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Abstract

Solvated atomic ions such as alkaline metals and halides play critical roles in the regu-

lation of biological systems, environmental chemistry, and energy materials. This work

analyzes the many-body energies of water and atomic ions for non-additivities in each

term of an energy decomposition analysis (EDA). We then construct an advanced force

field which quantitatively reproduces each term of the EDA thereby enabling accuracy

and transferability. This is achieved through the introduction of new many-body mod-

els for polarization and charge transfer in the formulation of a very high quality water

force field, which generalizes to provide accurate dimer surfaces and three-body po-

larization and charge transfer for solvated alkali metal cations and halide anions. We

also utilize a new one-body potential that accounts for intramolecular polarization by
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including an electric field-dependent correction to the Morse potential. This one-body

potential dramatically improves the accuracy of forces as well as spectroscopic signa-

tures for hydrogen-bonded O↑H stretches.

Introduction

Force fields (FFs) are approximations to the quantum mechanical (QM) potential energy

surface, in which the model design goal is to predict structure, dynamics, and thermody-

namics of any molecular system. Although pairwise additive FFs remain popular due to

their insight and computational e!ciency, they are inherently limited by their inability to

describe the inherent many-body contributions of the QM energy, thereby reducing their ac-

curacy in property predictions and transferability to new chemistry. For example, it has long

been appreciated that non-additive interactions are critical for describing hydrogen-bonded

interactions in water,1 and the many-body energy contributions for water interacting with

ions is quite large, typically around 15% of the non-bonded energy, and the cooperativity

e”ects can be either stabilizing or destabilizing depending on ion type and binding motif.2,3

And yet many simulations involving ions or ionized molecules are carried out by treating the

ion as a scaled point charge with simple functional forms for dispersion and repulsion that

cannot describe such complexity.4,5

Recently, there has been a paradigm shift in non-reactive many-body FF development by

combining energy decomposition analysis (EDA)6–8 with the many-body expansion (MBE)9–11

to better control the accuracy and transferability of advanced FF models. The MBE of the

non-bonded energy2,3,10 allows one to gain insights into how much non-additivity is present

in the QM energy (and forces), while the EDA decomposes the total energy (and forces) into

physically motivated contributions from pairwise additive terms such as electrostatics with

charge penetration and Pauli repulsion, and many-body contributions that arise from polar-

ization, charge transfer, and dispersion. For example, our recent many-body MB-UCB force

field for water12 and extensions to monovalent and divalent alkali metal and halide ions13

2



describe ion-water interactions through a systematic buildup of 2- and 3-body interactions

whose molecular interactions are formulated using the ALMO-EDA energy decomposition

scheme.14 By reproducing the EDA term-by-term, we can ensure that the force field will

be transferable across the phase diagram of a homogeneous system and, ideally, to new

heterogenous systems.

The EDA approach to FF development also provides chemical insights in the relative

weights of particular energy terms, for instance, charge transfer versus polarization, and

better separation of the Pauli repulsion and dispersion energies. While many-body potentials

for water strive for higher accuracy, models such as AMOEBA+, HIPPO,15 MB-Pol, and

q-AQUA di”er in their use of EDA, MBE, and most critically, their functional forms used

for the many-body energy and forces. Historically, there have been two main approaches

to including polarization in force fields: fluctuating charges16 and induced dipoles.17 There

have also been attempts to unify these approaches allowing for both charge rearrangements

and induced dipoles18 in order to also capture the charge transfer interaction.16 But with the

advent of variational EDA techniques,8,19,20 it is now clear that the charge transfer energy

scales exponentially and hence cannot be modelled by fluctuating charges or induced dipole

models alone.

This work takes a large step forward in the construction of many-body force fields capable

of not just describing water, but handling very strong interactions such as those between

water and ions, which has remained elusive and is an open research problem dating back

decades. This is possible through the introduction of advanced functional forms for the

many-body polarization and charge transfer contributions, and the advancement of a one-

body potential that accounts for intramolecular polarization. In particular, we introduce a

combined fluctuating charge (FQ) and induced dipole model of electronic polarization that

couples to our model for many-body charge transfer (CT) that we will show better repro-

duces all terms from EDA, and allows for explicit forward and backward transfer of charge

between molecules. We also eliminate the need to treat intramolecular and intermolecular
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polarization separately through a recently reported one-body potential,? further modified

by a field-dependent correction to the Morse potential, thereby dramatically improving the

accuracy of electrostatic and polarization forces. The resulting FQCT (fluctuating charges

and charge transfer) model shows excellent accuracy against EDA data, and additional vali-

dation data for water clusters and ion-water energies, and reproduces the structure-frequency

correspondence expected for hydrogen-bonded O↑H stretches.21

Theory

The FQCT force field described in this work will model each of the terms in Eq. 1 using

ALMO-EDA to separate the total non-bonded interaction energy into individual contribu-

tions19,20

Eint = Eelec + EPauli + Edisp + Epol + ECT (1)

where Eelec, EPauli, Edisp, Epol, and ECT correspond to the contributions from the permanent

electrostatics, Pauli repulsion, dispersion, polarization, and charge transfer, respectively.

ALMO-EDA is described elsewhere,19,20 but we provide two important clarifications here.

First the most appropriate choice for Eelec is the quasi-classical expression, which depends

only on the geometry of individual monomers,22 and we use the fragment electric response

function approach (at the dipole plus quadrupole level) to evaluate the polarization, ensuring

a well-defined basis set limit.23 All the ALMO-EDA calculations are performed at the level

of ωB97X-V DFT functional24 and def2-QZVPPD basis set25 using the Q-Chem software

package.26 Note that we will use a convention of referring to all energy terms in the force

field with a V and all energy terms from electronic structure with an E.

Density Overlap Model

Our approach adopts ideas from the density overlap hypothesis27–31 which states that the

short-range contributions to intermolecular interactions is proportional to the electron den-
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sity overlap. In order for this idea to be amenable to force fields, one must use overlaps of

atom-centered densities. The form of the charge density used in our model is,

ε(r) =
Qb3

8ϑ
e→br + Zϖ(r) (2)

where Q is the charge associated with the model electron density, Z is the e”ective nuclear

charge of the atom, and b defines the width of the Slater density. The delta function, ϖ(r),

means the core is treated as a point particle. One can show that the overlap, Sω
ii, of two

identical Slater-like atomic densities at di”erent locations, εi(ri) and εi(rj), is,

Sω
ii =

ϑD2

b3ii
P (biirij) exp(↑biirij) (3)

The above overlap expression is only strictly true for the exponential tail of the Slater density

and for identical atoms. The overlap between atoms with di”erent densities, Sij
ω , has a more

complicated form, but it has been shown that setting bij =
√

bibj allows the expression for

Sω
ii to be used for di”erent atom types to a good approximation.30 The polynomial prefactor

in the overlap is,

P (bijrij) =
1

3
(bijrij)

2 + bijrij + 1 (4)

where, again, we will use the combination rule bij =
√

bibj unless otherwise noted.

The density overlap hypothesis has been advanced by Misquitta and others32,33 based

on iterated stockholder atoms which can be used to define Slater-like densities for atoms

in molecules, as well as by van Vleet et al. in the MASTIFF force field.30,31 Rackers et

al. utilize a similar idea in the HIPPO model15 but rather than relying on density overlap,

they treat the Slater function as an orbital and are able to derive models of Pauli repulsion,

charge penetration, and even dispersion. Because HIPPO is derived from a model orbital, the

damping functions which prevent singularities in various short-range energetic contributions

arise naturally. We find the HIPPO approach to both Pauli repulsion and electrostatics to

be physically principled and utilize them here without significant modification. In addition,
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we utilize both Slater density overlap and Slater orbital overlap in the other energy terms

within the FQCT model thereby distinguishing the degree of what is ”short-range” for a pair

of atoms.

Electrostatics, Pauli, and Dispersion Energies

Permanent Electrostatics. Our description of electrostatics comes from a traditional

point multipole approach up to the quadrupoles, and a charge penetration (CP) contribu-

tion that modifies the short-range electrostatic energy to be more attractive than the point

multipole expansion alone. We isolate the CP energy by taking the total classical electro-

static energy from EDA minus the point multipole interaction energy when using Stone’s

distributed multipole analysis (DMA)34,35 out to hexadecapoles on all atoms.

ECP = Eelec
EDA ↑ Eelec

DMA (5)

The advantage of this approach is it allows us to ensure that our multipoles are not biased

to compensate for error in the description of charge penetration, and vice versa, which is

essential to reproduce the classical electrostatic energy in EDA.

CP is described by treating each atom as having both a positively charged core and

negatively charged shell. Considering the interactions of the collection of cores and shells,

which are expanded in multipoles, results in the following electrostatic energy expression:

Velec =
∑

i<j

ZiTijZj + ZiT
damp
ij Mj + ZjT

damp
ji Mi +MiT

overlap
ij Mj (6)

The first term in Eq. 6 represents repulsive core-core interactions where Tij = 1/rij with Zi

the core charge on the ith atom; note that this is not the nuclear charge but an e”ective

nuclear charge. The second and third terms describe attractive core-shell interactions where

Mi is a vector whose entries are the components of the multipoles located on that atom.

The final term corresponds to the shell-shell interactions. Further details of the damping
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functions are provided in the Supplementary Information.

Pauli Repulsion. The original aim of the density overlap model was to model the Pauli

repulsion energy formally as an exponential repulsion at short-range.28,36,37 However, Rackers

and Ponder have made a convincing argument that the appropriate functional form for Pauli

repulsion is V exch ↓ e→bijrij/rij.15,38 While the exponential is the dominant contribution, the

factor of 1/rij becomes important at short distance and allows for the Pauli repulsion energy

to be expressed as a multipole expansion. Basically, their idea is that the Pauli repulsion

energy between a pair of atoms is proportional to S2/rij where S is the overlap between

pseudo-orbitals, defined as
↔
ε where ε is the density in Eq. 2.

Therefore, the Pauli repulsion energy can be written as

VPauli =
∑

i<j

Kq
ijS

2
q +Kµ

ijS
2
µ +K!

ijS
2
!

rij
(7)

where S2 contains contributions from charges, dipoles, and quadrupoles as it is found that

Pauli repulsion is highly anisotropic. However, producing parameters for a complete mul-

tipole expansion tends to result in overfitting when there is not a way to derive the initial

multipoles from electronic structure. Therefore, the proportionality constants Kij = KiKj

are fit instead. Since S2 takes the form of a damped multipole expansion,38 these propor-

tionality constants mean multipoles which handle repulsion are proportional to the actual

electrostatic multipoles. Hence the calculation of electrostatics and multipolar Pauli repul-

sion di”ers only in the choice of damping function thereby reducing computational cost of

the two EDA terms.

The expansion of Pauli repulsion in terms of multipoles has an interesting physical inter-

pretation. Namely, as two electron densities begin to overlap, the electrons will be expelled

from the internuclear region in order to keep the total system wavefunction antisymmetric.

This results in a ”hole” in the electron density where nuclei are exposed to one another.

In a sense, then, these multipoles describe the magnitude and shape of the depletion of
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electron density between two atoms which are near one another. With that being said, we

can anticipate that, in fact, the Pauli repulsion ”charges”, Kq
i , will be strongly geometry-

dependent. We will therefore introduce a bond-length dependence to Kq
i alongside the

geometry-dependence of atomic charges.

Dispersion. The dispersion energy uses a damped polynomial interaction given by,

Vdisp =
∑

i<j

fTT
6 (xij)

C6,ij

r6ij
(8)

where C6,ij is the dispersion coe!cient between atoms i and j which is determined as C6,ij =
√

C6,iC6,j, and C6,i is a parameter fit to the EDA dispersion energy. fTT
6 (xij) is the sixth-

order Tang-Toennies damping function39 which was originally derived to damp short-range

dispersion,

fTT
n (xij) = 1↑ e→xij

n∑

k=0

xk
ij

k!
(9)

The appropriate form of x for the tail of a Slater electron density has been derived before30

and takes the form,

xij = bijrij ↑
2b2ijr

2
ij + 3bijrij

b2ijr
2
ij + 3bijrij + 3

(10)

Note that the TT damping functions, Eq. 9, depend parametrically on the choice of integer

n. In their original work, Tang and Toennies show that the appropriate choice of n for

dispersion is n = 6. This makes the damping function an exponential multiplied by a sixth

order polynomial. This polynomial is able to control the r→6 scaling of dispersion, while

the exponential ensures no damping at long distances. As an aside, one could also use TT

damping functions of di”erent orders to control mutual polarization. We have tested this

and it works just as well as using f overlap.
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Polarization, Charge Transfer, and the One-Body Potential

Here we highlight the unique aspects of our FQCT model through the introduction of new

physics and functional forms to describe polarization, charge transfer, and the one-body po-

tential. Polarization is handled in a manner that allows for both intramolecular charge fluc-

tuations and induced dipoles, while also using a new approach to modelling charge transfer

which allows for explicit movement of charge between molecules. We show that this naturally

describes many-body charge transfer by coupling into the polarization equations. Addition-

ally, we o”er a more quantitative way to describe intramolecular polarization through a

recent design of the one-body term.

Polarization. While distributed polarization naturally contains both charge-flow and in-

duced dipole contributions,40 typically the charge-flow contributions are eliminated through

localization.41 Our approach allows for charge flow polarization using a modification of

the electronegativity equalization model (EEM) of polarization.42 In EEM, the energy of

a molecule is expanded to second-order as a function of charge while allowing all charges to

interact

V (q) =
∑

i

ϱiqi +
1

2

∑

i

ςiq
2
i +

∑

i<j

qiqj
rij

(11)

where ϱi represents the electronegativity of atom i and ςi is the atomic hardness of atom i.

By requiring the electronegativity of all atoms to become become equal, new atomic charges

are determined by solving a system of linear equations.

There are several known shortcomings of EEM for non-reactive FFs including allowing

for long-range transfer of charge between molecules, which is unphysical,43,44 as well as a

change in charge of atoms in a molecule that interferes with the definition of the permanent

electrostatics. Our solution to the first problem is to allow charge rearrangements within a

molecule but not between molecules. This constraint is enforced by the method of Lagrange

multipliers. For the second problem, we drop the linear term in Eq. 11 and focus only on

the fluctuation of charge around the reference charge used for the permanent electrostatics.
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Thus we are equalizing electronegativity around an ”already equalized” state, and the change

in electronegativity at each atom due to an environment is simply the electric potential at

that atom. We can then write the fluctuating charge (FQ) contribution in our model as,

V (ϖq) =
1

2

∑

i

ςiϖq
2
i +

∑

i

ϖqiVi +
∑

i<j

ϖqiϖqj
rij

+
∑

ε

φε

∑

i↑ε

ϖqi (12)

We also allow electric fields due to the environment to induce dipoles on all atoms as

done previously for other polarization models. The energy of an induced dipole µind
i in an

electric field, E, including mutual polarization is,

V (µind) = ↑1

2

∑

i

µind
i ·Edamp

i +
∑

i<j

µind
i T µµ

ij µind
j (13)

The field Edamp
i is the damped electric field generated by a Slater density and T µµ

ij is

the damped dipole-dipole interaction tensor which is derived from appropriate gradients

of f overlap
ij /rij. The form of the ij entries of the multipole interaction tensors are as follows:

T qq
ij = f overlap

1

1

rij
(14a)

T qµ
ij = f overlap

3

↑rij
r3ij

(14b)

T µµ
ij =

(
f overlap
5

rij ↗ rij
r5ij

↑ f overlap
3

1

r3ij

)
(14c)

The interaction tensors in Eq. 14 are the usual Cartesian multipole interaction tensors,

generated by successive gradients of 1/rij where rij is the distance between two atoms.

These tensors are multiplied by the overlap damping function derived from the overlap of

two Slater pseudo-orbitals.15

Normally, the dipole polarizability is treated as a constant in polarizable force fields, but

Chung et al. have pointed out that polarizabilities can be significantly diminished in the
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aqueous phase for ions.45 This e”ect is not exclusive to ions, but is simply more important in

the case of di”use anions especially. We thus adopt a slightly simplified version of the scheme

suggested by Chung et al. for making the polarizability dependent on the local environment.

We damp the inverse polarizability, ω→1, as follows

ω→1
i = Ri





↼→1
xx,i 0 0

0 ↼→1
yy,i 0

0 0 ↼→1
zz,i




RT

i + 1
∑

j

kdamp
ij Sω

ij (15)

The first term in Eq. 15 is a typical expression of the dipole polarizability in the local

axis frame of that atom. ↼xx,i is the xx component of the dipole polarizability with other

entries defined analogously. Ri is the rotation matrix that transforms the local axis system

of atom i to the global axis system. The second term defines an environment-dependent

isotropic damping of the polarizability. kdamp
ij is a pair-specific parameter which modulates

the increase of the inverse polarizability which is proportional to the density overlap, Sω
ij.

Note that this modification of the polarizability describes a completely di”erent e”ect

from the damping of induced electrostatics. In the case of multipolar interactions, the damp-

ing arises from the fact that real charge densities have a finite width. The e”ect modelled in

Eq. 15 is the modification of atomic volume which occurs due to antisymmetrization of the

wavefunction. The e”ect is most important for very di”use atoms, such as I– , or for very

close contacts such as the interaction of Li+ with H2O.

What now remains is to determine the values of ϖq and µind which minimize the total

energy of the system. In order to do this, we take the derivative with respect to each ϖqi

and each component of each µind
i and set them all equal to zero. This results in a system of

linear equations which can be written succinctly as follows:





T qq
1ϑ T qµ

1
†
ϑ 0 0

↑T µq 0 T µµ









ϖq

ε

µ




=





↑V

Q

E




(16)
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where ϖq contains the optimally rearranged charges, ε are the Lagrange multipliers which

enforce charge conservation, and µ are the induced dipoles. The solution vector in Eq. 16

contains the electric potential, V , the total charges of each molecule, Q, and the electric

field on each atom E. The matrix has several blocks containing the charge-charge (T qq),

charge-dipole (T qµ), dipole-charge (T µq), and dipole-dipole interaction tensors (T µµ). Note

that the diagonal elements of T qq are the atomic hardness ς and the 3↘ 3 diagonal blocks of

T µµ are the inverse polarizability tensor ω→1
i . The block 1ϑ has a column for each molecule

in the system. An entry in that column is 1 if the ith atom is in that molecule and zero

otherwise. These blocks enforce the charge-conservation constraints for each molecule.

Finally, there is one more term in our polarization model which is designed to only

contribute at short range. Specifically, we introduce another term proportional to density

overlap,

Vpol,sr =
∑

i<j

asrij f
TT
4 (xij)

(
1

2

↼̄i + ↼̄j

r3ij

)4/3

Sω
ij (17)

where ↼̄i is the mean dipole polarizability of atom i, fTT
4 (xij) is the fourth-order Tang-

Toennies damping function, defined in Eq. 9, and asrij = asri asrj is the pairwise parameter fit

for this term. While Eq. 17 is more empirical than the rest of the FQCT force field, it seems

to capture the e”ect of quadrupole polarization, which is known to be important in water46

(which is very computationally expensive to account for compared to the magnitude of the

e”ect). In fact the last term in Eq. 17 tends to have a magnitude for water that is only a bit

larger than what would one expect for quadrupole polarization of around 20%. Thus, even

though Eq. 17 is not a true model for quadrupole polarization, since it is pairwise-additive

while quadrupole polarization has a many-body contribution, it works quite well. Similar

terms have been suggested before for capturing the short-range polarization of ions.47

Charge Transfer. The true definition of charge transfer involves the transfer of actual

charge between molecules,48 and involves both attractive and repulsive contributions. The

attractive component is the energy lowering associated with delocalizing the electron density,

while the repulsive contribution arises from any molecule having a non-integer total charge.
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While there is a penalty for moving charge between molecules, Figure 1 illustrates how

hydrogen bonding networks benefit from many-body charge transfer. If we assume that an

equal amount of charge is transferred along each hydrogen bond, the hydrogen bonds of the

trimer on the left are organized in such a way that some molecules donate more hydrogen

bonds than they receive and vice versa so that some molecules end up with nonzero total

charges. This is consistent with the known instability of double acceptor water molecules

which do not donate any hydrogen bonds.49

Figure 1: Two water trimers illustrating the importance of both polarization and charge
transfer for the stability of water molecules. FRZ corresponds to the frozen contribution:
the sum of Pauli, electrostatic, and dispersion enegies. POL is the polarization energy and
CT is the charge transfer energy. Energies are computed at the ωB97X-V/def2-QZVPPD
level of theory. Total energies are interaction energies and not binding energies. See text for
discussion.

In the trimer on the right, each molecule donates and receives the same number of

hydrogen bonds. This means each molecule will have a nearly net-zero charge while still

benefitting from charge delocalization along each hydrogen bond. If we remove any water

molecule from this trimer, the two remaining molecules would have nonzero total charges and

hence incur a penalty. The elimination of this penalty when a third molecule is added to the
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network is exactly what gives rise to a many-body charge transfer stabilization. Indeed, the

trimer on the right is a so-called homodromic ring, which results in enhanced cooperativity

of the induced dipoles on each molecule.1

The ability of hydrogen bond networks to delocalize charge while keeping each fragment

very nearly neutral seems to us an under-appreciated aspect of hydrogen bond coopera-

tivity. This can be seen in Figure 2 by the large 3-body polarization and charge transfer

contributions of ↑1.66 and ↑0.76 kcal/mol, respectively. The fact that water can receive

and donate two hydrogen bonds simultaneously makes it uniquely capable of passing charge

between molecules while keeping the total charge of each molecule neutral. Furthermore it

is interesting to note that the EDA frozen term, i.e. the sum of electrostatics, dispersion,

and Pauli repulsion, can end up being smaller than either the polarization or charge trans-

fer contributions. Additionally, although not shown explicitly here, the charge penetration

contribution, Eq. 5, to the electrostatic energy of a hydrogen bond is typically about equal

to the point-electrostatic contribution.

This begs the question of how so many force fields have been even qualitatively successful

while neglecting such large components of the intermolecular energy? It is rather easy to see

from Figure 2 that the sum of CT and CP is generally better correlated to Pauli repulsion

than either term individually. Hence most force fields implicitly describe CT and CP by

having too soft of a repulsive wall when compared against an ab initio calculation of Pauli

repulsion such as that from EDA.
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Figure 2: Correlation between (A) charge penetration energy (CP), (B) charge transfer
energy (CT), and (C) their sum against Pauli repulsion energy. Energies are computed
at the ωB97X-V/def2-QZVPPD level of theory. Labels with ions correspond to ion-water
dimers.

The data in Figure 2 make it clear that this correlation is robust for water and ion-water

dimers, albeit with di”erent slopes depending on the dimer. Furthermore, Figure 2A shows

that adding charge penetration to a force field without adding charge transfer can make

the force field worse by destroying a fortuitous cancellation of errors. Of course, if a force

field relies on this error cancellation, the many-body contribution to charge transfer will be

neglected completely. We consider that Figures 1 and 2 provide ample motivation for the

development of a better model of charge transfer, which we present here.

Charge transfer is the most di!cult of the terms in EDA to model since there is no

classical analogue to the QM charge transfer process involving electron flow.46 One com-
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mon approach to capturing charge transfer is to use a simple exponential dependent on the

distance between atoms,15 which captures the main e”ect of short-range exponential stabi-

lization due to charge delocalization. But many-body charge transfer is non-negligible and

this e”ect will be completely missed when using just exponentials. Another idea is to treat

charge transfer the same way as polarization and solve a set of induced dipole equations as

was done in MB-UCB.12,50 While it has the benefit of capturing many-body charge transfer

energies, it does not actually allow for charge to flow between molecules and therefore misses

some of the salient physics. It is also ambiguous if the induced dipoles relevant to CT should

be treated as real dipoles and allowed to interact with permanent and induced multipoles.

These unsatisfactory approaches are also plagued by the fact that charge transfer can be an

even larger contribution than polarization, especially at short range. This means the charge

transfer energy would be even more susceptible to polarization catastrophes than ordinary

polarization, and thus require new damping schemes to ensure the model is stable.

For all of these reasons, we introduce a new approach to describing CT which is enabled

by the fact we allow for explicit charge rearrangements in our description of polarization. Our

CT model includes both direct and indirect energy contributions. The direct contributions

allow for energetic stabilization associated with both forward and backward CT, and are

proportional to the density overlap.

V CT
i↓j = aCT

i↓jS
ω
ij (18a)

V CT
j↓i = aCT

j↓iS
ω
ij (18b)

V CT
direct =

∑

i<j

V CT
i↓j + V CT

j↓i (18c)

We take inspiration from perturbation theory which shows, approximately, that the amount

of charge transferred between two molecules is proportional to the energy associated with

forward and backward CT.19,51,52 Therefore, we define the amount of charge transferred from
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i to j, #QCT
i↓j, and from j to i, #QCT

j↓i, as

#QCT
i↓j =

V CT
i↓j

↽i↓j
(19a)

#QCT
j↓i =

V CT
j↓i

↽j↓i
(19b)

The proportionality constant between the direct CT energy and the amount of transferred

charge is written as ↽i↓j to emphasize that this proportionality is related to the di”erence

in energy of an occupied orbital on i and an unoccupied orbital on j.19 In our model, we

choose this to be a pair-specific parameter since it decreases the total number of parameters

and avoids having to choose an arbitrary combination rule. By making ↽i↓j pair-specific, it

can reduce the number of parameters since many pairs do not exchange appreciable amounts

of charge, such that the energy gap is e”ectively infinite. For instance, in water, only the

oxygen to hydrogen parameter is relevant.

This approach is novel by allowing charge to explicitly move between fragments. This

is achieved by modifying the molecular charge constraints used in Eq. 16. The charge

constraint for a fragment A will then take the form,

QCT
A = QA +

∑

i↑A

∑

j /↑A

#QCT
j↓i ↑#QCT

i↓j (20)

The charge constraint including charge transfer, QCT
A , is simply the di”erence in charge

transferred to atom i (in A) and charge transferred from atom i, summed over all atoms in

molecule A. These charges will not be optimally distributed, so they will be allowed to relax

during the polarization process. This allows us to capture the so-called ”re-polarization”19

e”ect in which orbitals relax after allowing for occupied-virtual mixing. For example, when

charge is transferred from oxygen to hydrogen in a water dimer, the final excess charge will

mostly come to rest on the oxygen in the water with net-negative charge. This re-polarization
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gives rise to the indirect contributions to charge transfer,

V CT
indirect = Vpol(#QCT )↑ Vpol(0) (21)

The indirect contribution to CT, V CT
indirect, is defined as the polarization energy with CT,

Vpol(#QCT ), minus the polarization energy wihout CT, Vpol(0). This is the term that gives

rise to many-body CT.

Because the charge transferred between fragments is proportional to the direct CT contri-

butions, the charge constraints depend on the distance between atoms. This means there is

a gradient contribution which multiplies the lagrange multipliers with the gradient of #QCT
i↓j

and #QCT
j↓i. This is not di!cult or expensive to evaluate, but is an unusual gradient term

which must be accounted for in software implementations.

The One-Body Potential. The deformation energy for a single water molecule is con-

structed following a protocol we have recently published.? The one-body potential consists

of a Morse potential, cosine angle potential, a bond-bond coupling term, and bond-angle

coupling term.

Vbond = DOH [1↑ exp(↑↼(R↑Re))]
2 (22)

Vbb = kbb(R1 ↑Re)(R2 ↑Re) (23)

Vangle =
ka
2
(cos ⇀ ↑ cos ⇀e)

2 (24)

Vba = kba(R↑Re)(cos ⇀ ↑ cos ⇀e) (25)

where DOH is the dissociation energy of the O↑H bond in water, Re is the equilibrium bond

length in water, and ↼ =
√

ke/2D determines the curvature of the potential as is evident

from the fact it is written in terms of the harmonic force constant, ke. The two O↑H

stretches in water are coupled linearly in Eq. 23 via a single bond-coupling parameter, kbb.

The angle potential is harmonic in cos ⇀ where ⇀ is the HOH angle and ⇀e is the equilibrium
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angle in water, as seen in Eq. 24, and Eq. 25 shows that the angle and bond potentials

are linearly coupled by a single parameter, kba. The parameters are fit to reproduce the

CCSD(T)/aug-cc-pV5Z Hessian at the corresponding equilibrium geometry using the Q-

Force package.53 Note that this is the only term for which we do not use ωB97X-V/def2-

QZVPPD as a reference, simply because CCSD(T)/aug-cc-pV5Z is closer to the experimental

water monomer geometry.

As will be shown, the polarizability derivatives of the water monomer are not possible to

reproduce using just atomic dipole polarizabilities. Our model, however, includes fluctuating

charges which improve the polarizability derivatives considerably, although the agreement

with polarizability derivatives computed from electronic structure are still flawed. In the

same way the dipole derivatives can be reproduced accurately by including charge flux in a

model,54,55 we have implemented geometry-dependent atomic hardness parameters, ς.

ςH1 = ςH

(
Re

ROH,1

)kω ( Re

ROH,2

)kωbb

+ kϖ
a(⇀ ↑ ⇀e) (26)

In Eq. 26, the atomic hardness of a particular hydrogen, ςH1, is modified based on the

length of both O↑H bonds, ROH,1 and ROH,2, and the angle ⇀. The parameters kϖ, kϖ
bb,

and kϖ
a describe the magnitude of change in atomic hardness and are fit to reproduce the

polarizability derivatives computed from electronic structure. This particular functional form

was chosen to be well-behaved when either bond is elongated, such that when the hardness

of atom H1 is decreased, it increases the polarizability along that bond. This is a source of

so-called electrical anharmonicity and hence contributes to the large, positive second dipole

derivative associated with hydrogen-bonded water molecules.56 Note that this term adds

negligible cost to the force field evaluation since we already compute the derivatives with

respect to each internal coordinate when computing the deformation energy.

Additionally, we find that Pauli repulsion as modeled purely by Eq. 7, results in forces

that are systematically in error for hydrogen bonds (see Table S1). This problem is easily

remedied by making the Pauli repulsion charges, Kq
i , dependent on the O↑H bond length:
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Kq
i (Rij) = Kq

i + jOH
b,pauli(Rij ↑Re) (27)

The pauli repulsion charge, Kq
i , is linearly modified by the change in bond length, Rij ↑Re,

with a slope jOH
b,pauli. As shown in Table S1, this dramatically improves the forces along an

O↑H bond with only one additional parameter.

Like electrostatics, polarization parameters need to be constrained to give physically

meaningful parameters. Specifically, in addition to EDA energies, we include the polariz-

ability and polarizability derivatives at the ωB97X-V/def2-QZVPPD equilibrium geometry

of water in the fitting process. The loss function we minimize against is,

Lpol =

√∑N
i=1(V

FF
i ↑ EEDA

i )2

N
+ w1||ωFF ↑ωEDA||+ w2||

⇁ωFF

⇁r
↑ ⇁ωEDA

⇁r
|| (28)

In the above, the first term is the RMSD of the predicted energies, V FF
i , from the EDA ener-

gies EEDA
i . The second term is the Frobenius norm of the di”erence between the computed

and predicted molecular polarizabilities, ω. The third term is the same as the second but

for the polarizability derivatives. The weights, w1 and w2 are set to 1.0 and 0.5 respectively.

This, in essence, forces the molecular polarizability to be reproduced exactly while allowing

for some error in the polarizability derivatives which are much more di!cult to reproduce.

In the FQCT model the intramolecular polarization is described by coupling the bonding

potential to the environment through the electric field, which makes the polarization energies

more accurate and dramatically improves the underlying forces. Furthermore, this term

enables us to more accurately reproduce the well-known structure-frequency correspondence

in water.21 We do this by modifying Eq. 22 to also be dependent on the environmental

electric field.21 Specifically, the bond force constant, ke, and equilibrium bond length, Re,

are coupled to the electric field projected along the bond, EOH, via the first and second dipole

derivatives, µ(1) and µ(2). These derivatives are treated as parameters which we compute
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from electronic structure. The equilibrium bond length, Re, becomes

Re(EOH) = R0
e +

EOHµ(1)

k0
e ↑ EOHµ(2)

(29)

where R0
e is the equilibrium bond length and k0

e is the force constant under zero field. The

force constant under a nonzero field, ke(EOH), is then

ke(EOH) = k0
e ↑ 3k0

e↼
(
Re(EOH)↑R0

e

)
↑ EOHµ

(2) (30)

These equations can be derived by analyzing the behavior of a Morse potential in an electric

field.21 We see in Eq. 30 that the field-dependent Morse potential guarantees the structure-

frequency correlation will be respected at least approximately. The dipole derivatives needed

to evaluate the field-dependent Morse potential, Eqs. 29 and 30 are computed from electronic

structure by scanning along the O↑H bond length of a water monomer. The molecular dipole

moment, µ, is projected along the O↑H bond unit vector, R̂OH, to give µOH = µ · R̂OH. µOH

is then fit to a second-order polynomial whose coe!cients directly give the dipole derivatives

(see Figure S1).

By using the above equations we will obtain the correct slope of the structure-frequency

correlation, but it will tend to understimate the actual bond length and frequency shifts.

The final step to reproduce the bond lengths and vibrational frequencies is to include a

contribution from CT. This is motivated by adiabatic EDA calculations, where the largest

contribution to bond elongation and red-shifting occurs on the CT surface.22 Specifically,

we allow both the bond length and force constants to be modified according to the amount

of charge transferred into a hydrogen atom, as computed with Eq. 19a. This results in the

final expressions used for the bond length and force constant in our environment-dependent
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bonding potential,

Re(EOH) = R0
e +

EOHµ(1)

k0
e ↑ EOHµ(2)

+ k(1)
ct (#QH

CT )
2 (31)

ke(EOH) = k0
e ↑ 3k0

e↼
(
Re(EOH)↑R0

e

)
↑ EOHµ

(2) + k(2)
ct (#QH

CT )
2 (32)

The rationale for using the amount of charge accepted by a hydrogen atom, #QH
CT , in

Eqs. 31 and 32 is that this charge is transferred into an anti-bonding orbital and hence

should have a large e”ect on the O↑H bond in question. Similarly, we ignore the charge

transferred out of the oxygen atom since these electrons come from non-bonding orbitals

and should therefore minimally a”ect the O↑H bonds in that water. This introduces two

additional parameters, k(1)
ct and k(2)

ct , which determine the sensitivity of the bond-length and

force constant to CT. The importance of these parameters is that while they have a very

small e”ect on the CT energy, they contribute a sizable e”ect on the CT forces. In the

Supplementary Information we illustrate how the environment-dependent bonding potential

improves energies and forces for the water dimer.

Ion-Water and Ion-Ion Potentials Most of the functional forms used in the repre-

sentation of water are identical for ion-water and ion-ion interactions with some exceptions

described here. First, ion-ion interactions at very short-range are large and hence the validity

of the combination rules we use for the water-water and ion-water interactions break down.

To remedy this issue, we make all ion-ion parameters pair-specific, and to parameterize the

model in such a way that it will be easy to add new solvent-solute parameters. For many

molecules pair-specific parameters are unnecessary, but for others, such as ion-ion interac-

tions, they cannot be avoided. For ion-ion interactions, Pauli repulsion, electrostatics, and

polarization terms have an additional potential that is quadratic to the density overlap:

VS2 =
Nion→1∑

i=1

Nion∑

j=i+1

aij(S
ω
ij)

2 (33)

This term is convenient since (Sω
ij)

2 tends to only be nonzero at short-range and near the
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equilibrium ion-ion distance. Dispersion and charge transfer are both well-behaved enough

that pair-specific parameters are su!cient. As we will see, this strategy of adding energy

terms proportional to the overlap squared is very e”ective and we we expect to see this

strategy exploited in future force fields. Finally, the ion-ion polarization and charge transfer

are the same as the water model, so, as we will show, ion-ion-water many-body interactions

are described accurately. Still waiting on final results for this.

Methods

Reference Data. Our model is parameterized using water clusters of size (H2O)n with n=2-

5. We use 2400 dimers, trimers, tetramers, and pentamers extracted from various minimized

cluster geometries. We additionally generated 4800 pseudo-random water dimers based on a

Sobol sequence. We follow exactly the same procedure as described elsewhere.57 Using the

same procedure we generated 4800 ion-water dimer geometries for all ion species considered

in this study, namely F– , Cl– , Br– , I– , Li+, Na+, K+, Rb+, and Cs+. For all ions, we also

ran a 10ps ab initio molecular dynamics simulation at 500K with ωB97X-V/def2-TZVPPD

to generate more probable ion-water configurations. We then sampled 2400 evenly spaced

configurations from this trajectory to be used for parameterization.

Some larger ion-water clusters were also generated by the following procedure. We used

the Crest software package58 which uses the semi-empirical GFN2-XTB59 method to search

for global minima on a potential energy surface. We carried out the Crest global minimum

search with five di”erent seed structures generated by taking water clusters, (H2O)n, n=6-

17, from a water cluster database60 and replacing one water randomly with one of the ions

mentioned. We then took the structures of up to the ten lowest energy minima which had

di”erent hydrogen-bond networks and optimized them at the ωB97X-V/def2-TZVPPD level

of theory. This resulted in a total of 1044 unique ion-water clusters. These full clusters are

used to characterize the ion-water potentials, but we also extracted all possible dimers and
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trimers from these clusters to be used in fitting of the ion force field parameters.

We then generated clusters of the form X–Y+(H2O)n for n=4-10 where X– is any of the

halide anions and Y+ is any of the alkali metals cations. We followed the same protocol as

above in generating these clusters except we started from the clusters containing a cation

sampled in the previous step. A large number (insert when finalized) of trimers and

tetramers of the ion pairs, X–Y+(H2O)1,2, were then extracted from these clusters for analyis

of many-body energies involving pairs of ions rather than just a single ion. All sampled

clusters are available with the paper.

All energies used in fitting parameters of the force field are computed at the ωB97X-

V/def2-QZVPPD level of theory. In the cases where clusters are optimized at ωB97X-

V/def2-TZVPPD, we recompute the energies of those clusters and any derived sub-structures

with ωB97X-V/def2-QZVPPD. All distributed multipole calculations were carried out in the

Orient program.61

Parameterization strategy. We fit each term against only the EDA contribution to

that particular energy component. Optimization of parameters is done using simple gradient

descent against the root mean-square deviation (RMSD) of predicted and EDA energies. For

electrostatics and Pauli repulsion, we only use dimers in the fitting process since electrostatics

is strictly pairwise-additive and Pauli repulsion is nearly so. For these terms 200 random

water dimers from the datasets described above are used in fitting whereas for other many-

body terms we use 200 random water dimers, trimers, tetramers, and pentamers from the

datasets described above.

When parameterizing electrostatics, we optimize against two objectives. First, we en-

sure that the dipole derivatives at the equilibrium geometry of water are correct (this can

be achieved nearly exactly). Second, we optimize against the distributed multipole electro-

static energy described near Eq. 5. We also include 200 random dimers of Cl– (H2O) and

K+(H2O) when fitting against the distributed multipole electrostatics. This seems to help

with optimizing to physically meaningful multipoles. We then freeze the total charges and
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dipoles on each atom so that the dipole derivatives will remain correct. Next, we fit the

value of the core charges, Z and electrostatic exponents, belec, on each atom with respect to

the total electrostatic energy from EDA. We also allow the quadrupoles to relax against the

total electrostatic energy as a form of compensation for the lack of higher-order multipoles.

The Pauli repulsion term is first fit against the RMSD of the corresponding EDA energy.

At the final step of the parameterization, the repulsion parameters are then allowed to relax

against the total interaction energy and interaction forces for only dimers. Using the forces

is essential to get meaningful values of the dipole derivatives used in the field-dependent

Morse potential for Pauli repulsion. This procedure essentially results in improved error

cancellation which we find is still necessary for a robust force field. We will have more to

say about the necessity of error cancellation in force fields later. It should be noted that we

only allow the Pauli repulsion to optimize against dimers so that it cannot correct errors in

the many-body contributions. Furthermore, we will see that the Pauli repulsion energy still

ends up providing an unbiased estimate of the EDA Pauli repulsion energy.

The charge transfer energy and dispersion energies are simply fit against the RMSD from

their EDA energies. Dispersion has a large enough many-body contribution that if only

dimers are used in the fitting, one will systematically over-estimate the dispersion energy

since many-body dispersion is usually repulsive. There are methods for modeling many-body

dispersion, but we have not included such terms in the FQCT model.31,62

Results

Water Monomer Properties

In the construction of this model, we have gone to great lengths to ensure that the model

reproduces as many properties of the water monomer as possible. For instance, it was first

pointed out by Fanourgakis and Xantheas that reproducing the dipole surface of water is

essential for capturing the opening of the bend angle of water in the condensed phase.63
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This requires a model that reproduces the dipole derivatives of water to correctly predict

the opening of the bend angle as water clusters become larger.

Figure 3: The dipole surface of water for all structures taken from a 3-D scan of water internal
coordinates with a deformation energy less than 20 kcal/mol. The black dashed line shows
the values computed with ωB97X-V/def2-QZVPPD. The green dashed line corresponds to
the experimental gas-phase dipole moment of water of 1.85 Debye.

In Figure 3, we make a comparison between the dipole surface of the FQCTmodel (green),

a dipole surface with fixed charges and dipoles that optimally reproduce the EDA electro-

static energy of the water dimer (blue), the dipole surface using the Partridge-Schwenke (PS)

model64 (orange), against the reference surface computed with ωB97X-V/def2-QZVPPD.

Clearly, fixed charge force fields completely fail to reproduce the dipole surface of water

whereas the dipole surface associated with the PS water monomer surface is exact over a

wide range of energies by construction.64 Figure 3 shows that the FQCT dipole surface is
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nearly exact as the PS dipole surface, reproducing the dipole derivatives of water at its

equilibrium geometry to five decimal places in atomic units.

Another important property for accurate energetics and transferability, especially for

interactions with ions, is the molecular polarizability. The polarizability is evaluated for a

water molecule with the y-axis as the bisector of the HOH angle and the z-axis normal to the

plane of the water molecule. Our model reproduces the ωB97X-V/def2-QZVPPD molecular

polarizability up to three decimal places in bohr3, with ↼xx = 10.0321, ↼yy = 9.65958, and

↼zz = 9.40921.

The last monomer property we explicitly aimed to reproduce are the polarizability deriva-

tives of gas-phase water at its equilibrium geometry. The polarizability derivatives control

the intensity of peaks measured with Raman spectroscopy but are rarely discussed in the

construction of water models. For example, at least one water model has been constructed

for the express purpose of reproducing Raman spectra,65 but the polarizability derivatives

were not reported. Additionally, since water distorts when interacting with other molecules,

reproducing the polarizability derivatives indicates how well the molecular polarizability at

distorted geometries will be reproduced.

In Table 1, we report the polarizability derivatives of the FQCT model as well as the

polarizability derivatives for an identically parameterized model which does not include fluc-

tuating charges, and compare them to the QM reference model. Because charge fluctuations

for water contribute to in-plane polarization, we find that the model gives much better xx,

xy, and yy polarizability derivatives than one which just uses anisotropic dipole polarizabil-

ities. Note that the polarizability derivatives in Table 1 are also improved considerably by

the geometry-dependent atomic hardness described in Eq. 26. This indicates that one of

the main reasons water models have historically predicted Raman intensities very poorly66

is the lack of fluctuating charges in the polarization process.

The polarizability derivatives in Table 1 are reproduced very accurately for the in-plane

components, especially when compared with the polarizability derivatives neglecting charge
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Table 1: Polarizability derivatives of water computed at the ωB97X-V/def2-QZVPPD equi-
librium geometry in three di”erent ways. The first entry is computed with ωB97X-V/def2-
QZVPPD, the second with FQCT, and the third with the same model but using parameters
optimized without fluctuating charges. The Atom column tells both the atom and com-
ponent of its position we take the derivative with respect to. The water monomer has its
bisector aligned with the y-axis and the z-axis is normal to the water molecule plane. Note
that the derivatives for the second hydrogen are identical to the first but with opposite sign.
The xz and yz entries are omitted since they are small and reproduced to three decimal
places by both models.

Polarizability Derivatives of Water (bohr2)
Atom xx xy yy zz
Ox - 4.04/4.00/-0.13 - -
Oy 5.15/5.20/2.04 - 4.45/4.45/-2.03 1.50/0.0/0.0
Oz - - - -
Hx -4.61/-5.00/0.78 -2.02/-2.00/0.06 -2.53/-1.78/-0.78 -1.39/0.0/0.0
Hy -2.57/-2.60/-1.02 -1.68/-1.66/-0.08 -2.22/-2.22/1.02 -0.75/0.0/0.0
Hz - - - -

fluctuations. The zz polarizability derivatives, however, are not as well described. It is im-

portant to note that one can achieve better agreement with reference polarizability deriva-

tives if that is the only quantity one aims to reproduce, but these models tend to result in

inadequate polarization energies.

The zz polarizability derivatives of water are an interesting case since they can be repro-

duced accurately when using intramolecular induced dipole interactions, but this tends to

make the polarization energies worse and will make polarization catastrophes more likely for

ion-water systems. We can also reproduce the zz polarizability derivatives by allowing the

z-component of atomic polarizabilities to be geometry-dependent. We decided not to do this

since it adds additional complexity with a fairly small benefit for water, but for a system

like benzene which predominantly interacts via ϑ interactions we would take that additional

step to recover accurate out-of-plane polarizability derivatives.
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Water Intermolecular Interactions

Next we turn to the performance of FQCT on water-water intermolecular properties. We

start with the reproduction of the QM energies and ALMO-EDA energy components pre-

sented in Supplementary Table S3 which presents the mean absolute errors (MAEs) over

each cluster size. In general, the MAEs obtained by our model are excellent, with errors

no larger than 0.25 kcal/mol. The reason for this is illustrated in Figure 4 which shows the

correlation of errors in all attractive terms against Pauli repulsion both with and without

error fitting against ALMO-EDA. Figure 4A shows that just by fitting each EDA term in-

Figure 4: Correlation of errors in Pauli repulsion against all attractive interactions from
EDA including dispersion, electrostatics and CP, polarization, and charge transfer. Figure
A shows the error correlation without any error fitting, where each EDA term is fit indepen-
dently. Figure B shows the same plot after allowing the Pauli repulsion to relax against the
interaction energy for dimers only to improve error cancellation. See section on parameteri-
zation for more details.
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dependently, our model naturally correlates attractive and repulsive errors such that when

repulsion gets stronger, all of the attractive terms also get stronger, indicating that some

amount of error cancellation is guaranteed. Thus the FQCT model is much more e”ective

at taking advantage of error cancellation as seen in Figure 4B because Pauli repulsion and

all other terms are naturally correlated. This is easily seen in Figure 2 where the sum of

charge penetration and charge transfer are linearly correlated to Pauli repulsion over a very

wide energy range.

One of the major goals of the FQCT model is to quantitatively reproduce the many-body

contributions to both polarization and charge transfer. To assess how well we have achieved

this, we computed the three-body contribution to both polarization and charge transfer with

water trimers not used in parameterizing the water model. Figure 5 shows that we obtain

excellent agreement with electronic structure for the major three-body contributions to the

energy. Indeed, the model manages to capture repulsive and attractive three-body contri-

butions to both polarization and charge transfer despite repulsive three-body contributions

to either of those quantities being absent in ordinary water clusters.10 This is important

since ion-water clusters have been shown to have repulsive three-body contributions in many

cases.2,3

We have also computed the energy of many water clusters for which high-quality CCSD(T)

benchmark energies are available,67 and compare the energies predicted by our model with

several other force fields in Table 2. We also include ωB97X-V/def2-QZVPPD in Table 2

since this is the reference method for our force field. It is clear that this level of theory

compares very favorably to the CCSD(T)/CBS and MP2/CBS numbers used as reference.

It is worth noting that both q-AQUA and MB-Pol include fits of the 2-body, 3-body,

and in the case of q-AQUA 4-body contributions to the energy at CCSD(T). Therefore,

the fact that our model built for transferability is able to achieve an MAE over all clusters

that falls between these fitted models is encouraging. Interestingly, MB-Pol seems to have

a tendency to underestimate the binding energy of clusters as they get larger. Presumably
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Figure 5: Correlation plot of the three-body contribution to polarization and charge transfer
as computed by our model and with ωB97X-V/def2-QZVPPD. All water trimers in this plot
are drawn from ion-water clusters and therefore span a wide range of configurations, some of
which are atypical of liquid water. Since trimers drawn from a cluster may be disonnected,
we enforce that the trimer have an absolute three-body contribution of at least 0.02 kcal/mol.

this shortcoming has been corrected in the updated version of MB-Pol68 which is reportedly

at least as accurate as q-AQUA. As highlighted in the methods section, the electrostatics

and Pauli repulsion used in our model are nearly the same as those used in HIPPO.15 It

is very encouraging, therefore, to see that our model improves on the MAEs of the HIPPO

model rather substantially. One of the main reasons we are able to achieve better MAEs is

that our many-body energies, as shown in Figure 5, are both accurate and nearly unbiased,

while the HIPPO model systematically underestimates the many-body contributions to water

cluster energies,15 which is likely attributable to the absence of many-body charge transfer.

Interestingly, for larger clusters our model begins to slightly underestimate the energies

compared to the benchmark references, but so does ωB97X-V/def2-QZVPPD, which is the
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best our force field can possibly perform.

In addition to accurate energetics, many-body FFs should also produce accurate geome-

tries. Table 3 shows the root mean-squared deviation (RMSD) of water cluster structures

optimized with various FFs and ωB97X-V/def2-QZVPPD compared to previously reported

structures optimized with either CCSD(T) or MP2.67 The average RMSD for our model man-

Table 2: Comparison of various advanced force fields and ωB97X-V/def2-QZVPPD against
benchmark cluster energies.67 The reference energies are mostly CCSD(T)/CBS values but
some are MP2/CBS values; see original paper for further details on structures.67 We use
the FF optimized geometries to evaluate energies, and any FF energies which could not be
found in the literature are left blank. The bottom row shows the mean absolute error per
molecule for all available energies.

Comparison of Methods on Benchmark Water Cluster Binding Energies
(H2O)n Isomer q-AQUA MB-Pol FQCT ωB97X-V HIPPO Ref.
(H2O)2 -4.97 -4.91 -4.90 -5.00 -4.96 -4.99
(H2O)3 -15.73 -15.30 -15.35 -15.77 -15.77 -15.77
(H2O)4 -27.35 -27.12 -27.34 -27.75 -26.69 -27.39
(H2O)5 -35.71 -35.94 -36.36 -36.51 -34.58 -35.9
(H2O)6 Prism -46.21 -45.87 -45.95 -46.53 -46.15 -46.2
(H2O)6 Cage -45.94 -45.51 -45.70 -46.30 -45.39 -45.9
(H2O)6 Book -45.21 -45.19 -45.58 -45.95 -44.25 -45.4
(H2O)6 Ring -43.71 -44.70 -45.31 -45.07 -42.54 -44.3
(H2O)7 -57.71 -57.37 -57.63 -58.08 - -57.4
(H2O)8 D2d -73.32 -72.28 -72.67 -73.58 -71.55 -73.0
(H2O)8 S4 -72.93 -72.35 -72.75 -73.55 -71.56 -72.9
(H2O)9 D2dDD -82.87 -81.67 -82.28 -83.00 - -83.0
(H2O)10 -94.72 -93.07 -93.81 -94.50 - -94.6
(H2O)11 43’4 -104.23 -102.17 -103.03 -103.77 -100.23 -104.6
(H2O)16 Antiboat -164.87 -162.20 -163.26 -164.20 -159.63 -164.6
(H2O)16 4444-a -163.10 -162.98 -163.32 -164.28 -161.84 -164.2
(H2O)16 4444-b -162.54 -162.87 -163.18 -163.84 -161.56 -164.1
(H2O)16 Boat a -164.53 -161.92 -162.99 -164.51 -159.36 -164.4
(H2O)16 Boat b -164.31 -162.04 -163.09 -164.35 -159.43 -164.2
(H2O)17 Sphere -177.56 -174.15 -175.26 -175.78 -170.68 -175.7
(H2O)20 ES Prism -212.49 -210.20 -211.35 -211.98 - -214.2
(H2O)20 FS Prism -210.63 -208.46 -209.20 -210.12 - -211.9
(H2O)20 Fused Cubes -208.07 -208.56 -208.85 -209.90 - -210.6
(H2O)20 Pentag. Dodec. -199.79 -197.99 -200.29 -201.22 - -200.8
(H2O)25 Isomer 2 -276.50 -266.04 -268.44 -272.02 - -276.3
MAE/n 0.040 0.156 0.112 0.051 0.194 -
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ages to outperform MB-Pol and is comparable even to q-AQUA. Notably, ωB97X-V/def2-

QZVPPD is even more accurate on this benchmark than q-AQUA which provides further

evidence of the high accuracy of this density functional.

Table 3: Comparison of various advanced force fields and ωB97X-V/def2-QZVPPD
against benchmark cluster structures.67 The reference structures are optimized at either
CCSD(T)/aug-cc-pVDZ or MP2/aug-cc-pVTZ. See original paper for further details on
structures.67 The bottom row shows the root mean-squared deviation (RMSD) in angstrom
for all available structures.

Comparison of Methods on Benchmark Water Cluster Structures
(H2O)n Isomer q-AQUA MB-Pol FQCT ωB97X-V
(H2O)2 0.005 0.008 0.015 0.005
(H2O)3 0.010 0.014 0.017 0.008
(H2O)4 0.008 0.024 0.012 0.006
(H2O)5 0.013 0.059 0.045 0.008
(H2O)6 Prism 0.010 0.035 0.018 0.009
(H2O)6 Cage 0.013 0.027 0.023 0.018
(H2O)6 Book 0.010 0.029 0.040 0.009
(H2O)6 Ring 0.013 0.043 0.023 0.010
(H2O)7 0.016 0.041 0.029 0.025
(H2O)8 D2d 0.006 0.041 0.016 0.004
(H2O)8 S4 0.007 0.019 0.015 0.005
(H2O)9 D2dDD 0.089 0.116 0.036 0.052
(H2O)10 0.012 0.049 0.022 0.010
(H2O)11 43’4 0.034 0.065 0.023 0.017
(H2O)16 Antiboat 0.023 0.064 0.035 0.017
(H2O)16 4444-a 0.039 0.038 0.029 0.015
(H2O)16 4444-b 0.040 0.049 0.030 0.029
(H2O)16 Boat a 0.023 0.038 0.027 0.016
(H2O)16 Boat b 0.028 0.057 0.049 0.016
(H2O)17 Sphere 0.039 0.063 0.038 0.022
(H2O)20 ES Prism 0.042 0.056 0.043 0.024
(H2O)20 FS Prism 0.047 0.050 0.032 0.023
(H2O)20 Fused Cubes 0.067 0.050 0.030 0.029
(H2O)20 Pentag. Dodec. 0.034 0.066 0.033 0.018
(H2O)25 Isomer 2 0.029 0.049 0.038 0.023
RMSD (Å) 0.026 0.046 0.029 0.017

In order for a FF to be useful for theoretical spectroscopy, it must respect the relation-

ships between structure and vibrational frequencies. In the case of water, this manifests

as a linear relationship between the change in bond length (#Re) and change in O↑H
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stretching frequency (#ω),21 also known as Badger’s rule.69 In the course of constructing

the FQCT FF, we tested Badger’s rule and if it satisfied the expected slope #ω vs #Re of

≃ ↑19 cm→1/.001Å.21 We found instead that the slope was ≃ ↑10 cm→1/.001Å(See Fig. S2)

which is in agreement with a slope of ≃ ↑11 cm→1/.001Å found by Boyer et al. when they

use a field-independent Morse oscillator with parameters appropriate to water. To obtain

the correct slope requires an environmental electric field dependence,21 and motivates our

bonding potential parameters to be modulated by the field along the O-H bond, as given by

Eqs. 29 and 30.

Figure 6: Correlation of #ω vs #Re over a collection of small water clusters using FQCT and
ωB97X-V/def2-QZVPPD. The water clusters are low-energy structures of (H2O)2-6 available
with the paper. The linear fits are not constrained to pass through zero which explains the
slightly large slopes compared to previous work.21

We computed the necessary dipole derivatives from a simple O↑H scan and found the

parameters µ(1) = 0.1654 and µ(2) = ↑0.01246. If we do the same calculation with FQCT,
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we get µ(1) = 0.1658 and µ(2) = ↑0.0104. This indicates that as long as a force field has

an accurate dipole surface, the dipole derivatives needed to compute the field-dependence

of a Morse potential can be computed directly from the force field. The final result of the

structure-frequency correlation in water using the FQCT model is shown in Figure 6. We

consider this an excellent result given the simplicity of the field-dependent Morse potential,

especially since it requires no free parameters.

Ion-Water Model

Accurately reproducing many-body energies is a very stringent test of a water model, but

this is especially true for ion-water systems where polarizable force fields have historically

struggled. We now turn our attention to the performance of this model on ion-water clus-

ters. First, we consider simple scans for each of the ion-water dimers considered in this

study. Figure 7 show the total energy curve of FQCT as a solid colored line and the QM

reference energy curve as a dashed line of the same color for each ion. In the Supplementary

Information, we include a variation on these plots where we show the error in each individual

EDA component of the scan. Need to add these still.

Perhaps the most important feature of the dimer scans in Figure 7 is the long-range

attractive part of the potential which we are able to capture very accurately in all cases.

Unsurprisingly, the largest errors are found for F– and Li+ which are the most challenging

ions considered in this work due to their extremely short-range (nearly covalent) interactions.

Another important feature of the ion-water dimer potential is the repulsive wall since in the

condensed phase, many-body stabilization shortens the oxygen-ion distance beyond the dimer

equilibrium distance. Looking at the errors of each EDA term inside the equilibrium distance

in Supplementary Figure X, it is clear that the Pauli repulsion and charge transfer tends to

be underestimated while electrostatics and polarization are overestimated but these errors

are small and compensated for by a net error cancellation. In fact the binding energies of
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Figure 7: Scans of the water-ion dimers for (A) anions (X–=F– , Cl– , Br– , and I– ) and
(B) cations (X+=Li+, Na+, K+, Rb+, and Cs+). Water geometry is held fixed at the
equilibrium structure of each dimer. The solid curve corresponds to FQCT and the dashed
curve corresponds to ωB97X-V/def2-QZVPPD. Vertical dashed lines show the positions of
each minimum with ωB97X-V/def2-QZVPPD. Binding energies and harmonic frequencies
are reported in Table 4.

ion-water interactions with FQCT are extremely accurate compared to the DFT reference,

with the largest error of 0.7 kcal/mol for F– (H2O), while the rest of the ions have binding

energies accurate to within a few tenths of a kcal/mol.

Since ion-water interactions are strong, they can result in large red-shifts of the underly-

ing vibrational frequencies. Table 4 provides the frequencies and binding energies of FQCT

compared to ωB97X-V in which our model is generally quite accurate. The O↑H stretching

modes, NM5, are fairly accurate for all anions especially considering the strength of inter-

actions involved. This highlights that reproducing the structure-frequency correspondence

shown in Figure 6 transfers to interactions with anions. The bending mode for anion-water

dimers, NM4, is systematically blue-shifted, while this problem with the bending frequen-

cies does not occur for the cations. This is because the anion attracts the water hydrogen

atom causing the HOH angle to close more than it should. This is likely attributable to

the lack of a field-dependent contribution to the bending potential, which would counter-act

this tendency to close the HOH angle. In the future, we may explore the addition of a

field-dependent contribution to the bending potential.70 The low-frequency modes for both
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Table 4: Comparison of FQCT dimer vibrational frequencies (cm→1) and binding energies
(kcal/mol) against ωB97X-V/def2-QZVPPD for all ion-water dimers discussed in this paper.

Ion-Water Dimer Vibrational Frequencies
X+/– (H2O) Method NM1 NM2 NM3 NM4 NM5 NM6 De

F– (H2O) FQCT 433 621 1276 1768 2375 3854 -27.9
ωB97X-V 384 569 1144 1702 2233 3916 -27.2

Cl– (H2O) FQCT 196 376 751 1717 3467 3895 -14.8
ωB97X-V 193 341 726 1678 3417 3919 -14.9

Br– (H2O) FQCT 155 352 710 1712 3504 3894 -13.2
ωB97X-V 151 288 657 1673 3521 3916 -12.9

I– (H2O) FQCT 128 295 636 1701 3583 3895 -11.1
ωB97X-V 118 220 579 1668 3623 3911 -10.9

Li+(H2O) FQCT 308 501 533 1679 3677 3800 -34.8
ωB97X-V 392 524 554 1681 3815 3882 -34.9

Na+(H2O) FQCT 276 314 421 1684 3735 3846 -24.2
ωB97X-V 307 367 437 1677 3830 3902 -24.3

K+(H2O) FQCT 218 310 357 1683 3764 3870 -17.6
ωB97X-V 213 359 369 1673 3833 3910 -17.7

Rb+(H2O) FQCT 180 309 331 1682 3774 3879 -15.4
ωB97X-V 178 347 351 1671 3836 3914 -15.6

Cs+(H2O) FQCT 158 307 310 1681 3781 3886 -13.8
ωB97X-V 157 327 339 1668 3836 3916 -14.0

anions and cations are generally quite accurate.

Just as with water, many-body contributions to both polarization and charge transfer are

important for ion-water systems. While on a relative basis their contributions in ion-water

systems are smaller than in water due to the dominance of electrostatic interactions, that

does not mean they can be neglected. In Figure 8 we show the correlation of three-body

polarization and charge transfer energies computed from FQCT and EDA. These energies are

computed from 400 trimers drawn from ion-water clusters which we generated for this work.

Figures 8 demonstrate that our models of polarization and charge transfer are transferable

even to very strong interactions.

In Figure 8A for water-halides, the attractive contributions to many-body polarization

are captured exceptionally well, while some additional scatter arises for repulsive three-body

polarization. The accuracy of many-body charge transfer with water-halides is similar re-
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Figure 8: Correlation of three-body polarization and charge transfer energies between FQCT
and EDA for anions and cations. All trimers are drawn from ion-water clusters optimized
with ωB97X-V/def2-TZVPPD and energies are computed with the def2-QZVPPD basis set.
(A) The 3-body polarization MAEs over the halide trimers are 0.227, 0.068, 0.059, and 0.044
kcal/mol for F– , Cl– , Br– , and I– , respectively. (B) The 3-body charge transfer MAEs over
the halide trimers are 0.143, 0.054, 0.048, and 0.030 kcal/mol for F– , Cl– , Br– , and I– ,
respectively. (C) The 3-body polarization MAEs over the alkali trimers are 0.126, 0.120,
0.095, 0.106, and 0.075 kcal/mol for Li+, Na+, K+, Rb+, and Cs+, respectively. (D) The
3-body charge transfer MAEs over the alkali trimers are 0.052, 0.028, 0.036, 0.031, and 0.023
kcal/mol for Li+, Na+, K+, Rb+, and Cs+, respectively.

gardless of whether the energy is attractive or repulsive as seen from Figure 8B. While Figure

8C finds that many-body polarization is somewhat worse for the aqueous alkali ions than for

water-halides, it is still quite accurate with an MAE of 0.1 kcal/mol. The greater di!culty in

modeling cation-water polarization is likely due to the highly polarizable oxygen atom which

cations interact with directly. Figure 8D is another illustration of the transferability and

general accuracy of our charge transfer model. Interestingly, the errors in three-body charge

transfer decrease going from Li+ to Na+ to K+, which is expected since the magnitude of the

energy also decreases. The MAEs for Rb+ and Cs+ increase to about 0.033 kcal/mol and

the correlation is slightly skewed. In any case, many-body charge transfer is rather small for

these ions and FQCT is still able to capture the trend accurately.
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Ion-Ion Potentials

Aqueous ionic solutions often exhibit equilibria between ion-ion contact pairs, solvent-separated

ion pairs, and fully solvated ions. The relative abundance of these states depends sensitively

on the nature of the ion-ion interaction itself.71 Let us begin, then, by looking at the ion-ion

dimer potentials in Figure 9.

Discussion

Most polarizable force fields include intramolecular polarization by allowing the induced

dipoles to interact regardless of whether they are in the same molecule or not. In our expe-

rience with EDA, this tends to result in worse agreement between the model and reference

polarization energies. This is not surprising given that multipoles located within a couple

bond lengths are too close for electrostatics to give a good representation of the relevant inter-

actions. There is no doubt, however, that intramolecular polarization should be considered

in some way.

The necessity of coupling the bonding potential to the environment to accurately repro-

duce structure-frequency relationships in a force field is a new observation as far as we are

aware. We consider this an excellent result given the simplicity of the field-dependent morse

potential, especially since it requires no free parameters.

When combined with our new model for the one-body potential, we also ensure that

the force field reproduces all physically relevant monomer properties including the dipole

moment, dipole derivatives, molecular polarizability, and polarizability derivatives.

The damping functions generated by the usual Thole damping procedure,72 are expo-

nentials multiplied by first-, second-, and third-order polynomials for charge-charge, charge-

dipole, and dipole-dipole interactions, respectively.72 These polynomials are smaller than the

scaling of mutual polarization, which is roughly the square of a similar permanent multipole

interaction. That is, the field due to a permanent dipole decays as r→3
ij . The dipole induced
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by this field interacts with other induced dipoles with an energy that is proportional to the

magnitude of the induced dipole and via a field that decays as r→3
ij . Since the magnitude of

an induced dipole is proportional to the permanent applied field, this means mutual polariza-

tion of induced dipoles decays as ⇐r→6
ij . The damping functions generated from the overlap

of Slater orbitals are third-, fourth-, and fifth-order polynmials multiplied by an exponential

for charge-charge, charge-dipole, and dipole-dipole interactions, respectively. These damping

functions are therefore better able to control the polarization energy than the Thole damping

functions used in other force fields. In fact, the small orders of the polynomials in Thole

damping likely explains much of the historic di!culty of controlling polarization between

ions and water.73,74

The necessity of coupling the bonding potential to the environment to accurately re-

produce structure-frequency relationships has been shown to reproduce the O-H signatures

in a recent Raman theory for water,? and has been applied to force field for a first time

here. This approach is easily extensible to other force fields and should immediately improve

spectroscopic predictions. Additionally, the ability of FQCT to generate accurate structures

is useful for cases where the force field is used to generate configurations for further analysis

with electronic structure. As an aside, many force fields use harmonic bond potentials and

the field-perturbed quantum harmonic oscillator is exactly solvable, so a similar modification

can be made in that case.

Conclusions

We have described new approaches to modeling polarization and charge transfer which we

parameterize against a very accurate energy decomposition analysis. In doing so, we have

highlighted the importance of many-body charge transfer for aqueous systems. Our new

model of charge transfer is able to quantitatively capture many-body charge transfer for

both water and ion-water clusters. This model of charge transfer is enabled by the use of

40



fluctuating charges in the polarization model.

We also show that fluctuating charges greatly improve the accuracy of polarizability

derivatives. Accurate polarizability derivatives are essential for computing Raman spectra,

which polarizable force fields have historically modeled very poorly. We therefore expect this

model to be useful for theoretical spectroscopy among many other uses. To that end, we

also show that our model can reproduce the structure-frequency correspondence central to

hydrogen-bonded vibrations. Specifically, we found that accurately predicting the red-shift

and bond elongations associated with hydrogen bonds required a field-dependent contribu-

tion to the bonding potential. The dipole derivatives which control the field-dependent bond

potential can be computed from electronic structure or directly from the force field as long

as the force field has an accurate dipole surface.

By using physically motivated damping functions, we are able to control the polarization

catastrophes which have otherwise inhibited accurate polarizable force fields for ions being

developed. Indeed, we expect that this force field represents a turning point in the ability

to model strong, short-range interactions with physical models. One can, of course, fit error

corrections on top of this force field. We expect that achieving such high accuracy with a

physical model will enable systems that are otherwise out of reach to be studied. These

might include concentrated ionic solutions and divalent ions.

The most recent progress, arguably, has been made by explicitly fitting the terms of the

MBE for ion-water interactions.75,76 This approach has the drawback that generalizing the

procedure to multi-component systems, such as a solution containing multiple types of ions,

is made di!cult by the combinatorial explosion of terms which need to be fit.

Even worse, one can only exclude charge transfer and charge penetration from force

fields because these energies are strongly correlated to the Pauli repulsion (see Fig. 2). This

correlation is not guaranteed to be consistent between systems, however, which may explain

part of the historical di!culty in producing water models which generalize to heterogeneous

systems.
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Figure 9: Scans along all ion-ion pairs with FQCT (solid lines) and ωB97X-V/def2-QZVPPD
(dashed lines).
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