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Abstract

We prove an asymptotic formula for the second moment of central values of Dirichlet L-functions restricted to a

coset. More speciûcally, consider a coset of the subgroup of characters modulo d inside the full group of characters

modulo q. Suppose that ÿý (ý) ≥ ÿý (ÿ)/2 for all primes p dividing q. In this range, we obtain an asymptotic formula

with a power-saving error term; curiously, there is a secondary main term of rough size ÿ1/2 here which is not

predicted by the integral moments conjecture of Conrey, Farmer, Keating, Rubinstein, and Snaith. The lower-order

main term does not appear in the second moment of the Riemann zeta function, so this feature is not anticipated

from the analogous archimedean moment problem.

We also obtain an asymptotic result for smaller d, with ÿý (ÿ)/3 ≤ ÿý (ý) ≤ ÿý (ÿ)/2, with a power-saving error

term for d larger than ÿ2/5. In this more difficult range, the secondary main term somewhat changes its form and

may have size roughly d, which is only slightly smaller than the diagonal main term.

1. Introduction

The study of moments of families of L-functions has a long history. One strand of research concerns the

estimation of moments in order to secure strong subconvexity bounds. Another direction is to consider

the structural properties of the moments, especially in their connections with random matrix theory.

One of the long-standing guiding principles concerns analogies between different families, particularly

the consideration of the Riemann zeta function in the t-aspect on the one side and the family of Dirichlet

L-functions in the q-aspect on the other side.

We begin by discussing some moment problems for the zeta function. This is a vast subject, and we

only brieüy touch on a few results pertinent to our narrative. In [HB2], Heath-Brown studied the twelfth

moment of the Riemann zeta function, ûnding that

∫ 2ÿ

ÿ

|ÿ (1/2 + ÿý) |12ýý �ÿ ÿ
2+ÿ , (1.1)

a result which easily recovers the Weyl bound while also proving in a strong quantitative form that

|ÿ (1/2 + ÿý) | cannot be too large too often. Heath-Brown9s technique for proving (1.1) is based on
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leveraging information from short second moments of the zeta function. A simple modiûcation of

[HB2, Lemma 1] implies

∫ ÿ +ÿ 1/3

ÿ

|ÿ (1/2 + ÿý) |2ýý � ÿ1/3+ÿ , (1.2)

for ÿ ≥ 1. See also [T2, Section 7.4] and [I, Chapter 7] for more discussion and other related results.

For example, [T2, Theorem 7.4] gives that

∫ ÿ

0

|ÿ (1/2 + ÿý) |2ýý = ÿ logÿ + (2ÿ0 − 1 − log(2ÿ))ÿ +ÿ (ÿ ÿ+ÿ), (ÿ = 1/2). (1.3)

This error term has been improved many times over the years, and it seems the ûrst improvement is due

to Titchmarsh himself [T1], attaining ÿ = 5/12. Note that (1.3) leads to an asymptotic formula for the

second moment in a short interval of length at least ÿ ÿ+ÿ , simply by writing
∫ ÿ +Δ
ÿ

=
∫ ÿ +Δ
0

−
∫ ÿ
0

.

Next, we discuss some prior works on q-analogs of these results. Nunes [N] proved an analog to (1.1)

for smooth square-free moduli q. In a complementary direction, Milićević and White [MW] proved a

variant of (1.1) in the depth aspect (i.e., ûxing a prime p and letting ÿ = ý ÿ with ÿ → ∞). Both of these

works consider upper bounds on 8short9 second moments, where in this context, 8short9 refers to a coset.

Petrow and Young [PY] obtained an upper bound on the fourth moment of Dirichlet L-functions along

a coset of size � ÿ2/3+ÿ . For the full family second moment, Heath-Brown [HB3] proved

∑

ÿ (mod ÿ)
|ÿ(1/2, ÿ) |2 =

ÿ(ÿ)
ÿ

∑

ý |ÿ
ÿ(ÿ/ý)ÿ (ý), (1.4)

where with ÿ0 = 0.577 . . . representing Euler9s constant, we have

ÿ (ý) = ý (log ý
8ÿ

+ ÿ0) + 2ÿ (1/2)2ý1/2 +
2ý−1∑

ÿ=0

ýÿý
−ÿ/2 +ÿ (ý−ý ).

One remark that is in order here is that Heath-Brown considers a sum over all Dirichlet characters, and

not just the primitive ones. A second comment is that there is no obvious way to extract from (1.4)

a formula for the second moment restricted to a coset, in contrast to the t-integral analog for the zeta

function. Finally, we remark that for composite values of q, there are a variety of main terms that may

be intermediate in size between ÿ1/2 and q. However, the ûve authors [CFKRS] have conjectured an

asymptotic formula for the second moment in this family, but only after restriction to the family of

solely the primitive characters modulo q. Conrey [C] veriûed the ûve-author conjecture for the second

moment in this family. In the same paper, Conrey also derived a beautiful reciprocity formula for the

twisted second moment with prime modulus.

To state our main results, we need some notation. Suppose ÿ is a Dirichlet character modulo q and d

is a positive integer with ý |ÿ and ÿ |ý2. It is easy to see that, as a function of x, ÿ(1 + ýý) is an additive

character with period ÿ/ý. Hence, there exists an integer ÿÿ (mod ÿ/ý) such that ÿ(1+ ýý) = ÿ( ÿÿýý
ÿ

),
where ÿ(ý) = ÿ2ÿÿý . The primitivity ofÿ modulo q means that (ÿÿ , ÿ/ý) = 1 (for which see Lemma 2.14

below). We assume

0 < |ÿÿ | <
ÿ

2ý
. (1.5)

Let ÿý (·) denote the p-adic valuation. For a and b as positive integers, we will write 8ÿ ≺ ÿ9 to mean

that a and b share all of the same prime factors and, for any prime ý |ÿ, ÿý (ÿ) < ÿý (ÿ). Similarly, we

will write 8ÿ 	 ÿ9 to mean that a and b share all of the same prime factors and, for any prime ý |ÿ,

ÿý (ÿ) ≤ ÿý (ÿ).
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Theorem 1.1. Let ÿ be even of conductor q, and suppose ý ≺ ÿ 	 ý2. Then

∑

ÿ (mod ý)
ÿ even

|ÿ(1/2, ÿ · ÿ) |2 = D +A +ÿ (ÿ−1/8+ÿý), (1.6)

where with ÿ (ÿ) = ∑
ý |ÿ

log ý

ý−1
, and ÿÿ (ÿ) =

∑
ý |ÿ ý

ÿ, we define

D =
ÿ(ý)

2

ÿ(ÿ)
ÿ

(log ÿ + 2ÿ0 + Γ′
Γ
(1/4) − log ÿ + 2ÿ (ÿ)), (1.7)

and

A =
ÿ(ý)
ý

√
ÿ
ÿ0(|ÿÿ |)√

|ÿÿ |
. (1.8)

Remarks. The term D is the standard diagonal main term, which is analogous to the main term in

(1.3). An application of the recipe of [CFKRS] would predict

∑

ÿ (mod ý)
ÿ even

|ÿ(1/2, ÿ · ÿ) |2 = D + (Error term), (1.9)

where notably the term A is not present. A bold interpretation of [CFKRS] might suggest the error term

in (1.9) would be of size ÿ (ý1/2ÿÿ), but a more cautious value would be ÿ (ÿ1/2+ÿ). If ÿÿ = 1, say,

then A =
ÿ (ý)
ý

√
ÿ, which is essentially its maximal size. This is consistent with an error term of size

ÿ (ÿ1/2+ÿ) in (1.9), but inconsistent with ÿ (ý1/2ÿÿ). However, note that A � √
ÿ which is smaller than

D, since
√
ÿ ≤ ý, and D � ý (log ÿ)1−ÿ .

The existence of A contrasts with the absence of a main term of size ÿ1/2 in (1.3). The condition that

ý ≺ ÿ implies that ÿ · ÿ has conductor q for all ÿ (mod ý), and so this lower-order main term A is not

due to characters of smaller modulus (as in (1.4)).

As a very rough heuristic, we can indicate howA arises. Applying an approximate functional equation

and the orthogonality formula, we encounter a sum of the form

ÿ(ý)
∑

ÿ≡ÿ (mod ý)

ÿ(ÿ)ÿ(ÿ)√
ÿÿ

.

With ÿ = ÿ + ýý, we have ÿ(ÿ)ÿ(ÿ) = ÿ(1 + ýýÿ) = ÿÿ/ý (ÿÿýÿ). Consider the term ÿ = 1. If ÿÿý is a

bit smaller than ÿ/ý, then the exponential is approximately 1. Once |ÿÿ |ý is larger than ÿ/ý, then the

exponential has cancellation and should not contribute to a main term. This thought process leads to

ÿ(ý)
∑

ý≥1

ÿÿ/ý (ÿÿý)√
ýý

≈ ÿ(ý)√
ý

∑

ý<
ÿ

ý |ÿÿ |

1√
ý
≈ ÿ(ý)ÿ1/2

ý
√
|ÿÿ |

. (1.10)

One can apply the same sort of reasoning for each n dividing ÿÿ , giving an expression of the same

form, in line with the presence of ÿ0(|ÿÿ |) in A. Although this heuristic is far from rigorous, it is true

that A emerges in the analysis from the most unbalanced range of summation where n is very small and

ÿ = ÿ + ýý is very large.

For the next theorem, we will have that ý | ÿ
ý

, ÿ |ý3, and (ÿ, 3) = 1, in which case we deûne ÿÿ

(mod ÿ/ý) by the condition that ÿ(1+ ýý) = ÿÿ/ý (ÿÿ (ý − 2ýý2)) for all ý ∈ Z. For more details on this

deûnition, see Section 2.2. Note this deûnition reduces to the earlier one when ý ≡ 0 (mod ÿ/ý) since
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then the quadratic term may be discarded. In addition, let ÿÿ be the reduction of ÿÿ (mod ý) such that

0 < |ÿÿ | < ý
2
.

Theorem 1.2. Suppose ÿ is even of conductor q, with (ÿ, 3) = 1 and suppose ý2 	 ÿ 	 ý3. Then

∑

ÿ (mod ý)
ÿ even

|ÿ(1/2, ÿ · ÿ) |2 = D +A
′ +ÿ (ý−1/4ÿ1/2+ÿ), (1.11)

where D is as defined in (1.7), and with ÿÿÿÿ ≡ 1 (mod ÿ), we set

A
′
=

( 2ÿÿ

ÿ

)
· ÿ(ý)

ÿ0(|ÿÿ |)√
|ÿÿ |

×
⎧⎪⎪«
⎪⎪¬

cos
(
2ÿ

2ÿÿ (ÿÿ−ÿÿ)2

ÿ

)
, ÿ ≡ 1 (mod 4)

sin
(
2ÿ

2ÿÿ (ÿÿ−ÿÿ)2

ÿ

)
, ÿ ≡ 3 (mod 4).

(1.12)

Remarks. First, observe that the diagonal term D is larger than the error term provided ý � ÿ2/5+ÿ ,
which goes below the

√
ÿ threshold. Secondly, although A′ can be negative, |A′ | is smaller than D,

since D � ÿ(ý) (log ÿ)1−ÿ .
The presence of trigonometric functions at complicated arguments in A′ is a new feature compared

to A in Theorem 1.1, and worthy of further discussion. One simple observation is that if |ÿÿ | < ý/2,

then ÿÿ = ÿÿ , and it simpliûes as cos(0) = 1 or sin(0) = 0. However, there exist situations with

ÿ ≡ 3 (mod 4) where A′ cannot be discarded. For example, let ÿ = ý239 and ý = ý116, and suppose

ý → ∞. Here, ý > ÿ2/5, so the error term is smaller than the diagonal term D. Now suppose ÿ is a

character with ÿÿ = 1 + 2ý116, which is a valid range since we need |ÿÿ | < 1
2
ý123. Then ÿÿ = 1, and

so ÿÿ − ÿÿ = 2ý116. Under these conditions, we have

2ÿÿ (ÿÿ − ÿÿ)2
= 2(1 + 2ý116)4ý232 ≡ 2ý232 (mod ý239).

Therefore,

A
′
= ÿ(ý) ×

{
cos(4ÿý−7), ý ≡ 1 (mod 4)
sin(4ÿý−7), ý ≡ 3 (mod 4).

In the case ý ≡ 3 (mod 4), then |A′ | ≈ ýý−7 = ý109. This is larger than the error term which has size

ý−1/4ÿ1/2 = ý−116/4+119.5 ≤ ý91. One can construct other examples exhibiting other types of behavior

for A′. Compared to the discussion around (1.10), it seems harder to heuristically see the shape of A′.
However, we stress that in the proof, it arises in the same way as A, with the main differences coming

from requiring a quadratic approximation for ÿ(1 + ýýÿ). The relevant sums can be evaluated in closed

form using quadratic Gauss sums.

Theorem 1.2 can be extended with little effort to q with 3|ÿ (with a slightly more restrictive assumption

ÿ 	 1
3
ý3). One could also attempt to ûnd a common/hybrid generalization of Theorems 1.1 and 1.2 by

only requiring ý ≺ ÿ and ÿ 	 ý3. To do so, one could factor ý = ý1ý2 where ý1 (ý2, resp.) consists

of the part of d where ÿý (ý1) ≥ ÿý (ÿ)/2 (ÿý (ý2) < ÿý (ÿ)/2, resp.), and use the ideas of proof of

Theorem 1.1 for ý1 (Theorem 1.2 for ý2, resp.). Our separation of Theorem 1.1 and 1.2 is intended to

simplify the exposition.

It is well known that for many families of L-functions, it may be easier to obtain an upper bound in

place of an asymptotic formula. We have the following upper bound, which is sharp for ý � ÿ1/3+ÿ .

Theorem 1.3. Let ÿ have conductor q, and let ý |ÿ. Then

∑

ÿ (mod ý)
|ÿ(1/2, ÿ · ÿ) |2 � ÿÿ (ý + ý−1/2ÿ1/2). (1.13)
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Special cases of this result appear in both [N, MW]. One nice consequence of Theorem 1.3 is that

if q has a factor d with ý = ÿ1/3+ý (1) , then this second moment is strong enough to recover the Weyl

bound |ÿ(1/2, ÿ) | � ÿ1/6+ÿ . For moduli q with ý |ÿ, Heath-Brown [HB1, Theorem 2] proved a bound

for an individual L-function which essentially matches (1.13). Indeed, our proof of Theorem 1.3 relies

on Heath-Brown9s work, and in retrospect, the method of Heath-Brown is implicitly bounding a second

moment along a coset. Of course, the second moment bound in (1.13) implies an individual bound, but

it contains more information.

2. Preliminaries

In this section, we will lay the groundwork and develop the tools necessary to prove the main theorems.

2.1. Various bounds & evaluations

First, we deûne the sum studied by Heath-Brown in [HB1] and cite his associated bound.

Definition 2.1. Let ÿ have conductor q, and let h and n be integers. Denote

ÿ(ÿ; ÿ, ℎ, ÿ) =
ÿ−1∑

ÿ=0

ÿ(ÿ + ℎ)ÿ(ÿ)ÿ(ÿÿ/ÿ). (2.1)

Lemma 2.2 (Heath-Brown, [HB1], Lemma 9). Suppose that q is odd, ÿ0 |ÿ, and ÿ > 0. Then

∑

1≤ |ℎ | ≤ý

∑

1≤ |ÿ | ≤ý
|ÿ(ÿ; ÿ, ℎÿ0, ÿ) | � ÿ1/2+ÿ (ýýÿ−1/2

0
+ (ÿýÿ0)1/4), (2.2)

and

∑

1≤ |ℎ | ≤ý
|ÿ(ÿ; ÿ, ℎÿ0, 0) | � ÿ0ýÿ

ÿ . (2.3)

Remark 2.3. Technically, [HB1, Lemma 9] gives a bound of |ÿ(ÿ; ÿ, 4ℎÿ0, ÿ) |, without the restric-

tion that (ÿ, 2) = 1. However, it can be seen by reading through his proof that the result holds for

|ÿ(ÿ; ÿ, ℎÿ0, ÿ) | (without the 4) with the condition that q is odd. Moreover, Heath-Brown claims the

bound for the sum with 1 ≤ ℎ ≤ ý (and 1 ≤ ÿ ≤ ý in (2.2)), but simple symmetry arguments extend

the result as claimed above.

We next state the standard evaluation of a quadratic exponential sum.

Lemma 2.4. Let r be a positive odd integer. Let ý, ý be integers such that (ý, ÿ) = 1. Then

∑

ÿ (mod ÿ )
ÿÿ

(
ýÿ + ýÿ2

)
= ÿÿ (−4ýý2)

(
ý

ÿ

)
ÿÿ
√
ÿ,

where ÿÿ (ý) = ÿ( ý
ÿ
), the bar notation indicates the multiplicative inverse modulo r,

(
ý
ÿ

)
is the Jacobi

symbol, and ÿÿ =

{
1, ÿ ≡ 1 (mod 4)
ÿ, ÿ ≡ 3 (mod 4).

Proof. This follows by completing the square and applying (3.38) from [IK]. �

Another simple lemma to get us warmed up is the following integral evaluation.
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6 B. Garcia and M. P. Young

Lemma 2.5. Let k be a nonzero integer and suppose − 1
2
< �(ý) < 1

2
. Then

∫ ∞

0

ý−ý cos(2ÿýý) ýý√
ý
=

Γ(1/2 − ý)
(2ÿ |ý |)1/2−ý cos( ÿ

2
( 1

2
− ý)).

Proof. This follows from [GR, 17.43.3] after changing variables. �

2.2. Postnikov

We will derive a variant of the Postnikov formula that holds for composite moduli, rather than only

prime powers. Recall the notation ÿ |ÿ∞, which means that ÿ |ÿý for some ý > 0.

Definition 2.6. For positive odd integers d and q such that ý |ÿ and ÿ |ý∞, deûne the formal power series

in the indeterminate x by

Lÿ (1 + ýý) =
∞∑

ý=1

(−1)ý+1 ýý

ý
ýý ∈ Q[[ý]] . (2.4)

The conditions ý |ÿ and ÿ |ý∞ imply that d and q share all of the same prime factors. We ûrst show

some divisibility properties for the coefficients of this formal power series. Let

ýÿ = {ý ∈ Q such that ÿý (ý) ≥ 0 for all ý |ÿ}. (2.5)

Note that ýÿ is a sub-ring of Q. Reduction modulo q gives rise to the ring homomorphism

ÿ : ýÿ → Z/ÿZ given by

ÿ(ÿ/ÿ) ≡ ÿÿ (mod ÿ), where ÿÿ ≡ 1 (mod ÿ). (2.6)

Lemma 2.7. Let ý 	 ÿ with q odd. For any ý |ÿ and ý ≥ 1, we have

ÿý (ý) ≤ ÿý (ýý−1). (2.7)

More generally, for any ý ≥ 0, there exists N such that ÿý (ý) ≤ ÿý (ýý−ý) for all ý ≥ ý .

Proof. We have ÿý (ý) ≤ log(ý)
log(ý) ≤ ý − 1 ≤ ÿý (ýý−1), where the last inequality follows from the fact

that d and q share all of the same prime factors, so ÿý (ý) ≥ 1. Now, (2.7) follows. In the more general

case, ÿý (ýý−ý) ≥ ý − ý and ÿý (ý) = ÿ (log(ý)), so there exists a large enough choice of N such that

ÿý (ý) ≤ ÿý (ýý−ý) for all ý ≥ ý . �

Remark 2.8. While Lemma 2.7 only guarantees the existence of a positive integer N, the method of

proof shows that a constructive candidate is the minimal positive integer M such that ý − ý ≥ log(ý) for

all ý ≥ ý . This minimal M can be easily found for any particular A, and an example of future relevance

is that ý = 5 when ý = 3.

Lemma 2.9. We have Lÿ (1+ýý) ∈ ýÿ [[ý]]. In fact, all the coefficients of Lÿ (1+ýý) are multiples of d.

Proof. With ýý = (−1)ý+1ýý/ý , we will show ÿý (ýý ) ≥ ÿý (ý) for all ý |ÿ. Using (2.7) implies that

0 ≤ ÿý ( ý
ý−1

ý
), so ÿý (ýý ) = ÿý (ý) + ÿý ( ý

ý−1

ý
) ≥ ÿý (ý), for any k. �

Since Lÿ (1 + ýý) lives in ýÿ [[ý]] ⊆ Q[[ý]], given ÿ from (2.6), there is an induced ring homomor-

phism ÿ : ýÿ [[ý]] → (Z/ÿZ) [[ý]] which maps

ÿ(Lÿ (1 + ýý)) =
∞∑

ý=1

ÿ(ýý )ýý . (2.8)

By abuse of notation, we view Lÿ (1 + ýý) as an element of (Z/ÿZ) [[ý]] via (2.8).
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Lemma 2.10. We have Lÿ (1 + ýý) ∈ (Z/ÿZ) [ý]. Moreover, Lÿ (1 + ýý) ∈ ý (Z/ÿZ) [ý].
Proof. The content of this lemma is that for sufficiently large k, ÿý (ýý ) ≥ ÿý (ÿ) for ýý = ýý/ý . Say

ÿ |ýý. By Lemma 2.7, there exists a positive integer N such that ÿý (ý) ≤ ÿý (ýý−ý) for all ý ≥ ý . Then

ÿý (ýý ) = ÿý (ýý) + ÿý ( ý
ý−ý
ý

) ≥ ÿý (ÿ) for ý ≥ ý . Here, N may depend on p, but by choosing the

maximal of all these N9s gives a uniform value. �

This opens the door to discussing various properties of Lÿ (1 + ýý) modulo q, such as the following

periodicity and additivity properties. These lemmas will require two indeterminates and so we will

embed (Z/ÿZ) [ý] into (Z/ÿZ) [ý, ÿ] in the obvious way.

Lemma 2.11. We have Lÿ (1 + ýý) = Lÿ
(
1 + ý (ý + ÿ

ý
ÿ)

)
in (Z/ÿZ) [ý, ÿ].

Proof. We have Lÿ (1 + ý (ý + ÿ

ý
ÿ)) =

∑
ý ýý (ý + ÿ

ý
ÿ)ý ≡ ∑

ý ýýý
ý (mod ÿ), using ýý ≡ 0 (mod ý)

from Lemma 2.10. �

Lemma 2.12. We have Lÿ ((1 + ýý) (1 + ýÿ)) = Lÿ (1 + ýý) + Lÿ (1 + ýÿ) in (Z/ÿZ) [ý, ÿ].
Proof. We give a brief sketch here, and refer to [K, pp.79-80] for more details. For the real logarithm,

we have log((1 + ýý) (1 + ýÿ)) = log(1 + ýý) + log(1 + ýÿ), for ýý > −1, ýÿ > −1. Hence, the power

series expansions of these two expressions are equal wherever they both converge, meaning that all of

their corresponding coefficients are equal. Thus, since Lÿ (1 + ýý) matches the power series expansion

of the real logarithm (reduced modulo q via (2.8)), this property also holds for Lÿ (1 + ýý). �

Lemma 2.13. Let q and d be positive odd integers with ý |ÿ.

1. If ÿ |ý∞, then Lÿ (1 + ýý) ≡ ýý (mod (ÿ, ý2)).
2. If (ÿ, 3) = 1 and ÿ |ý3, then Lÿ (1 + ýý) ≡ ýý − 2(ýý)2 (mod ÿ).
Proof. Expanding the power series, we have

Lÿ (1 + ýý) = ýý − 1
2
(ýý)2 + 1

3
(ýý)3 − ý3

(
1
4
ýý4 − 1

5
ý2ý5 + . . .

︸�������������������︷︷�������������������︸
∈(Z/ÿZ) [ý ]

)
.

The claim that the tail of this series is still a polynomial with coefficients in Z/ÿZ after factoring out

ý3 follows from Lemma 2.7, or more speciûcally the observations in Remark 2.8. Elaborating on the

details, since ý − 3 ≥ log(ý) for all ý ≥ 5, we may choose ý = 5 from Lemma 2.7. However, since q is

odd, 1
4
= 2

2
in Z/ÿZ, so we could also pick ý = 4. Now the result follows in each case. �

We are now ready for our version of the Postnikov formula.

Lemma 2.14 (Postnikov formula). Let q and d be odd with ý |ÿ and ÿ |ý∞. There exists a unique group

homomorphism ÿ : �(Z/ÿZ)∗ → Z/(ÿ/ý)Z, ÿ ↦→ ÿÿ , such that a Postnikov-type formula holds: for

each Dirichlet character ÿ modulo q and ý ∈ Z, we have

ÿ(1 + ýý) = ÿÿ (ÿÿLÿ (1 + ýý)). (2.9)

Finally, if ÿ is primitive modulo q, then (ÿÿ , ÿ/ý) = 1.

Proof. Consider the reduction modulo d map (Z/ÿZ)∗ → (Z/ýZ)∗, and denote its kernel by K. Since d

and q share their prime factors, ÿ =
{
1 + ýý : ý (mod

ÿ

ý
)
}
, so |ÿ | = ÿ

ý
. Consider the map ÿ : ÿ → ÿ1

deûned by

ÿ (1 + ýý) = ÿÿ (Lÿ (1 + ýý)).

The function f is well deûned by Lemmas 2.10 and 2.11. Furthermore, f is a group homomorphism by

Lemma 2.12. Thus, f is a character on K, and we claim that f has order
ÿ

ý
in ÿ̂ . Indeed, if p is a prime such
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that ý | ÿ
ý

, then we have ÿ (1 + ýý)ÿ/ýý = ÿÿ

(
ÿ

ýý
Lÿ (1 + ýý)

)
= ÿýý

(
Lÿ (1 + ýý)

)
= ÿýý (ýý) = ÿ( ý

ý
),

by Lemma 2.13 since ýý | (ÿ, ý2). Hence, ÿ̂ is cyclic and generated by f. Therefore, every element of ÿ̂

is of the form ÿ ÿ for some ÿ (mod
ÿ

ý
). In particular, ÿ is a character on (Z/ÿZ)∗, so restricting ÿ to

K makes it an element of ÿ̂ . Thus, there exists a unique ÿÿ (mod
ÿ

ý
) such that ÿ |ÿ = ÿ ÿÿ , which is

equivalent to the Postnikov formula.

For the ûnal statement, suppose that p is a prime with ý | ÿ
ý

and ý |ÿÿ; we will show that ÿ is periodic

modulo ÿ/ý. Since d and q share all the same prime factors, then ý2 |ÿ, and hence, ÿ | (ÿ/ý)∞. Applying

(2.9) with d replaced by
ÿ

ý
, we obtain that ÿ(1 + ÿ

ý
ÿ) = ÿÿ (ÿÿ ÿý ÿ). Hence, if ý |ÿÿ then ÿ is periodic

modulo ÿ/ý. �

2.3. Miscellaneous lemmas

In the course of this paper, we encounter sums of the form

Sÿ,ý (ÿ, ý) :=
∑

ÿ (mod
ÿ
ý
)
ÿ(1 + ýÿ)ÿÿ (ýýÿ). (2.10)

We may evaluate this explicitly in many cases. The conditions relevant for Theorem 1.2 are contained

in the following.

Lemma 2.15. Let (ÿ, 3) = 1, ÿ have conductor q, and suppose ý2 |ÿ and ÿ |ý3. Also, let ý ∈ Z. If

ý � −ÿÿ (mod ý), then Sÿ,ý (ÿ, ý) = 0. If ý ≡ −ÿÿ (mod ý), then

Sÿ,ý (ÿ, ý) = ÿÿ
√
ÿÿÿ (2ÿÿ (ý + ÿÿ)2)

(−2ÿÿ

ÿ/ý2

)
.

Proof. By Lemma 2.14, we have

Sÿ,ý (ÿ, ý) =
∑

ÿ (mod
ÿ
ý
)
ÿÿ (ýýÿ + ÿÿLÿ (1 + ýÿ)).

By Lemma 2.13(2), this simpliûes as

∑

ÿ (mod
ÿ
ý
)
ÿÿ

(
ýýÿ + ÿÿ

(
ýÿ − 2(ýÿ)2

))
=

∑

ÿ (mod
ÿ
ý
)
ÿÿ/ý

(
(ý + ÿÿ)ÿ − 2ÿÿýÿ

2
)
.

Since ÿ/ý2 is an integer by hypothesis, we may change variables ÿ → ÿ + ÿ/ý2 to see that the sum

equals itself times a constant. If ý � −ÿÿ (mod ý), then this constant is not 1, and so the sum vanishes

unless ý ≡ −ÿÿ (mod ý). We continue under this assumption, which means that the summand is actually

periodic modulo ÿ/ý2, and hence,

Sÿ,ý (ÿ, ý) = ý
∑

ÿ (mod
ÿ

ý2 )
ÿÿ/ý2

(( ý + ÿÿ

ý

)
ÿ − 2ÿÿÿ

2
)
.

Lemma 2.4, along with some simpliûcation, concludes the proof. �

We can also easily calculate Sÿ,ý under the conditions relevant for Theorem 1.1, as follows.

Lemma 2.16. Suppose ÿ has conductor q, ý |ÿ and ÿ |ý2. Let ý ∈ Z. Then

Sÿ,ý (ÿ, ý) =
{
ÿ/ý, ý ≡ −ÿÿ (mod ÿ/ý)
0, ý � −ÿÿ (mod ÿ/ý).
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The proof of Lemma 2.16 is similar to, but much easier than, Lemma 2.15, since in this case, we

may discard the quadratic terms in Lÿ (1 + ýÿ). We omit the details.

Lemma 2.17 (Iwaniec-Kowalski, [IK], Theorem 5.3). Let ÿ be a primitive even character modulo q.

Suppose ÿ (ý) is holomorphic and bounded in any strip −ý ≤ ýÿ(ý) ≤ ý, even, and normalized by

ÿ (0) = 1. Then

ÿ(1/2, ÿ)ÿ(1/2, ÿ) = 2
∑

ÿ,ÿ≥1

ÿ(ÿ)ÿ(ÿ)√
ÿÿ

ý

(
ÿÿ

ÿ

)
,

where ý (ý) is a smooth function defined by

ý (ý) = 1

2ÿÿ

∫

(1)

ÿ (ý)
ý

ÿ(1/2 + ý)2

ÿ(1/2)2
ý−ýýý (2.11)

and

ÿ(ý) = ÿ−ý/2Γ
( ý
2

)
. (2.12)

The function ý (ý) has rapid decay, meaning ý (ý) �ý (1 + ý)−ý for arbitrarily large ý > 0.

This next lemma encompasses the opening moves to prove Theorems 1.1 and 1.2.

Lemma 2.18. Let ÿ be even and have conductor q, and suppose ý ≺ ÿ. Then

M :=
∑

ÿ (mod ý)
ÿ even

|ÿ(1/2, ÿ · ÿ) |2 = ÿ(ý)
∑

±

∑

ÿ≡±ÿ (mod ý)
(ÿÿ,ÿ)=1

ÿ(ÿ)ÿ(ÿ)√
ÿÿ

ý

(
ÿÿ

ÿ

)
. (2.13)

Proof. Using ÿ(1/2, ÿ) = ÿ(1/2, ÿ), then

M =

∑

ÿ (mod ý)
ÿ even

ÿ(1/2, ÿ · ÿ)ÿ(1/2, ÿ · ÿ).

The character ÿ · ÿ is primitive modulo q because ÿ is primitive modulo q and ý ≺ ÿ. Also, ÿ · ÿ is

even. Thus, Lemma 2.17 implies

M =

∑

ÿ (mod ý)
ÿ even

2
∑

ÿ,ÿ≥1

ÿ(ÿ)ÿ(ÿ)ÿ(ÿ)ÿ(ÿ)√
ÿÿ

ý

(
ÿÿ

ÿ

)
.

Using
(1+ÿ (−1))

2
to detect ÿ even followed by orthogonality of characters secures (2.13). �

Lemma 2.19. Let q be a positive integer, and let V be as defined in (2.11). Then

∑

(ÿ,ÿ)=1

1

ÿ
ý

(
ÿ2

ÿ

)
=

ÿ(ÿ)
ÿ

[
1
2

log(ÿ) + ÿ0 + ÿ′

ÿ
(1/2) + ÿ (ÿ)

]
+ÿ (ÿ−1/2+ÿ).

Proof. This is a standard contour-shifting argument, with a tedious residue calculation. See, for instance,

[IS, Lemma 4.1] for details. �
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3. Proof of Theorem 1.2

The focus of this section is to prove Theorem 1.2.

3.1. Diagonal term

Since ý2 	 ÿ implies that ý ≺ ÿ, we may apply Lemma 2.18 to give (2.13). We decompose M into

three terms: M = Mÿ=ÿ +Mÿ>ÿ +Mÿ<ÿ, where

Mÿ=ÿ := ÿ(ý)
∑

±

∑

ÿ≡±ÿ (mod ý)
(ÿ,ÿ)=1

1

ÿ
ý

(
ÿ2

ÿ

)
, (3.1)

Mÿ>ÿ = Mÿ>ÿ (ÿ) := ÿ(ý)
∑

±

∑

ÿ>ÿ≥1
ÿ≡±ÿ (mod ý)

ÿ(ÿ)ÿ(ÿ)√
ÿÿ

ý

(
ÿÿ

ÿ

)
, (3.2)

and where Mÿ<ÿ is given by a similar formula to (3.2) but with 1 ≤ ÿ < ÿ.

Lemma 3.1. Let (ÿ, 2) = 1 and suppose ý 	 ÿ. Then

Mÿ=ÿ =
ÿ(ý)

2

ÿ(ÿ)
ÿ

[
log(ÿ) + 2ÿ0 + Γ′

Γ
(1/4) − log ÿ + 2ÿ (ÿ)

]
+ÿ (ýÿ−1/2+ÿ).

Proof. Observe that we cannot simultaneously have ÿ ≡ −ÿ (mod ý) and (ÿ, ÿ) = 1 since d is odd.

Applying Lemma 2.19 concludes the proof. �

3.2. Remaining setup

Note that by symmetry

Mÿ<ÿ (ÿ) = Mÿ>ÿ

(
ÿ

)
. (3.3)

For this reason, we largely focus on the terms with ÿ > ÿ. Applying a dyadic partition of unity to (3.2)

results in Mÿ>ÿ =
∑

± M
±
ÿ>ÿ, with

M
±
ÿ>ÿ =

∑ ∑

ý,ý dyadic

ÿ(ý)√
ýý

∑

ÿ>ÿ≥1
ÿ≡±ÿ (mod ý)

ÿ(ÿ)ÿ(ÿ)ÿý,ý (ÿ, ÿ).

Here,

ÿý,ý (ÿ, ÿ) =
√

ýý

ÿÿ
ý

(
ÿÿ

ÿ

)
ÿ

( ÿ
ý

)
ÿ

( ÿ
ý

)
, (3.4)

with ÿ ( ÿ ,ý) (ÿ, ÿ) � ÿ ,ý ý− ÿý−ý and supp(ÿý,ý (ÿ, ÿ)) ⊆ [ý, 2ý] × [ý, 2ý]. By the rapid decay

of V, we may assume that

ýý � ÿ1+ÿ . (3.5)

Consider M±
ÿ>ÿ. Say ÿ = ±ÿ + ýý with ý ≥ 1, and deûne

B
±
ÿ>ÿ (ý, ý) :=

∑

ý≥1

∑

ÿ≥1

ÿ(±ÿ + ýý)ÿ(ÿ)ÿý,ý (±ÿ + ýý, ÿ), (3.6)
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so that

M
±
ÿ>ÿ =

∑ ∑

ý,ý dyadic

ÿ(ý)√
ýý

B
±
ÿ>ÿ (ý, ý). (3.7)

3.3. Off-diagonal via Poisson in l

We will eventually split the dyadic summations of M±
ÿ>ÿ into two ranges depending on whether M and

N are nearby or far apart. In this section, we develop a method that will be most useful when M and N

are far apart (or 8unbalanced9).

We will apply Poisson summation to the sum over l in (3.6). First, we observe some properties of the

function

ÿ±
ÿ,ý (ý) := ÿý,ý (±ÿ + ýý, ÿ), (3.8)

namely, that ÿ±
ÿ,ý

(ý) is supported on

ý ∈
[ ý ∓ ÿ

ý
,
2ý ∓ ÿ

ý

]
(3.9)

and

ý ÿ

ýý ÿ
ÿ±
ÿ,ý (ý) � ÿ

(
ý

ý

)− ÿ
. (3.10)

Let ÿ̂ (ý) =
∫ ∞
−∞ ý(ÿ)ÿ(−ýÿ)ýÿ. We record some properties of ÿ̂ for future use.

Proposition 3.2. Let ý > 0, and suppose ÿ (ý) is a smooth function with support in an interval of

length A that satisfies ÿ ( ÿ) (ý) � ÿ ý
− ÿ . Then for any ÿ > 0, we have

ÿ̂ (ý) � ý(1 + |ý |ý)−ÿ .

These properties follow directly from integration by parts, so the proof is omitted. Applying this to

ÿ±
ÿ,ý

, we have

�ÿ±
ÿ,ý

(ý) �ÿ

ý

ý

(
1 + |ý |ý

ý

)−ÿ
(∀ÿ > 0). (3.11)

Lemma 3.3. Suppose (ÿ, 3) = 1, ý2 	 ÿ 	 ý3 and that ý > 210ý . Then

B
±
ÿ>ÿ (ý, ý) = A

±
ÿ>ÿ (ý, ý) +ÿ

(
ýÿ1/2+ÿ

ý

)
,

where

A
±
ÿ>ÿ (ý, ý) =

(−2ÿÿ

ÿ/ý2

)
ÿÿ

ý
√
ÿ
ÿÿ (2ÿÿ (ÿÿ − ÿÿ)2)

∑

ÿ |ÿÿ

�ÿ±
ÿ,ý

(∓ÿÿý
ÿÿ

)
. (3.12)

Proof. The condition that ý > 210ý ensures that ÿ±
ÿ,ý

(ý) is supported on ý � ý
ý

(recall (3.9)). This

is convenient because, in particular, we can extend the sum over ý ≥ 1 to all ý ∈ Z without altering the

sum. Applying Poisson summation with respect to l in (3.6) gives
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B
±
ÿ>ÿ (ý, ý) =

∑

ÿ≥1

ÿ(ÿ)
( ý
ÿ

∑

ÿ∈Z

∑

ÿ (mod
ÿ
ý
)
ÿ(±ÿ + ýÿ) ÿÿ (ýÿÿ)�ÿ±

ÿ,ý

( ýÿ
ÿ

))
.

Replacing u by ±ÿÿ and j by ± ÿ and recalling ÿ is even gives

B
±
ÿ>ÿ (ý, ý) = ý

ÿ

∑

ÿ≥1

∑

ÿ∈Z
(ÿ,ÿ)=1

�ÿ±
ÿ,ý

(±ýÿ
ÿ

) ∑

ÿ (mod
ÿ
ý
)
ÿ(1 + ýÿ) ÿÿ (ýÿÿÿ)

︸���������������������������������︷︷���������������������������������︸
Sÿ,ý (ÿ, ÿÿ)

.

Hence, Lemma 2.15 yields

B
±
ÿ>ÿ (ý, ý) =

(−2ÿÿ

ÿ/ý2

)
ÿÿ

ý
√
ÿ

∑

ÿ≥1

∑

ÿ≠0

ÿÿ≡−ÿÿ (mod ý)

�ÿ±
ÿ,ý

(±ýÿ
ÿ

)
ÿÿ (2ÿÿ ( ÿÿ + ÿÿ)2), (3.13)

where the condition (ÿ, ÿ) = 1 is now accounted for by ÿÿ ≡ −ÿÿ (mod ý), recalling that (ÿÿ , ÿ/ý) = 1

and that d, ÿ/ý, and q all share the same prime factors. Since ÿÿ ∈ Z/(ÿ/ý)Z and ý | ÿ
ý

, let ÿÿ ≡
ÿÿ (mod ý) for ÿÿ ∈ Z/ýZ such that

0 < |ÿÿ | <
ý

2
. (3.14)

The contribution from ÿÿ = −ÿÿ gives A±
ÿ>ÿ (ý, ý), while we will use ý.ÿ . to denote the remaining

terms. Then

|ý.ÿ .| ≤ ý
√
ÿ

∑

ÿ≥1

∑

ÿ≠0

ÿÿ≡−ÿÿ (mod ý)
ÿÿ≠−ÿÿ

    �ÿ±
ÿ,ý

(±ýÿ
ÿ

)    . (3.15)

Recalling (3.11) shows this sum may be truncated at | ÿ | � ÿ1+ÿ

ý
, with a negligible error. We also have

that ÿ � ý . Therefore, letting ý = ÿÿ, then the non-negligible contribution comes from |ý | � ýÿ1+ÿ

ý
,

and for each k, the number of ways to factor ý = ÿÿ ≠ 0 is ÿ (ÿÿ). Hence,

ý.ÿ . � ÿ−2022 + ÿÿ
( ý
√
ÿ

∑

0< |ý |� ýÿ1+ÿ
ý

ý≡−ÿÿ (mod ý)
ý≠−ÿÿ

1
)
� ýÿ1/2+ÿ

ý
. (3.16)

In this estimation, we have used that |ý | ≥ ý/2 following from ý ≡ −ÿÿ (mod ý) with ý ≠ −ÿÿ , and

using (3.14). �

3.4. Off-diagonal via Poisson in n

Returning to (3.6), we now develop a method designed to treat the complementary range where M and

N are nearby. Deûne the function

ÿ±
ýý (ÿ) := ÿý,ý (±ÿ + ýý, ÿ),
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which is supported on ÿ ∈ [ý, 2ý] and satisûes

ý ÿ

ýý ÿ
ÿ±
ýý (ý) � ÿ ý

− ÿ , ÿ̂±
ýý
(ý) � ý (1 + |ý |ý)−ÿ . (3.17)

Lemma 3.4. Suppose ý ≺ ÿ. We have

B
±
ÿ>ÿ (ý, ý) � ÿÿ

(
ýÿ1/2

ý3/2 + ý1/4ý

ÿ1/4

)
.

Proof. We present the details for B+; the case of B− is nearly identical. Applying Poisson summation

to (3.6) in the variable n gives

B
+
ÿ>ÿ (ý, ý) = 1

ÿ

∑

ý≥1

∑

ý∈Z
ÿ̂+
ýý

(
ý

ÿ

) ∑

ÿ (mod ÿ)
ÿ(ÿ + ýý)ÿ(ÿ) ÿÿ (ýÿ).

Using (3.17), we may restrict attention to |ý | � ÿ1+ÿ

ý
with a negligible error. Hence,

B
+
ÿ>ÿ (ý, ý) � ÿ−2022 + ý

ÿ

∑

1≤ý� ý
ý

∑

0≤ |ý |� ÿ1+ÿ
ý

   
∑

ÿ (mod ÿ)
ÿ(ÿ + ýý)ÿ(ÿ) ÿÿ (ýÿ)

   ,

since the variable l satisûes ý � ý
ý

by the support of the test functions. The innermost sum can be

recognized as ÿ(ÿ;ÿ, ýý, ý) from (2.1). Applying Lemma 2.2 gives

B
+
ÿ>ÿ (ý, ý) � ýýÿ−1+ÿ + ý

ÿ

∑

1≤ý� ý
ý

∑

1≤ |ý |� ÿ1+ÿ
ý

   
∑

ÿ (mod ÿ)
ÿ(ÿ + ýý)ÿ(ÿ) ÿÿ (ýÿ)

   

� ÿÿ
(
ýÿ1/2

ý3/2 + ý1/4ý

ÿ1/4 + ýý

ÿ

)
.

The third term above may be dropped since ýý
ÿ

� ÿÿ ý
1/4ý
ÿ1/4 , since ý

ÿ
≤ ýý

ÿ
� ÿÿ . �

Out of a convenience which will become evident in Section 3.5, we would prefer to include

A±
ÿ>ÿ (ý, ý) in Lemma 3.4, despite the fact that it does not naturally manifest using the methods

of this section.

Lemma 3.5. Suppose ý ≺ ÿ and ý ≤ ÿ2/3. We have

B
±
ÿ>ÿ (ý, ý) = A

±
ÿ>ÿ (ý, ý) +ÿ

(
ÿÿ

(
ýÿ1/2

ý3/2 + ý1/4ý

ÿ1/4

))
.

Proof. We treat the + case, since the− case is very similar. By the triangle inequality and (3.11), we have

|A+
ÿ>ÿ (ý, ý) | ≤ ý

√
ÿ

∑

ÿ |ÿÿ

    �ÿ+
ÿ,ý

(−ÿÿý
ÿÿ

)    �
ý
√
ÿ
ÿÿ .

Finally, note that ÿ−1/2 ≤ ý−3/2ÿ1/2, since ý ≤ ÿ2/3, so this bound on A+
ÿ>ÿ is absorbed by the error

term. �
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3.5. Combining M+
ÿ>ÿ and M−

ÿ>ÿ

Recall (3.7). Deûne

W =

∑ ∑

ý,ý dyadic

1√
ýý

∑

ÿ |ÿÿ

(
�ÿ+
ÿ,ý

(−ÿÿý
ÿÿ

)
+ �ÿ−

ÿ,ý

(
ÿÿý

ÿÿ

))
. (3.18)

As a ûrst step, we have the following.

Lemma 3.6. We have

W =

√
ÿ

2ý
ÿÿ (−ÿÿ)

ÿ0(|ÿÿ |)√
|ÿÿ |

=

√
ÿ

2ý

ÿ0(|ÿÿ |)√
|ÿÿ |

+ÿ ((ýÿ)−1/2ÿÿ). (3.19)

Proof. Retracing the deûnitions, we have

ÿ±
ÿ,ý (ý) =

( ýý

(±ÿ + ýý)ÿ
)1/2

ý

( (±ÿ + ýý)ÿ
ÿ

)
ÿ

(±ÿ + ýý

ý

)
ÿ

( ÿ
ý

)
.

After applying the Fourier transforms and assembling the dyadic partition of unity, we have

W =

∑

ÿ |ÿÿ

∫ ∞

−ÿ/ý
ý

( (ÿ + ýÿ)ÿ
ÿ

)
ÿ

(
ÿÿýÿ

ÿÿ

)
ýÿ√

(ÿ + ýÿ)ÿ

+
∑

ÿ |ÿÿ

∫ ∞

ÿ/ý
ý

( (−ÿ + ýÿ)ÿ
ÿ

)
ÿ

(
−
ÿÿýÿ

ÿÿ

)
ýÿ√

(−ÿ + ýÿ)ÿ
.

Changing variables results in

W = 2

√
ÿ

ý
ÿÿ (−ÿÿ)

∑

ÿ |ÿÿ

∫ ∞

0

ý (ÿ2ý) cos(2ÿÿÿý)
ýý√
ý
.

We next wish to apply the deûnition of ý (ý) from (2.11) and reverse the order of integration. This

formally gives

W = 2

√
ÿ

ý
ÿÿ (−ÿÿ)

∑

ÿ |ÿÿ

∫

(1/4)

ÿ (ý)
ý

ÿ(1/2 + ý)2

ÿ(1/2)2ÿ2ý

(∫ ∞

0

ý−ý cos(2ÿÿÿý)
ýý√
ý

)
ýý

2ÿÿ
.

This interchange is a little delicate but can be justiûed in a few ways. One option is to ûrst truncate the

x-integral to a ûnite interval [0, ÿ] and let ÿ → ∞ after interchanging the integrals. Lemma 2.5 now

implies

W = 2

√
ÿ

ý
ÿÿ (−ÿÿ)

∑

ÿ |ÿÿ

∫

(1/4)

ÿ (ý)
ý

ÿ(1/2 + ý)2

ÿ(1/2)2ÿ2ý

Γ(1/2 − ý)
(2ÿ |ÿÿ |)1/2−ý cos( ÿ

2
( 1

2
− ý)) ýý

2ÿÿ
.

Applying the deûnition of ÿ(ý) (found in (2.12)) and rearranging terms produces

W =
2
√
ÿÿÿ (−ÿÿ)

ý
√

2ÿ |ÿÿ |Γ(1/4)2

∫

(1/4)

ÿ (ý)
ý

Γ

(
1
4
+ ý

2

)2

Γ(1/2 − ý) cos
(
ÿ
4
− ÿý

2

) ∑

ÿ |ÿÿ

(
2|ÿÿ |
ÿ2

)ý
ýý

2ÿÿ
.
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Using standard gamma function identities, one can show easily that

Γ

(
1
4
+ ý

2

)2

Γ(1/2 − ý) cos
(
ÿ
4
− ÿý

2

)
= ÿ1/22−

1
2
−ý
Γ( 1

4
+ ý

2
)Γ( 1

4
− ý

2
).

Hence,

W =

√
ÿÿÿ (−ÿÿ)

ý
√
|ÿÿ |Γ(1/4)2

∫

(1/4)

ÿ (ý)
ý

Γ( 1
4
+ ý

2
)Γ( 1

4
− ý

2
)

∑

ÿ |ÿÿ

( |ÿÿ |
ÿ2

)ý
ýý

2ÿÿ
.

Using the symmetry between divisors, it is apparent that this integrand is an odd function. Therefore,

the integral is half the residue at ý = 0, giving the claimed formula for W .

Finally, we deduce the approximation in (3.19). We have ÿÿ (−ÿÿ) = 1 + ÿ (ÿ−1 |ÿÿ |) by a Taylor

expansion, and recalling |ÿÿ | � ý. Inserting this into the formula for W and using ÿ0(|ÿÿ |) |ÿÿ |1/2 �
ý1/2ÿÿ completes the proof. �

Lemma 3.7. With Mÿ>ÿ (ÿ) as defined in (3.2), we have

Mÿ>ÿ (ÿ) = Aÿ>ÿ (ÿ) +ÿ
(
ÿÿ

( ÿ1/2

ý1/4 + ý

ÿ1/8

))
,

where

Aÿ>ÿ (ÿ) =
(−2ÿÿ

ÿ/ý2

)
ÿÿ

ÿ(ý)
2

ÿÿ (2ÿÿ (ÿÿ − ÿÿ)2)
ÿ0(|ÿÿ |)√

|ÿÿ |
.

Proof. We begin by splitting the dyadic summations of Mÿ>ÿ into two ranges depending on whether

M and N are nearby or far apart. The cutoff for these two ranges is ý = ý1/2ý . Therefore, starting at

(3.7), we write

Mÿ>ÿ =

∑ ∑

ý,ý dyadic

ý ≥ý1/2ý

ÿ(ý)√
ýý

∑

±
B
±
ÿ>ÿ (ý, ý) +

∑ ∑

ý,ý dyadic

ý<ý1/2ý

ÿ(ý)√
ýý

∑

±
B
±
ÿ>ÿ (ý, ý).

For the ûrst term, we apply Lemma 3.3, and for the second term, we apply Lemma 3.5. Hence,

Mÿ>ÿ =

∑ ∑

ý,ý dyadic

ý ≥ý1/2ý

ÿ(ý)√
ýý

{ ∑

±
A

±
ÿ>ÿ (ý, ý) +ÿ

(ýÿ1/2+ÿ

ý

)}
(3.20)

+
∑ ∑

ý,ý dyadic

ý<ý1/2ý

ÿ(ý)√
ýý

{ ∑

±
A

±
ÿ>ÿ (ý, ý) +ÿ

(
ÿÿ

( ýÿ1/2

ý3/2 + ý1/4ý

ÿ1/4

))}
.

Rearranging and evaluating the main term, we obtain

Mÿ>ÿ = Aÿ>ÿ +
∑ ∑

ý,ý dyadic

ý ≥ý1/2ý

ÿ
(ý1/2ÿ1/2+ÿ

ý1/2

)
+

∑ ∑

ý,ý dyadic

ý<ý1/2ý

ÿ
(
ÿÿ

( ý1/2ÿ1/2

ý1/2ý1/2 + ý1/2ý

ý1/4ÿ1/4

))
, (3.21)

where

Aÿ>ÿ =

∑ ∑

ý,ý dyadic

ÿ(ý)√
ýý

∑

±
A

±
ÿ>ÿ (ý, ý).

Using that we may restrict to ý � ý and ýý � ÿ1+ÿ , it is easy to see that the error term simpliûes

to give
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Mÿ>ÿ = Aÿ>ÿ +ÿ
(
ÿÿ

( ÿ1/2

ý1/4 + ý

ÿ1/8

))
.

For the purposes of Theorem 1.2, we have ÿ ≥ ý2 so that ýÿ−1/8 ≤ ý−1/4ÿ1/2, so the latter error term

can be dropped. The displayed error term is consistent with Theorem 1.2.

Now, we turn to Aÿ>ÿ, which takes the form

∑ ∑

ý,ý dyadic

ÿ(ý)√
ýý

(−2ÿÿ

ÿ/ý2

)
ÿÿ

ý
√
ÿ
ÿÿ (2ÿÿ (ÿÿ − ÿÿ)2)

∑

ÿ |ÿÿ

(
�ÿ+
ÿ,ý

(−ÿÿý
ÿÿ

)
+ �ÿ−

ÿ,ý

( ÿÿý
ÿÿ

))

= ÿ(ý)
(−2ÿÿ

ÿ/ý2

)
ÿÿ

ý
√
ÿ
ÿÿ (2ÿÿ (ÿÿ − ÿÿ)2)W ,

recalling the deûnition (3.18). Applying Lemma 3.6 shows that

Aÿ>ÿ = Aÿ>ÿ (ÿ) +ÿ (ý3/2ÿ−1+ÿ).

Note ý3/2ÿ−1 ≤ ýÿ−1/8, so this error term can be dropped. �

Next, consider Mÿ<ÿ, for which recall (3.3). Lemma 2.14 implies ÿÿ ≡ −ÿÿ (mod ÿ/ý), and

recalling (1.5), we have ÿÿ = −ÿÿ . Similarly, ÿÿ = −ÿÿ . Hence, we deduce the following:

Lemma 3.8. We have

Mÿ<ÿ (ÿ) = Aÿ<ÿ (ÿ) +ÿ
(
ÿÿ

( ÿ1/2

ý1/4 + ý

ÿ1/8

))
,

where

Aÿ<ÿ (ÿ) =
(

2ÿÿ

ÿ/ý2

)
ÿÿ

ÿ(ý)
2

ÿÿ (−2ÿÿ (ÿÿ − ÿÿ)2)
ÿ0(|ÿÿ |)√

|ÿÿ |
.

3.6. Combining Mÿ>ÿ and Mÿ<ÿ

From Lemmas 3.7 and 3.8, we get that

Mÿ>ÿ +Mÿ<ÿ = A
′ +ÿ

(
ÿÿ

(
ÿ1/2

ý1/4 + ý

ÿ1/8

))
,

where

A
′
=

(−2ÿÿ

ÿ/ý2

)
ÿÿ

ÿ(ý)
2

[
ÿÿ (2ÿÿ (ÿÿ − ÿÿ)2) +

(−1

ÿ

)
ÿÿ (−2ÿÿ (ÿÿ − ÿÿ)2)

]
.

Therefore, if ÿ ≡ 1 (mod 4), then

A
′
=

(
2ÿÿ

ÿ/ý2

)
ÿ(ý) cos

(
2ÿ

2ÿÿ (ÿÿ − ÿÿ)2

ÿ

) ÿ0(|ÿÿ |)√
|ÿÿ |

.

This is consistent with (1.12) for ÿ ≡ 1 (mod 4). If instead ÿ ≡ 3 (mod 4), then

A
′
=

(
2ÿÿ

ÿ/ý2

)
ÿ(ý) sin

(
2ÿ

2ÿÿ (ÿÿ − ÿÿ)2

ÿ

) ÿ0(|ÿÿ |)√
|ÿÿ |

.

This derivation agrees with (1.12). Combining this with Lemma 3.1 proves Theorem 1.2.
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4. Sketching the proofs of remaining theorems

The proof of Theorem 1.1 is similar to the proof of Theorem 1.2, except in some ways which make

it simpler. Likewise, the proof of Theorem 1.3 will essentially use a subset of the tools used to prove

Theorem 1.2. In order to avoid excessive repetition, we only give sketches of these proofs.

4.1. Sketch of the proof of Theorem 1.1

The structure of the proof of Theorem 1.1 is similar to that of Theorem 1.2. As a substitute for Lemma 3.3,

we have the following:

Lemma 4.1. Suppose that ý ≺ ÿ 	 ý2, and that ý > 210ý . Then

B
±
ÿ>ÿ (ý, ý) = A

±
ÿ>ÿ (ý, ý) +ÿ (ýÿÿ),

where

A
+
ÿ>ÿ (ý, ý) =

∑

ÿ |ÿÿ

�ÿ±
ÿ,ý

(−ÿÿý
ÿÿ

)
.

Proof. We follow through the proof of Lemma 3.3, and note that the earliest difference will occur at

(3.13) when Lemma 2.15 was used to evaluate Sÿ,ý (ÿ, ÿÿ). The condition that ÿ 	 ý2 means that we

need to use Lemma 2.16 in place of Lemma 2.15. In practical terms, this means that in place of (3.13),

we instead obtain

B
+
ÿ>ÿ (ý, ý) =

∑

ÿ≥1

∑

ÿ≠0

ÿÿ≡−ÿÿ (mod ÿ/ý)

�ÿ±
ÿ,ý

(
ýÿ

ÿ

)
.

In this case, there is no need to introduce ÿÿ, since we have ÿÿ ≡ −ÿÿ (mod ÿ/ý), and ÿÿ is inherently

deûned modulo ÿ/ý. The term A corresponds to the term ÿÿ = −ÿÿ , while the error terms are, similarly

to (3.15) and (3.16), bounded by

∑

ÿ≥1

∑

ÿ≠0

ÿÿ≡−ÿÿ (mod ÿ/ý)
ÿÿ≠−ÿÿ

    �ÿ±
ÿ,ý

(
ýÿ

ÿ

)    � ÿÿ
ý

ý

ýÿ

ý (ÿ/ý) � ÿÿý. �

Lemma 3.4 holds without changes, since the only assumption there is ý ≺ ÿ. As in Lemma 3.5,

we can freely insert the term A±
ÿ>ÿ (ý, ý) since it is bounded by ý−1ýÿÿ , which is in turn bounded

by ý−3/2ýÿ1/2+ÿ . The new cutoff in the proof of Lemma 3.7 is ýÿ1/2 = ýý3/2, so this error term is

absorbed by the error in Lemma 4.1. In place of (3.20), we obtain

Mÿ>ÿ =

∑ ∑

ý,ý dyadic

ý ≥ÿ−1/2ý3/2ý

ÿ(ý)√
ýý

{ ∑

±
A

±
ÿ>ÿ (ý, ý) +ÿ

(
ýÿÿ

)}
(4.1)

+
∑ ∑

ý,ý dyadic

ý<ÿ−1/2ý3/2ý

ÿ(ý)√
ýý

{ ∑

±
A

±
ÿ>ÿ (ý, ý) +ÿ

(
ÿÿ

( ýÿ1/2

ý3/2 + ý1/4ý

ÿ1/4

))}
.

In total, this error term is of size ý1/4ÿ1/4+ÿ + ýÿ−1/8+ÿ . Under the hypotheses of Theorem 1.1, we have

ÿ ≤ ý2 and hence ý1/4ÿ1/4 ≤ ýÿ−1/8, so the former term can be discarded. The error term is then seen

to be consistent with the statement of Theorem 1.1.
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The assembly of the term A is similar to that of A′, though it is simpler since there is no need to

introduce ÿÿ , and leads to

A =
ÿ(ý)
ý

√
ÿ
ÿ0(|ÿÿ |)√

|ÿÿ |
.

This concludes the discussion of the proof of Theorem 1.1.

4.2. A sketch of the proof of Theorem 1.3

Since Theorem 1.3 is an upper bound, we can arrange the second moment as follows:

∑

ÿ (mod ý)
|ÿ(1/2, ÿ · ÿ) |2 �

∑

ÿ (mod ý)

   
∑

ý dyadic

∑

ÿ

ÿ(ÿ)ÿ(ÿ)√
ÿ

ÿ
( ÿ
ý

)
ý

( ÿ
√
ÿ

)   
2

.

This uses an approximate functional equation for ÿ(1/2, ÿ · ÿ) in place of Lemma 2.17. Applying

Cauchy9s inequality to take M to the outside of the square, we obtain

∑

ÿ (mod ý)
|ÿ(1/2, ÿ · ÿ) |2 � ÿÿ

∑

ý dyadic

∑

ÿ (mod ý)

   
∑

ÿ

ÿ(ÿ)ÿ(ÿ)√
ÿ

ÿ
( ÿ
ý

)
ý

( ÿ
√
ÿ

)   
2

.

The purpose of this trick is to completely avoid the ranges where M and N are far apart.

Squaring this out and applying orthogonality of characters, we obtain a diagonal term of size � ýÿÿ .

For the off-diagonal terms, we essentially arrive at

∑

ý dyadic

ý

ý
|Bÿ>ÿ (ý, ý) | � ÿÿ

(
ÿ1/2

ý1/2 + ý

ÿ1/8

)
,

using Lemma 3.4 for the ûnal bound. The second error term can be dropped in comparison to the

diagonal term. In all, we obtain the bound in Theorem 1.3.
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