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Abstract

Solvated atomic ions such as alkaline metals and halides play critical roles in the regu-
lation of biological systems, environmental chemistry, and energy materials. This work
analyzes the many-body energies of water and atomic ions for non-additivities in each
term of an energy decomposition analysis (EDA). We then construct an advanced force
field which quantitatively reproduces each term of the EDA thereby enabling accuracy
and transferability. This is achieved through the introduction of new many-body mod-
els for polarization and charge transfer in the formulation of a very high quality water
force field, which generalizes to provide accurate dimer surfaces and three-body po-
larization and charge transfer for solvated alkali metal cations and halide anions. We

also utilize a new one-body potential that accounts for intramolecular polarization by



including an electric field-dependent correction to the Morse potential. This one-body
potential dramatically improves the accuracy of forces as well as spectroscopic signa-

tures for hydrogen-bonded O—H stretches.

Introduction

Force fields (FFs) are approximations to the quantum mechanical (QM) potential energy
surface, in which the model design goal is to predict structure, dynamics, and thermody-
namics of any molecular system. Although pairwise additive FFs remain popular due to
their insight and computational efficiency, they are inherently limited by their inability to
describe the inherent many-body contributions of the QM energy, thereby reducing their ac-
curacy in property predictions and transferability to new chemistry. For example, it has long
been appreciated that non-additive interactions are critical for describing hydrogen-bonded

1 and the many-body energy contributions for water interacting with

interactions in water,
ions is quite large, typically around 15% of the non-bonded energy, and the cooperativity
effects can be either stabilizing or destabilizing depending on ion type and binding motif.??
And yet many simulations involving ions or ionized molecules are carried out by treating the
ion as a scaled point charge with simple functional forms for dispersion and repulsion that
cannot describe such complexity.*®

Recently, there has been a paradigm shift in non-reactive many-body FF development by
combining energy decomposition analysis (EDA)%® with the many-body expansion (MBE)? !
to better control the accuracy and transferability of advanced FF models. The MBE of the

23,10 allows one to gain insights into how much non-additivity is present

non-bonded energy
in the QM energy (and forces), while the EDA decomposes the total energy (and forces) into
physically motivated contributions from pairwise additive terms such as electrostatics with
charge penetration and Pauli repulsion, and many-body contributions that arise from polar-
ization, charge transfer, and dispersion. For example, our recent many-body MB-UCB force

field for water!? and extensions to monovalent and divalent alkali metal and halide ions'3



describe ion-water interactions through a systematic buildup of 2- and 3-body interactions
whose molecular interactions are formulated using the ALMO-EDA energy decomposition
scheme.!* By reproducing the EDA term-by-term, we can ensure that the force field will
be transferable across the phase diagram of a homogeneous system and, ideally, to new
heterogenous systems.

The EDA approach to FF development also provides chemical insights in the relative
weights of particular energy terms, for instance, charge transfer versus polarization, and
better separation of the Pauli repulsion and dispersion energies. While many-body potentials
for water strive for higher accuracy, models such as AMOEBA+, HIPPO, MB-Pol, and
q-AQUA differ in their use of EDA, MBE, and most critically, their functional forms used
for the many-body energy and forces. Historically, there have been two main approaches
to including polarization in force fields: fluctuating charges'¢ and induced dipoles.'” There
have also been attempts to unify these approaches allowing for both charge rearrangements
and induced dipoles!® in order to also capture the charge transfer interaction.'® But with the

advent of variational EDA techniques, 192

it is now clear that the charge transfer energy
scales exponentially and hence cannot be modelled by fluctuating charges or induced dipole
models alone.

This work takes a large step forward in the construction of many-body force fields capable
of not just describing water, but handling very strong interactions such as those between
water and ions, which has remained elusive and is an open research problem dating back
decades. This is possible through the introduction of advanced functional forms for the
many-body polarization and charge transfer contributions, and the advancement of a one-
body potential that accounts for intramolecular polarization. In particular, we introduce a
combined fluctuating charge (FQ) and induced dipole model of electronic polarization that
couples to our model for many-body charge transfer (CT) that we will show better repro-

duces all terms from EDA, and allows for explicit forward and backward transfer of charge

between molecules. We also eliminate the need to treat intramolecular and intermolecular



polarization separately through a recently reported one-body potential,” further modified
by a field-dependent correction to the Morse potential, thereby dramatically improving the
accuracy of electrostatic and polarization forces. The resulting FQCT (fluctuating charges
and charge transfer) model shows excellent accuracy against EDA data, and additional vali-
dation data for water clusters and ion-water energies, and reproduces the structure-frequency

correspondence expected for hydrogen-bonded O—H stretches.?!

Theory

The FQCT force field described in this work will model each of the terms in Eq. 1 using
ALMO-EDA to separate the total non-bonded interaction energy into individual contribu-
19,20

tions

Eint = Eelec + EPauli + Edisp + Epol + ECT (]-)

where Eelee, Epauti, Edisps Epol, and Ect correspond to the contributions from the permanent
electrostatics, Pauli repulsion, dispersion, polarization, and charge transfer, respectively.
ALMO-EDA is described elsewhere,??° but we provide two important clarifications here.
First the most appropriate choice for F.. is the quasi-classical expression, which depends
only on the geometry of individual monomers,?? and we use the fragment electric response
function approach (at the dipole plus quadrupole level) to evaluate the polarization, ensuring
a well-defined basis set limit.?* All the ALMO-EDA calculations are performed at the level
of wB97X-V DFT functional®* and def2-QZVPPD basis set? using the Q-Chem software
package.?® Note that we will use a convention of referring to all energy terms in the force

field with a V' and all energy terms from electronic structure with an F.

Density Overlap Model

Our approach adopts ideas from the density overlap hypothesis?” 3! which states that the

short-range contributions to intermolecular interactions is proportional to the electron den-



sity overlap. In order for this idea to be amenable to force fields, one must use overlaps of
atom-centered densities. The form of the charge density used in our model is,
_ Qv

() = Eoe + Z6(r) )

where () is the charge associated with the model electron density, Z is the effective nuclear

charge of the atom, and b defines the width of the Slater density. The delta function, o(r),

means the core is treated as a point particle. One can show that the overlap, S%, of two
identical Slater-like atomic densities at different locations, p;(r;) and p;(r;), is,
7 D?
Si =~ Pbiiriy) exp(=biir ;) (3)

The above overlap expression is only strictly true for the exponential tail of the Slater density
and for identical atoms. The overlap between atoms with different densities, Szj , has a more
complicated form, but it has been shown that setting b;; = \/% allows the expression for
S% to be used for different atom types to a good approximation.® The polynomial prefactor
in the overlap is,

1
P(bijrij) = 5 (biyrig)” + birig + 1 (4)

where, again, we will use the combination rule b;; = \/% unless otherwise noted.

The density overlap hypothesis has been advanced by Misquitta and others333 based
on iterated stockholder atoms which can be used to define Slater-like densities for atoms
in molecules, as well as by van Vleet et al. in the MASTIFF force field.3"3! Rackers et
al. utilize a similar idea in the HIPPO model'® but rather than relying on density overlap,
they treat the Slater function as an orbital and are able to derive models of Pauli repulsion,
charge penetration, and even dispersion. Because HIPPO is derived from a model orbital, the
damping functions which prevent singularities in various short-range energetic contributions
arise naturally. We find the HIPPO approach to both Pauli repulsion and electrostatics to

be physically principled and utilize them here without significant modification. In addition,



we utilize both Slater density overlap and Slater orbital overlap in the other energy terms
within the FQCT model thereby distinguishing the degree of what is ”short-range” for a pair

of atoms.

Electrostatics, Pauli, and Dispersion Energies

Permanent Electrostatics. Our description of electrostatics comes from a traditional
point multipole approach up to the quadrupoles, and a charge penetration (CP) contribu-
tion that modifies the short-range electrostatic energy to be more attractive than the point
multipole expansion alone. We isolate the CP energy by taking the total classical electro-
static energy from EDA minus the point multipole interaction energy when using Stone’s

distributed multipole analysis (DMA)3435 out to hexadecapoles on all atoms.

CcCP __ elec elec
E - EEDA — HDbMmA (5>

The advantage of this approach is it allows us to ensure that our multipoles are not biased
to compensate for error in the description of charge penetration, and vice versa, which is
essential to reproduce the classical electrostatic energy in EDA.

CP is described by treating each atom as having both a positively charged core and
negatively charged shell. Considering the interactions of the collection of cores and shells,

which are expanded in multipoles, results in the following electrostatic energy expression:

‘/elec — Z ZlT‘Z]Z] + ZiﬂtjampMj + erjciampMi + Mifr,;;verlapMj (6)

i<j

The first term in Eq. 6 represents repulsive core-core interactions where T;; = 1/r;; with Z;
the core charge on the ith atom; note that this is not the nuclear charge but an effective
nuclear charge. The second and third terms describe attractive core-shell interactions where
M; is a vector whose entries are the components of the multipoles located on that atom.

The final term corresponds to the shell-shell interactions. Further details of the damping



functions are provided in the Supplementary Information.

Pauli Repulsion. The original aim of the density overlap model was to model the Pauli
repulsion energy formally as an exponential repulsion at short-range. 2637 However, Rackers
and Ponder have made a convincing argument that the appropriate functional form for Pauli
repulsion is V" oc e7bii"ii [r;;. 1938 While the exponential is the dominant contribution, the
factor of 1/r;; becomes important at short distance and allows for the Pauli repulsion energy
to be expressed as a multipole expansion. Basically, their idea is that the Pauli repulsion
energy between a pair of atoms is proportional to S?/r;; where S is the overlap between
pseudo-orbitals, defined as /p where p is the density in Eq. 2.

Therefore, the Pauli repulsion energy can be written as

KLS? 4+ KES? + K952
VPauli = Z e Lt 179 (7)

fr’..
i<j Y

where S? contains contributions from charges, dipoles, and quadrupoles as it is found that
Pauli repulsion is highly anisotropic. However, producing parameters for a complete mul-
tipole expansion tends to result in overfitting when there is not a way to derive the initial
multipoles from electronic structure. Therefore, the proportionality constants K;; = K;K;
are fit instead. Since S? takes the form of a damped multipole expansion,®® these propor-
tionality constants mean multipoles which handle repulsion are proportional to the actual
electrostatic multipoles. Hence the calculation of electrostatics and multipolar Pauli repul-
sion differs only in the choice of damping function thereby reducing computational cost of
the two EDA terms.

The expansion of Pauli repulsion in terms of multipoles has an interesting physical inter-
pretation. Namely, as two electron densities begin to overlap, the electrons will be expelled
from the internuclear region in order to keep the total system wavefunction antisymmetric.
This results in a "hole” in the electron density where nuclei are exposed to one another.

In a sense, then, these multipoles describe the magnitude and shape of the depletion of



electron density between two atoms which are near one another. With that being said, we
can anticipate that, in fact, the Pauli repulsion ”charges”, K, will be strongly geometry-
dependent. We will therefore introduce a bond-length dependence to K} alongside the
geometry-dependence of atomic charges.

Dispersion. The dispersion energy uses a damped polynomial interaction given by,

Co;
Vaisp = Y g " (25) :éj (8)
i<j v

where Cg ;; is the dispersion coefficient between atoms 7 and j which is determined as Cg ;; =
\/C6.iCs j, and Cg; is a parameter fit to the EDA dispersion energy. f¢7(z;;) is the sixth-
order Tang-Toennies damping function3® which was originally derived to damp short-range

diSpGI‘SiOH7
T — - xk
?” ((177;]') =1-—ce¢ Tig k—f (9)

k=0
The appropriate form of x for the tail of a Slater electron density has been derived before3’

and takes the form,
b — 2b3]7“z2] + 3bijrij
K b?jT?j + Sbijrij + 3

(10)

:Eij =

Note that the TT damping functions, Eq. 9, depend parametrically on the choice of integer
n. In their original work, Tang and Toennies show that the appropriate choice of n for
dispersion is n = 6. This makes the damping function an exponential multiplied by a sixth
order polynomial. This polynomial is able to control the =% scaling of dispersion, while
the exponential ensures no damping at long distances. As an aside, one could also use TT
damping functions of different orders to control mutual polarization. We have tested this

and it works just as well as using foverter,



Polarization, Charge Transfer, and the One-Body Potential

Here we highlight the unique aspects of our FQCT model through the introduction of new
physics and functional forms to describe polarization, charge transfer, and the one-body po-
tential. Polarization is handled in a manner that allows for both intramolecular charge fluc-
tuations and induced dipoles, while also using a new approach to modelling charge transfer
which allows for explicit movement of charge between molecules. We show that this naturally
describes many-body charge transfer by coupling into the polarization equations. Addition-
ally, we offer a more quantitative way to describe intramolecular polarization through a
recent design of the one-body term.

Polarization. While distributed polarization naturally contains both charge-flow and in-
duced dipole contributions,? typically the charge-flow contributions are eliminated through
localization.*! Our approach allows for charge flow polarization using a modification of
the electronegativity equalization model (EEM) of polarization.?? In EEM, the energy of
a molecule is expanded to second-order as a function of charge while allowing all charges to

interact

Viq) :ZXiqz'—l-%qugﬂLZ% (11)
i i ij

i<j
where y; represents the electronegativity of atom 7 and 7; is the atomic hardness of atom «.
By requiring the electronegativity of all atoms to become become equal, new atomic charges
are determined by solving a system of linear equations.

There are several known shortcomings of EEM for non-reactive FFs including allowing

4344 55 well as a

for long-range transfer of charge between molecules, which is unphysical,
change in charge of atoms in a molecule that interferes with the definition of the permanent
electrostatics. Our solution to the first problem is to allow charge rearrangements within a
molecule but not between molecules. This constraint is enforced by the method of Lagrange

multipliers. For the second problem, we drop the linear term in Eq. 11 and focus only on

the fluctuation of charge around the reference charge used for the permanent electrostatics.



Thus we are equalizing electronegativity around an ”already equalized” state, and the change
in electronegativity at each atom due to an environment is simply the electric potential at

that atom. We can then write the fluctuating charge (FQ) contribution in our model as,

Z mioq? + Z 8¢ Vi + Z qzaqﬂ + Z A Y0 (12)

1<j i€a

We also allow electric fields due to the environment to induce dipoles on all atoms as
ind

done previously for other polarization models. The energy of an induced dipole p{** in an

electric field, E, including mutual polarization is,

znd __* Z u;nd Edamp + Z “zndT/J«H ind (13)

1<j

The field EY™ is the damped electric field generated by a Slater density and T/ is
the damped dipole-dipole interaction tensor which is derived from appropriate gradients

of foverlap /ri;. The form of the ij entries of the multipole interaction tensors are as follows:

overla, 1
TH = fr — (14a)

T = fgrertor 1 (14b)
re.
ij
overlap Tij @ Ty overla, 1
Tz'l;'u - (fs p% —J3 pr_g) (14c)

The interaction tensors in Eq. 14 are the usual Cartesian multipole interaction tensors,
generated by successive gradients of 1/r;; where r;; is the distance between two atoms.
These tensors are multiplied by the overlap damping function derived from the overlap of
two Slater pseudo-orbitals. !5

Normally, the dipole polarizability is treated as a constant in polarizable force fields, but

Chung et al. have pointed out that polarizabilities can be significantly diminished in the

10



aqueous phase for ions.*® This effect is not exclusive to ions, but is simply more important in
the case of diffuse anions especially. We thus adopt a slightly simplified version of the scheme
suggested by Chung et al. for making the polarizability dependent on the local environment.

We damp the inverse polarizability, a=!, as follows

a;xl,i 0 0
a'=Ri| 0 ot 0 |RI+1)_ KPS (15)
;
0 0 o

22,0
The first term in Eq. 15 is a typical expression of the dipole polarizability in the local
axis frame of that atom. oy, is the zx component of the dipole polarizability with other
entries defined analogously. R; is the rotation matrix that transforms the local axis system

of atom ¢ to the global axis system. The second term defines an environment-dependent

damp
tj

isotropic damping of the polarizability. k is a pair-specific parameter which modulates
the increase of the inverse polarizability which is proportional to the density overlap, Sfj.

Note that this modification of the polarizability describes a completely different effect
from the damping of induced electrostatics. In the case of multipolar interactions, the damp-
ing arises from the fact that real charge densities have a finite width. The effect modelled in
Eq. 15 is the modification of atomic volume which occurs due to antisymmetrization of the
wavefunction. The effect is most important for very diffuse atoms, such as 1", or for very
close contacts such as the interaction of Li* with H,O.

What now remains is to determine the values of dq and p™? which minimize the total
energy of the system. In order to do this, we take the derivative with respect to each dg;
and each component of each p"? and set them all equal to zero. This results in a system of

)

linear equations which can be written succinctly as follows:

T 1, T%*)\ (iq -V
i1 0 o0 A= @ (16)
T () THE 7 E
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where dq contains the optimally rearranged charges, A are the Lagrange multipliers which
enforce charge conservation, and p are the induced dipoles. The solution vector in Eq. 16
contains the electric potential, V', the total charges of each molecule, @, and the electric
field on each atom E. The matrix has several blocks containing the charge-charge (T'%),
charge-dipole (T'%"), dipole-charge (T*), and dipole-dipole interaction tensors (T"*). Note
that the diagonal elements of T'% are the atomic hardness n and the 3 x 3 diagonal blocks of
T#* are the inverse polarizability tensor a; '. The block 1, has a column for each molecule
in the system. An entry in that column is 1 if the ¢th atom is in that molecule and zero
otherwise. These blocks enforce the charge-conservation constraints for each molecule.
Finally, there is one more term in our polarization model which is designed to only
contribute at short range. Specifically, we introduce another term proportional to density

overlap,

. ta, +a,\"? ,
‘/pol,sT = Zaij 4 (xlj) 5 3 Sij <17)

i<j "4

where @; is the mean dipole polarizability of atom i, f]7(z;;) is the fourth-order Tang-
Toennies damping function, defined in Eq. 9, and @] = a;"aj" is the pairwise parameter fit
for this term. While Eq. 17 is more empirical than the rest of the FQCT force field, it seems
to capture the effect of quadrupole polarization, which is known to be important in water6
(which is very computationally expensive to account for compared to the magnitude of the
effect). In fact the last term in Eq. 17 tends to have a magnitude for water that is only a bit
larger than what would one expect for quadrupole polarization of around 20%. Thus, even
though Eq. 17 is not a true model for quadrupole polarization, since it is pairwise-additive
while quadrupole polarization has a many-body contribution, it works quite well. Similar
terms have been suggested before for capturing the short-range polarization of ions.*’

Charge Transfer. The true definition of charge transfer involves the transfer of actual
charge between molecules,*® and involves both attractive and repulsive contributions. The

attractive component is the energy lowering associated with delocalizing the electron density,

while the repulsive contribution arises from any molecule having a non-integer total charge.

12



While there is a penalty for moving charge between molecules, Figure 1 illustrates how
hydrogen bonding networks benefit from many-body charge transfer. If we assume that an
equal amount of charge is transferred along each hydrogen bond, the hydrogen bonds of the
trimer on the left are organized in such a way that some molecules donate more hydrogen
bonds than they receive and vice versa so that some molecules end up with nonzero total
charges. This is consistent with the known instability of double acceptor water molecules

which do not donate any hydrogen bonds.*’

o S 6—»3'

2B 3B Total 2B 3B Total
FRZ -5.66 0.0 -5.66 FRZ -392 0.0 -392
POL -2.01 0.14 -1.87 POL -3.57 -1.66 -523
CcT 277 010 -2.67 cT -6.26 -0.76 -7.02
Total -10.44 0.24 -10.20 Total -13.75 -2.42 -16.17

Figure 1: Two water trimers illustrating the importance of both polarization and charge
transfer for the stability of water molecules. FRZ corresponds to the frozen contribution:
the sum of Pauli, electrostatic, and dispersion enegies. POL is the polarization energy and
CT is the charge transfer energy. Energies are computed at the wB97X-V/def2-QZVPPD
level of theory. Total energies are interaction energies and not binding energies. See text for
discussion.

In the trimer on the right, each molecule donates and receives the same number of
hydrogen bonds. This means each molecule will have a nearly net-zero charge while still
benefitting from charge delocalization along each hydrogen bond. If we remove any water
molecule from this trimer, the two remaining molecules would have nonzero total charges and

hence incur a penalty. The elimination of this penalty when a third molecule is added to the

13



network is exactly what gives rise to a many-body charge transfer stabilization. Indeed, the
trimer on the right is a so-called homodromic ring, which results in enhanced cooperativity
of the induced dipoles on each molecule.?

The ability of hydrogen bond networks to delocalize charge while keeping each fragment
very nearly neutral seems to us an under-appreciated aspect of hydrogen bond coopera-
tivity. This can be seen in Figure 2 by the large 3-body polarization and charge transfer
contributions of —1.66 and —0.76 kcal/mol, respectively. The fact that water can receive
and donate two hydrogen bonds simultaneously makes it uniquely capable of passing charge
between molecules while keeping the total charge of each molecule neutral. Furthermore it
is interesting to note that the EDA frozen term, i.e. the sum of electrostatics, dispersion,
and Pauli repulsion, can end up being smaller than either the polarization or charge trans-
fer contributions. Additionally, although not shown explicitly here, the charge penetration
contribution, Eq. 5, to the electrostatic energy of a hydrogen bond is typically about equal
to the point-electrostatic contribution.

This begs the question of how so many force fields have been even qualitatively successful
while neglecting such large components of the intermolecular energy? It is rather easy to see
from Figure 2 that the sum of CT and CP is generally better correlated to Pauli repulsion
than either term individually. Hence most force fields implicitly describe CT and CP by
having too soft of a repulsive wall when compared against an ab initio calculation of Pauli

repulsion such as that from EDA.
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Figure 2: Correlation between (A) charge penetration energy (CP), (B) charge transfer
energy (CT), and (C) their sum against Pauli repulsion energy. Energies are computed
at the wB97X-V /def2-QZVPPD level of theory. Labels with ions correspond to ion-water

dimers.

The data in Figure 2 make it clear that this correlation is robust for water and ion-water
dimers, albeit with different slopes depending on the dimer. Furthermore, Figure 2A shows
that adding charge penetration to a force field without adding charge transfer can make
the force field worse by destroying a fortuitous cancellation of errors. Of course, if a force
field relies on this error cancellation, the many-body contribution to charge transfer will be
neglected completely. We consider that Figures 1 and 2 provide ample motivation for the
development of a better model of charge transfer, which we present here.

Charge transfer is the most difficult of the terms in EDA to model since there is no

classical analogue to the QM charge transfer process involving electron flow.%¢ One com-
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mon approach to capturing charge transfer is to use a simple exponential dependent on the
distance between atoms,'® which captures the main effect of short-range exponential stabi-
lization due to charge delocalization. But many-body charge transfer is non-negligible and
this effect will be completely missed when using just exponentials. Another idea is to treat
charge transfer the same way as polarization and solve a set of induced dipole equations as
was done in MB-UCB.!2°° While it has the benefit of capturing many-body charge transfer
energies, it does not actually allow for charge to flow between molecules and therefore misses
some of the salient physics. It is also ambiguous if the induced dipoles relevant to CT should
be treated as real dipoles and allowed to interact with permanent and induced multipoles.
These unsatisfactory approaches are also plagued by the fact that charge transfer can be an
even larger contribution than polarization, especially at short range. This means the charge
transfer energy would be even more susceptible to polarization catastrophes than ordinary
polarization, and thus require new damping schemes to ensure the model is stable.

For all of these reasons, we introduce a new approach to describing CT which is enabled
by the fact we allow for explicit charge rearrangements in our description of polarization. Our
CT model includes both direct and indirect energy contributions. The direct contributions
allow for energetic stabilization associated with both forward and backward CT, and are

proportional to the density overlap.

V;i? = agjsfj (18a)

Vggj; = ajcjisfj (18b)

Vi => V4 vl (18c)
1<j

We take inspiration from perturbation theory which shows, approximately, that the amount
of charge transferred between two molecules is proportional to the energy associated with

forward and backward CT.195152 Therefore, we define the amount of charge transferred from

16



1to 7, A Z_Wandfromjtoz A J_mas
vCT
AQYT = (19a)
€i—j
VCT
AQST, = L= (19b)
J—1

The proportionality constant between the direct CT energy and the amount of transferred
charge is written as €;_,; to emphasize that this proportionality is related to the difference
in energy of an occupied orbital on i and an unoccupied orbital on j.'% In our model, we
choose this to be a pair-specific parameter since it decreases the total number of parameters
and avoids having to choose an arbitrary combination rule. By making €;_,; pair-specific, it
can reduce the number of parameters since many pairs do not exchange appreciable amounts
of charge, such that the energy gap is effectively infinite. For instance, in water, only the
oxygen to hydrogen parameter is relevant.

This approach is novel by allowing charge to explicitly move between fragments. This
is achieved by modifying the molecular charge constraints used in Eq. 16. The charge

constraint for a fragment A will then take the form,

=Qu+ D) AQT - AQT (20)

€A j¢A

The charge constraint including charge transfer, Q47, is simply the difference in charge

transferred to atom ¢ (in A) and charge transferred from atom i, summed over all atoms in
molecule A. These charges will not be optimally distributed, so they will be allowed to relax
during the polarization process. This allows us to capture the so-called "re-polarization”
effect in which orbitals relax after allowing for occupied-virtual mixing. For example, when

charge is transferred from oxygen to hydrogen in a water dimer, the final excess charge will

mostly come to rest on the oxygen in the water with net-negative charge. This re-polarization

17



gives rise to the indirect contributions to charge transfer,

‘/igg;rect = ‘/pOl(AQCT) - ‘/;;01(0) (21)

The indirect contribution to CT, VSL . is defined as the polarization energy with CT,
Voot (AQer), minus the polarization energy wihout CT, V,,,;(0). This is the term that gives
rise to many-body CT.

Because the charge transferred between fragments is proportional to the direct CT contri-

butions, the charge constraints depend on the distance between atoms. This means there is

cT
i—]

a gradient contribution which multiplies the lagrange multipliers with the gradient of AQ
and AQJC;Ti. This is not difficult or expensive to evaluate, but is an unusual gradient term
which must be accounted for in software implementations.

The One-Body Potential. The deformation energy for a single water molecule is con-
structed following a protocol we have recently published.” The one-body potential consists

of a Morse potential, cosine angle potential, a bond-bond coupling term, and bond-angle

coupling term.

Viond = Do [1 — exp(—a(R — R.))J? (22)
Vir = kup(B1 — Re)(Ra — Re) (23)
Vingie = "2(cos0 — cos 6, (24)
Via = kpa(R — R.)(cos 0 — cosb,) (25)

where Doy is the dissociation energy of the O—H bond in water, R, is the equilibrium bond
length in water, and a = \/m determines the curvature of the potential as is evident
from the fact it is written in terms of the harmonic force constant, k.. The two O—H
stretches in water are coupled linearly in Eq. 23 via a single bond-coupling parameter, k.

The angle potential is harmonic in cos # where 6 is the HOH angle and 6, is the equilibrium

18



angle in water, as seen in Eq. 24, and Eq. 25 shows that the angle and bond potentials
are linearly coupled by a single parameter, k,,. The parameters are fit to reproduce the
CCSD(T)/aug-cc-pV5Z Hessian at the corresponding equilibrium geometry using the Q-
Force package.®® Note that this is the only term for which we do not use wB97X-V /def2-
QZVPPD as a reference, simply because CCSD(T)/aug-cc-pV5Z is closer to the experimental
water monomer geometry.

As will be shown, the polarizability derivatives of the water monomer are not possible to
reproduce using just atomic dipole polarizabilities. Our model, however, includes fluctuating
charges which improve the polarizability derivatives considerably, although the agreement
with polarizability derivatives computed from electronic structure are still flawed. In the
same way the dipole derivatives can be reproduced accurately by including charge flux in a

model,**? we have implemented geometry-dependent atomic hardness parameters, 7.

R, \" [ R\
MH1 = H ( ) ( ) + k(60— 0.) (26)

Roma Ron 2

In Eq. 26, the atomic hardness of a particular hydrogen, 7y, is modified based on the
length of both O—H bonds, Ron1 and Rom2, and the angle §. The parameters k7, k),
and k]! describe the magnitude of change in atomic hardness and are fit to reproduce the
polarizability derivatives computed from electronic structure. This particular functional form
was chosen to be well-behaved when either bond is elongated, such that when the hardness
of atom H1 is decreased, it increases the polarizability along that bond. This is a source of
so-called electrical anharmonicity and hence contributes to the large, positive second dipole
derivative associated with hydrogen-bonded water molecules.®® Note that this term adds
negligible cost to the force field evaluation since we already compute the derivatives with
respect to each internal coordinate when computing the deformation energy.

Additionally, we find that Pauli repulsion as modeled purely by Eq. 7, results in forces
that are systematically in error for hydrogen bonds (see Table S1). This problem is easily

remedied by making the Pauli repulsion charges, K, dependent on the O—H bond length:

19



K{(Rij) = K! + jyonus(Rij — Re) (27)

The pauli repulsion charge, K7, is linearly modified by the change in bond length, R;; — R.,

OH

with a slope Jy -

As shown in Table S1, this dramatically improves the forces along an
O—H bond with only one additional parameter.

Like electrostatics, polarization parameters need to be constrained to give physically
meaningful parameters. Specifically, in addition to EDA energies, we include the polariz-

ability and polarizability derivatives at the wB97X-V/def2-QZVPPD equilibrium geometry

of water in the fitting process. The loss function we minimize against is,

8aFF aaEDA
+w[|a™ = aPPA| + w,| - 1 (28)

or or

L \/ T = BN
In the above, the first term is the RMSD of the predicted energies, V;/'F', from the EDA ener-
gies EFPA. The second term is the Frobenius norm of the difference between the computed
and predicted molecular polarizabilities, . The third term is the same as the second but
for the polarizability derivatives. The weights, w; and ws are set to 1.0 and 0.5 respectively.
This, in essence, forces the molecular polarizability to be reproduced exactly while allowing
for some error in the polarizability derivatives which are much more difficult to reproduce.
In the FQCT model the intramolecular polarization is described by coupling the bonding
potential to the environment through the electric field, which makes the polarization energies
more accurate and dramatically improves the underlying forces. Furthermore, this term
enables us to more accurately reproduce the well-known structure-frequency correspondence
in water.?! We do this by modifying Eq. 22 to also be dependent on the environmental
electric field.?! Specifically, the bond force constant, k., and equilibrium bond length, R.,
are coupled to the electric field projected along the bond, Eqy, via the first and second dipole

derivatives, (V) and p®. These derivatives are treated as parameters which we compute
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from electronic structure. The equilibrium bond length, R., becomes

EonpV

Re(Eon) = R} + —————
( OH) e T k(@) . EOHM(Q)

(29)

where R? is the equilibrium bond length and k¢ is the force constant under zero field. The

force constant under a nonzero field, k.(Eon), is then
ke(EOH> - kg - 3k20€ (Re(EOH) — Rg) — EOH,U(2) (30)

These equations can be derived by analyzing the behavior of a Morse potential in an electric
field.2! We see in Eq. 30 that the field-dependent Morse potential guarantees the structure-
frequency correlation will be respected at least approximately. The dipole derivatives needed
to evaluate the field-dependent Morse potential, Eqs. 29 and 30 are computed from electronic
structure by scanning along the O—H bond length of a water monomer. The molecular dipole
moment, p, is projected along the O—H bond unit vector, Rou, to give popg = W+ Row. LOH
is then fit to a second-order polynomial whose coefficients directly give the dipole derivatives
(see Figure S1).

By using the above equations we will obtain the correct slope of the structure-frequency
correlation, but it will tend to understimate the actual bond length and frequency shifts.
The final step to reproduce the bond lengths and vibrational frequencies is to include a
contribution from CT. This is motivated by adiabatic EDA calculations, where the largest
contribution to bond elongation and red-shifting occurs on the CT surface.?? Specifically,
we allow both the bond length and force constants to be modified according to the amount
of charge transferred into a hydrogen atom, as computed with Eq. 19a. This results in the

final expressions used for the bond length and force constant in our environment-dependent
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bonding potential,

Eonp" 1) H \2
70— Boup® + ke (AQcr) (31)

ke(Eon) = k2 — 3k% (R.(Eon) — RY) — Eoup® + k) (AQE,)? (32)

Re(EOH) - RS +

The rationale for using the amount of charge accepted by a hydrogen atom, AQY,, in
Egs. 31 and 32 is that this charge is transferred into an anti-bonding orbital and hence
should have a large effect on the O—H bond in question. Similarly, we ignore the charge
transferred out of the oxygen atom since these electrons come from non-bonding orbitals
and should therefore minimally affect the O—H bonds in that water. This introduces two
additional parameters, kétl ) and k((j ), which determine the sensitivity of the bond-length and
force constant to CT. The importance of these parameters is that while they have a very
small effect on the CT energy, they contribute a sizable effect on the CT forces. In the
Supplementary Information we illustrate how the environment-dependent bonding potential
improves energies and forces for the water dimer.

Ion-Water and Ion-Ion Potentials Most of the functional forms used in the repre-
sentation of water are identical for ion-water and ion-ion interactions with some exceptions
described here. First, ion-ion interactions at very short-range are large and hence the validity
of the combination rules we use for the water-water and ion-water interactions break down.
To remedy this issue, we make all ion-ion parameters pair-specific, and to parameterize the
model in such a way that it will be easy to add new solvent-solute parameters. For many
molecules pair-specific parameters are unnecessary, but for others, such as ion-ion interac-
tions, they cannot be avoided. For ion-ion interactions, Pauli repulsion, electrostatics, and

polarization terms have an additional potential that is quadratic to the density overlap:

]Vion_1 Nion
Voo = > > ay(S5)? (33)
i=1 j=i+l

This term is convenient since (Sipj)2 tends to only be nonzero at short-range and near the
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equilibrium ion-ion distance. Dispersion and charge transfer are both well-behaved enough
that pair-specific parameters are sufficient. As we will see, this strategy of adding energy
terms proportional to the overlap squared is very effective and we we expect to see this
strategy exploited in future force fields. Finally, the ion-ion polarization and charge transfer
are the same as the water model, so, as we will show, ion-ion-water many-body interactions

are described accurately. Still waiting on final results for this.

Methods

Reference Data. Our model is parameterized using water clusters of size (H,0), with n=2-
5. We use 2400 dimers, trimers, tetramers, and pentamers extracted from various minimized
cluster geometries. We additionally generated 4800 pseudo-random water dimers based on a
Sobol sequence. We follow exactly the same procedure as described elsewhere.” Using the
same procedure we generated 4800 ion-water dimer geometries for all ion species considered
in this study, namely F~, C1-, Br—, I, Li", Na™, KT, Rb*", and Cs™. For all ions, we also
ran a 10ps ab initio molecular dynamics simulation at 500K with wB97X-V /def2-TZVPPD
to generate more probable ion-water configurations. We then sampled 2400 evenly spaced
configurations from this trajectory to be used for parameterization.

Some larger ion-water clusters were also generated by the following procedure. We used
the Crest software package®® which uses the semi-empirical GFN2-XTB? method to search
for global minima on a potential energy surface. We carried out the Crest global minimum
search with five different seed structures generated by taking water clusters, (H,0),, n=6-
17, from a water cluster database® and replacing one water randomly with one of the ions
mentioned. We then took the structures of up to the ten lowest energy minima which had
different hydrogen-bond networks and optimized them at the wB97X-V/def2-TZVPPD level
of theory. This resulted in a total of 1044 unique ion-water clusters. These full clusters are

used to characterize the ion-water potentials, but we also extracted all possible dimers and
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trimers from these clusters to be used in fitting of the ion force field parameters.

We then generated clusters of the form X~ Y ' (H,0), for n=4-10 where X is any of the
halide anions and Y™ is any of the alkali metals cations. We followed the same protocol as
above in generating these clusters except we started from the clusters containing a cation
sampled in the previous step. A large number (insert when finalized) of trimers and
tetramers of the ion pairs, X7Y+(H20)172, were then extracted from these clusters for analyis
of many-body energies involving pairs of ions rather than just a single ion. All sampled
clusters are available with the paper.

All energies used in fitting parameters of the force field are computed at the wB97X-
V/def2-QZVPPD level of theory. In the cases where clusters are optimized at wB97X-
V/def2-TZVPPD, we recompute the energies of those clusters and any derived sub-structures
with wB97X-V /def2-QZVPPD. All distributed multipole calculations were carried out in the
Orient program.®!

Parameterization strategy. We fit each term against only the EDA contribution to
that particular energy component. Optimization of parameters is done using simple gradient
descent against the root mean-square deviation (RMSD) of predicted and EDA energies. For
electrostatics and Pauli repulsion, we only use dimers in the fitting process since electrostatics
is strictly pairwise-additive and Pauli repulsion is nearly so. For these terms 200 random
water dimers from the datasets described above are used in fitting whereas for other many-
body terms we use 200 random water dimers, trimers, tetramers, and pentamers from the
datasets described above.

When parameterizing electrostatics, we optimize against two objectives. First, we en-
sure that the dipole derivatives at the equilibrium geometry of water are correct (this can
be achieved nearly exactly). Second, we optimize against the distributed multipole electro-
static energy described near Eq. 5. We also include 200 random dimers of Cl™ (H,O) and
K*(H,0) when fitting against the distributed multipole electrostatics. This seems to help

with optimizing to physically meaningful multipoles. We then freeze the total charges and
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dipoles on each atom so that the dipole derivatives will remain correct. Next, we fit the
value of the core charges, Z and electrostatic exponents, b, on each atom with respect to
the total electrostatic energy from EDA. We also allow the quadrupoles to relax against the
total electrostatic energy as a form of compensation for the lack of higher-order multipoles.

The Pauli repulsion term is first fit against the RMSD of the corresponding EDA energy.
At the final step of the parameterization, the repulsion parameters are then allowed to relax
against the total interaction energy and interaction forces for only dimers. Using the forces
is essential to get meaningful values of the dipole derivatives used in the field-dependent
Morse potential for Pauli repulsion. This procedure essentially results in improved error
cancellation which we find is still necessary for a robust force field. We will have more to
say about the necessity of error cancellation in force fields later. It should be noted that we
only allow the Pauli repulsion to optimize against dimers so that it cannot correct errors in
the many-body contributions. Furthermore, we will see that the Pauli repulsion energy still
ends up providing an unbiased estimate of the EDA Pauli repulsion energy.

The charge transfer energy and dispersion energies are simply fit against the RMSD from
their EDA energies. Dispersion has a large enough many-body contribution that if only
dimers are used in the fitting, one will systematically over-estimate the dispersion energy
since many-body dispersion is usually repulsive. There are methods for modeling many-body

dispersion, but we have not included such terms in the FQCT model.3%62

Results

Water Monomer Properties

In the construction of this model, we have gone to great lengths to ensure that the model
reproduces as many properties of the water monomer as possible. For instance, it was first
pointed out by Fanourgakis and Xantheas that reproducing the dipole surface of water is

essential for capturing the opening of the bend angle of water in the condensed phase.®
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This requires a model that reproduces the dipole derivatives of water to correctly predict

the opening of the bend angle as water clusters become larger.
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Figure 3: The dipole surface of water for all structures taken from a 3-D scan of water internal
coordinates with a deformation energy less than 20 kcal/mol. The black dashed line shows
the values computed with wB97X-V/def2-QZVPPD. The green dashed line corresponds to
the experimental gas-phase dipole moment of water of 1.85 Debye.

In Figure 3, we make a comparison between the dipole surface of the FQCT model (green),
a dipole surface with fixed charges and dipoles that optimally reproduce the EDA electro-
static energy of the water dimer (blue), the dipole surface using the Partridge-Schwenke (PS)
model® (orange), against the reference surface computed with wB97X-V/def2-QZVPPD.
Clearly, fixed charge force fields completely fail to reproduce the dipole surface of water
whereas the dipole surface associated with the PS water monomer surface is exact over a

wide range of energies by construction.® Figure 3 shows that the FQCT dipole surface is
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nearly exact as the PS dipole surface, reproducing the dipole derivatives of water at its
equilibrium geometry to five decimal places in atomic units.

Another important property for accurate energetics and transferability, especially for
interactions with ions, is the molecular polarizability. The polarizability is evaluated for a
water molecule with the y-axis as the bisector of the HOH angle and the z-axis normal to the
plane of the water molecule. Our model reproduces the wB97X-V /def2-QZVPPD molecular
polarizability up to three decimal places in bohr?, with a,, = 10.0321, ay, = 9.65958, and
a,, = 9.40921.

The last monomer property we explicitly aimed to reproduce are the polarizability deriva-
tives of gas-phase water at its equilibrium geometry. The polarizability derivatives control
the intensity of peaks measured with Raman spectroscopy but are rarely discussed in the
construction of water models. For example, at least one water model has been constructed
for the express purpose of reproducing Raman spectra,® but the polarizability derivatives
were not reported. Additionally, since water distorts when interacting with other molecules,
reproducing the polarizability derivatives indicates how well the molecular polarizability at
distorted geometries will be reproduced.

In Table 1, we report the polarizability derivatives of the FQCT model as well as the
polarizability derivatives for an identically parameterized model which does not include fluc-
tuating charges, and compare them to the QM reference model. Because charge fluctuations
for water contribute to in-plane polarization, we find that the model gives much better xx,
xy, and yy polarizability derivatives than one which just uses anisotropic dipole polarizabil-
ities. Note that the polarizability derivatives in Table 1 are also improved considerably by
the geometry-dependent atomic hardness described in Eq. 26. This indicates that one of
the main reasons water models have historically predicted Raman intensities very poorly %
is the lack of fluctuating charges in the polarization process.

The polarizability derivatives in Table 1 are reproduced very accurately for the in-plane

components, especially when compared with the polarizability derivatives neglecting charge
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Table 1: Polarizability derivatives of water computed at the wB97X-V /def2-QZVPPD equi-
librium geometry in three different ways. The first entry is computed with wB97X-V /def2-
QZVPPD, the second with FQCT, and the third with the same model but using parameters
optimized without fluctuating charges. The Atom column tells both the atom and com-
ponent of its position we take the derivative with respect to. The water monomer has its
bisector aligned with the y-axis and the z-axis is normal to the water molecule plane. Note
that the derivatives for the second hydrogen are identical to the first but with opposite sign.
The xz and yz entries are omitted since they are small and reproduced to three decimal
places by both models.

Polarizability Derivatives of Water (bohr?)

Atom xx xy Yy 2z
Oz - 4.04/4.00/-0.13 - -
Oy  5.15/5.20/2.04 - 4.45/4.45/-2.03  1.50/0.0/0.0
Oz -

Hx  -4.61/-5.00/0.78 -2.02/-2.00/0.06 -2.53/-1.78/-0.78 -1.39/0.0/0.0
Hy -2.57/-2.60/-1.02 -1.68/-1.66/-0.08 -2.22/-2.22/1.02 -0.75/0.0/0.0
Hz - - - -

fluctuations. The zz polarizability derivatives, however, are not as well described. It is im-
portant to note that one can achieve better agreement with reference polarizability deriva-
tives if that is the only quantity one aims to reproduce, but these models tend to result in
inadequate polarization energies.

The zz polarizability derivatives of water are an interesting case since they can be repro-
duced accurately when using intramolecular induced dipole interactions, but this tends to
make the polarization energies worse and will make polarization catastrophes more likely for
ion-water systems. We can also reproduce the zz polarizability derivatives by allowing the
z-component of atomic polarizabilities to be geometry-dependent. We decided not to do this
since it adds additional complexity with a fairly small benefit for water, but for a system
like benzene which predominantly interacts via 7 interactions we would take that additional

step to recover accurate out-of-plane polarizability derivatives.
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Water Intermolecular Interactions

Next we turn to the performance of FQCT on water-water intermolecular properties. We
start with the reproduction of the QM energies and ALMO-EDA energy components pre-
sented in Supplementary Table S3 which presents the mean absolute errors (MAEs) over
each cluster size. In general, the MAEs obtained by our model are excellent, with errors
no larger than 0.25 kcal/mol. The reason for this is illustrated in Figure 4 which shows the
correlation of errors in all attractive terms against Pauli repulsion both with and without

error fitting against ALMO-EDA. Figure 4A shows that just by fitting each EDA term in-

No Error Fitting With Error Fitting
31 31
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o
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Figure 4: Correlation of errors in Pauli repulsion against all attractive interactions from
EDA including dispersion, electrostatics and CP, polarization, and charge transfer. Figure
A shows the error correlation without any error fitting, where each EDA term is fit indepen-
dently. Figure B shows the same plot after allowing the Pauli repulsion to relax against the
interaction energy for dimers only to improve error cancellation. See section on parameteri-
zation for more details.
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dependently, our model naturally correlates attractive and repulsive errors such that when
repulsion gets stronger, all of the attractive terms also get stronger, indicating that some
amount of error cancellation is guaranteed. Thus the FQCT model is much more effective
at taking advantage of error cancellation as seen in Figure 4B because Pauli repulsion and
all other terms are naturally correlated. This is easily seen in Figure 2 where the sum of
charge penetration and charge transfer are linearly correlated to Pauli repulsion over a very
wide energy range.

One of the major goals of the FQCT model is to quantitatively reproduce the many-body
contributions to both polarization and charge transfer. To assess how well we have achieved
this, we computed the three-body contribution to both polarization and charge transfer with
water trimers not used in parameterizing the water model. Figure 5 shows that we obtain
excellent agreement with electronic structure for the major three-body contributions to the
energy. Indeed, the model manages to capture repulsive and attractive three-body contri-
butions to both polarization and charge transfer despite repulsive three-body contributions
to either of those quantities being absent in ordinary water clusters.'® This is important
since ion-water clusters have been shown to have repulsive three-body contributions in many
cases.?3

We have also computed the energy of many water clusters for which high-quality CCSD(T)
benchmark energies are available,®” and compare the energies predicted by our model with
several other force fields in Table 2. We also include wB97X-V/def2-QZVPPD in Table 2
since this is the reference method for our force field. It is clear that this level of theory
compares very favorably to the CCSD(T)/CBS and MP2/CBS numbers used as reference.

It is worth noting that both -rAQUA and MB-Pol include fits of the 2-body, 3-body,
and in the case of g-AQUA 4-body contributions to the energy at CCSD(T). Therefore,
the fact that our model built for transferability is able to achieve an MAE over all clusters
that falls between these fitted models is encouraging. Interestingly, MB-Pol seems to have

a tendency to underestimate the binding energy of clusters as they get larger. Presumably
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Figure 5: Correlation plot of the three-body contribution to polarization and charge transfer
as computed by our model and with wB97X-V /def2-QZVPPD. All water trimers in this plot
are drawn from ion-water clusters and therefore span a wide range of configurations, some of

which are atypical of liquid water. Since trimers drawn from a cluster may be disonnected,
we enforce that the trimer have an absolute three-body contribution of at least 0.02 kcal /mol.

198 which is reportedly

this shortcoming has been corrected in the updated version of MB-Po
at least as accurate as -AQUA. As highlighted in the methods section, the electrostatics
and Pauli repulsion used in our model are nearly the same as those used in HIPPO.'® It
is very encouraging, therefore, to see that our model improves on the MAEs of the HIPPO
model rather substantially. One of the main reasons we are able to achieve better MAEs is
that our many-body energies, as shown in Figure 5, are both accurate and nearly unbiased,
while the HIPPO model systematically underestimates the many-body contributions to water
cluster energies,'® which is likely attributable to the absence of many-body charge transfer.

Interestingly, for larger clusters our model begins to slightly underestimate the energies

compared to the benchmark references, but so does wB97X-V/def2-QZVPPD, which is the
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best our force field can possibly perform.

In addition to accurate energetics, many-body FFs should also produce accurate geome-
tries. Table 3 shows the root mean-squared deviation (RMSD) of water cluster structures
optimized with various FFs and wB97X-V/def2-QZVPPD compared to previously reported
structures optimized with either CCSD(T) or MP2.%” The average RMSD for our model man-
Table 2: Comparison of various advanced force fields and wB97X-V/def2-QZVPPD against
benchmark cluster energies.%” The reference energies are mostly CCSD(T)/CBS values but
some are MP2/CBS values; see original paper for further details on structures.5” We use
the FF optimized geometries to evaluate energies, and any FF energies which could not be

found in the literature are left blank. The bottom row shows the mean absolute error per
molecule for all available energies.

Comparison of Methods on Benchmark Water Cluster Binding Energies

(H,0), Isomer ¢AQUA  MB-Pol FQCT wB97X-V HIPPO Ref.
(H,0), ~4.97 491 490  -5.00 496 -4.99
(H,0), 15.73-15.30  -15.35  -15.77  -15.77  -15.77

(H,0), -27.35 2712 2734 2775 -26.69  -27.39
(H,0), -35.71 3594 -36.36  -36.51  -34.58 -35.9
(H,0)s Prism -46.21 4587  -45.95  -46.53  -46.15  -46.2
(H,0), Cage -45.94 4551 4570 4630  -45.39  -45.9
(H,0); Book -45.21 4519 -45.58  -45.95  -44.25 -454
(H,0); Ring -43.71 4470 <4531 4507  -4254  -44.3
(H,0), -57.71 5737 -57.63  -58.08 - 574
(H,0)s Dod -73.32 7228 7267 -73.58  -T155  -73.0
(H,0)s S -72.93 7235 7275 7355 -T156  -72.9
(H,0)y D2dDD -82.87 81.67 -82.28  -83.00 - -83.0
(H,0) 44 -94.72 93.07  -93.81  -94.50 - -94.6
(H,0),, 43 10423 -102.17 -103.03  -103.77  -100.23 -104.6
(H,0),s Antiboat 16487 -162.20 -163.26  -164.20 -159.63 -164.6
(H,0),s 4444-a -163.10  -162.98 -163.32 -164.28 -161.84 -164.2
(H,0),s 4444-b -162.54  -162.87 -163.18 -163.84 -161.56 -164.1
(H,0),; Boat a 16453 -161.92 -162.99 -164.51  -159.36 -164.4
(H,0),s Boat b 16431 -162.04 -163.09 -164.35 -159.43 -164.2
(H,0),, Sphere 17756 -174.15 -175.26  -175.78  -170.68 -175.7
(H,0),, ES Prism 21249  -210.20 -211.35 -211.98 - 2142
(H,0),, FS Prism -210.63  -208.46 -209.20 -210.12 - 2119
(H,0)y, Fused Cubes -208.07  -208.56 -208.85  -209.90 - -2106
(H,0),, Pentag. Dodec.  -199.79  -197.99 -200.29  -201.22 - -200.8
(H,0),s Isomer 2 276.50  -266.04 -268.44  -272.02 - -276.3
MAE/n 0.040 0.156 0.112  0.051  0.194 -
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ages to outperform MB-Pol and is comparable even to g-AQUA. Notably, wB97X-V /def2-
QZVPPD is even more accurate on this benchmark than q-AQUA which provides further
evidence of the high accuracy of this density functional.

Table 3: Comparison of various advanced force fields and wB97X-V/def2-QZVPPD
against benchmark cluster structures.®” The reference structures are optimized at either
CCSD(T)/aug-cc-pVDZ or MP2/aug-cc-pVTZ. See original paper for further details on
structures.%” The bottom row shows the root mean-squared deviation (RMSD) in angstrom
for all available structures.

Comparison of Methods on Benchmark Water Cluster Structures

(H,0), Isomer q-AQUA MB-Pol FQCT wB97X-V
(1L,0), 0.005  0.008 0.015 _ 0.005
(H,0),4 0.010 0.014 0.017 0.008
(H,0), 0.008  0.024 0012  0.006
(H,0), 0.013 0.059  0.045 0.008
(H,0), Prism 0.010  0.035  0.018  0.009
(H,0), Cage 0.013  0.027  0.023  0.018
(H,0), Book 0.010  0.029 0040  0.009
(H,0), Ring 0.013  0.043 0023  0.010
(H,0), 0.016 0.041  0.029 0.025
(H,0)q Dod 0.006  0.041 0016  0.004
(H,0), Sy 0.007 0019 0.015  0.005
(H,0), DydDD 0.089 0.116 0.036 0.052
(H,0), 0.012  0.049 0022  0.010
(H,0),, 434 0.034 0065 0.023  0.017
(H,0)44 Antiboat 0.023 0.064  0.035 0.017
(H,0),,  4444-a 0.030  0.038  0.029  0.015
(H,0),,  4444-b 0.040  0.049  0.030  0.029
(H,0),;,  Boata 0.023  0.038 0027  0.016
(H,0),;  Boath 0.028  0.057 0049  0.016
(H,0),7 Sphere 0.039 0.063  0.038 0.022
(H,0),,  ES Prism 0.042  0.056  0.043  0.024
(H,0),,  FS Prism 0.047 0050  0.032  0.023
(H,0),,  Fused Cubes 0.067  0.050 0030  0.029
(H,0)4 Pentag. Dodec.  0.034 0.066  0.033 0.018
(Hy0)45 Isomer 2 0.029 0.049  0.038 0.023

=
=
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-,
e

0.026 0.046 0.029 0.017

In order for a FF to be useful for theoretical spectroscopy, it must respect the relation-
ships between structure and vibrational frequencies. In the case of water, this manifests

as a linear relationship between the change in bond length (AR.) and change in O—H
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stretching frequency (Aw),?! also known as Badger’s rule.® In the course of constructing
the FQCT FF, we tested Badger’s rule and if it satisfied the expected slope Aw vs AR, of
~ —19 cm~'/.001A.%' We found instead that the slope was ~ —10 cm~'/.001A(See Fig. S2)
which is in agreement with a slope of ~ —11 cm™!/ .001A found by Boyer et al. when they
use a field-independent Morse oscillator with parameters appropriate to water. To obtain
the correct slope requires an environmental electric field dependence,?' and motivates our
bonding potential parameters to be modulated by the field along the O-H bond, as given by
Egs. 29 and 30.

~ ~
-~ ~
O_ h ~
~ ~

— -200 ..‘%.;\?%\'
E R
£ _400- e

3

% v
~600- MR

---FQCT: m=-21.7

-8001|---wB97X-V: m=-20.8

000 001 002 003 004
AR (A)

Figure 6: Correlation of Aw vs AR, over a collection of small water clusters using FQCT and
wBI7X-V /def2-QZVPPD. The water clusters are low-energy structures of (H,0), 4 available
with the paper. The linear fits are not constrained to pass through zero which explains the
slightly large slopes compared to previous work. 2!

We computed the necessary dipole derivatives from a simple O—H scan and found the

parameters u) = 0.1654 and p® = —0.01246. If we do the same calculation with FQCT,

34



we get ) = 0.1658 and p® = —0.0104. This indicates that as long as a force field has
an accurate dipole surface, the dipole derivatives needed to compute the field-dependence
of a Morse potential can be computed directly from the force field. The final result of the
structure-frequency correlation in water using the FQCT model is shown in Figure 6. We
consider this an excellent result given the simplicity of the field-dependent Morse potential,

especially since it requires no free parameters.

Ion-Water Model

Accurately reproducing many-body energies is a very stringent test of a water model, but
this is especially true for ion-water systems where polarizable force fields have historically
struggled. We now turn our attention to the performance of this model on ion-water clus-
ters. First, we consider simple scans for each of the ion-water dimers considered in this
study. Figure 7 show the total energy curve of FQCT as a solid colored line and the QM
reference energy curve as a dashed line of the same color for each ion. In the Supplementary
Information, we include a variation on these plots where we show the error in each individual
EDA component of the scan. Need to add these still.

Perhaps the most important feature of the dimer scans in Figure 7 is the long-range
attractive part of the potential which we are able to capture very accurately in all cases.
Unsurprisingly, the largest errors are found for F~ and Li" which are the most challenging
ions considered in this work due to their extremely short-range (nearly covalent) interactions.
Another important feature of the ion-water dimer potential is the repulsive wall since in the
condensed phase, many-body stabilization shortens the oxygen-ion distance beyond the dimer
equilibrium distance. Looking at the errors of each EDA term inside the equilibrium distance
in Supplementary Figure X, it is clear that the Pauli repulsion and charge transfer tends to
be underestimated while electrostatics and polarization are overestimated but these errors

are small and compensated for by a net error cancellation. In fact the binding energies of
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Figure 7: Scans of the water-ion dimers for (A) anions (X =F , Cl", Br , and 1) and
(B) cations (XT=Li*, Na®, K* Rb", and Cs"). Water geometry is held fixed at the
equilibrium structure of each dimer. The solid curve corresponds to FQCT and the dashed
curve corresponds to wB97X-V/def2-QZVPPD. Vertical dashed lines show the positions of
each minimum with wB97X-V/def2-QZVPPD. Binding energies and harmonic frequencies
are reported in Table 4.

ion-water interactions with FQCT are extremely accurate compared to the DFT reference,
with the largest error of 0.7 kcal/mol for F~ (H,0O), while the rest of the ions have binding
energies accurate to within a few tenths of a kcal /mol.

Since ion-water interactions are strong, they can result in large red-shifts of the underly-
ing vibrational frequencies. Table 4 provides the frequencies and binding energies of FQCT
compared to wB97X-V in which our model is generally quite accurate. The O—H stretching
modes, NM5, are fairly accurate for all anions especially considering the strength of inter-
actions involved. This highlights that reproducing the structure-frequency correspondence
shown in Figure 6 transfers to interactions with anions. The bending mode for anion-water
dimers, NM4, is systematically blue-shifted, while this problem with the bending frequen-
cies does not occur for the cations. This is because the anion attracts the water hydrogen
atom causing the HOH angle to close more than it should. This is likely attributable to
the lack of a field-dependent contribution to the bending potential, which would counter-act
this tendency to close the HOH angle. In the future, we may explore the addition of a

field-dependent contribution to the bending potential.”™ The low-frequency modes for both
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Table 4: Comparison of FQCT dimer vibrational frequencies (cm™!) and binding energies
(kcal/mol) against wB97X-V /def2-QZVPPD for all ion-water dimers discussed in this paper.

Ion-Water Dimer Vibrational Frequencies
X*/7(H,0) Method NMI1 NM2 NM3 NM4 NM5 NM6 D,
F (H,0) FQCT 433 621 1276 1768 2375 3854 -27.9
wBI7TX-V 384 569 1144 1702 2233 3916 -27.2
Cl (H,0) FQCT 196 376 751 1717 3467 3895 -14.8
wBI7TX-V 193 341 726 1678 3417 3919 -14.9
Br (H,0) FQCT 155 362 710 1712 3504 3894 -13.2
wBI7TX-V 151 288 657 1673 3521 3916 -12.9
[ (H,0) FQCT 128 295 636 1701 3583 3895 -11.1
wBI7TX-V 118 220 579 1668 3623 3911 -10.9
Li"(H,0) FQCT 308 501 533 1679 3677 3800 -34.8
wBI7TX-V 392 524 554 1681 3815 3882 -34.9
Na®(H,0) FQCT 276 314 421 1684 3735 3846 -24.2
wBI7TX-V 307 367 437 1677 3830 3902 -24.3
K™ (H,0) FQCT 218 310 357 1683 3764 3870 -17.6
wBI7TX-V 213 359 369 1673 3833 3910 -17.7
Rb"(H,0) FQCT 180 309 331 1682 3774 3879 -15.4
wBI7TX-V 178 347 351 1671 3836 3914 -15.6
Cs™(H,0) FQCT 158 307 310 1681 3781 3886 -13.8
wBI7TX-V 157 327 339 1668 3836 3916 -14.0

anions and cations are generally quite accurate.

Just as with water, many-body contributions to both polarization and charge transfer are
important for ion-water systems. While on a relative basis their contributions in ion-water
systems are smaller than in water due to the dominance of electrostatic interactions, that
does not mean they can be neglected. In Figure 8 we show the correlation of three-body
polarization and charge transfer energies computed from FQCT and EDA. These energies are
computed from 400 trimers drawn from ion-water clusters which we generated for this work.
Figures 8 demonstrate that our models of polarization and charge transfer are transferable
even to very strong interactions.

In Figure 8A for water-halides, the attractive contributions to many-body polarization
are captured exceptionally well, while some additional scatter arises for repulsive three-body

polarization. The accuracy of many-body charge transfer with water-halides is similar re-
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Figure 8: Correlation of three-body polarization and charge transfer energies between FQCT
and EDA for anions and cations. All trimers are drawn from ion-water clusters optimized
with wB97X-V/def2-TZVPPD and energies are computed with the def2-QZVPPD basis set.
(A) The 3-body polarization MAEs over the halide trimers are 0.227, 0.068, 0.059, and 0.044
kecal/mol for F~, C1™, Br, and I, respectively. (B) The 3-body charge transfer MAEs over
the halide trimers are 0.143, 0.054, 0.048, and 0.030 kcal/mol for F~, Cl", Br, and I,
respectively. (C) The 3-body polarization MAEs over the alkali trimers are 0.126, 0.120,
0.095, 0.106, and 0.075 kcal/mol for Lit, Nat, KT, Rb*, and Cs*, respectively. (D) The
3-body charge transfer MAEs over the alkali trimers are 0.052, 0.028, 0.036, 0.031, and 0.023
keal /mol for Li*, Na*, K, Rb", and Cs™, respectively.

gardless of whether the energy is attractive or repulsive as seen from Figure 8B. While Figure
8C finds that many-body polarization is somewhat worse for the aqueous alkali ions than for
water-halides, it is still quite accurate with an MAE of 0.1 kcal /mol. The greater difficulty in
modeling cation-water polarization is likely due to the highly polarizable oxygen atom which
cations interact with directly. Figure 8D is another illustration of the transferability and
general accuracy of our charge transfer model. Interestingly, the errors in three-body charge
transfer decrease going from LiT to Nat to K¥, which is expected since the magnitude of the
energy also decreases. The MAEs for Rb* and Cs™ increase to about 0.033 kcal/mol and
the correlation is slightly skewed. In any case, many-body charge transfer is rather small for

these ions and FQCT is still able to capture the trend accurately.
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Ton-Ion Potentials

Aqueous ionic solutions often exhibit equilibria between ion-ion contact pairs, solvent-separated
ion pairs, and fully solvated ions. The relative abundance of these states depends sensitively

f. 71

on the nature of the ion-ion interaction itself.”* Let us begin, then, by looking at the ion-ion

dimer potentials in Figure 9.

Discussion

Most polarizable force fields include intramolecular polarization by allowing the induced
dipoles to interact regardless of whether they are in the same molecule or not. In our expe-
rience with EDA| this tends to result in worse agreement between the model and reference
polarization energies. This is not surprising given that multipoles located within a couple
bond lengths are too close for electrostatics to give a good representation of the relevant inter-
actions. There is no doubt, however, that intramolecular polarization should be considered
in some way.

The necessity of coupling the bonding potential to the environment to accurately repro-
duce structure-frequency relationships in a force field is a new observation as far as we are
aware. We consider this an excellent result given the simplicity of the field-dependent morse
potential, especially since it requires no free parameters.

When combined with our new model for the one-body potential, we also ensure that
the force field reproduces all physically relevant monomer properties including the dipole
moment, dipole derivatives, molecular polarizability, and polarizability derivatives.

The damping functions generated by the usual Thole damping procedure,” are expo-
nentials multiplied by first-, second-, and third-order polynomials for charge-charge, charge-
dipole, and dipole-dipole interactions, respectively. ™ These polynomials are smaller than the
scaling of mutual polarization, which is roughly the square of a similar permanent multipole

interaction. That is, the field due to a permanent dipole decays as TZ-;S. The dipole induced
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by this field interacts with other induced dipoles with an energy that is proportional to the
magnitude of the induced dipole and via a field that decays as 7’%3. Since the magnitude of
an induced dipole is proportional to the permanent applied field, this means mutual polariza-
tion of induced dipoles decays as Nri;G. The damping functions generated from the overlap
of Slater orbitals are third-, fourth-, and fifth-order polynmials multiplied by an exponential
for charge-charge, charge-dipole, and dipole-dipole interactions, respectively. These damping
functions are therefore better able to control the polarization energy than the Thole damping
functions used in other force fields. In fact, the small orders of the polynomials in Thole
damping likely explains much of the historic difficulty of controlling polarization between
ions and water. ™™

The necessity of coupling the bonding potential to the environment to accurately re-
produce structure-frequency relationships has been shown to reproduce the O-H signatures
in a recent Raman theory for water,” and has been applied to force field for a first time
here. This approach is easily extensible to other force fields and should immediately improve
spectroscopic predictions. Additionally, the ability of FQCT to generate accurate structures
is useful for cases where the force field is used to generate configurations for further analysis
with electronic structure. As an aside, many force fields use harmonic bond potentials and
the field-perturbed quantum harmonic oscillator is exactly solvable, so a similar modification

can be made in that case.

Conclusions

We have described new approaches to modeling polarization and charge transfer which we
parameterize against a very accurate energy decomposition analysis. In doing so, we have
highlighted the importance of many-body charge transfer for aqueous systems. Our new
model of charge transfer is able to quantitatively capture many-body charge transfer for

both water and ion-water clusters. This model of charge transfer is enabled by the use of
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fluctuating charges in the polarization model.

We also show that fluctuating charges greatly improve the accuracy of polarizability
derivatives. Accurate polarizability derivatives are essential for computing Raman spectra,
which polarizable force fields have historically modeled very poorly. We therefore expect this
model to be useful for theoretical spectroscopy among many other uses. To that end, we
also show that our model can reproduce the structure-frequency correspondence central to
hydrogen-bonded vibrations. Specifically, we found that accurately predicting the red-shift
and bond elongations associated with hydrogen bonds required a field-dependent contribu-
tion to the bonding potential. The dipole derivatives which control the field-dependent bond
potential can be computed from electronic structure or directly from the force field as long
as the force field has an accurate dipole surface.

By using physically motivated damping functions, we are able to control the polarization
catastrophes which have otherwise inhibited accurate polarizable force fields for ions being
developed. Indeed, we expect that this force field represents a turning point in the ability
to model strong, short-range interactions with physical models. One can, of course, fit error
corrections on top of this force field. We expect that achieving such high accuracy with a
physical model will enable systems that are otherwise out of reach to be studied. These
might include concentrated ionic solutions and divalent ions.

The most recent progress, arguably, has been made by explicitly fitting the terms of the
MBE for ion-water interactions.”"® This approach has the drawback that generalizing the
procedure to multi-component systems, such as a solution containing multiple types of ions,
is made difficult by the combinatorial explosion of terms which need to be fit.

Even worse, one can only exclude charge transfer and charge penetration from force
fields because these energies are strongly correlated to the Pauli repulsion (see Fig. 2). This
correlation is not guaranteed to be consistent between systems, however, which may explain
part of the historical difficulty in producing water models which generalize to heterogeneous

systems.
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Figure 9: Scans along all ion-ion pairs with FQCT (solid lines) and wB97X-V/def2-QZVPPD
(dashed lines).
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