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Abstract
We prove an asymptotic formula for the second moment of central values of Dirichlet L-functions restricted to a
coset. More specifically, consider a coset of the subgroup of characters modulo d inside the full group of characters
modulo g. Suppose that v, (d) > v, (g)/2 for all primes p dividing g. In this range, we obtain an asymptotic formula
with a power-saving error term; curiously, there is a secondary main term of rough size ql/ 2 here which is not
predicted by the integral moments conjecture of Conrey, Farmer, Keating, Rubinstein, and Snaith. The lower-order
main term does not appear in the second moment of the Riemann zeta function, so this feature is not anticipated
from the analogous archimedean moment problem.

We also obtain an asymptotic result for smaller d, with v, (¢)/3 < v, (d) < v, (q)/2, with a power-saving error
term for d larger than ¢*/° . In this more difficult range, the secondary main term somewhat changes its form and
may have size roughly d, which is only slightly smaller than the diagonal main term.

1. Introduction

The study of moments of families of L-functions has a long history. One strand of research concerns the
estimation of moments in order to secure strong subconvexity bounds. Another direction is to consider
the structural properties of the moments, especially in their connections with random matrix theory.
One of the long-standing guiding principles concerns analogies between different families, particularly
the consideration of the Riemann zeta function in the #-aspect on the one side and the family of Dirichlet
L-functions in the g-aspect on the other side.

We begin by discussing some moment problems for the zeta function. This is a vast subject, and we
only briefly touch on a few results pertinent to our narrative. In [HB2], Heath-Brown studied the twelfth
moment of the Riemann zeta function, finding that

2T
/ [£(1/2 +it)|2dr <, T**2, (1.1)
T

a result which easily recovers the Weyl bound while also proving in a strong quantitative form that
|£(1/2 + it)| cannot be too large too often. Heath-Brown’s technique for proving (1.1) is based on
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2 B. Garcia and M. P. Young

leveraging information from short second moments of the zeta function. A simple modification of
[HB2, Lemma 1] implies

T+T'3
/ |C(1)2 +ir)|Pdt < T'/3*2, (1.2)
T

for T > 1. See also [T2, Section 7.4] and [I, Chapter 7] for more discussion and other related results.
For example, [T2, Theorem 7.4] gives that

T
/ 1£(1/2+it)|2dt = Tlog T + (2y0 — 1 — log(27)T + O(T**®),  (a =1/2). (1.3)
0

This error term has been improved many times over the years, and it seems the first improvement is due

to Titchmarsh himself [T1], attaining @ = 5/12. Note that (1.3) leads to an asymptotic formula for the
second moment in a short interval of length at least 7%*#, simply by writing fT f At

Next, we discuss some prior works on g-analogs of these results. Nunes [N] proved ag analog to (l 1)
for smooth square-free moduli g. In a complementary direction, Mili¢evi¢ and White [MW] proved a
variant of (1.1) in the depth aspect (i.e., fixing a prime p and letting ¢ = p/ with j — co). Both of these
works consider upper bounds on ‘short’ second moments, where in this context, ‘short’ refers to a coset.
Petrow and Young [PY] obtained an upper bound on the fourth moment of Dirichlet L-functions along
a coset of size > ¢?/>*¢_ For the full family second moment, Heath-Brown [HB3] proved

Y, 12008 =22 Y wajar@. (14)

x (mod q) dlq
where with yo = 0.577 ... representing Euler’s constant, we have

2N-1
T(d) = d(log & +y0) +2£(1/2)%d"? + Z cnd™*+0(d™).
n=0

One remark that is in order here is that Heath-Brown considers a sum over all Dirichlet characters, and
not just the primitive ones. A second comment is that there is no obvious way to extract from (1.4)
a formula for the second moment restricted to a coset, in contrast to the f-integral analog for the zeta
function. Finally, we remark that for composite values of g, there are a variety of main terms that may
be intermediate in size between ¢'/> and g. However, the five authors [CFKRS] have conjectured an
asymptotic formula for the second moment in this family, but only after restriction to the family of
solely the primitive characters modulo g. Conrey [C] verified the five-author conjecture for the second
moment in this family. In the same paper, Conrey also derived a beautiful reciprocity formula for the
twisted second moment with prime modulus.

To state our main results, we need some notation. Suppose ¢ is a Dirichlet character modulo ¢ and d
is a positive integer with d|q and ¢|d>. It is easy to see that, as a function of x, ¥ (1 + dx) is an additive
character with period g/d. Hence, there exists an integer a,, (mod g/d) such that (1 +dx) = e(a”’qﬂ),

where e(x) = ¢***, The primitivity of  modulo g means that (a,, ¢/d) = 1 (for which see Lemma 2.14
below). We assume

0<layl <= (1.5)

2d

Let v, (+) denote the p-adic valuation. For a and b as positive integers, we will write ‘a < b’ to mean
that a and b share all of the same prime factors and, for any prime p|b, v,,(a) < v, (b). Similarly, we
will write ‘a < b’ to mean that a and b share all of the same prime factors and, for any prime p|b,

vp(a) < v,(b).
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Theorem 1.1. Let ¢ be even of conductor q, and suppose d < q < d*. Then

DL/, x - =D+ A+ 0(g7*a), (1.6)

x (mod d)
X even

where with 0(q) = X 5|4 l;%f, and oo (n) = Y k@, we define

D= @@(10gq+2)@+¥(1/4) —logm +26(q)), (1.7
and
A= (p(d)«/ﬁ (To(laz//|)_ (1.8)
d layl

Remarks. The term D is the standard diagonal main term, which is analogous to the main term in
(1.3). An application of the recipe of [CFKRS] would predict

Z |L(1/2, x - ¥)|> = D + (Error term), (1.9)

x (mod d)
X even

where notably the term A is not present. A bold interpretation of [CFKRS] might suggest the error term
in (1.9) would be of size O(d'/?>g¥), but a more cautious value would be O(g'/>+¢). If ay =1, say,
then A = %’j)\/ﬁ, which is essentially its maximal size. This is consistent with an error term of size
O(q"**#) in (1.9), but inconsistent with O (d'/?¢®). However, note that A < /¢ which is smaller than
D, since /g < d, and D > d(log Q).

The existence of A contrasts with the absence of a main term of size 7'/ in (1.3). The condition that
d < q implies that y - ¢ has conductor ¢ for all y (mod d), and so this lower-order main term .A is not
due to characters of smaller modulus (as in (1.4)).

As a very rough heuristic, we can indicate how A arises. Applying an approximate functional equation
and the orthogonality formula, we encounter a sum of the form

pd) > —w(%").

m=n (mod d)

With m = n + dl, we have ¢ (m)y (n) = (1 + din) = eq/a(ayln). Consider the termn = 1. If aylis a
bit smaller than g/d, then the exponential is approximately 1. Once |a, |/ is larger than g/d, then the
exponential has cancellation and should not contribute to a main term. This thought process leads to

eqralayl)  o(d) 1 o(d)q'?
o(d) " = ~ — 224 (1.10)
; Vdi Vd l%‘;w VI dyflay]

One can apply the same sort of reasoning for each n dividing ay, giving an expression of the same
form, in line with the presence of oy(|ay|) in A. Although this heuristic is far from rigorous, it is true
that .4 emerges in the analysis from the most unbalanced range of summation where n is very small and
m = n + dl is very large.

For the next theorem, we will have that d |%, q|d3, and (¢,3) = 1, in which case we define ay,
(mod g/d) by the condition that (1 +dx) = e, /q(ay (x — 2dx?)) for all x € Z. For more details on this
definition, see Section 2.2. Note this definition reduces to the earlier one when d = 0 (mod ¢/d) since
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4 B. Garcia and M. P. Young

then the quadratic term may be discarded. In addition, let b, be the reduction of a, (mod d) such that
0< byl < ¢.

Theorem 1.2. Suppose i is even of conductor g, with (q,3) = 1 and suppose d> < q < d°. Then

IL(1/2, x - ¥)|> =D+ A" +0(d"4q"/**%), (1.11)

x (mod d)
X even

where D is as defined in (1.7), and with ayay = 1 (mod q), we set

2ay ao(lbyl) cos (2RM), g =1 (mod 4)
A= (—) (@) 202l a

1 (1.12)
byl sin(ZNM), g =3 (mod 4).

q

Remarks. First, observe that the diagonal term D is larger than the error term provided d > ¢%/>+2,

which goes below the /g threshold. Secondly, although A’ can be negative, |.4’| is smaller than D,
since D > ¢(d)(logg)' 2.

The presence of trigonometric functions at complicated arguments in A’ is a new feature compared
to A in Theorem 1.1, and worthy of further discussion. One simple observation is that if |a,| < d/2,
then b, = ay, and it simplifies as cos(0) = 1 or sin(0) = 0. However, there exist situations with
g = 3 (mod 4) where A’ cannot be discarded. For example, let ¢ = p** and d = p''®, and suppose
p — oo. Here, d > ¢*/°, so the error term is smaller than the diagonal term D. Now suppose ¢ is a
character with a, = 1+ 2p'%, which is a valid range since we need |a,| < §p'?*. Then by, = 1, and
soay —by = 2p116. Under these conditions, we have

2ay(ay = by)’ = 2(1+2p"16)4p™ = 2™ (mod p*).

Therefore,

e o =t
sin(4zxp~'), p =3 (mod4).
In the case p = 3 (mod 4), then |A’| =~ dp~7 = p'%. This is larger than the error term which has size
d~V4g? = p=116/4+119:5 < 1,91 Onpe can construct other examples exhibiting other types of behavior
for A’. Compared to the discussion around (1.10), it seems harder to heuristically see the shape of A4’.
However, we stress that in the proof, it arises in the same way as A, with the main differences coming
from requiring a quadratic approximation for ¢ (1 + d/n). The relevant sums can be evaluated in closed
form using quadratic Gauss sums.

Theorem 1.2 can be extended with little effort to ¢ with 3|g (with a slightly more restrictive assumption
q =< %d3). One could also attempt to find a common/hybrid generalization of Theorems 1.1 and 1.2 by
only requiring d < ¢ and ¢ < d>. To do so, one could factor d = d;d, where d; (d,, resp.) consists
of the part of d where v,,(di) > v,(q)/2 (vp(d2) < v,(q)/2, resp.), and use the ideas of proof of
Theorem 1.1 for d (Theorem 1.2 for d,, resp.). Our separation of Theorem 1.1 and 1.2 is intended to
simplify the exposition.

It is well known that for many families of L-functions, it may be easier to obtain an upper bound in
place of an asymptotic formula. We have the following upper bound, which is sharp for d > ¢'/3*%.

Theorem 1.3. Let y have conductor g, and let d|q. Then

DL/, x 9P < g°(d+d 1), (1.13)
x (mod d)
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Special cases of this result appear in both [N, MW]. One nice consequence of Theorem 1.3 is that
if ¢ has a factor d with d = ¢'/>*°(1) | then this second moment is strong enough to recover the Weyl
bound |L(1/2,¥)| < ¢'/%*%. For moduli ¢ with d|q, Heath-Brown [HB 1, Theorem 2] proved a bound
for an individual L-function which essentially matches (1.13). Indeed, our proof of Theorem 1.3 relies
on Heath-Brown’s work, and in retrospect, the method of Heath-Brown is implicitly bounding a second
moment along a coset. Of course, the second moment bound in (1.13) implies an individual bound, but
it contains more information.

2. Preliminaries

In this section, we will lay the groundwork and develop the tools necessary to prove the main theorems.

2.1. Various bounds & evaluations

First, we define the sum studied by Heath-Brown in [HB 1] and cite his associated bound.

Definition 2.1. Let y have conductor ¢, and let  and n be integers. Denote

gq-1
S(gix-hon) = > x(m+hx(m)e(mn/q). @1

m=0

Lemma 2.2 (Heath-Brown, [HB 1], Lemma 9). Suppose that q is odd, qol|q, and € > 0. Then

1S(q: x. hqo.n)| < ¢"/**(ABg;'"* + (gAqe) /%), 2.2)
1<|h|<A1<L|n|<B

and

[S(q; x> hqo,0)| < qoAg®. (2.3)
1<|h|<A

Remark 2.3. Technically, [HB1, Lemma 9] gives a bound of |S(qg; x,4hqo,n)|, without the restric-
tion that (¢g,2) = 1. However, it can be seen by reading through his proof that the result holds for
|S(g; x» hqo,n)| (without the 4) with the condition that g is odd. Moreover, Heath-Brown claims the
bound for the sum with 1 < 2 < A (and 1 < n < B in (2.2)), but simple symmetry arguments extend
the result as claimed above.

We next state the standard evaluation of a quadratic exponential sum.

Lemma 2.4. Let r be a positive odd integer. Let A, B be integers such that (B,r) = 1. Then

er (A 812) = (3B 2o v

u (mod r)

where e, (x) = e(;—c), the bar notation indicates the multiplicative inverse modulo r, (%) is the Jacobi
1, r=1(mod4)

symbol, and g, = |
i, r=3(mod4).

Proof. This follows by completing the square and applying (3.38) from [IK]. O

Another simple lemma to get us warmed up is the following integral evaluation.
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6 B. Garcia and M. P. Young

Lemma 2.5. Let k be a nonzero integer and suppose —% <R(s) < % Then

© dc  T(1/2-5) .
‘/0‘ X COS(Zﬂ'k.X)% = W COS(i(% - S))

Proof. This follows from [GR, 17.43.3] after changing variables. O

2.2. Postnikov

We will derive a variant of the Postnikov formula that holds for composite moduli, rather than only
prime powers. Recall the notation a|h*, which means that a|b* for some A > 0.

Definition 2.6. For positive odd integers d and ¢ such that d|q and ¢|d*, define the formal power series
in the indeterminate x by

ad k
Ly(1+dx) =) (- ‘% <k e Q[[x]]. 2.4)
k=1

The conditions d|q and g|d® imply that d and ¢ share all of the same prime factors. We first show
some divisibility properties for the coefficients of this formal power series. Let

R, = {x € Qsuch that v,,(x) > O for all p|q}. (2.5)

Note that R, is a sub-ring of Q. Reduction modulo g gives rise to the ring homomorphism
¢ R; — Z/qZ given by

¢(a/b)=ab (mod q), where bb=1 (mod g). (2.6)
Lemma 2.7. Let d < g with q odd. For any p|q and k > 1, we have
vy (k) < vp(d*h. 2.7)

More generally, for any A > 0, there exists N such that v, (k) < vp(dk_A) forallk > N.

Proof. We have v, (k) < 112;(;3 < k-1 < v,(d*"), where the last inequality follows from the fact
that d and ¢ share all of the same prime factors, so v, (d) > 1. Now, (2.7) follows. In the more general
case, vp(dk‘A) >k — A and v, (k) = O(log(k)), so there exists a large enough choice of N such that

vp(k) < vp(dk’A) forall k > N. O

Remark 2.8. While Lemma 2.7 only guarantees the existence of a positive integer N, the method of
proof shows that a constructive candidate is the minimal positive integer M such that k — A > log(k) for
all k > M. This minimal M can be easily found for any particular A, and an example of future relevance
is that M = 5 when A = 3.

Lemma 2.9. We have L, (1+dx) € R, [[x]]. In fact, all the coefficients of L, (1+dx) are multiples of d.
Proof. With ¢, = (=1)**1dk [k, we will show v, (cx) > v, (d) for all p|q. Using (2.7) implies that

0< vp($), sovp(ck) =vp(d) + vp(§) > vp(d), for any k. m|

Since L, (1 +dx) lives in R, [[x]] € Q[[x]], given ¢ from (2.6), there is an induced ring homomor-
phism ¢ : R, [[x]] — (Z/qZ)[[x]] which maps
P(Ly(1+d0) = > glci)x®. (2.8)
k=1

By abuse of notation, we view L, (1 + dx) as an element of (Z/qZ)[[x]] via (2.8).

https://doi.org/10.1017/fms.2025.44 Published online by Cambridge University Press



Forum of Mathematics, Sigma 7

Lemma 2.10. We have L, (1 + dx) € (Z/qZ)[x]. Moreover, L, (1 + dx) € d(Z/qZ)|x].

Proof. The content of this lemma is that for sufficiently large k, v, (cx) = v, (q) for cx = d* /k. Say
gld”. By Lemma 2.7, there exists a positive integer N such that v, (k) < v, (d*=4) for all k > N. Then
vp(ck) = vp(dA) + vp(dkT_A) > v,(q) for k > N. Here, N may depend on p, but by choosing the
maximal of all these N’s gives a uniform value. O

This opens the door to discussing various properties of £, (1 + dx) modulo g, such as the following
periodicity and additivity properties. These lemmas will require two indeterminates and so we will
embed (Z/qZ)[x] into (Z/gZ)|[x, y] in the obvious way.

Lemma 2.11. We have L, (1 +dx) = L (1 +d(x + %)) in (Z/qZ)[x, y].

Proof. We have Lq(1+d(x +4y)) = ¥ ck(x + $y)F = 3 cxxk (mod ), using cx = 0 (mod d)
from Lemma 2.10. O

Lemma 2.12. We have L,((1+dx)(1+dy)) = L,(1 +dx) + L,(1 +dy) in (Z/qZ)[x,y].

Proof. We give a brief sketch here, and refer to [K, pp.79-80] for more details. For the real logarithm,
we have log((1 + dx)(1 + dy)) = log(1 + dx) + log(1 + dy), for dx > —1, dy > —1. Hence, the power
series expansions of these two expressions are equal wherever they both converge, meaning that all of
their corresponding coefficients are equal. Thus, since £, (1 + dx) matches the power series expansion
of the real logarithm (reduced modulo ¢ via (2.8)), this property also holds for £, (1 + dx). O

Lemma 2.13. Let g and d be positive odd integers with d|q.

1. If g|d™, then L,(1 + dx) = dx (mod (g, d?)).
2. If (q,3) = 1 and q|d>, then Ly(1+dx) =dx - 2(dx)? (mod q).

Proof. Expanding the power series, we have

Ly(1+dx) = dx — 1 (dx)? + L(ax)® - d3( lact = La2S 4 )

€(Z/qZ)[x]

The claim that the tail of this series is still a polynomial with coefficients in Z/gZ after factoring out
d? follows from Lemma 2.7, or more specifically the observations in Remark 2.8. Elaborating on the
details, since k — 3 > log(k) for all k > 5, we may choose N =5 from Lemma 2.7. However, since q is

odd, % = 52 in Z/qZ, so we could also pick N = 4. Now the result follows in each case. O
We are now ready for our version of the Postnikov formula.

Lemma 2.14 (Postnikov formula). Let g and d be odd with d|q and q|d™. There exists a unique group

homomorphism a : (m* — Z[(q/d)Z, ¥ — ay, such that a Postnikov-type formula holds: for
each Dirichlet character  modulo q and x € Z, we have

Y(l+dx) =eq(ayLly(l+dx)). 2.9

Finally, if  is primitive modulo q, then (ay,q/d) = 1.

Proof. Consider the reduction modulo d map (Z/qZ)* — (Z/dZ)*, and denote its kernel by K. Since d
and ¢ share their prime factors, K = {1 + dx : x (mod %)}, so |K| = %. Consider the map f : K — S!
defined by

f(1+dx) =ey(Ly(1+dx)).

The function f is well defined by Lemmas 2.10 and 2.11. Furthermore, f is a group homomorphism by
Lemma 2.12. Thus, f is a character on K, and we claim that f has order % in K. Indeed, if p is a prime such
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8 B. Garcia and M. P. Young

that p|%, then we have f(1 + dx)?/P = eq(%ﬁq(l + dx)) = eqp(Ly(1+dx)) = eqp(dx) = e(3),
by Lemma 2.13 since dp|(q, d?). Hence, K is cyclic and generated by f. Therefore, every element of K
is of the form f¢ for some a (mod %). In particular,  is a character on (Z/gZ)*, so restricting ¢ to

K makes it an element of K. Thus, there exists a unique a, (mod ?—i) such that ¢/|g = f%, which is
equivalent to the Postnikov formula.

For the final statement, suppose that p is a prime with p|% and play; we will show that ¢ is periodic
modulo ¢/p. Since d and g share all the same prime factors, then p?|q, and hence, ¢|(q/p)>. Applying
(2.9) with d replaced by %, we obtain that (1 + %y) =e, (aw%y). Hence, if pla, then y is periodic
modulo g/p. O

2.3. Miscellaneous lemmas
In the course of this paper, we encounter sums of the form

Sy.a(W, k) = Z (1 +du)e, (dku). (2.10)

u (mod %)

We may evaluate this explicitly in many cases. The conditions relevant for Theorem 1.2 are contained
in the following.

Lemma 2.15. Let (¢,3) = 1, ¥ have conductor q, and suppose d?|q and q|d>. Also, let k € Z. If
k # —ay (mod d), then Sy q(y, k) = 0. If k = —a, (mod d), then

—2a¢
q/d* )

Sq.a(W.k) = eq\geq(2ay (k + am(
Proof. By Lemma 2.14, we have

Sqalw, k)= > eq(dku+ayLy(1+du)).

u (mod %)

By Lemma 2.13(2), this simplifies as

Z eq(dku+aw<du—§(du)2))= Z eq/d((k+a¢)u—§a¢du2).

u (mod %) u (mod %)

Since g/d” is an integer by hypothesis, we may change variables u — u + g/d> to see that the sum
equals itself times a constant. If k # —a, (mod d), then this constant is not 1, and so the sum vanishes
unless k = —ay, (mod d). We continue under this assumption, which means that the summand is actually
periodic modulo ¢/ d?, and hence,

k+a _
Sq.a(y, k) =d Z eq/dz(( w)u—Za.puz).
u (mod %)
Lemma 2.4, along with some simplification, concludes the proof. O
We can also easily calculate S, 4 under the conditions relevant for Theorem 1.1, as follows.

Lemma 2.16. Suppose y has conductor q, d|q and q|d*. Let k € Z. Then

q/d, k=-ay (modq/d)

Sq,d(w9 k) = {0’ k £ —ay (mod q/d)

https://doi.org/10.1017/fms.2025.44 Published online by Cambridge University Press
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The proof of Lemma 2.16 is similar to, but much easier than, Lemma 2.15, since in this case, we
may discard the quadratic terms in £, (1 + du). We omit the details.

Lemma 2.17 (Iwaniec-Kowalski, [IK], Theorem 5.3). Let x be a primitive even character modulo q.
Suppose G (s) is holomorphic and bounded in any strip —A < Re(s) < A, even, and normalized by
G(0) = 1. Then

L(1/2)L(1/2.%) =2 ) %V(%)
m,n>1

where V (x) is a smooth function defined by

L[ G y(2+s?
V(x)—zm, /('1) . —y(1/2)2 xds (2.11)
and
v(s) = n—S/zF(%). 2.12)

The function V(x) has rapid decay, meaning V(x) < (1 +x)~4 for arbitrarily large A > 0.
This next lemma encompasses the opening moves to prove Theorems 1.1 and 1.2.
Lemma 2.18. Let y be even and have conductor g, and suppose d < q. Then
g (m)y(n) (mn
M= Y JL2x-wP=e@ ), Y, m—=—V|—| = @13

x (mod d) + m=+n (mod d) Vimin 4
X even (mn,q)=1

Proof. Using L(1/2, x) = L(1/2, ), then

M= Z L(1/2,x -y)L(1/2, x - ¥).

x (mod d)
X even

The character y - ¢ is primitive modulo g because i is primitive modulo g and d < g. Also, y - ¢ is
even. Thus, Lemma 2.17 implies

M= Z 5 Z X(m)lﬂ(m))?(n)e?(n)v(@)‘

x (mod d) m,n>1 vinn q
X even
Using (1”‘—2(_1)) to detect y even followed by orthogonality of characters secures (2.13). O

Lemma 2.19. Let g be a positive integer, and let V be as defined in (2.11). Then

2 ’
2 lV(n—) = M[%1<>g(q)+70+77(1/2)+9(q) +0(q71%%%).
=1V 9

Proof. This is a standard contour-shifting argument, with a tedious residue calculation. See, for instance,
[IS, Lemma 4.1] for details. ]
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10 B. Garcia and M. P. Young

3. Proof of Theorem 1.2

The focus of this section is to prove Theorem 1.2.

3.1. Diagonal term

Since d*> < ¢ implies that d < g, we may apply Lemma 2.18 to give (2.13). We decompose M into
three terms: M = M-, + My + My<n, where

men = o(d) YY) %V(%z) 3.1

* n=+n (mod d)

(n,q)=1
M = m>n(w)—so(d)z D %V(%) (3.2)
m>n>1

m=+n (mod d)
and where M, ., is given by a similar formula to (3.2) but with 1 < m < n.

Lemma 3.1. Let (gq,2) = 1 and suppose d < q. Then

o(d
Miunen = DD [100(g) 1230+ 1 (1/4) ~ logm +26()] + 0(dg ™).
Proof. Observe that we cannot simultaneously have n = —n (mod d) and (n,q) = 1 since d is odd.
Applying Lemma 2.19 concludes the proof. O

3.2. Remaining setup

Note that by symmetry

Munen (@) = My ()- (3.3)

For this reason, we largely focus on the terms with m > n. Applying a dyadic partition of unity to (3.2)
results in M5, = 2. M3, with

Min= 35 5L 30 wma Wiy ).

M ,N dyadlc m>n>1
m=+n (mod d)

Here,

Wit (m.m) = %V(%)n(%)n(%) (3.4)

with WU-K) (m, n) <k MIN7 and supp(Was n (m,n)) € [M,2M] x [N,2N]. By the rapid decay
of V, we may assume that

MN < g'*%. (3.5)

Consider M, ... Say m = +n + dl with [ > 1, and define

B (M, N) = Y 3 p(en+dD)y ()W (£n + dl, n), (3.6)

[>1 n>1
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so that

#ld) ps (M,N). (3.7)

M., =
m>n — ——~m>n
M ,N dyadic MN

3.3. Off-diagonal via Poisson in 1

+

We will eventually split the dyadic summations of M, into two ranges depending on whether M and
N are nearby or far apart. In this section, we develop a method that will be most useful when M and N
are far apart (or ‘unbalanced’).

We will apply Poisson summation to the sum over / in (3.6). First, we observe some properties of the
function

Wid(l) = WM’N(in+dl,n), (3.8)

namely, that W (1) is supported on

n,

MFn 2M Fn
l .
and
il w* A 3.10
E n’d(x)<<j g . (3.10)

Let W(x) = f_ o:o w(y)e(—xy)dy. We record some properties of W for future use.

Proposition 3.2. Let A > 0, and suppose W(x) is a smooth function with support in an interval of
length A that satisfies W) (x) < j A7) Then for any C > 0, we have

W(x) < A(1 +]x]A)C.

These properties follow directly from integration by parts, so the proof is omitted. Applying this to

+
Wn’ 40 We have

e M
W;’d(x) <c 7(1 +

IxIM)—C

y (VC > 0). (3.11)

Lemma 3.3. Suppose (¢,3) = 1, d*> < q < d° and that M > 2'°N. Then

Nq1/2+8
Bl (M) = A (1.0 4 0( ML)
where
2ay\ d  — —— (Fbyd
A M,N)z(—)a — e,(2ay(ay — by)? W ( ) (3.12)
mon & oG ce@avtaw w))% v g

Proof. The condition that M > 2!°N ensures that W (1) is supported on [ < 2 (recall (3.9)). This
is convenient because, in particular, we can extend the sum over / > 1 to all / € Z without altering the
sum. Applying Poisson summation with respect to / in (3.6) gives
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12 B. Garcia and M. P. Young

B, (M,N) = Zi(n)(é S wen+du eq(dju)@;(%))_
nx1 J€Zy (mod %)

Replacing u by +nu and j by +; and recalling y is even gives

Bysn(M,N) = = Z @(%) Z Y(1+du)ey(djnu).

nxl jez u (mod %)
(n,q)=1
Sq,d(d’sj")
Hence, Lemma 2.15 yields
—2a¢ d _d
B ., (M,N) = ( )8 — Wi ( )e ay(jn+ay)?), (3.13)
m> q/d2 q\/C_I ;J; q q 4 ¥

Jjn=-—ay (mod d)
where the condition (n, ¢) = 1 is now accounted for by jn = —a, (mod d), recalling that (ay, q/d) = 1

and that d, g/d, and g all share the same prime factors. Since a, € Z/(g/d)Z and d|%, let ay =
by (mod d) for by € Z/dZ such that

d

The contribution from jn = —by, gives A;;
terms. Then

(M, N), while we will use E.T. to denote the remaining

w=(2)

m>n

d
|ET.| < N >

n>1 j#0
jn=-ay (mod d)
Jjn#=by

Recalling (3.11) shows this sum may be truncated at |j| < M , with a negligible error. We also have
that n < N. Therefore, letting k = jn, then the non-negligible contribution comes from |k| <« N]‘{;£ s

and for each k, the number of ways to factor k = jn # 01is O(¢?). Hence,

M N 1/2+¢
ET. < ¢ 44 (— > 1) < qd . (3.16)
0<|k| <N
k=-ay (mod d)
k#—b¢

In this estimation, we have used that |k| > d/2 following from k = —by (mod d) with k # —b,, and
using (3.14). O

3.4. Off-diagonal via Poisson in n

Returning to (3.6), we now develop a method designed to treat the complementary range where M and
N are nearby. Define the function

Wi (n) .= Wy N (2n+dl,n),
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which is supported on n € [N, 2N] and satisfies

al i — -
ww(;l(x)«jzv J, W2 (x) < N(1+[x|N)™©. (3.17)

Lemma 3.4. Suppose d < q. We have

m>n

M 1/2 M1/4N
(M,N) < ¢q ( q —)

432 + gl/4

Proof. We present the details for B7; the case of B~ is nearly identical. Applying Poisson summation
to (3.6) in the variable n gives

Bl M) =2 W[ ) Y v dnp e o

[>1 keZ u (mod q)

l+e
Using (3.17), we may restrict attention to |k| < qT with a negligible error. Hence,

Ba M N) <22 31 3T [ D) e ko

1<i<M 05|k|<<";£ u (mod q)

since the variable [ satisfies | <« % by the support of the test functions. The innermost sum can be
recognized as S(g; ¥, dl, k) from (2.1). Applying Lemma 2.2 gives

Bi_ (M,N) < MNg~'** + Z > | S Wt dD ) eq(ku)
I<i<M 1<|k|< Lo ¢ u (mod q)
e Mq'l? . M'VAN L MN
T\~ pn I 7 /)
M'AN . M . MN

The third term above may be dropped since @ < q° g7 Since - < =0

< q°. O

Out of a convenience which will become evident in Section 3.5, we would prefer to include
Af_,(M,N) in Lemma 3.4, despite the fact that it does not naturally manifest using the methods
of this section.

Lemma 3.5. Suppose d < q and d < ¢*/3. We have

. Mq1/2 M1/4N
B (M. ) = A (. 8) 0 g (M 4 2

Proof. We treat the + case, since the — case is very similar. By the triangle inequality and (3.11), we have
L
n, nq

Finally, note that ¢~'/2 < d=3/2¢4'/2, since d < ¢*3, so this bound on A%, , is absorbed by the error

term. O

M
< —¢g°.

Va

MMM <L S
n\b.,,
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14 B. Garcia and M. P. Young

3.5. Combining M., and M,
Recall (3.7). Define

DI 7

M ,N dyadic nlby

R

As a first step, we have the following.

Lemma 3.6. We have

\/_

oo(lbyl)  vZ oo(lbyl)
24 2d *

byl 24 \[Iby]

W=

(=by) 0((dgq)"*¢%). (3.19)

Proof. Retracing the definitions, we have

MN )1/2V((J_rn+ dl)n)’l(in+dl)77(;)~

Wiah = ((in+dl)n q M N

After applying the Fourier transforms and assembling the dyadic partition of unity, we have

(n+dy)n) (b,;,dy) dy
W =
Z/n/d ( ¢ ng Jy\(n+dy)n

0 (—n+dy)n)e(_b¢dy) dy
¥ % -/n‘/d V( q nqg J\(-n+ dy)n.

n|

Changing variables results in

W= 2‘/_eq( bd,)Z/ V(n? x)cos(27rb¢x)T

nlby

We next wish to apply the definition of V(x) from (2.11) and reverse the order of integration. This
formally gives

G(s) y(1/2 +5)? ds
W = 2—€q( bw) nlzb: /1/4) TW(‘/O' COS(Z]Tbl/,)C)T Z

This interchange is a little delicate but can be justified in a few ways. One option is to first truncate the
x-integral to a finite interval [0, X] and let X — oo after interchanging the integrals. Lemma 2.5 now
implies

G(s)y(1/2+5)2 T(1/2—5) . ds
W= 2—eq( by) ,dzbfl/‘*) s (122> Qrlby e COS(j(j—S))ﬁ.

Applying the definition of y(s) (found in (2.12)) and rearranging terms produces

_ 2yGeq(=by) G(s) (1 . s ) o (2|b¢|)sﬂ
" d\27lby T (1/4)2 /<1/4> Al 2) [(1/2 - s) cos(§ 2)}1% 2 | 2
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Using standard gamma function identities, one can show easily that
2 . .
r(% + 5) T(1/2 - s)cos(Z - %) = a2 3T (L 4 5)T(L - %),

Hence,

_ _Naeq(Zhy) GO (L, syl — s (M)Yﬁ
~dy\TbyIT(1/4)2 /(1/4) s FG+20G 2)2 n? | 2ni’

n|b¢

Using the symmetry between divisors, it is apparent that this integrand is an odd function. Therefore,
the integral is half the residue at s = 0, giving the claimed formula for W.

Finally, we deduce the approximation in (3.19). We have e, (=by) = 1 + 0(q~! |by]) by a Taylor
expansion, and recalling |b,| < d. Inserting this into the formula for VW and using oo(|by )by |'? «
d'?q# completes the proof. o

Lemma 3.7. With M,,~., () as defined in (3.2), we have

. q1/2 d
Mopsn(¥) :Am>n(lp)+0(q (W-Fm))
where
ap\ old) ou([byl)
Am>n(w>=(q/df) e Qayay —by) )—le| .

Proof. We begin by splitting the dyadic summations of M,,-, into two ranges depending on whether
M and N are nearby or far apart. The cutoff for these two ranges is M = d'/>N. Therefore, starting at
(3.7), we write

Mypzn= 33" “’(d) ZB;>,,<M M+ DD “’(d) ZB;M(M,N).

M ,N dyadlc M,N dyadlc
M>d'?N M<d'’N

For the first term, we apply Lemma 3.3, and for the second term, we apply Lemma 3.5. Hence,

(p(d) qu/2+£
Musn= 3.3 {Z Ao (M, N) +0( )} (3.20)
M ,N dyadic MN d
M=>d'’N
¢(d) )| Mq'?  M'N
+ A (M,N)+0(q8( +—))}
M,ZN:dyZa;iic VMN Z " d3? CI”4
M<d'’N
Rearranging and evaluating the main term, we obtain
N12g1/2+e M12g1/2 N24
= At Y ( ) o O(qe( + )) 3.21)
Mn>n m>n 1/2 1/241/2 1/4,41/4))
M ,N dyadic M / M ,N dyadic N / d / M / q /
M>d'’N M<d'’N

where

Apsn= 30> “”(d) ZAm>n(M,N).

M,N dyadlc

Using that we may restrict to N < M and MN < ¢'*¢, it is easy to see that the error term simplifies
to give
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g\

Mopsn = Amsn + 0(‘]8(W + %))

For the purposes of Theorem 1.2, we have ¢ > d? so that dg~'/® < d=1/4¢'/2, so the latter error term
can be dropped. The displayed error term is consistent with Theorem 1.2.
Now, we turn to A,,>,,, which takes the form

» \/g(;ilf) x/‘eq(zaw(% bw))Z( (%)JFW’:’\‘I(%))

M ,N dyadic nlby

d JE—
/d2 )sq%eq(Zal/,(a,p — b¢)2)W,

recalling the definition (3.18). Applying Lemma 3.6 shows that

=¢(d )(

Am>n = Am>n (lJ’) + 0(d3/2q_1+8)'

Note d*/2¢g~" < dq~'/%, so this error term can be dropped. O

Next, consider M, <,, for which recall (3.3). Lemma 2.14 implies ay = —ay (mod ¢/d), and

recalling (1.5), we have ay =—ay. Similarly, bE = —by . Hence, we deduce the following:

Lemma 3.8. We have

q1/2 d
Mm<n(l//) Am<n(w) + 0( (d1/4 q_/))’
where
) o (1bul)
Am<n (@) = (q;l;lbz )8‘1 90(2 )eq(—%w(az// - b‘”)z)UOIT:I'

3.6. Combining M,,~, and M,, <,

From Lemmas 3.7 and 3.8, we get that

1/2 d
_ g q
Mm>n+Mm<n—A +0(q£(m+m)),

where

,_(~2ay)  @(d)
A _(q/dz)gq 2

Therefore, if ¢ = 1 (mod 4), then

, [2ay 2ay(ay —by)*\ oo(lbyl)
A = ( /d2)go(d) cos (271 . ) ™ )

This is consistent with (1.12) for ¢ = 1 (mod 4). If instead g = 3 (mod 4), then

e Gy (ay = b)) + ql)eq( 2ay(ay - by)?)|.

, 2ay Zaw(a¢—bw)2 ao(byl)
( /dz)gp(d)sm(2n 7 ) 5l .

This derivation agrees with (1.12). Combining this with Lemma 3.1 proves Theorem 1.2.
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4. Sketching the proofs of remaining theorems

The proof of Theorem 1.1 is similar to the proof of Theorem 1.2, except in some ways which make
it simpler. Likewise, the proof of Theorem 1.3 will essentially use a subset of the tools used to prove
Theorem 1.2. In order to avoid excessive repetition, we only give sketches of these proofs.

4.1. Sketch of the proof of Theorem 1.1

The structure of the proof of Theorem 1.1 is similar to that of Theorem 1.2. As a substitute for Lemma 3.3,
we have the following:

Lemma 4.1. Suppose that d < q < d?, and that M > 2'°N. Then
B}i>n(M’N) = ~A31>n(M’N) +O0(Ng®),

where

—(~byd
Ao (M N) = Wid( v )

n
n|b¢ q

Proof. We follow through the proof of Lemma 3.3, and note that the earliest difference will occur at
(3.13) when Lemma 2.15 was used to evaluate S, 4 (¥, jn). The condition that g < d? means that we
need to use Lemma 2.16 in place of Lemma 2.15. In practical terms, this means that in place of (3.13),
we instead obtain

(4]
m>n(M N) = ZZ W;d(_)
n>1 j#0 4
Jjn=—ay (mod g/d)

In this case, there is no need to introduce b, since we have jn = —a,, (mod ¢/d), and a,, is inherently
defined modulo ¢/d. The term A corresponds to the term jn = —a,,, while the error terms are, similarly
to (3.15) and (3.16), bounded by

—(dj M N
ZZ W;d(—])‘<< qegﬁ < qu [m}
=5 “\q (q/d)
Jjn=-ay (mod q/d)
jn¢—b,/,

Lemma 3.4 holds without changes, since the only assumption there is d < g. As in Lemma 3.5,
we can freely insert the term A% _ (M, N) since it is bounded by d~!Mg?®, which is in turn bounded
by d=3?M¢"'/**#. The new cutoff in the proof of Lemma 3.7 is Mq'/? = Nd3/2, so this error term is
absorbed by the error in Lemma 4.1. In place of (3.20), we obtain

Mupsn = D 9O(d){ZA,M(M,N)+0(Nq£)} 4.1)

M ,N dyadic
M2q ' 2d*2N

T Al An o oo (B M)
M<;1’1/2};3/12CN

In total, this error term is of size d'/*¢'/*+% + dg~'/3+2 . Under the hypotheses of Theorem 1.1, we have

g < d* and hence d'/*¢'/* < dg='/8, so the former term can be discarded. The error term is then seen
to be consistent with the statement of Theorem 1.1.
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The assembly of the term .4 is similar to that of .A’, though it is simpler since there is no need to
introduce b, and leads to

(d)
7 Vi

ao(layl)
|a¢|

A=f

This concludes the discussion of the proof of Theorem 1.1.

4.2. A sketch of the proof of Theorem 1.3

Since Theorem 1.3 is an upper bound, we can arrange the second moment as follows:

popoie 3| 3 s, 0

x (mod d) x (mod d) M dyadic m Vin

This uses an approximate functional equation for L(1/2, y - ¢) in place of Lemma 2.17. Applying
Cauchy’s inequality to take M to the outside of the square, we obtain

> nxof e 33 |3 ()

x (mod d) M dyadic y (mod d) m

The purpose of this trick is to completely avoid the ranges where M and N are far apart.
Squaring this out and applying orthogonality of characters, we obtain a diagonal term of size < dg?®.
For the off-diagonal terms, we essentially arrive at

d q'?  d
Z —|Bm>n(M,M)|<< qa(?_'_ﬁ .
MdyadicM d/ q/

using Lemma 3.4 for the final bound. The second error term can be dropped in comparison to the
diagonal term. In all, we obtain the bound in Theorem 1.3.
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