day21 contour is depicted by the thick
black line. Significance at a 5 0.05 is indicated by stippling.

FIG. 9. Spatial correlation of ratio of mean state thick HCF to thin
HCF and the total high cloud amount feedback. The multimodel
mean control experiment v500 5 0 hPa day21 contour is depicted by
the thick black line. Significance at a 5 0.05 is indicated by stippling.
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convection and a greater increase in local sea surface temper-
atures relative to models with a thicker cloud population
through decreased stability and enhanced moisture conver-
gence. This could mechanistically explain why thinner mean
state high clouds in ascent regions are associated with a more
negative high cloud amount feedback. Or, said another way,
having thicker mean state high clouds would shade the surface
more in a given model, muting local sea surface temperature
increases and leading to a greater loss of high cloud amount
in ascent regions (less detrainment from deep convection)
with greenhouse gas warming compared with having thinner
mean state high clouds. Wall and Hartmann (2018) argue that
the cloud shading feedback could plausibly be represented by
climate models given that it is constructed on mass and energy
balance arguments that affect the cloud radiative effect on
broad spatial scales, so we see it as applicable for understand-
ing feedbacks within our ensemble. We additionally test the
application of the cloud shading feedback to the high cloud
optical depth feedback with the expectation that models with
thinner high clouds in ascent regions would produce a more
negative high cloud optical depth feedback (Fig. S13). How-
ever, we do not see significant correlations across tropical as-
cent regions as would be expected. We can also see that the
cloud shading hypothesis would not apply for descent regions,
as the thick to thin ratio is anticorrelated with the cloud
amount feedback in these regions (Fig. 9). While we do not
currently have an explanation for the descent region anticor-
relation, we conjecture that the amount feedback in ascent
versus descent regions is affected by different physical changes
to the tropical atmosphere (e.g., convective vs microphysical).

Table 1 summarizes the tropical mean high cloud altitude,
optical depth, and amount feedback correlations with mean
state total high cloud fraction, thick high cloud fraction, thin
high cloud fraction, and the ratio of thick to thin high cloud
fraction. In general, if a model has more thin high clouds}and
a greater proportion of thin high clouds}in the mean state, it
will have more positive altitude and optical depth feedbacks
than a model with fewer thin high clouds. This helps to explain
our result shown in Fig. 6. Having more high clouds, whether
thick or thin, would reasonably lead to a greater high cloud
altitude feedback, yet it is unclear why a greater proportion of
thin high clouds (compared to thick) would yield a more posi-
tive altitude feedback. Similarly, it is unclear exactly why a
greater proportion of thin high clouds would yield a more pos-
itive optical depth feedback. Moreover, while the correlations
between the amount feedback and the mean state high cloud
characteristics are small in the tropical mean, recall that the
local correlations can be quite large (Fig. 9), though the oppos-
ing signs of the responses in ascent vs descent regions likely

explain the insignificance of the tropical mean relationships.
Finally, we note that the altitude and total tropical mean state
high cloud fraction (HCF) correlation, as well as the amount
and total tropical mean state HCF correlation, are significantly
correlated, yet the correlation is driven strongly by the two
IPSL-CM6A-LR models, and thus we do not consider them to
be robust.

We suspect that a nontrivial amount of the spread in mean
state high cloud characteristics and the high cloud feedbacks
come from the varied convective and microphysics parameter-
ization schemes employed across the ensemble. While deep
convection has a strong influence on thick high cloud fraction
in areas of strong ascent, cirrus formation is also related to
convection, with observations suggesting that half of tropical
cirrus are formed from convective detrainment (Luo and
Rossow 2004). Convective processes may influence the fre-
quency of occurrence of thin high clouds, including both anvil
cirrus and tropical tropopause layer (TTL) cirrus through
mechanisms such as convective aggregation (Wing and Cronin
2016), convective detrainment (Bony et al. 2016), and entrain-
ment of air into a convective plume (Tsushima et al. 2020) in
the former and transportation of water vapor to high altitudes
in the latter (Ueyama et al. 2018). Thus, it is plausible that
varied convective parameterization schemes may even be
responsible for high cloud characteristics and their associated
changes beyond regions of strong ascent. For example, al-
though not explicitly evaluating changes to high cloud amount
in descent regions, Schiro et al. (2019) show that perturbing
convective (and microphysics) parameters across a perturbed
parameter ensemble (PPE) results in highly varied high cloud
climatologies and responses of tropical mean high cloud frac-
tion to interannual warming. Additionally, in their deep con-
vection PPE, they find that the change in high cloud fraction is
closely related to the magnitude of tropical ascent area fraction
reduction. It then follows that variation in convective parameters
across our ensemble could also create considerable spread in
cloud feedbacks through their effect on changes to the tropical
overturning circulation. In line with Schiro et al. (2022), we ob-
serve that low ECS models see a greater weakening of the atmo-
spheric overturning circulation than high ECS models in the
perturbed scenario (Fig. S14), which they associate with a smaller
decrease in tropical ascent area and lesser decrease in tropical
high cloud fraction with warming. To what extent changes to the
tropical overturning circulation relate to diversity in deep convec-
tive characteristics across ensemble members and how this re-
lates to high cloud feedbacks is, however, beyond the scope of
this study.

In addition to the representation of deep convection, recent
work has highlighted microphysical parameters and processes

TABLE 1. Tropical mean correlation coefficients between high cloud feedbacks (rows) and mean state high cloud quantities
(columns). Significance at a 5 0.05 is indicated by an asterisk.

Total HCF Thin HCF Thick HCF Thick:thin HCF

High cloud altitude feedback 0.53* 0.62* 0 20.53*
High cloud optical depth feedback 0.25 0.62* 20.45 20.76*
High cloud amount feedback 0.68* 0.59* 0.29 20.18
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such as ice autoconversion size threshold (Duffy et al. 2024),
cloud lifetime and decay (Seeley et al. 2019), and ice fall speed
and density (Schiro et al. 2019; Tsushima et al. 2020; Wang et al.
2020) as factors impacting anvil cloud fraction. Additionally, in-
termodel comparisons of global storm-resolving models}which
explicitly simulate convection but parameterize cloud microphy-
sics}find significantly variable cloud radiative effects of tropical
cirrus across microphysics schemes (Turbeville et al. 2022; Atlas
et al. 2024). Thus, we suspect that microphysics parameteriza-
tion diversity is a large driver of intermodel spread in mean
state high cloud characteristics and high cloud feedbacks, par-
ticularly in regions of large-scale descent. However, because it
is difficult to differentiate the effects of microphysical and
deep convective parameterizations in an intermodel compari-
son, we are limited to speculation in the absence of a compre-
hensive PPE ensemble and analysis aimed at addressing these
questions.

4. Conclusions

In this work, we conclude that the intermodel variability of
the tropical high cloud altitude and optical depth feedbacks
is related to the spread of equilibrium climate sensitivity at
the tropics-wide scale. Assessing the spatial correlations of the
tropical net high cloud feedback to ECS illustrates that the
strongest relationships exist outside of regions of deepest cli-
matological ascent, reflective of the relationship between ECS
and the diverse responses of anvils and thin cirrus extending
away from deep convective zones. The intermodel variability
of high cloud feedbacks in regions where optically thin high
clouds dominate has not been emphasized in the literature,
aside from recent work by Sokol et al. (2024) looking across
an ensemble of idealized convection permitting simulations,
but given the difficulty with which coarse models represent
cirrus (Sherwood et al. 2020; Gasparini et al. 2023) and the
multitude of factors previously highlighted that impact cirrus
amount and radiative properties in GCMs, our result is some-
what unsurprising.

We also assess the extent to which the intermodel variabil-
ity of climatological high cloud characteristics is related to the
spread of the high cloud feedbacks and ECS. As the feed-
backs can be decomposed into the product of the mean state
high cloud properties, change in high cloud properties, and
changes in radiative properties, we wonder to what extent the
mean state high cloud properties dominate the intermodel
spread in the feedbacks. We find that greater mean state high
cloud fraction is present in higher ECS models, though the
clouds are thinner: higher ECS models simulate greater thin
high cloud coverage across tropical ascent regions and fewer
thick high clouds broadly across the tropics. Finally, we high-
light significant positive correlations between thin, mean-
state, tropical mean high cloud amount and both the tropical
mean high cloud altitude and optical depth feedbacks.
Greater mean state cloudiness of any optical thickness would
be expected to amplify the altitude feedback, but it is less ob-
vious why greater thin high cloud fraction should amplify the
optical depth feedback. While we only consider correlations
between high cloud feedbacks and ECS, analysis of how high

cloud opacity could be linked to other changes in the atmo-
sphere that influence other feedback components that vary
strongly with ECS could be a direction for future work. Fi-
nally, no significant relationship exists between the mean state
high cloud amount and the high cloud amount feedback in
the tropical mean, yet we see significant positive local correla-
tions in ascent regions and significant negative local correla-
tions in descent regions. We hypothesize that a cloud shading
mechanism may be acting within ascent regions to drive these
positive correlations between the mean state cloud amount
and the amount feedback, whereas changes to cloud micro-
physics may be driving the relationship to be of opposite sign
in the descent regions.

Given the significant, positive correlations between the
tropical high cloud altitude and optical depth feedbacks and
ECS, in addition to the significant relationships between
mean state high cloud characteristics and these feedbacks
across our ensemble, we underscore these results as an oppor-
tunity to consider an emergent constraint. Disentangling the
underlying drivers of these correlations, whether that be cloud
microphysics schemes, deep convective parameterizations, ad-
ditional mean state parameters, or variability in the response
of other components of the modeled atmosphere to warming,
remains an important task. Solidifying a mechanistic under-
standing of the mean state relationships to the high cloud
feedbacks and climate sensitivity is a crucial step toward cre-
ating a new emergent constraint. Moreover, while spread in
modeled high cloud climatology could be contributing nontri-
vially and systematically to the spread in high cloud feed-
backs, as we presented here, additional factors that we did
not explore in this study are also likely contributors. These
factors may include intermodel variability in responses of
precipitation efficiency, the overturning circulation, convec-
tive organization, tropical tropospheric stability, and/or the
height of maximum detrainment to surface warming, which
may themselves provide opportunities for constraining high
cloud feedbacks.

Finally, we acknowledge the possibility that high cloud
feedbacks could be related to low cloud feedbacks, as high
and low cloud changes are likely to be coupled through
changes in tropospheric stability and the tropical overturning
circulation (Schiro et al. 2022). Thus, we also acknowledge
the nonzero likelihood that certain correlations with ECS pre-
sented here are influenced nontrivially by high cloud feedback
relationships to other cloud changes or atmospheric processes
that drive substantial spread in ECS. Nevertheless, we stress
the need to strongly consider tropical high cloud contributions,
particularly the high cloud altitude and optical depth feed-
backs, to the intermodel spread in ECS in efforts to constrain
future warming.
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