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Abstract

Identification of the breaking point for the chemical bond is essential for our under-

standing of chemical reactivity. The current consensus is that a point of maximal

electron delocalization along the bonding axis separates the di!erent bonding regimes

of reactants and products. This maximum transition point has been investigated previ-

ously through the total position spread and the bond-parallel components of the static

polarizability tensor for describing covalent bond breaking. In this paper, we report

that the first-order change of the Wiberg and Mayer bond index with respect to the

reaction coordinate, the bond flux, is similarly maximized and is nearly equivalent with

the bond breaking points determined by the bond-parallel polarizability. We investi-

gate the similarites and di!erences between the two bonding metrics for breaking the

nitrogen triple bond, twisting around the ethene double bond, and a set of prototypical

reactions in the hydrogen combustion reaction network. The Wiberg-Mayer bond flux

provides a simpler approach to calculating the point of bond dissociation and formation

and can yield greater chemical insight through bond specific information for certain

reactions where multiple bond changes are operative.
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Introduction

Stable molecules are defined by their unique arrangement of chemical bonds.1 Quantum

mechanical (QM) calculations can provide information about the energetics and electron

density of molecules using methods that can often reach high accuracy, although it is dif-

ficult to conceptualize the chemical bonding within the abstraction of wave function or

density functional theory formulations.2,3 Hence methods of translating the results of QM

computations into the vernacular of a chemical theory of bonding are broadly referred to as

wave function analysis methods. The overarching goal of these methods is to provide better

connections between QM definitions and conceptual chemical properties, such as bond or-

der, atomic charge, and electronegativity in order to understand stable molecules. Di!erent

classes of interpretative chemical tools include the quantum theory of atoms in molecules

(QTAIM) framework of Bader,4 natural bond order analysis of Weinhold,5 and the Wiberg

and Mayer bond indices that have been used qualitatively for many decades to characterize

stable molecular topologies.6,7

During a chemical reaction, however, the bonds of a reactant become partially broken

and/or new bonds form at a transition region that ultimately progresses to a new arrange-

ment of stable chemical bonds in a product molecule. The definition of the breaking point

of the chemical bond is central to the mechanistic interpretation of chemical reactions, and

is still an open question in the theory of chemical bonding and wave function interpreta-

tive tools. It is known that electron delocalization and localization are critical indicators of

bond (de)formation in chemical reactions.8,9 To illustrate, consider a concerted substitution

reaction mechanism in which a bond is simultaneously broken between fragments AB and

formed between fragments BC,

A-B + C ↑ [A—B—C]‡ ↑ A+ B-C (1)

The reaction proceeds through a transition state region where the fragments A and C are
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both partially bonded to the transferred fragment B. At the transition state, the electron

density is maximally delocalized due to the elongated and partially formed bonds spanning

across ABC, in contrast to the localized reactant and product states.

Computationally, one principal measure of electron (de)localization is the total position

spread (TPS) tensor, an analytical measure of the spread of the electron density. In short, it

is the variance in the sum total of the electron positions, a property that has been shown to

have a maximum along bond breaking reaction coordinates.9 Recently, Hait and M. Head-

Gordon showed that the static polarizability has a similar maximum along bond dissociation

coordinates marking the breaking (or forming) of a chemical bond.10 For context, the static

or dipole polarizability tensor relates the induced dipole ωp of a molecule as proportional to

an applied electric field ωE

ωp =
→
ε · ωE, where εij =

(
ϑpi
ϑEj

)
(2)

where i and j index the Cartesian axes. In our example reaction above, the parallel polariz-

ability, i.e. along the bond axis, is expected to be maximized at the transition state since a

perturbing electric field will bias bond formation in one direction and naturally have a large

e!ect on the displacement of the electron density, moving electrons located in the partially

formed AB bond to BC bond. This maximum has been shown to appear in both homolytic

and heterolytic bond dissociations, although polarizability is less descriptive when analyzing

ϖ-bond rotations such as for ethene.10

The polarization metric is directly proportional to the TPS tensor along the reaction

coordinate, but is further augmented by a denominator quantity that describes the gap be-

tween bonding and anti-bonding orbitals, a quantity that is minimized for more polarizable

bonds.10 Furthermore, macroscopic polarization and electron localization have been found

to be intimately related in the study of insulating and conducting materials.11 In this paper,

we report that a maximum in the first order derivative of the Mayer/Wiberg orbital-based
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bond indices show excellent correspondence with the bond breaking point of the static polar-

izability maximum. The bond breaking point is characterized by maximal sensitivity of the

bond order to displacement and marks an inflection point, separating the convex and con-

cave regions of the bond order along the reaction coordinate. We show that the Wiberg and

Mayer bond order derivatives are quite robust across multiple reaction channels for hydrogen

combustion, diatomic nitrogen dissociation, and twisting around the ethene bond.

Theory and Methods

Wiberg and Mayer Bond Indices. Within QTAIM, it has been shown that two-body

decomposition of the TPS tensor defines the two-body delocalization index (DI), which relate

to the formal bond orders used for stable molecules.2 Furthermore, the DI has been shown to

be a real space analogue of the orbital-based Wiberg/Mayer bond indices, which we derive

in Appendix A.2,4

The Mayer and Wiberg bond indices are measures of bond order and are computed from

the first order reduced density (1-RDM) and the orbital overlap matrices. In an atomic

orbital basis, the bond indices are obtained by summing the block-o!-diagonal components,

corresponding to a sum of the overlap density of each orbital pair between atom centers.6,7

MBIAB = 2
∑

µ↑A

∑

ω↑B

[
(PεS)µωP

εS)ωµ + (P ϑS)µω(P
ϑS)ωµ

]
(3)

WBIAB = 2
∑

µ↑A

∑

ω↑B

∣∣Pε
µω + P ϑ

µω

∣∣2 (4)

In this way, these simple metrics quantify the number of electrons ‘shared’ by two atom

centers, analogous to the bonding concepts of classical valence bond theory.

Here we will consider the change in the bond order with respect to the intrinsic reaction

coordinate (IRC) for the various hydrogen and oxygen transfer reactions in the hydrogen

combustion reaction network. The bond order flux is defined as the derivative of the bond
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index with respect to a reaction coordinate.

Jb =
ϑBIAB

ϑϱIRC
(5)

Our primary objective is to show that Eq. 5 is in good agreement with the polarization met-

ric, provides a simpler approach to calculating the point of bond dissociation and formation,

and yields greater chemical insight into the hydrogen combustion reactions.

Hydrogen combustion data. The polarizability, bond orders, and bond flux metrics

were investigated for 13 reaction channels of hydrogen combustion as a model reactive sys-

tem.12,13 The set of reactions contains hydrogen and oxygen transfer reactions, substitution,

and diatomic or bimolecular bond dissociation profiles. The original dataset contains geome-

tries, energies, and forces from intrinsic reaction coordinate (IRC) scans, ab initio molecular

dynamics, and normal mode displacements.

Table 1: Selected reactions in the kinetic model of hydrogen combustion investigated in this
study. The IRC data developed in references [12 and14] were analyzed with the parallel
bond-projected polarizability and bond order and bond flux metrics.

Index Reaction
Substitution
16 H2O2 + H ↓ H2O + OH

Oxygen Transfer
1 H + O2 ↓ OH + O
11 HO2 + H ↓ 2OH
12 HO2 + O ↓ OH + O

Hydrogen Transfer
2 O + H2 ↓ OH + H
3 H2 + OH ↓ H2 O + H
4 H2 O + O ↓ 2OH
10 HO2 + H ↓ H2 + O2

13 HO2 + OH ↓ H2 O + O2

14 2HO2 ↓ H2O2 + O2

17 H2O2 + H ↓ HO2 + H2

18 H2O2 + O ↓ HO2 + OH
19 H2O2 + OH ↓ H2O + HO2
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Computational Details. Bond indices, bond flux, and static polarizabilities were com-

puted for the 13 reaction channels of hydrogen combustion using the NBO 5.0 Program15

integrated into Q-Chem version 5.4.16 Optimized geometries along the intrinsic reaction

coordinate (IRC) were obtained from the benchmark dataset for hydrogen combustion.12

Electronic structure calculations were carried out at the DFT level, with consistent func-

tional and basis set used to generate the geometries in the dataset, namely the ςB97x-V

density functional17 and Dunning’s triple-zeta correlation-consistent basis set.18 The bond

order, bond order flux, and polarizability profiles were computed with spin-unrestricted

CASSCF16,19 using a (6,6) and (2,2) active space for nitrogen and ethene, respectively.

In order to imbue the static polarizability with a degree of pair-specificity, we define

a bond-projected polarizability to study the concerted rupture and formation of multiple

bonds.

εAB = (
→
ε · r̂AB) · r̂AB (6)

This quantity is the projection of the induced molecular dipole in the direction along the bond

for a unit applied electric field in its direction. For a linear transition state, the projections in

the bond-breaking and bond-forming directions will be identical and yield identical results to

the original, axis-aligned polarizability metric. By comparing the component of the molecular

polarizability tensor along each bond dissociation or bond association coordinate, we can

assess the degree of non-linearity of the transition state.

Results and Discussion

The hydrogen and oxygen transfer reactions in Table 1 all proceed through a transition

state geometry where the transferred atom is partially bonded to both molecular fragments.

Supplementary Figure 1(a) summarizes the bond-projected polarizability and Mayer and

Wiberg bond indices along the intrinsic reaction coordinate for all 13 hydrogen combustion

reactions summarized in Table 1. In each case, the position at which the polarizability peaks
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along the reaction coordinate describes the broken bond transition point, while the Wiberg

and Mayer bond order crossover points are where the slope along the reaction coordinate is

maximized. Hence by taking the derivative of the bond index with respect to the reaction

coordinate, the correspondence of the change in the bond order with the bond-projected po-

larizability becomes even more evident as seen in Supplementary Figure 1(b) for all hydrogen

combustion reactions. In what follows, we discuss 3 of the 13 reactions, each demonstrating

the ability of the bond order and flux to discern unique bond rearrangement cases that are

in excellent agreement with the polarizability metric, while also o!ering chemical insight.

Figure 1: A prototypical example of a φ-to-φ bond transfer reaction. Shown for reaction 2,
a hydrogen transfer reaction. (a) Bond order and (b) bond order flux for the Wiberg (blue)
and Mayer (orange) bond indices plotted alongside the bond projected polarizability (black).
The plots are overlaid and are plotted on separate scales. Solid and broken lines indicate
forming and breaking bonds, respectively.

In Figure 1, the bond order and bond order flux profiles are plotted for hydrogen transfer

reaction 2, in which the hydrogen-hydrogen φ-bond is broken and a hydrogen-oxygen φ-bond

is formed. This φ-to-φ transfer reaction is the simplest non-degenerate bond rearrangement

in hydrogen combustion. The bond-projected polarizability peak correlates with the bond

order crossover point at which the bond order takes a value of one half (Figure 1a). As

expected, the transition state is characterized by equal partitioning of the transferred atom’s

valence, resulting in two partial bonds that span the triplet of atoms. As the polarizability

indicates the total electron delocalization (i.e. across all three atoms), the electron density is

maximally delocalized at the transition state. On the other hand, the bond indices indicate
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the extent of pairwise electron delocalization across specific bonds, and the maximum of the

bond flux at the transition state indicates the instability point of the electron delocalization

that is in good agreement with the polarizability (Figure 1b).

Figure 2: A prototypical example of a reaction revealing two bond formation steps. Shown for
reaction 1, a oxygen transfer reaction. (a) Bond order and (b) bond order flux for the Wiberg
(blue) and Mayer (orange) bond indices plotted alongside the bond projected polarizability
(black). The plots are overlaid and are plotted on separate scales. Solid and broken lines
indicate forming and breaking bonds, respectively.

However, the reaction 1 oxygen transfer case in Figure 2 shows that two peaks are ob-

served in the parallel polarizability profile, with the oxygen-oxygen sigma bond forming first,

indicated by the initial rise in the oxygen-oxygen bond order, while the oxygen-hydrogen

bond is relatively undisturbed. The second peak in the polarizability is due to the φ-to-ϖ

bond rearrangement, forming a triplet oxygen molecule and a lone hydrogen atom. The

Mayer/Wiberg bond indices correctly capture the bond order of 1.5 for the triplet oxygen

molecule due to its pair of two-center three-electron (2c-3e) bonds. This step-wise progres-

sion would be missing from an energetic perspective, since no stable intermediate is formed

at the first peak. The transition state lies on the second peak corresponding to the φ-to-ϖ

bond rearrangement.

The reaction 11 oxygen transfer in Figure 3 corresponds to a case where the bond flux

finds a step-wise formation of oxygen-oxygen φ- and ϖ-bonds, whereas as the parallel po-

larizability profile is more ill-defined. The bond order profile seems to proceed via a φ-to-φ

bond transfer from the oxygen-oxygen to oxygen-hydrogen bond as seen in Figure 3(a), but
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Figure 3: A prototypical example of a φ-to-φ and φ-to-ϖ bond transfer reaction. Shown
for reaction 11, a oxygen transfer reaction. (a) Bond order and (b) bond order flux for
the Wiberg (blue) and Mayer (orange) bond indices plotted alongside the bond projected
polarizability (black). The plots are overlaid and are plotted on separate scales. Solid and
broken lines indicate forming and breaking bonds, respectively.

unlike the previous examples which were linear rearrangements, the perpendicular contribu-

tions from other bonds now play a role. This gives rise to a small peak in the bond flux

profile along the breaking oxygen-oxygen bond as seen in Figure 3(b). This increase has little

e!ect on the OH bond order but manifests as an increase in the oxygen-oxygen bond order.

This increase is attributed to the occupied-virtual orbital interaction, or ”charge transfer”

interaction, between the oxygen lone-pair and the newly formed OH anti-bonding orbital.

In the reverse reaction, the increase in bond order is comparable to an activation of the OH

bond and is a key feature of the minimum energy reaction pathway.

As reported by Hait and M. Head-Gordon, two peaks for φ- and ϖ-bond rupture were

not observed for the diatomic dissociation of the nitrogen molecule, attributed to inadequate

separation of the length scales for the breaking points of the φ- and ϖ-bonds.10 In other

words, the φ- and ϖ-bonds break nearly simultaneously as the two fragments are pulled

apart and not in a step-wise fashion with the ϖ-bonds breaking first and the φ-bond last.

We find this is also the case for the WBI/MBI bond order and bond flux profiles (Figure 4a

and Supplementary Figure 2a). The φ- and ϖ-bonds break simultaneously with an inflection

point at a bond order of half its equilibrium value.

Another purported instance of inadequate length scale separation is the breaking of the
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Figure 4: Nitrogen molecule dissociation and rotation around the ethene double bond. Bond
flux profiles for the Wiberg (WBI) and Mayer (MBI) bond indices, plotted against the
bond-projected polarizability (a) computed with spin-unrestricted CASSCF(6,6)/cc-pVTZ
for nitrogen dissociation and (b) computed with spin-unrestricted CASSCF(2,2)/cc-pVTZ
for rotation around the ethene C=C bond.

ethene ϖ-bond by rotation (Figure 4b and and Supplementary Figure 2b). In this case,

the polarizability possesses only a small peak due to the small spatial separation of the

radical fragments. However, the bond flux profile predicts a bond breaking point near the

80 degree dihedral rotation. The lack of spatial separation is not an issue for the WBI/MBI

and the ϖ-bond breaks as expected due to the lack of p-orbital overlap density, i.e. the

restrictions of atomic orbital symmetry. While the Mayer and Wiberg bond indices have a

close relationship to the polarizability via the total position spread tensor, the bond indices

capture the electronic structure in the space of atomic orbitals rather than real space. This

is a particular advantage in such cases where spatial isolation of the radical fragments is

small.

Conclusion

In summary, two chemical concepts, the dipole polarizability observable from quantum me-

chanics and the bond flux metric derived as a derivative quantity of bond order indices from
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wavefunction analysis, are shown to be directly related quantities for resolving a chemically

intuitive picture of continuous bond rearrangements. We have shown in explicit examples

that the sensitivity of bond order to displacements, i.e. bond flux, is correspondingly max-

imized along with the polarizability. By definition, the covalent bond order is a pairwise

measure of electron delocalization, i.e. it quantifies the number of electrons shared by a

pair of atom centers. Similarly, the close mathematical relationship between the polarizabil-

ity, which is measurable in principle, and the total position spread (TPS) tensor facilitates

its connection to molecular electron delocalization. The TPS is similarly related to the

Mayer/Wiberg indices,2 indicating that polarizability and the bond order flux o!er near

equivalence in many bonding scenarios.

Since orbital bond indices are derived from the one-particle reduced density matrix, the

bond indices are computed with negligible additional cost. Orbital-based bond indices also

have additional advantages such as bond specific information and that they are not restricted

to linear dissociative reaction coordinates, as illustrated for rotation around the ethene double

bond. At the same time, we note that polarizability has a distinct advantage by being able

to describe bond breaking involving avoided crossings for some homolytic bonds.10

Appendix: Exchange Density and Mayer Bond Index

The definition of the exchange density follows from the decomposition of the expectation

value of the pair density operator ↼̂2(ωr1,ωr2),

↼̂2(ωr1,ωr2) =
∑

i<j

[↽(ωri ↔ ωr1)↽(ωrj ↔ ωr2) + ↽(ωrj ↔ ωr1)↽(ωri ↔ ωr2)] (7)

where i and j run over individual electrons. Similar to how the expectation of the density

operator, ↼̂(ωr), yields the probability of finding an electron at a point ωr, the expectation

of the pair density operator yields the probability of finding an electron at point ωr1 and

simultaneously another electron at point ωr2. For a single determinant wave function ” built
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from orthonormalized spin-orbitals ⇀i(ωr,φ) = ⇁i(ωr)γi(φ), we arrive at the following after

expansion:

↼2(ωr1,ωr2) = ↗”|↼̂2(ωr1,ωr2)|”↘ =
N∑

i,j=1

(
|⇁i(ωr1)|2 |⇁j(ωr2)|2 ↔ ⇁↓

i (ωr1)⇁j(ωr1)⇁
↓
j(ωr2)⇁i(ωr2)↽ϖiϖj

)
(8)

Since the density ↼(ωr) =
∑N

i |⇁i(ωr)|2, the definition of the exchange density is given by

↼2(ωr1,ωr2) =

(
N∑

i=1

|⇁i(ωr1)|2
)(

N∑

j=1

|⇁j(ωr2)|2
)

↔
N∑

i,j=1

⇁↓
i (ωr1)⇁j(ωr1)⇁

↓
j(ωr2)⇁i(ωr2)

= ↼(ωr1)↼(ωr2)↔ ↼X(ωr1,ωr2)

(9)

↼X(ωr1,ωr2) =
N∑

i,j=1

⇁↓
i (ωr1)⇁j(ωr1)⇁

↓
j(ωr2)⇁i(ωr2)↽ϖiϖj (10)

In this way, the exchange density is the ’correction’ to the product of single particle probabil-

ities due to exchange correlation. These corrections account for the so-called Fermi heap or

Fermi hole, the respective increase or decrease in electron density in the vicinity of another

electron due to exchange symmetry.

Using the following identities and the definition of exchange density from above,

n =

∫∫

all space

↼X(ωr1,ωr2)dωr1dωr2 Sµω =

∫
χ↓
µ(ωr)χω(ωr)dωr Pµω =

N∑

i=1

ciµc
i↓
ω (11)
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After the LCAO expansion of each MO, ⇁i(ωr) =
∑

µ c
i
µχµ(ωr), and integration over ωr1 and ωr2,

n =
N∑

i,j=1

m∑

µ,ω,ϖ,ϱ=1

(∫
ci↓µ c

j
ωχ

↓
µ(ωr1)χω(ωr1)dωr1

)(∫
cj↓ϖ ciϱχ

↓
ϖ(ωr2)χϱ(ωr2)dωr2

)
↽ϖiϖj

=
N∑

i,j=1

m∑

µ,ω,ϖ,ϱ=1

ciϱc
i↓
µ

(∫
χ↓
µ(ωr1)χω(ωr1)dωr1

)
cjωc

j↓
ϖ

(∫
χ↓
ϖ(ωr2)χϱ(ωr2)dωr2

)
↽ϖiϖj

=
N∑

i,j=1

m∑

µ,ω,ϖ,ϱ=1

ciϱc
i↓
µ Sµωc

j
ωc

j↓
ϖ Sϖϱ↽ϖiϖj

=
m∑

ω,ϱ=1

m∑

µ,ϖ=1

Pε
ϱµSµωP

ε
ωϖSϖϱ + P ϑ

ϱµSµωP
ϑ
ωϖSϖϱ

=
m∑

ω,ϱ=1

[
(PεS)ϱω(P

εS)ωϱ + (PϑS)ϱω(P
ϑS)ωϱ

]

(12)

Therefore, the integral of the exchange density is the total of Mayer orbital bond indices.

∫∫
↼X(ωr1,ωr2)dωr1dωr2 =

m∑

ω,ϱ=1

[
(PεS)ϱω(P

εS)ωϱ + (PϑS)ϱω(P
ϑS)ωϱ

]
(13)

The quantity inside the summation is the orbital bond index between atomic orbitals, χϱ

and χµ. If the orbital-bond index contributions are collected by their corresponding atom

centers, then the Mayer bond index contains the two-body contribution to the integral of

the exchange density. We obtain the total bond order equation.

n =
∑

A,B

∑

µ↑A

∑

ω↑B

[
(PεS)µω(P

εS)ωµ + (PϑS)µω(P
ϑS)ωµ

]
=

1

2

∑

A

BAA +
∑

A ↔=B

BAB (14)

where A and B index atom centers, µ and ▷ index atomic orbitals centered on A and B,

respectively, and the bond order BAB is given by

BAB = 2
∑

µ↑A

∑

ω↑B

[
(PεS)µω(P

εS)ωµ + (PϑS)µω(P
ϑS)ωµ

]
(15)

The localization and delocalization indices from density-based QTAIM methods are parti-
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tioned similarly into a sum over a set of atomic basins, {#A}.2

n =

∫∫

all space

↼x(ωr1,ωr2)dωr1dωr2

= 2
∑

A,B

∫∫

!A,!B

↼x(ωr1,ωr2)dωr1dωr2

=
1

2

∑

A

↽(A,A) +
∑

B ↔=A

↽(A,B)

(16)

where ↽(A,B) = 2
∫∫

!A,!B
↼x(ωr1,ωr2)dωr1dωr2. In this way, the QTAIM delocalization index

(DI) is the two-body contribution to the integral of the exchange density, obtained through

the sixth-order integration over a real space partitioning of the electron density. Formally,

we can see that this can be thought of as the real space analogue of the Mayer bond index.
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