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Abstract. We give new proofs of the description convex hulls of space curves γ : [a, b] 7→ R
d having

totally positive torsion. These are curves such that all the leading principal minors of d × d matrix
(γ′, γ′′, . . . , γ(d)) are positive. In particular, we recover parametric representation of the boundary of
the convex hull, different formulas for its surface area,

:

and the volume of the convex hull , and the
solution to a general moment problem corresponding to γ.

1. Introduction and a summary
:::::::::

Summary
:

of main results
::::

the
::::::

Main
:::::::::

Results

Convex hull of a set K ¢ R
d is defined as

conv(K) =







m∑

j=1

¼jxj , xj ∈ K,

m∑

j=1

¼j = 1, ¼j g 0, j = 1, . . . ,m for all m g 1






.

Describing the convex hull of a given setK is a basic problem in mathematics. By imposing additional
geometric structures on K

:

,
:

one may hope to give a simpler description of conv(K). Perhaps a good
starting point is when K is a space curve,

:

which is the topic of our paper.
Let [a, b] be an interval in R, and let µ1(t), . . . , µn+1(t) be real valued functions on [a, b]. We start

with two main questions
:

,
:

which are ultimately related to each other.

Question 1. Describe the boundary of the convex hull of µ([a, b]), where

µ(t) = (µ1(t), . . . , µn+1(t)), t ∈ [a, b].

The next question, known as the general moment problem [16, 14, 15], is a certain probabilistic
reformulation of Question 1.

Question 2. Find

M sup(x1, . . . , xn)
def
= sup {Eµn+1(Y ) : Eµ1(Y ) = x1, . . . ,Eµn(Y ) = xn},(1.1)

M inf(x1, . . . , xn)
def
= inf {Eµn+1(Y ) : Eµ1(Y ) = x1, . . . ,Eµn(Y ) = xn},(1.2)

where supremum or infimum is taken over all random variables Y with values in [a, b] such that
µj(Y ) are measurable for all j, 1 f j f n+ 1.

The answers to both of these questions are given in terms of lower and upper principal represen-
tations in two remarkable monographs [15, 14] (see also a brief survey [8]) under the assumption
(A1)

:

,
:

which says that the sequences (1, µ1(t), . . . , µn(t)) and (1, µ1(t), . . . , µn+1(t)) are T+-systems
on [a, b], we refer the reader to Subsection 1.1.3 for more details.

In this paper we give a new self-contained geometric approach to both of these questions for a
subclass of (A1), curves with so called totally positive torsion.
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Definition. A curve µ ∈ Cn+1((a, b),Rn+1) ∩ C([a, b],Rn+1) is said to have totally positive torsion
if all the leading principal minors of the matrix

(µ′(t), µ′′(t), . . . , µ(n+1)(t))(1.3)

are positive for all t ∈ (a, b).

Perhaps an instructive example to keep in mind is µ(t) = (t, t2, . . . , tn, µn+1(t)),
:

where the total

positivity of the torsion on (a, b) is the same as µ
(n+1)
n+1 (t) > 0 on (a, b).

In fact the only property that will be needed from the principal minors of the matrix (1.3) is
that they are non-vanishing

::::::::::::

nonvanishing. Indeed, we can consider an invertible linear image of µ,
namely a new curve t 7→ (ε1µ1(t), . . . , εn+1µn+1(t)) with an appropriate choice of signs εj = ±1 and
reduce the study of the convex hulls to the curves with totally positive torsion (an invertible linear
transformation T maps convex hull of a set K to the convex hull of the image T (K)).

In Section 1.1 we provide an overview of the literature on results related to Questions 1 and 2.
Section 2 is devoted to the statements of

:::

the
:

main results of the paper, and Section 3 contains the
proofs. Here we give a short summary of the theorems that we recover in this paper. The results we
state hold in R

n+1 for all n g 1, and all space curves µ : [a, b] → R
n+1 with totally positive torsion.

Set µ̄(t)
def
= (µ1(t), . . . , µn(t)), and let us denote by conv(µ([a, b])) the convex hull of the image of

[a, b] under the map µ.

Summary of the results:

(1) Boundary of the convex hull of µ([a, b]) will be given in a parametric form.
(2) Explicit diffeomorphism will be constructed between the interior of simplicies and the interior

of the convex hull of µ([a, b]).
:

(3) Formulas for the surface area of the boundary of the convex hull of µ([a, b]) will be obtained,
Corollary 2.8, and different formulas for the volume of the convex hull will be presented,
Corollary 2.7.

(4) Any single affine hyperplane intersects the space curve µ : [a, b] → R
n+1 in at most n + 1

points. Minimal number k points required to represent any point x ∈ conv(µ([a, b])) as a
convex combination of k points of µ([a, b]) is at most +n+3

2 ,. Moreover, k = +n+3
2 , for any

interior point of conv(µ([a, b])).
(5) Parametric representations will be given for functions M sup and M inf . The obtained para-

metric forms change depending on whether n is even or odd.
(i) If n is even then

M sup



¼0µ̄(b) +

n
2∑

j=1

¼j µ̄(xj)



 = ¼0µn+1(b) +

n
2∑

j=1

¼jµn+1(xj),

M inf



¼0µ̄(a) +

n
2∑

j=1

¼j µ̄(xj)



 = ¼0µn+1(a) +

n
2∑

j=1

¼jµn+1(yj),

for all ¼0, ¼j ∈ [0, 1], xj ∈ [a, b], j = 1, . . . , n2 with
∑

0fkfn
2
¼k = 1.

(ii) If n is odd then

M sup



¼0µ̄(a) + ¼1µ̄(b) +

n+1
2∑

j=2

¼j µ̄(xj)



 = ¼0µn+1(a) + ¼1µn+1(b) +

n+1
2∑

j=2

¼jµn+1(xj),

M inf





n+1
2∑

j=1

´j µ̄(xj)



 =

n+1
2∑

j=1

´jµn+1(xj),
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for all ¼0, ¼j , ´j ∈ [0, 1], xj ∈ [a, b], j = 1, . . . , n+1
2 with

∑

0fjfn+1
2

¼j =
∑

1fjfn+1
2

´j = 1.

(6) Explicit random variables Y will be constructed
:

,
:

which attain supremum and infimum cor-
respondingly in (1.1) and (1.2)

:

,
::::

will
:::

be
::::::::::::

constructed
:

for each given x = (x1, . . . , xn) from the

domain of definition of M sup and M inf .

We will also see that

∂ conv(µ([a, b])) = {(x,M sup(x)), x ∈ conv(µ̄([a, b]))} ∪ {(x,M inf(x)), x ∈ conv(µ̄([a, b]))},
i.e.

::::

that
::

is, the upper hull of conv(µ([a, b])) coincides with the graph of M sup , and the lower hull

with the graph of M inf . Besides this summary, we also recover several results previously known to
Karlin–Sharpley [13] for moment curves using our techniques (see Corollary 2.4). In Proposition 2.2,
we also show that the results obtained in this paper are sensitive to the assumption on a curve having
totally positive torsion.

1.1. What is known
::

Is
:::::::::

Known
::

about Questions 1 and 2? In what follows we set x
def
=

(x1, . . . , xn) ∈ R
n , and Eµ̄(Y )

def
= (Eµ1(Y ), . . . ,Eµn(Y )). We remark that both M sup and M inf

depend on n g 1, x ∈ R
n, [a, b] ¢ R, and µ. We shall remind the basic fact that the convex hull of a

compact set is compact. For simplicity we shall use the symbol M for M sup(x).
There are series of results describing M for some particular µ. A common goal is to have a

parametric representation for it. However, as soon as n is large,
:

it becomes difficult to find parametric
representation for M in such generality.

1.1.1. Convex envelopes
::::::::::

Envelopes and Carathéodory number
:::::::

Number. Under some mild assumptions
on µ, say µ is continuous on [a, b] is sufficient (see [16, 20]), M is defined on conv(µ̄([a, b])). Moreover,
for any x ∈ conv(µ̄([a, b])), M(x) is the solution of the dual problem

M(x) = inf
d0∈R,d∈Rn

{d0 + ïd, xð such that d0 + ïd, µ̄(t)ð g µn+1(t) for all t ∈ [a, b]},(1.4)

where ïa, bð denotes the dot product in R
n. Thus M is the minimal concave function defined

on conv(µ̄([a, b])) with the obstacle condition M(µ̄(t)) g µn+1(t) for all t ∈ [a, b]. So the graph
(x,M(x)), x ∈ conv(µ̄([a, b])) belongs to the boundary of conv(µ([a, b])). Carathéodory’s theorem
says that (x,M(x)) is convex combination of at most n + 2 points from µ([a, b]). However, due
to the fact (x,M(x)) ∈ ∂ conv(µ([a, b])), one can see that n + 1 points suffice by considering any
affine hyperplane H supporting conv(µ([a, b])) at (x,M(x)). Since µ([a, b]) lies on one side of H, it
follows that the points, whose convex combination is (x,M(x)), must lie in H, and we can apply
Carathéodory’s theorem to H ∩ µ([a, b]) in n + 1 dimensional space H. This leads us to another
representation

M(x) = sup
∑n+1

j=1 cj µ̄(tj)=x







n+1∑

j=1

cjµn+1(tj) :
n+1∑

j=1

cj = 1, cℓ g 0, tℓ ∈ [a, b], 1 f ℓ f n+ 1






.(1.5)

Probabilistic way of looking at (1.5) is that the supremum and infimum in (1.1) and (1.2) is
:::

are
attained on random variables Y whose density is the sum of delta masses on at most n+1 points in
[a, b], i.e.

::::

that
:::

is,
∑n+1

j=1 cj¶tj , with tj ∈ [a, b] for all j = 1, . . . , n+ 1.
A direction of research focuses on understanding for which curves µ , the number n+1 appearing

in
∑n+1

j=1 cj¶tj can be made smaller. As we just described
:

,
:

this is related to the following question:

given
:::::

Given
:

a curve µ : [a, b] → R
n+1 , and a point y ∈ ∂ conv(µ([a, b])), find the smallest number

of points b(y) on µ([a, b]) whose convex combination coincides with x. The integer b(y) is called
Carathéodory number for y, and it is defined for all y ∈ conv(µ([a, b])). Carathéodory number b(µ)
of a set µ([a, b]) is defined as

b(µ)
def
= sup

x∈conv(µ([a,b]))
b(x).(1.6)
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By Carathéodory’s theorem b(µ) f n+2 for curves in R
n+1. For certain curves µ, the number b(µ)

can be strictly smaller than n + 2. Fenchel’s theorem [5, 7] asserts that if the compact set µ([a, b])
cannot be separated by a hyperplane into two non-empty disjoint sets

:::::::::

nonempty
::::::::

disjoint
:::::

sets,
:

then
b(µ) f n + 1. In particular, for continuous curves µ over closed intervals [a, b]

:

,
:

the Carathéodory’s
number is at most n+ 1 giving one more justification of (1.5) for continuous maps µ. See [2] where
Carathéodory number and an extension of Fenchel’s theorem is

:::

are
:

studied for certain type of sets
in R

n+1.

1.1.2. A Convex Optimization Approach. Another direction of research reduces (1.4) to what is
called positive semidefinite optimization problem under the assumption

µ(t) = (t, t2, . . . , tn,1I(t)),

where I is an interval in R. Finding upper or lower bounds on E1I(Y ) = P(Y ∈ I) given the
first n moments of Y is of important interests as

:::::::

because
:

it would refine the classical Chebyshev
and Markov inequalities. To give a feeling how the corresponding positive semidefinite optimization
problem looks like

:

, we cite Theorem 11 in [3]: the tight upper bound on P(Y g 1) over all nonnegative

random variables Y given the first n moments EY j = xj , 1 f j f n,
:

coincides with

M sup(x) = min
d0,...,dn∈R

d0 +
n∑

j=1

djxj .

Subject to

0 =
∑

i,j : i+j=2ℓ−1

tij , ℓ = 1, . . . , n,

(d0 − 1) +

n∑

j=ℓ

dj

(
j

ℓ

)

= t00,

n∑

j=ℓ

dj

(
j

ℓ

)

=
∑

i,j : i+j=2ℓ

tij , ℓ = 1, . . . , n,

0 =
∑

i,j : i+j=2ℓ−1

zij , ℓ = 1, . . . , n,

ℓ∑

j=0

dj

(
n− j

ℓ− j

)

=
∑

i,j : i+j=2ℓ

zij ℓ = 0, . . . , n,

T, Z g 0,

where T, Z g 0 means that the matrices T = {tij}ni,j=0, Z = {zij}ni,j=0 are positive semidefinite.
The advantage of having such a semidefinite optimization problem is that it can be solved in a

polynomial time. However, it is not clear to us how practical are these results if one wants to verify
bounds M(x) f R(x) for a given function R and all x in conv(µ([0, 1])). In [3] the authors provide
explicit formulas for the tight upper bound on P(Y > ¼) for n = 3 over all nonnegative random
variables with given first 3

:::::

three
:

moments.

1.1.3. Tchebysheff systems
::::::::

Systems, convex curves
:::::::

Convex
:::::::

Curves, and Markov moment problem
:::::::

Moment

::::::::

Problem. The system of continuous functions (µ0(t), . . . , µn(t)) , on an interval [a, b] is called Tchebysh-
eff system (or T -system) if any nontrivial linear combination

∑n
j=0 ajµj(t) has at moat

:::::

most n roots

on [a, b]. As
:::::

Since
:

the monographs [15, 14] deal with general Markov moment problem with arbi-
trary Borel measures, and in this paper we consider only probability measures, in what follows we
will be assuming that µ0(t) = 1 to make the presentation consistent with [15, 14]. Under such an
assumption the corresponding curve t 7→ (µ1(t), . . . , µn(t)) is called convex curve.
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The sequence (µ0(t), . . . , µn(t)) is called T+-system if

det({µi(tj)}ni,j=0) > 0(1.7)

on the simplex Σ = {a f t0 < . . . , < tn f b}. Notice that any T -system can be made into T+-system
just by flipping the sign in front of µn if necessary. If (µ0(t), . . . , µk(t)) is

::

a
:

T+-system on [a, b]
for any k = 0, . . . , n,

:

then the sequence (µ0(t), . . . , µn(t)) is called M+-system on [a, b]. Checking
the positivity of the determinant (1.7) seems a bit unpractical as

:::::::

because
:

one needs to verify the
inequality on the simplex Σ. The following proposition gives a simple sufficient criteria for the system
to be M+ system.

Theorem 1.1 (Chapter VIII, [14]). Let µ0(t), . . . , µn(t) be in C([a, b]) ∩ Cn((a, b)). Then
:

,
:

for the

sequence (µ0(t), . . . , µn(t)) to be M+-system on [a, b]
:

, it is necessary1 that det({µ(j)i (t)}ki,j=0) g 0 on

(a, b) for all k = 0, . . . , n, and it is sufficient that det({µ(j)i (t)}ki,j=0) > 0 on (a, b) for all k = 1, . . . , n.

We say that (µ1(t), . . . , µn+1(t)) satisfies (A1) condition if µ1(t), . . . , µn+1(t) are in C([a, b]) ∩
Cn+1((a, b)) such that

(1, µ1(t), . . . , µn(t)) and (1, µ1(t), . . . , µn+1(t)) are T+ − systems on [a, b] (A1)

Clearly,
:

if µ(t) = (µ1(t), . . . , µn+1(t)) has totally positive torsion on (a, b) then the condition (A1)
holds by Theorem 1.1. On the other hand

:

,
:

if the sequence (µ0(t), . . . , µn+1) satisfies only the assump-
tion (A1) then the probability distribution of a random variable X achieving supremum or infimum
in Question 2 is given in terms of upper and lower principal representations, see Chapter III and IV
in [15], and also Proposition 2 in a brief survey [8]. In particular, Carathéodory number is at most
+n+3

2 , for the curves t 7→ (µ1(t), . . . , µn+1(t)) in R
n+1 satisfying the assumption (A1).

A typical example of the convex curve is the moment curve

µ(t) = (t, . . . , tn+1) ∈ R
n+1,.

Assume [a, b] = [0, 1]. In [13] the authors show that if x = (x1, . . . , xn) belongs to the interior of
conv(µ̄([0, 1])) then M sup(x) and M inf(x) are the unique solutions xn+1 of the linear equations

det(Kn+1) = 0 and det(Sn+1) = 0,(1.8)

correspondingly, where Kk, Sk are defined as

S2k =






1 x1 . . . xk
...
xk xk+1 . . . x2k




 , S2k+1 =






x1 x2 . . . xk+1
...

xk+1 xk+2 . . . x2k+1




 ,(1.9)

and

K2k =






x1 − x2 x2 − x3 . . . xk − xk+1
...

xk − xk+1 xk+1 − xk+2 . . . x2k−1 − x2k




 ,(1.10)

K2k+1 =






1− x1 x1 − x2 . . . xk − xk+1
...

xk − xk+1 xk+1 − xk+2 . . . x2k − x2k+1




 .

A point (x1, . . . , xn+1) belongs to conv(µ([0, 1])) if and only if the matrices Kn+1 and Sn+1 are
positive semidefinite, see Theorem 16.1a, and Theorem 16.1b in [13], see also “truncated moment
problem”, Chapter 10 in [21]; Chapter IV, Section 2 in [1]. Also the point (x1, . . . , xn+1) belongs to
the interior of conv(µ([0, 1])) if and only if the matrices Kn+1 and Sn+1 are positive definite.

1Here γ
(0)
j (t) = γj(t)
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An important contribution of [13] is that the authors give complete description of ∂ conv(µ([0, 1]))
:

,
which allowed them to obtain a geometric point of view on the classical orthogonal polynomials. For
example, knowing the width in xn+1 direction of the set conv(µ([0, 1]))

:

, one can recover the classical
fact that among all polynomials of degree n+1 on [0, 1] with the leading coefficient 1 the Tchebyshev

::::::::::

Chebyshev
:

polynomials minimize the maximum of the absolute value on [0, 1] (Theorem 25.2 in [13]).
Karlin–Sharpley

::::::

Karlin
:::::

and
:::::::::

Sharpley
:

did announce an intend to settle the case when [a, b] is
replaced by [−1, 1], R+,

:

or R. After looking into a literature, to the best of our knowledge
:

,
:

the
corresponding results appeared in the monograph of Karlin–Studden

::::::

Karlin
::::

and
:::::::::

Studden [14].

In [22] Schoenberg obtained a formula for the volume of a smooth closed2 convex curve ¿ : [0, 2Ã] 7→
R
n in

::

an
:

even-dimensional Euclidean space
:

:
:

Vol(conv(¿([0, 2Ã]))) = ± 1

n!(n/2)!

∫

[0,2Ã]
n
2

det(¿(t1), . . . , ¿(tn/2), ¿
′(t1), . . . , ¿

′(tn/2))dt1 . . . dtn/2,

and as a corollary, using Fourier series, he derived an isoperimetric inequality

(length(¿))n g (Ãn)n/2(n/2)!n!Vol(conv(¿([0, 2Ã]))),

where length(¿) denotes the Euclidean length of ¿, and Vol(·) denotes the Euclidean volume. The
volumes of the convex hull of µ([a, b]), such that µ(0) = 0 and the sequence (1, µ1(t), . . . , µn(t)) forms
the T -system,

:

were obtained both in odd and even dimensions in [15, 14], see for example , Theorem
6.1, Ch. IV in [14].

1.1.4. Other results
:::::::

Results for systems different
:::::::

Systems
:::::::::

Different
:

from T -system. In [24, 25] Sedykh
describes possible singularities of the boundary of convex hulls of a curve in R

3. In [18], using tools
from algebraic geometry, namely, De Jonquières’ formula, the authors compute

:

a number of complex
tritangent planes of the algebraic boundary of the convex hull of an algebraic space curve in R

3 in
terms of its genus and degree of the curve. Moreover, in [18] the authors also find an algebraic
elimination method for computing tritangent planes and edge surfaces of the boundary of the convex
hulls of algebraic space curves in R

3. Algebraic boundary of the convex hull of an algebraic variety
was studied [19], where the authors extended several results from [18] to higher dimensions. In [6],
using topological results

:

, it is shown that the number of tritangent planes to a smooth generic curve
in R

3 with nonvanishing torsion is even.
Convex hulls of space curves have appeared implicitly or explicitly in other works in relation

to problems not directly related to them. We do not intend to provide the full list of references,
however, let us mention some of the examples. Finding sharp constants in such classical estimates
as John–Nirenberg inequality is related to finding convex hulls in non-convex

::::::::::

nonconvex
:

domains
of certain space curves. In particular, in [12, 11], an algorithm is presented

:

, which finds the convex
hull of a space curve µ(t) = (t, t2, f(t)) defined on R, under the assumption that f ′′′(t) changes sign
finitely many times (notice that the sign of f ′′′ coincides with the sign of the torsion of µ(t)). As

:::::

Since
:

the number of sign changes of f ′′′ increase the “complexity” of computing,
:

the convex hull of
µ(t) increases too. The method obtained in [12, 11] is illustrated on a particular example in [26]
for the family of space curves µ³(t) = (t, t2, g³(t))

:

,
:

where g³(t) is a parametric family of functions
defined for all ³ > 0 as follows

:

:
:

g³(t) =

{

− cos(t), |t| f ³
1
2(t

2 − ³2) cos³+ (sin³− ³ cos³)(|t| − ³)− cos³, |t| g ³.

Notice that the quadratic part for |t| g ³ is chosen in such a way that g³ ∈ C2(R). Clearly
:

,
g′′′³ (t) = − sin(t) for |t| f ³ , and g′′′³ (t) = 0 for |t| g ³. We see that as ³ increases the number
of sign changes of g′′′³ (t) increases too. In [26] the upper boundary of the convex hull of the space

2Here closed curve means ν(0) = ν(2π)
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curve µ³(t), t ∈ R, is found in the non-convex parametric domain
:::::::::

nonconvex
::::::::::::

parametric
::::::::

domain3.
Ωε = {(x, y) ∈ R

2 : x2 f y f x2+ε2}. In the limiting case ε → ∞,
:

one recovers the upper boundary
of the convex hull of the space curve µ³(t).

In sharpening the triangle inequality in Lp spaces, for each p ∈ R \ {0}
:

, the paper [9] finds the

boundary of the convex hull of a space curve µ(t) = (t,
√
1− t2, ((1− t)1/p+(1+ t)1/p)p), t ∈ [−1, 1].

In [10] the boundary of the convex hull of a closed space curve is described
:

,
:

which is the union of
the following three curves:

:

(
1

tp + (1− t)p + 1
,

tp

tp + (1− t)p + 1
,

(1 + t)p

tp + (1− t)p + 1

)

, t ∈ [0, 1];

(
(1− t)p

tp + (1− t)p + 1
,

1

tp + (1− t)p + 1
,

(2− t)p

tp + (1− t)p + 1

)

, t ∈ [0, 1];

(
tp

tp + (1− t)p + 1
,

(1− t)p

tp + (1− t)p + 1
,

|1− 2t|p
tp + (1− t)p + 1

)

, t ∈ [0, 1].

Acknowledgments. We are grateful to Pavel Zatitskiy and Dmitriy Stolyarov for pointing our
attention to the reference [15]. The authors would like to thank an anonymous referee for helpful
comments and suggestions, and V. Sedykh for providing references on topological results on the
convex hulls of space curves.

2. Statements of main results
:::

the
:::::::

Main
:::::::::

Results

For any v = (v1, . . . , vd) ∈ R
d,
:

we set v = (v1, . . . , vd−1) to be the projection onto the first d − 1
coordinates, and we set vz = vd to be the projection onto the last coordinate. For any a < b

:

,
:

define
the following sets:

:

∆k
c := {(r1, . . . , rk) ∈ R

k : rj g 0, j = 1, . . . , k, r1 + . . .+ rk f 1},
∆k

∗ := {(y1, . . . , yk) ∈ R
k : a f y1 f y2 f . . . f yk f b}.

Let n g 1. If n = 2ℓ
:

,
:

we define

Un : ∆ℓ
c ×∆ℓ

∗ ∋ (¼1, . . . , ¼ℓ, x1, . . . , xℓ) 7→
ℓ∑

j=1

¼jµ(xj) + (1−
ℓ∑

j=1

¼j)µ(b);

Ln : ∆ℓ
c ×∆ℓ

∗ ∋ (¼1, . . . , ¼ℓ, x1, . . . , xℓ) 7→ (1−
ℓ∑

j=1

¼j)µ(a) +

ℓ∑

j=1

¼jµ(xj),

and if n = 2ℓ− 1
:

,
:

we define

Un : ∆ℓ
c ×∆ℓ−1

∗ ∋ (´1, . . . , ´ℓ, x2, . . . , xℓ) 7→ (1−
ℓ∑

j=1

´j)µ(a) +
ℓ∑

j=2

´jµ(xj) + ´1µ(b);

Ln : ∆ℓ−1
c ×∆ℓ

∗ ∋ (´2, . . . , ´ℓ, x1, . . . , xℓ) 7→ (1−
ℓ∑

j=2

´j)µ(x1) +
ℓ∑

j=2

´jµ(xj).

If n = 1
:

,
:

we set U1 : [0, 1] =: ∆1
c ×∆0

∗ 7→ (1− ´1)µ(a) + ´1µ(b) , and L1 : [a, b] =: ∆0
c ×∆1

∗ 7→ µ(x1).
We will see that the maps Un and Ln parameterize the upper and lower envelopes, respectively. The
letters U and L are chosen as the first letters of the words Upper and Lower.

3By
:::

the
:

convex hull of γ³ in Ωε we mean all possible convex combinations of those points on γ³ such that the

projection of the resulting convex hull of these points onto R
2 lies inside Ωε
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Together with maps Un and Ln we define functions Bsup (and Binf) on the image of U (or L) such
that

Bsup(Un) = U z
n,(2.1)

Binf(Ln) = Lz
n.(2.2)

We remark that at this moment Bsup (and Binf) is not well defined, i.e.
::::

that
:::

is, it could be that

there are points s1, s2, s1 ̸= s2 such that Un(s1) = Un(s2) and at the same time U z
n(s1) ̸= U z

n(s2).
However, we will see that the next theorem, in particular, claims that both functions Bsup, Binf are
well defined.

Theorem 2.1. Let µ : [a, b] 7→ R
n+1 be in C([a, b]) ∩ Cn+1((a, b)) with totally positive torsion.

If n = 2ℓ, ℓ g 1, we have

U2ℓ(∂ (∆ℓ
c ×∆ℓ

∗)) = L2ℓ(∂ (∆ℓ
c ×∆ℓ

∗)) = ∂ conv(µ([a, b])),(2.3)

U2ℓ : int(∆
ℓ
c ×∆ℓ

∗) 7→ int(conv(µ([a, b]))) is diffeomorphism,(2.4)

L2ℓ : int(∆
ℓ
c ×∆ℓ

∗) 7→ int(conv(µ([a, b]))) is diffeomorphism.(2.5)

If n = 2ℓ− 1
:

,
:

we have

U2ℓ−1(∂ (∆ℓ
c ×∆ℓ−1

∗ )) = L2ℓ−1(∂ (∆ℓ−1
c ×∆ℓ

∗)) = ∂ conv(µ([a, b])),(2.6)

U2ℓ−1 : int(∆
ℓ
c ×∆ℓ−1

∗ ) 7→ int(conv(µ([a, b]))) is diffeomorphism,(2.7)

L2ℓ−1 : int(∆
ℓ−1
c ×∆ℓ

∗) 7→ int(conv(µ([a, b]))) is diffeomorphism.(2.8)

For all n g 1,

Bsup, Binf are well defined, Bsup, Binf ∈ C(conv(µ([a, b]))) ∩ C1(int(conv(µ([a, b])))).(2.9)

Next, for all n g 1we have
:

,
:::

we
:::::

have4

Bsup is minimal concave on conv(µ([a, b])) with Bsup(µ) = µn+1;(2.10)

Binf is maximal convex on conv(µ([a, b])) with Binf(µ) = µn+1;.(2.11)

Moreover,

Binf(y) = Bsup(y) if and only if y ∈ ∂ conv(µ([a, b])),(2.12)

∂ conv(µ([a, b])) = {(x,Bsup(x)), x ∈ conv(µ̄([a, b]))} ∪ {(x,Binf(x)), x ∈ conv(µ̄([a, b]))}.(2.13)

The statement of Theorem 2.1 may seem a bit technical,
:

;
:

however, we think that the intuition
behind the construction of the convex hulls is natural. We refer the reader to schematic pictures in
Fig.

::::::

Figure 1 for better understanding of the claims made in the theorem. In Fig.
::::::

Figure 2 the domain
conv(µ([a, b])) of Bsup in R

3 is foliated by triangles where Bsup is linear on each such triangle.

Perhaps it may seem that the total positivity of the torsion, i.e.
::::

that
::

is, the fact that the leading

principal minors of (µ′, . . . , µ(n+1)) have positive signs on (a, b), is a redundant assumption for
Theorem 2.1 to hold true. However, the next proposition shows that the total positivity is a sensitive
assumption.

Proposition 2.2. There exists a curve µ : [−1, 1] → R
2+1 in C∞([−1, 1]) such that the leading

principal minors of (µ′, µ′′, µ′′′) are positive on [−1, 1] except the 2 × 2 and 3 × 3 principal minors
vanish at t = 0, and the map Bsup defined by (2.1) is not concave on conv(µ([−1, 1])).

4When n = 1
:

, the equality Bsup(γ) = γ2 should be replaced by Bsup(γ) ≥ γ2.



SPACE CURVES WITH TOTALLY POSITIVE TORSION 9

n+ 1 = 1 n+ 1 = 3 n+ 1 = 5

n+ 1 = 2 n+ 1 = 4 n+ 1 = 6

Figure 1. These schematic pictures clarify how the convex hull of the space curve
µ with totally positive torsion is parametrized. If n is even then the upper hull is
described by convex combination of n

2 + 1 points of µ, where among these points , n
2

are free, i.e.
::::

that
:::

is, they are chosen in an arbitrary way on the space curve, and the
last point µ(b) is always fixed. For the lower hull µ(a) is fixed instead of µ(b). If n is
odd,

:

the picture is asymmetric. In this case the upper hull fixes 2
:::

two
:

endpoints µ(a)

and µ(b) and has n−1
2 free points. The lower hull has n+1

2 free points, and no fixed
points. The case n = 0 (the convex hull of an interval), not mentioned in Theorem 2.1,
was helpful to guess the construction in higher dimensions, it has two fixed points
µ(a) and µ(b). Compare with the exact pictures for the cases n + 1 = 2, 3, 4 shown
in Figures 3,4

:

, and 2.

The next theorem answers Question 2 , and also provides us with optimizers, i.e.
::::

that
::

is, the
random variables Y which

::::

that
:

attain supremum (infimum) in Question 2.

Theorem 2.3. Let µ : [a, b] → R
n+1, µ ∈ C([a, b])∩Cn+1((a, b)) be such that all the leading principal

minors of the (n+ 1)× (n+ 1) matrix (µ′(t), . . . , µ(n+1)(t)) are positive for all t ∈ (a, b). Then

sup
afYfb

{Eµn+1(Y ) : Eµ̄(Y ) = x} = Bsup(x),(2.14)

inf
afYfb

{Eµn+1(Y ) : Eµ̄(Y ) = x} = Binf(x),(2.15)

hold for all x ∈ conv(µ([a, b])), where Bsup and Binf are given by (2.1) and (2.2). Moreover, given
x ∈ conv(µ([a, b]))

:

,
:

the supremum in (2.14) (infimum in (2.15)) is attained by the random variable
·(x) (the random variable À(x)) defined as follows: .

:

Case 1: n = 2ℓ− 1. Then by (2.6) and (2.7), x = (1−∑ℓ
j=1 ´j)µ(a) +

∑ℓ
j=2 ´jµ(xj) + ´1µ(b) for

some (´1, . . . , ´ℓ, x2, . . . , xℓ) ∈ ∆ℓ
c ×∆ℓ−1

∗ . Set P(·(x) = a) = 1 −∑ℓ
j=1 ´j, P(·(x) = b) = ´1, and

P(·(x) = xj) = ´j for j = 2, . . . , ℓ. Also, by (2.6) and (2.8), x = (1−∑ℓ
j=2 ¼j)µ(y1)+

∑ℓ
j=2 ¼jµ(yj)

for some (¼2, . . . , ¼ℓ, y1, . . . , yℓ) ∈ ∆ℓ−1
c ×∆ℓ

∗. Set P(À(x) = y1) = 1−∑ℓ
j=2 ¼j , and P(À(x) = yj) = ¼j

for j = 2, . . . , ℓ.
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Figure 2. For n+1 = 3+1,
:

the set conv(µ([a, b])) is foliated by triangles (simplices)
with vertices µ(a), µ(b)

:

,
:

and µ(t) for each t ∈ (a, b). The function Bsup is linear on

each such triangle and Bsup(µ) = µ4. Also Bsup = Binf on
:::

the
:

edges of each triangle.

Case 2: n = 2ℓ. Then,
:

by (2.3) and (2.4), x =
∑ℓ

j=1 ´jµ(xj) + (1 − ∑ℓ
j=1 ´j)µ(b) for some

(´1, . . . , ´ℓ, x1, . . . , xℓ) ∈ ∆ℓ
c × ∆ℓ

∗. Set P(·(x) = b) = 1 − ∑ℓ
j=1 ´j , and P(·(x) = xj) = ´j

for j = 1, . . . , ℓ. Also, by (2.3) and (2.5), x = (1 − ∑ℓ
j=1 ¼j)µ(a) +

∑ℓ
j=1 ¼jµ(yj) for some

(¼1, . . . , ¼ℓ, y1, . . . , yℓ) ∈ ∆ℓ
c × ∆ℓ

∗. Set P(À(x) = a) = 1 − ∑ℓ
j=1 ¼j , and P(À(x) = yj) = ¼j for

j = 1, . . . , ℓ.

The next corollary recovers the result of Karlin–Sharpley [13], i.e., the
::::::

Karlin
::::

and
:::::::::

Sharpley
::::

[13]
:

,

::::

that
:::

is,
:

equations (1.8) in case of the moment curve.

Corollary 2.4. Let µ(t) = (t, . . . , tn, tn+1) : [0, 1] → R
n+1. If x = (x1, . . . , xn) ∈ int(conv(µ([0, 1])))

then Bsup(x) and Binf(x) are the unique solutions xn+1 of the equations Kn+1 = 0 and Sn+1 = 0
correspondingly, where Kn+1 and Sn+1 are defined by (1.9) and (1.10).

In the next corollary we give a sufficient local description of convex curves. Recall that a curve
µ : [a, b] → R

n is called convex if no n+ 1 its different points lie in a single affine hyperplane.

Corollary 2.5. Let µ : [a, b] → R
n, µ ∈ C([a, b]) ∩ Cn((a, b)) be such that all the leading principal

minors of the n × n matrix (µ′(t), . . . , µ(n)(t)) are positive for all t ∈ (a, b). Then µ is convex. In
particular, for any integer k, 1 f k f n, the equation c0 + c1µ1(t) + . . .+ ckµk(t) = 0 has at most k
roots on [a, b] provided that (c0, . . . , ck) ̸= (0, . . . , 0).

Recall the definition of Carathéodory number b(µ) of a curve µ : [a, b] → R
n, i.e.

::::

that
::

is, the
smallest integer k such that any point of conv(µ([a, b])) can be represented as

::

a convex combination
of at most k points of µ([a, b]), see (1.6). The next corollary directly follows from Theorem 2.1 (parts
(2.6), (2.8), (2.3), and (2.5)).

Corollary 2.6. Let µ : [a, b] → R
n, µ ∈ C([a, b])∩Cn((a, b)) be a curve with totally positive torsion.

Then its Carathéodory number equals to +n+2
2 ,.

In the next corollary we obtain formulas for the volumes of the convex hulls of a space curve
having totally positive torsion both in even and odd dimensions.
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Corollary 2.7. Let µ : [a, b] → R
n, µ ∈ C([a, b])∩Cn((a, b)) be a curve with totally positive torsion.

If n = 2ℓ then

Vol(conv(µ([a, b])))

=
(−1)

ℓ(ℓ−1)
2

(2ℓ)!

∫

afx1f...fxℓfb
det(µ(x1)− µ(a), . . . , µ(xℓ)− µ(a), µ′(x1), . . . , µ

′(xℓ)) dx

=
(−1)

ℓ(ℓ−1)
2

(2ℓ)!

∫

afx1f...fxℓfb
det(µ(x1)− µ(b), . . . , µ(xℓ)− µ(b), µ′(x1), . . . , µ

′(xℓ)) dx.

If n = 2ℓ− 1 then

Vol(conv(µ([a, b])))

=
(−1)

(ℓ−1)(ℓ−2)
2

(2ℓ− 1)!

∫

afx2f...fxℓfb
det(µ(b)− µ(a), µ(x2)− µ(a), . . . , µ(xℓ)− µ(a), µ′(x2), . . . , µ

′(xℓ)) dx

=
(−1)

ℓ(ℓ−1)
2

(2ℓ− 1)!

∫

afx1f...fxℓfb
det(µ(x2)− µ(x1), . . . , µ(xℓ)− µ(x1), µ

′(x1), . . . , µ
′(xℓ)) dx.

Let Area denote n dimensional Lebesgue measure in R
n+1, and let ATr be the transpose of a

matrix A.

Corollary 2.8. Let µ : [a, b] → R
n+1, µ ∈ C1([a, b]) ∩ Cn+1((a, b)) be a curve with totally positive

torsion. If n = 2ℓ then

Area(∂ conv(µ([a, b]))) =
1

n!

∫

afx1f...fxℓfb

(√

detSTr
a Sa +

√

detSTr
b Sb

)

dx,

where Sr = (µ(x1) − µ(r), . . . , µ(xℓ) − µ(r), µ′(x1), . . . , µ
′(xℓ)) is (2ℓ + 1) × 2ℓ matrix, and dx is ℓ

dimensional Lebesgue measure.
If n = 2ℓ− 1 then

Area(∂ conv(µ([a, b]))) =
1

n!

∫

afx2f...fxℓfb

√
detΨTrΨ dx̃+

1

n!

∫

afx1f...fxℓfb

√
detΦTrΦ dx,

where Ψ = (µ(b)−µ(a), µ(x2)−µ(a), . . . , µ(xℓ)−µ(a), µ′(x2), . . . , µ
′(xℓ)), Φ = (µ(x2)−µ(x1), . . . , µ(xℓ)−

µ(x1), µ
′(x1), . . . , µ

′(xℓ)) are 2ℓ× (2ℓ− 1) size matrices, and dx̃ denotes ℓ− 1 dimensional Lebesgue
measure.

3. The proof
:::::::

Proof of main results
::::

the
::::::

Main
:::::::::

Results

Sometimes we will omit the index n and simply write U,L instead of Un, Ln, and it will be clear
from the context what is the corresponding number n. Before we start proving Theorem 2.1, first
let us state several lemmas that will be helpful throughout the rest of the paper. The next lemma
illustrates local to global principle.

Lemma 3.1. If the torsion of µ is totally positive on (a, b) then

det(µ′(x1), µ
′(x2), . . . µ

′(xn+1)) > 0(3.1)

for all a < x1 < . . . < . . . < xn+1 < b.

Proof. Without loss of generality assume [a, b] = [0, 1]. The lemma can be derived from the identity
(9) obtained in [4]. As

:::::

Since
:

the lemma is an important step in the proofs of the main results stated
in this paper, for the readersconvenience ’

:::::::::::::

convenience,
:

we decided to include the proof of the lemma
without invoking the identity from [4].
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We have

det








µ′1(x1) µ′1(x2) . . . µ′1(xn+1)
µ′2(x1) µ′2(x2) . . . µ′2(xn+1)

...
...

. . .
...

µ′n+1(x1) µ′n+1(x2) . . . µ′n+1(xn+1)








=

det









1 1 . . . 1
µ′

2(x1)
µ′

1(x1)
µ′

2(x2)
µ′

1(x2)
. . .

µ′

2(xn+1)
µ′

1(xn+1)
...

...
. . .

...
µ′

n+1(x1)

µ′

1(x1)

µ′

n+1(x2)

µ′

1(x2)
. . .

µ′

n+1(xn+1)

µ′

1(xn+1)









n+1∏

j=1

µ′1(xj) =

det









1 0 . . . 0
µ′

2(x1)
µ′

1(x1)
µ′

2(x2)
µ′

1(x2)
− µ′

2(x1)
µ′

1(x1)
. . .

µ′

2(xn+1)
µ′

1(xn+1)
− µ′

2(x1)
µ′

1(x1)
...

...
. . .

...
µ′

n+1(x1)

µ′

1(x1)

µ′

n+1(x2)

µ′

1(x2)
− µ′

n+1(x1)

µ′

1(x1)
. . .

µ′

n+1(xn+1)

µ′

1(xn+1)
− µ′

n+1(x1)

µ′

1(x1)









n+1∏

j=1

µ′1(xj) =

det







µ′

2(x2)
µ′

1(x2)
− µ′

2(x1)
µ′

1(x1)
. . .

µ′

2(xn+1)
µ′

1(xn+1)
− µ′

2(x1)
µ′

1(x1)
...

. . .
...

µ′

n+1(x2)

µ′

1(x2)
− µ′

n+1(x1)

µ′

1(x1)
. . .

µ′

n+1(xn+1)

µ′

1(xn+1)
− µ′

n+1(x1)

µ′

1(x1)







n+1∏

j=1

µ′1(xj)
(∗)
=

det







µ′

2(x2)
µ′

1(x2)
− µ′

2(x1)
µ′

1(x1)
. . .

µ′

2(xn+1)
µ′

1(xn+1)
− µ′

2(xn)
µ′

1(xn)
...

. . .
...

µ′

n+1(x2)

µ′

1(x2)
− µ′

n+1(x1)

µ′

1(x1)
. . .

µ′

n+1(xn+1)

µ′

1(xn+1)
− µ′

n+1(xn)

µ′

1(xn)







n+1∏

j=1

µ′1(xj) =

∫ x2

x1

∫ x3

x2

· · ·
∫ xn+1

xn

det








(
µ′

2(y1)
µ′

1(y1)

)′
. . .

(
µ′

2(yn)
µ′

1(yn)

)′

...
. . .

...
(
µ′

n+1(y1)

µ′

1(y1)

)′
. . .

(
µ′

n+1(yn)

µ′

1(yn)

)′








dy1dy2 . . . dyn

n+1∏

j=1

µ′1(xj),

where in the equality (∗) we used the property of the determinant that if v1, . . . , vk are column vectors
in R

k then det(v2− v1, v3− v1, . . . , vk − v1)) = det(v2− v1, v3− v2, . . . , vk − vk−1) by subtracting the
columns from each other.

The leading principal minors of the matrix (µ′, µ′′, . . . , µ(n+1)) are positive. In particular µ′1 is

positive on (0, 1), and hence the factor
∏n+1

j=1 µ
′(xj) > 0. To verify (3.1),

:

it suffices to show

det








(
µ′

2(y1)
µ′

1(y1)

)′
. . .

(
µ′

2(yn)
µ′

1(yn)

)′

...
. . .

...
(
µ′

n+1(y1)

µ′

1(y1)

)′
. . .

(
µ′

n+1(yn)

µ′

1(yn)

)′








> 0 for all 0 < y1 < y2 < . . . < yn < 1.(3.2)

We will repeat the same computation as before but now for the determinant in (3.2), and, eventu-
ally, we will see that the proof of the lemma will be just n times the application of the previous
computation together with an identity for determinants that we have not described yet.

Before we proceed
:

,
:

let us make
:

a
:

couple of observations. We started with the determinant of
(n+1)× (n+1) matrix. Next, we divided the columns by the entries in the first row

:

, which consist
of µ′1 > 0, and after the Gaussian elimination and the fundamental theorem of calculus we ended up

with the integral of the determinant of n× n, and we also acquired the factor
∏n+1

j=1 µ
′
1(xj) > 0. To
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repeat the same computation for the determinant in (3.2) and the ones that we obtain in a similar
manner

:

,
:

we should verify that the entries in the first row of all such new matrices (of smaller sizes)
are positive. Such entries are changed as follows

:

:
:

µ′1
step 17→

(
µ′2
µ′1

)′
step 27→






(
µ′

3
µ′

1

)′

(
µ′

2
µ′

1

)′






′

step 37→
















(

µ′4
µ′1

)

′

(

µ′2
µ′1

)

′





′





(

µ′3
µ′1

)

′

(

µ′2
µ′1

)

′





′












′

step 47→ . . . .(3.3)

We claim that after
:::

the
:

k’th step, 1 f k f n, the obtained entry is of the form
∆k+1∆k−1

∆2
k

, where

∆ℓ denotes the leading ℓ × ℓ principal minor of the matrix (µ′, µ′′, . . . , µ(n+1)) (by definition we set
∆0 := 1). Assuming the claim, Lemma 3.1 follows immediately because of the condition ∆ℓ > 0 on
(0, 1) for all 0 f ℓ f n+ 1.

To verify the claim
:

,
:

we set T = (µ′, µ′′, . . . , µ(n+1)). Given subsets I, J ¢ {1, . . . , n+1}
:

, we define
TI×J to be the determinant of the submatrix of T formed by choosing the rows of the index set I
and the columns of index set J . We have

(
µ′2
µ′1

)′

=
µ′′2µ

′
1 − µ′′1µ

′
2

µ′1
=

T{1,2}×{1,2}

T 2
{1}×{1}

,

(
µ′ℓ
µ′1

)′

=
T{1,ℓ}×{1,2}

T 2
{1}×{1}

, for all ℓ g 2;






(
µ′

ℓ

µ′

1

)′

(
µ′

2
µ′

1

)′






′

=

(
T{1,ℓ}×{1,2}

T{1,2}×{1,2}

)′
(∗)
=

T{1,ℓ}×{1,3}T{1,2}×{1,2} − T{1,ℓ}×{1,2}T{1,2}×{1,3}

T 2
{1,2}×{1,2}

(∗∗)
=

T{1,2,ℓ}×{1,2,3} T{1}×{1}

T 2
{1,2}×{1,2}

, for all ℓ g 3,(3.4)

where (∗) follows from the identity (TI×{1,2,...,k−1,k})
′ = TI×{1,2,...,k−1,k+1}, and (∗∗) follows from the

following general identity for determinants:

T{[k−2],ℓ}×{[k−2],k}T[k−1]×[k−1] − T{[k−2],ℓ}×[k−1]T[k−1]×{[k−2],k} = T{[k−1],ℓ}×[k]T[k−2]×[k−2](3.5)

for all k, 3 f k f n + 1, where we set [d] := {1, 2, . . . , d} for a positive integer d. Before we verify
the identity (3.5), notice that it also implies

(
T{[k−2],ℓ}×[k−1]

T[k−1]×[k−1]

)′

=
T{[k−2],ℓ}×{[k−2],k}T[k−1]×[k−1] − T{[k−2],ℓ}×[k−1]T[k−1]×{[k−2],k}

T 2
[k−1]×[k−1]

=
T{[k−1],ℓ}×[k]T[k−2]×[k−2]

T 2
[k−1]×[k−1]

,(3.6)

for all k, ℓ such that 3 f k f n+ 1 and k − 1 f ℓ f n+ 1. Therefore















(

µ′
ℓ

µ′1

)

′

(

µ′2
µ′1

)

′





′





(

µ′3
µ′1

)

′

(

µ′2
µ′1

)

′





′












′

(3.4)
=

(
T{1,2,ℓ}×{1,2,3}

T{1,2,3}×{1,2,3}

)′
(3.6)
=

T{[3],ℓ}×[4]T[2]×[2]

T 2
[3]×[3]

.
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In particular, after step 3, the entry in (3.3) becomes
T[4]×[4]T[2]×[2]

T 2
[3]×[3]

> 0 because T[k]×[k] = ∆k. It then

follows that after step k, the entry in (3.3) takes the form

(
T{[k−1],k+1}×[k]

T[k]×[k]

)′
(3.5)
=

T[k+1]×[k+1]T[k−1]×[k−1]

T 2
[k]×[k]

=
∆k+1∆k−1

∆k
> 0,

for all 1 f k f n. Thus the proof of Lemma 3.1 is complete provided that the determinant identity
(3.5) is verified. Let ∆ be an invertible (k−2)×(k−2) matrix, p, w, u, q ∈ R

k−2, and let a, b, c, d ∈ R.
To verify the identity (3.5),

:

it suffices to show that

det

(
∆ qT

w a

)

det

(
∆ uT

p b

)

− det

(
∆ uT

w c

)

det

(
∆ qT

p d

)

= det





∆ uT qT

p b d
w c a



 det∆.(3.7)

Since det

(
A B
C D

)

= detA det(D−CA−1B) for an invertible m×m matrix A, and arbitrary n×n

matrix D, n×m matrix B, and m× n matrix C, we see that (3.7) simplifies to

(det∆)2
[
(a− w∆−1qT )(b− p∆−1uT )− (c− w∆−1uT )(d− p∆−1qT )

]
=

(det∆)2 det

((
b d
c a

)

−
(
p
w

)

∆−1
(
uT qT

)
)

,

which holds because

(
p
w

)

∆−1
(
uT qT

)
=

(
p∆−1uT p∆−1qT

w∆−1uT w∆−1qT

)

. The lemma is proved. □

Corollary 3.2. Let a < b, and let ´ : [a, b] → R
m be a curve ´ ∈ C([a, b]) ∩ Cm((a, b)) with totally

positive torsion. Choose any a f z1 < . . . < zm f b and r ∈ [0, 1] \ {z1, . . . , zm}. Then the vectors
´(z1)− ´(r), . . . , ´(zm)− ´(r) are linearly independent in R

m.

Proof. Let ¿, 0 f ¿ f m, be chosen in such a way that r ∈ [z¿ , z¿+1]. Here we set z0 := a , and
zm+1 := b. We have

det(´(z1)− ´(r), . . . , ´(zm)− ´(r)) =

± det(´(z2)− ´(z1), . . . , ´(r)− ´(z¿), ´(z¿+1)− ´(r), . . . , ´(zm)− ´(zm−1)) =

±
∫ zm

zm−1

. . .

∫ z¿+1

r

∫ r

z¿

. . .

∫ z2

z1

det(´′(s1), . . . , ´
′(s¿), ´

′(s¿+1), . . . ´
′(sm))ds1 . . . dsm ̸= 0

by Lemma 3.1. □

Certain parts of the proof of Theorem 2.1 will require induction on the dimension n + 1. In
particular, we will need to verify the base cases when n = 1 (the odd case) and n = 2 (even case).

In what follows
:

, without loss of generality we assume [a, b] = [0, 1], and µ(0) = 0.

3.1. The proof
::::::

Proof
:

of Theorem 2.1 in dimension
::::::::::::

Dimension 1+1. This case is trivial and
Theorem 2.1 essentially follows by looking at Fig.

::::::

Figure 3.

If we reparametrize the curve µ as µ̃(t) := µ(µ−1
1 (t)), t ∈ (0, µ1(1)), then µ̃ has totally positive

torsion. So µ̃(t) = (t, g(t)), t ∈ (0, µ1(1)) where g(0) = 0, and d2

dt2
g(t) > 0 for all t ∈ (0, µ1(1)). We

have U1(´1) = ´1µ(1), ´1 ∈ [0, 1] , is the line joining the endpoints of µ̃. Also L1(x1) = µ(x1), x1 ∈
[0, 1] , is the curve coinciding with µ̃. It is easy to see that in this case Theorem 2.1 holds true.

3.2. The proof
::::::

Proof
:

of Theorem 2.1 in dimension
:::::::::::

Dimension
:

2+1.



SPACE CURVES WITH TOTALLY POSITIVE TORSION 15

Figure 3. Proof of Theorem 2.1 for dimension n+ 1 = 1 + 1.

3.2.1. The lower hull
::::::

Lower
:::::

Hull. Recall that

L2 : ∆
1
c ×∆1

∗ = [0, 1]2 ∋ (³, x) 7→ ³µ(x).

We claim

L2(∂([0, 1]
2)) = ∂(conv(µ([0, 1])));(3.8)

L2 : int([0, 1]
2) 7→ int(conv(µ([0, 1]))) is diffeomorphism.(3.9)

To verify (3.8)
:

, it suffices to show that µ is the convex curve in R
2. Convexity of µ can be verified

in a similar way as in Section 3.1. However, here we present one more proof
:

,
:

which later will be
adapted to higher dimensions too. Assume contrary, i.e.

::::

that
::

is, there exists 0 f a < b < c f 1 such
that µ(a), µ(b), µ(c) lie on the same line, i.e.

::::

that
::

is,

0 = det(µ(b)− µ(a), µ(c)− µ(b)) =

∫ b

a

∫ c

b
det(µ′(y1), µ

′(y2))dy1dy2.(3.10)

The equation
:::::::::

Equation
:

(3.10) is in contradiction with Lemma 3.1 applied to µ.
To verify (3.9), by Hadamard-Caccioppoli

:::::::::::::::::::::::

Hadamard–Caccioppoli theorem it suffices to check that

the differential of L := L2 at the interior of [0, 1]2 has full rank, and the map L2 is injection. The
injectivity will be verified later in all dimensions simultaneously (see the section on proofs of (2.7),
(2.8), (2.4), and (2.5)). To verify the full rank property,

:

we have DL = (L³, Lx) = ³ det(µ(x), µ′(x)).
On the other hand,

:

det(µ(x), µ′(x)) =

∫ x

0
det(µ′(y1), µ

′(x))dy1
Lemma 3.1

> 0.(3.11)

Thus, see Fig.
:::::::

Figure 4,

L2 : ∆
1
c ×∆1

∗ = [0, 1]2 ∋ (³, x) 7→ ³µ(x)

parametrizes a surface in R
3,

:

which is a graph of a function Binf defined on conv(µ([0, 1])) as follows
:

:

Binf(³µ(x)) = ³µ3(x), for all (³, x) ∈ [0, 1]2.
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Figure 4. Two pieces of the boundary of the convex hull of µ: the lower hull L2

(left) and the upper hull U2

Let us check that Binf is convex. Indeed, at any point (³0, x0) ∈ int([0, 1]2) the set of points À ∈ R
3

belonging to the tangent plane at point L2(³0, x0) is found as the solution of the equation

det(L³(³0, x0), Lx(³0, x0), À − L(³0, x0)) = ³0 det(µ(x0), µ
′(x0), À) = 0.(3.12)

For À = e3, where e3 = (0, 0, 1)
:

,
:

we have

det(µ(x0), µ
′(x0), e3) = det(µ(x0), µ

′(x0))
(3.11)
> 0.

Therefore, to verify the convexity of Binf , i.e.
::::

that
::

is, the surface L([0, 1]2) lies above the tangent
plane at point L(³0, x0), it suffices to show that

det(µ(x0), µ
′(x0), L(³, x)) = ³ det(µ(x0), µ

′(x0), µ(x)) g 0.

If x = x0,
:

there is nothing to prove. If x > x0 then

det(µ(x0), µ
′(x0), µ(x)) =

∫ x0

0

∫ x

x0

det(µ′(y1), µ
′(x0), µ

′(y3))dy1dy3
Lemma 3.1

> 0.

Similarly, if x < x0, by Lemma 3.1 we have

det(µ(x0), µ
′(x0), µ(x)) =

∫ x0

x

∫ x

0
det(µ′(y1), µ

′(x0), µ
′(y3))dy1dy3 > 0.

To verify that Binf is the maximal convex function defined on conv(µ([0, 1])) such that B(µ(s)) =
µ3(s), notice that since every point (À, Binf(À)), where À ∈ conv(µ([0, 1])), is the convex combination

of some points of µ, it follows that any other candidate B̃ would be smaller than B by convexity.

3.2.2. The upper hull
::::::

Upper
:::::

Hull. Consider the map

U2 : ∆
1
c ×∆1

∗ = [0, 1]2 ∋ (³, x) 7→ ³µ(x) + (1− ³)µ(1).
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Similarly as before
:

, Φ satisfies (3.8) and (3.9). The property
::::::::

Property
:

(3.8) follows from from the
convexity of µ. The property

::::::::

Property
:

(3.9) follows from

det(U³, Ux) = ³ det(µ(x)− µ(1), µ′(x)) =

∫ 1

x
det(µ′(x), µ′(y2))dy2 ̸= 0

for all (³, x) ∈ int([0, 1]2) by Lemma 3.1 applied to µ.
Next, we show that

Bsup(³µ(x) + (1− ³)µ(1)) = ³µ3(x) + (1− ³)µ3(1)

defines a minimal concave function on conv(µ([0, 1])) with the property Bsup(µ) = µ3, see Fig
::::::

Figure
3. Let U(³, x) = ³µ(x) + (1− ³)µ(1). The equation of the tangent plane at point U(³0, x0), where
(³0, x0) ∈ int([0, 1]2), is given by

det(U³(³0, x0), Ux(³0, x0), À − U(³0, x0)) = ³0 det(µ(x0)− µ(1), µ′(x0), À − ³0(µ(x0)− µ(1))− µ(1))

= ³0 det(µ(x0)− µ(1), µ′(x0), À − µ(1)) = 0.

For À = ¼e3 with ¼ → +∞
:

,
:

we have

sign[det(µ(x0)− µ(1), µ′(x0), ¼e3 − µ(1))] = sign[det(µ(x0)− µ(1), µ′(x0)]

= sign

[∫ 1

x0

det(µ′(x0), µ(y2))dy2

]

> 0

by Lemma 3.1 applied to µ. Therefore, the concavity of Bsup would follow from the following
inequality

:

:
:

det(µ(x0)− µ(1), µ′(x0), U(³, x)− µ(1)) = ³ det(µ(x0)− µ(1), µ′(x0), µ(x)− µ(1)) f 0

for all x0, ³, x ∈ [0, 1]. If x = x0
:

, there is nothing to prove. Consider x > x0 (the case x < x0 is
similar). Then

det(µ(x0)− µ(1), µ′(x0), µ(x)− µ(1)) = det(µ(x0)− µ(1), µ′(x0), µ(x)− µ(x0)) =

− det(µ(x0)− µ(x), µ′(x0), µ(1)− µ(x0)) = −
∫ x0

x

∫ 1

x0

det(µ′(y1), µ
′(x0), µ

′(y2))dy2dy1 < 0

by Lemma 3.1.

The properties
::::::::::

Properties
:

(2.12) and (2.13) will be verified in sections
::::::::

Sections
:

3.3.3 and 3.3.4.

3.3. The proof
::::::

Proof
:

of Theorem 2.1 in an arbitrary dimension
::::::::::

Arbitrary
:::::::::::::

Dimension

n+ 1.

Proof. Since Theorem 2.1 contains several statements
:

,
:

the whole proof will be split into several parts.
The proof of claims (2.6) and (2.3).
The proof will be by induction on n. We have checked the statement for n = 1, 2. First we

consider the case when n = 2ℓ−1. We shall verify the claim (2.6) by showing that U2ℓ−1|∂(∆ℓ
c×∆ℓ−1

∗ ),

i.e.
::::

that
::

is, the restriction of U2ℓ−1 on ∂(∆ℓ
c×∆ℓ−1

∗ ) , coincides with maps U2ℓ−2 and L2ℓ−2 (similarly

for L2ℓ−1|∂(∆ℓ−1
c ×∆ℓ

∗
)). Since by the induction the union of the images of U2ℓ−2 and L2ℓ−2 coincides

with the boundary of the convex hull of µ([0, 1]), see (2.13), we obtain the claim.
Recall that

U2ℓ−1 : ∆
ℓ
c ×∆ℓ−1

∗ ∋ (´1, . . . , ´ℓ, y2, . . . , yℓ) 7→ ´1µ(1) +

ℓ∑

j=2

´jµ(yj),
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and

U2ℓ−2 : ∆
ℓ−1
c ×∆ℓ−1

∗ ∋ (¼1, . . . , ¼ℓ−1, x1, . . . , xℓ−1) 7→
ℓ−1∑

j=1

¼jµ(xj) + (1−
ℓ−1∑

j=1

¼j)µ(1),

L2ℓ−2 : ∆
ℓ−1
c ×∆ℓ−1

∗ ∋ (¼1, . . . , ¼ℓ−1, z1, . . . , zℓ−1) 7→
ℓ−1∑

j=1

¼jµ(zj).

If ´1 = 0 then U2ℓ−1 coincides with L2ℓ−2. If
∑n

j=1 ´j = 1, i.e.
::::

that
:::

is, ´1 = 1 − ∑ℓ
j=2 ´j , then

U2ℓ−1 coincides with U2ℓ−2. Thus, we have

∂ conv(µ([0, 1]))
induction

= U2ℓ−2(∆
ℓ−1
c ×∆ℓ−1

∗ ) ∪ L2ℓ−2(∆
ℓ−1
c ×∆ℓ−1

∗ ) ¢ U2ℓ−1(∂ (∆ℓ
c ×∆ℓ−1

∗ )).

On the other hand, if ´p = 0 for some p ∈ {2, . . . , ℓ}, then U2ℓ−1 coincides with L2ℓ−2 restricted
to z1 = 1. If at least one of the following conditions hold: a) y2 = 0; b) ys = ys+1 for some
s ∈ {2, . . . , ℓ− 1}; c) yℓ = 1, then U2ℓ−1 coincides with U2ℓ−2 restricted to x1 = 0. Thus we obtain
∂ conv(µ([0, 1])) = U2ℓ−1(∂ (∆ℓ

c ×∆ℓ−1
∗ )).

Next, we verify that ∂ conv(µ([0, 1])) = L2ℓ−1(∂ (∆ℓ−1
c ×∆ℓ

∗)). We recall

L2ℓ−1 : ∆
ℓ−1
c ×∆ℓ

∗ ∋ (´2, . . . , ´ℓ, y1, . . . , yℓ) 7→
ℓ∑

j=2

´jµ(yj) + (1−
ℓ∑

j=2

´j)µ(y1).

If yℓ = 1 then L2ℓ−1 coincides with U2ℓ−2. If y1 = 0 then L2ℓ−1 coincides with L2ℓ−2. Thus, by
induction ∂ conv(µ([0, 1])) ¢ L2ℓ−1(∂ (∆ℓ−1

c ×∆ℓ
∗)).

Next, if ys = ys+1 for some s ∈ {1, . . . , ℓ − 1}
:

,
:

then L2ℓ−1 coincides with L2ℓ−2 restricted to

¼1 = 1 − ∑ℓ−1
j=2 ¼j . Also, if

∑ℓ
j=2 ´j = 1 then L2ℓ−1 coincides with L2ℓ−2. Finally, if ´s = 0 for

some s ∈ {2, . . . , ℓ}
:

,
:

then L2ℓ−1 coincides with L2ℓ−2 restricted to
∑ℓ−1

j=1 ¼j = 1. Thus we obtain

∂ conv(µ([0, 1])) = L2ℓ−1(∂ (∆ℓ−1
c ×∆ℓ

∗)).
Next, we assume n = 2ℓ. First we verify (2.3). As before

:

, we claim that the restriction of U2ℓ

on ∂(∆ℓ
c ×∆ℓ

∗) coincides with maps U2ℓ−1 and L2ℓ−1 (similarly for L2ℓ). Since by the induction the
union of the images of U2ℓ−1 and L2ℓ−1 coincide with the boundary of the convex hull of µ([0, 1]),
see (2.13), we obtain the claim.

We recall that

U2ℓ : ∆
ℓ
c ×∆ℓ

∗ ∋ (¼1, . . . , ¼ℓ, x1, . . . , xℓ) 7→
ℓ∑

j=1

¼jµ(xj) + (1−
ℓ∑

j=1

¼j)µ(1);

and

U2ℓ−1 : ∆
ℓ
c ×∆ℓ−1

∗ ∋ (´1, . . . , ´ℓ, y2, . . . , yℓ) 7→ ´1µ(1) +
ℓ∑

j=2

´jµ(yj);

L2ℓ−1 : ∆
ℓ−1
c ×∆ℓ

∗ ∋ (´2, . . . , ´ℓ, z1, . . . , zℓ) 7→ (1−
ℓ∑

j=2

´j)µ(z1) +
ℓ∑

j=2

´jµ(zj).

Notice that if
∑ℓ

j=1 ¼j = 1 then U2ℓ coincides with L2ℓ−1. On the other hand, if x1 = 0 then

U2ℓ coincides with U2ℓ−1. Thus, by induction we have ∂ conv(µ([0, 1])) ¢ U2ℓ(∂ (∆ℓ
c × ∆ℓ

∗)). Also
notice that if ¼p = 0 for some p ∈ {1, . . . , ℓ} (or xs = xs+1 for some s ∈ {1, . . . , ℓ − 1}, or xℓ = 1)

then U2ℓ coincides with U2ℓ−1 restricted to the boundary of ∆ℓ−1
c × ∆ℓ

∗ (if ¼p = 0 or xℓ = 1 take

´1 = 1 − ∑ℓ
j=2 ´j , if xs = xs+1 take ´1 = 1 − ∑ℓ

j=2 ´j). Thus we obtain ∂ conv(µ([0, 1])) =

U2ℓ(∂ (∆ℓ
c ×∆ℓ

∗)).
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Next, we verify the claim L2ℓ(∂ (∆ℓ
c ×∆ℓ

∗)) = ∂ conv(µ([0, 1])). We recall that

L2ℓ : ∆
ℓ
c ×∆ℓ

∗ ∋ (¼1, . . . , ¼ℓ, x1, . . . , xℓ) 7→
ℓ∑

j=1

¼jµ(xj),.

If
∑ℓ

j=1 ¼j = 1 then L2ℓ coincides with L2ℓ−1. If xℓ = 1 then L2ℓ coincides with U2ℓ−1. Thus by

induction we have ∂ conv(µ([0, 1])) ¢ L2ℓ(∂ (∆ℓ
c ×∆ℓ

∗)) :::::::::::::::::::::::::::::::::::

∂ conv(µ([0, 1])) ¢ L2ℓ(∂ (∆ℓ
c ×∆ℓ

∗)).:
If ¼p = 0 for some p ∈ {1, . . . , ℓ} , or x1 = 0, then L2ℓ coincides with U2ℓ−1 if we choose ´1 = 0.

Finally, if xs = xs+1 for some s ∈ {1, . . . , ℓ− 1}, then L2ℓ coincides with U2ℓ−1 if we choose ´1 = 0,
and ´s+1 = ¼s + ¼s+1. Therefore, we have L2ℓ(∂ (∆ℓ

c ×∆ℓ
∗)) ¢ ∂ conv(µ([0, 1])), and the claim (2.3)

is verified.
The proof of claims (2.7), (2.8), (2.4),

:

and (2.5).

We start by showing that the Jacobian of the map Un has full rank at the interior points of
its domain. Hence the map is local diffeomorphism by the inverse function theorem. Therefore,
the map is surjective, otherwise the image of its domain would have a boundary in the interior of
the codomain (boundary goes to boundary by (2.3) and (2.6)) and this would contradict the local
diffeomoerphism

::::::::::::::

diffeomorphism. Next, we show that the map Un is injective, and hence proper. So

we conclude that Un is diffeomorphism. Similar reasoning will be done for Ln.
First we verify that the Jacobian matrices ∇Un and ∇Ln have full rank at the interior points of

their domains.
Assume n = 2ℓ− 1. We have

det(∇U2ℓ−1) = det(µ(1), µ(x2), . . . , µ(xℓ), ´2µ
′(x2), . . . , ´ℓµ

′(xℓ))

= ± det(µ(x2), µ
′(x2), µ(x3), µ

′(x3), . . . , µ(xℓ), µ
′(xℓ), µ(1))

ℓ∏

j=2

´j

= ± det(µ(x2)− µ(0), µ′(x2), µ(x3)− µ(x2), µ
′(x3), . . . , µ(xℓ)− µ(xℓ−1), µ

′(xℓ), µ(1)− µ(xℓ))

ℓ∏

j=2

´j

= ±
ℓ∏

j=2

´j

∫ 1

xℓ

. . .

∫ x3

x2

∫ x2

0
det(µ′(s1), µ

′(x2), µ
′(s2), . . . , µ

′(xℓ), µ
′(sℓ))ds1ds2 . . . dsℓ.

Thus det(∇U2ℓ−1) is nonzero by Lemma 3.1.
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Next, we verify that det(∇L2ℓ−1) ̸= 0, .
:

Indeed,

det(∇L2ℓ−1) =

det(µ(x2)− µ(x1), µ(x3)− µ(x1), . . . , µ(xℓ)− µ(x1), µ
′(x1), . . . , µ

′(xℓ))(1−
ℓ∑

j=2

´j)
ℓ∏

j=2

´j =

det(µ(x2)− µ(x1), µ(x3)− µ(x2), . . . , µ(xℓ)− µ(xℓ−1), µ
′(x1), . . . , µ

′(xℓ))(1−
ℓ∑

j=2

´j)
ℓ∏

j=2

´j =

± det(µ′(x1), µ(x2)− µ(x1), µ
′(x2), µ(x3)− µ(x2), . . . , µ(xℓ)− µ(xℓ−1), µ

′(xℓ))(1−
ℓ∑

j=2

´j)

ℓ∏

j=2

´j =

± (1−
ℓ∑

j=2

´j)
ℓ∏

j=2

´j×
∫ xℓ

xℓ−1

. . .

∫ x3

x2

∫ x2

x1

det(µ′(x1), µ
′(s1), µ

′(x2), µ
′(s2), . . . , µ

′(sℓ−1), µ
′(xℓ))ds1ds2 . . . dsℓ−1 ̸= 0

by Lemma 3.1.
Assume n = 2ℓ. We have

det(∇U2ℓ) = det(µ(x1)− µ(1), . . . , µ(xℓ)− µ(1), µ′(x1), . . . , µ
′(xℓ))

ℓ∏

j=1

¼j =

± det(µ′(x1), µ(x1)− µ(x2), µ
′(x2), µ(x2)− µ(x3), . . . , µ

′(xℓ), µ(xℓ)− µ(1))
ℓ∏

j=1

¼j =

±
∫ 1

xℓ

. . .

∫ x3

x2

∫ x2

x1

det(µ′(x1), µ
′(s1), µ

′(x2), µ
′(s2), . . . , µ

′(xℓ), µ
′(sℓ))ds1ds2 . . . dsℓ

ℓ∏

j=1

¼j ,

which is nonzero by Lemma 3.1.
Finally, we verify det(∇L2ℓ) ̸= 0. We have

det(∇L2ℓ) = det(µ(x1), . . . , µ(xℓ), µ
′(x1), . . . , µ

′(xℓ))

ℓ∏

j=1

¼j =

± det(µ(x1)− µ(0), µ′(x1), µ(x2)− µ(x1), µ
′(x2), . . . , µ(xℓ)− µ(xℓ−1), µ

′(xℓ))

ℓ∏

j=1

¼j =

±
∫ xℓ

xℓ−1

. . .

∫ x2

x1

∫ x1

0
det(µ′(s1), µ

′(x1), µ
′(s2), µ

′(x2), . . . , µ
′(sℓ), µ

′(xℓ))ds1ds2 . . . dsℓ

ℓ∏

j=1

¼j .

Thus det(∇L2ℓ) ̸= 0 by Lemma 3.1.
Next, we show that the map Un is injective in the interior of its domain. Assume n = 2ℓ. Let

(¼1, . . . , ¼ℓ, x1, . . . , xℓ) and (´1, . . . , ´ℓ, y1, . . . , yℓ) be two different points in int(∆ℓ
c ×∆ℓ

∗) such that
U ℓ takes the same values on these points. Then

ℓ∑

j=1

¼j(µ(xj)− µ(1))−
ℓ∑

k=1

´k(µ(yk)− µ(1)) = 0.(3.13)

We claim that (3.13) holds if and only if xj = yj and ¼j = ´j for all j = 1, . . . , ℓ. Indeed, we need
the following

:::::::

lemma.
:
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Lemma 3.3. For any numbers zj, 1 f j f 2ℓ, such that 0 < z1 < z2 < . . . < z2ℓ f 1, and any

r ∈ [0, 1] \ {z1, . . . , z2ℓ}, the vectors µ(z1)− µ(r), . . . , µ(z2ℓ)− µ(r) are linearly independent in R
2ℓ.

Proof. The lemma follows from Corollary 3.2 applied to ´ = µ. □

Let N be the cardinality of the set Q = {x1, . . . , xℓ} ∩ {y1, . . . , yℓ}. If N = ℓ then necessarily
xj = yj for all j = 1, . . . , ℓ, and the equation (3.13) combined with Lemma 3.3 implies that ¼j = ´j
for all j = 1, . . . , ℓ. Therefore, assume N < ℓ. Then we can split the sum (3.13) into the sum of
3

:::::

three
:

terms: the sum of ¼j(µ(xj) − µ(1)) where xj /∈ Q; the sum (¼j − ´ij )(µ(xj) − µ(1)) where
xj ∈ Q; and the sum ´j(µ(yj)− µ(1)) where yj /∈ Q. Since ´j and ¼j cannot be zero, then applying
Lemma 3.3 with r = 1 we get a contradiction.

Next, we verify the injectivity of L2ℓ on the interior of its domain. Let (¼1, . . . , ¼ℓ, x1, . . . , xℓ) and
(´1, . . . , ´ℓ, y1, . . . , yℓ) belong to int(∆ℓ

c ×∆ℓ
∗) and satisfy

ℓ∑

j=1

¼jµ(xj)−
ℓ∑

k=1

´kµ(yk) = 0.

By applying Lemma 3.3 with r = 0 and invoking the set Q as before
:

, we obtain xj = yj , ¼j = ´j for
all j = 1, . . . , ℓ.

Assume n = 2ℓ− 1. To verify the injectivity of U2ℓ−1 on the interior of ∆ℓ
c×∆ℓ−1

∗ :

,
:

we pick points

(¼1, . . . , ¼ℓ, x2, . . . , xℓ) and (´1, . . . , ´ℓ, y2, . . . , yℓ) from int(∆ℓ
c ×∆ℓ−1

∗ ), and we assume

(¼1 − ´1)µ(1) +
ℓ∑

j=2

¼jµ(xj)−
ℓ∑

j=2

´jµ(yj) = 0.(3.14)

Lemma 3.4. For any numbers 0 < z1 < . . . < z2ℓ−2 < 1
:

, the vectors µ(z1), . . . , µ(z2ℓ−2), µ(1) are

linearly independent in R
2ℓ−1.

Proof. The lemma follows from Corollary 3.2 applied to ´ = µ, z2ℓ−1 = 1, and r = 0. □

Invoking the set Q , and repeating the same reasoning as in the case of injectivity of U2ℓ, we see
that the equality (3.14) combined with Lemma 3.4 implies xj = yj for all j = 2, . . . , ℓ, and ¼j = ´j
for all j = 1, . . . , ℓ.

To verify the injectivity of L2ℓ−1 on the interior of ∆ℓ−1
c ×∆ℓ

∗:, we pick points (¼2, . . . , ¼ℓ, x1, . . . , xℓ)

and (´2, . . . , ´ℓ, y1, . . . , yℓ) from int(∆ℓ−1
c ×∆ℓ

∗), and we assume

(1−
ℓ∑

j=2

¼j)µ(x1) +
ℓ∑

j=2

¼jµ(xj) = (1−
ℓ∑

j=2

´j)µ(y1) +
ℓ∑

j=2

´jµ(yj).(3.15)

Without loss of generality,
:

assume y1 f x1. We rewrite (3.15) as follows
:

:
:

(1−
ℓ∑

j=2

¼j)(µ(x1)− µ(y1)) +

ℓ∑

j=2

¼j(µ(xj)− µ(y1))−
ℓ∑

j=2

´j(µ(yj)− µ(y1)) = 0.(3.16)

Notice that if the points x1, . . . , xℓ, y1, . . . , xℓ are different from each other, and they belong to
the interval (0, 1), then the vectors µ(x1)− µ(y1), . . . , µ(xℓ)− µ(y1), µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1)
are linearly independent. The proof of the linear independence proceeds absolutely in the same
way as the proof of Lemma 3.3

:

,
:

therefore we omit the proof to avoid the repetitions. Let Q =
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{x2, . . . , xℓ} ∩ {y2, . . . , yℓ}, X = {x2, . . . , xℓ}
:

,
:

and Y = {y2, . . . , yℓ}. Then (3.16) takes the form

(1−
ℓ∑

j=2

¼j)(µ(x1)− µ(y1)) +
∑

j :xj∈X\Q

¼j(µ(xj)− µ(y1))+

∑

j :xj∈Q

(¼j − ´kj )(µ(xj)− µ(y1))−
∑

j : yj∈Y \Q

´j(µ(yj)− µ(y1)) = 0.(3.17)

If y1 < x1 then from the linear independence we obtain that xj = yj for all j = 1, . . . , ℓ, and
¼j = ´j for all j = 2, . . . , ℓ. In what follows we assume y1 < x1.

Notice that if for any y ∈ Y \Q we have y ̸= x1
:

, then (3.17) contradicts to the linear independence.
On the other hand,

:

if for some yj∗ ∈ Y \Q we have yj∗ = x1 (we remark that there can be only one
such yj∗ in Y \Q, moreover, yj∗ /∈ Q) then (3.17) we can rewrite as

(1− ´∗
j −

ℓ∑

j=2

¼j)(µ(x1)− µ(y1)) +
∑

j :xj∈X\Q

¼j(µ(xj)− µ(y1))+

∑

j :xj∈Q

(¼j − ´kj )(µ(xj)− µ(y1))−
∑

j : yj∈Y \Q, yj ̸=yj∗

´j(µ(yj)− µ(y1)) = 0.(3.18)

Invoking the linear independence
:

, we must have 1 − ´∗
j − ∑ℓ

j=2 ¼j = 0. Since ¼j , ´j > 0
:

, we have

X \ Q and Y \ (Q ∪ {yj∗}) are empty. Then Q has cardinality ℓ − 1 and Q does not contain yj∗
:

,
which is a contradiction.

3.3.1. The proof
:::::

Proof
:

of (2.9). Assume n = 2ℓ. Since Un and Ln are diffeomorphisms between

int(∆ℓ
c ×∆ℓ

∗) and int(conv(µ([0, 1])))
:

,
:

we see that the equations

Bsup(U(t)) = U z(t),(3.19)

Binf(L(t)) = Lz(t)(3.20)

for all t ∈ int(∆ℓ
c ×∆ℓ

∗) define functions Bsup and Binf uniquely on int(conv(µ([0, 1]))). We would
like to extend the definitions of Bsup and Binf to the boundary of conv(µ([0, 1])) just by taking
t ∈ ∂(∆ℓ

c ×∆ℓ
∗) in (3.19) and (3.20). To make sure that the choice t ∈ ∂(∆ℓ

c ×∆ℓ
∗) in (3.19) defines

Bsup (and Binf) uniquely and continuously on conv(µ([0, 1]))
:

, we shall verify the following
:

.
:

Lemma 3.5. If U(t1) = U(t2) for some t1, t2 ∈ ∆ℓ
c × ∆ℓ

∗, then U z(t1) = U z(t2). Similarly, if
L(t1) = L(t2) for some t1, t2 ∈ ∆ℓ

c ×∆ℓ
∗, then Lz(t1) = Lz(t2).

Proof. Without loss of generality we can assume that t1, t2 ∈ ∂(∆ℓ
c × ∆ℓ

∗):;:otherwise the lemma
follows from (2.3), (2.4), and (2.5).

First we show
::::

that
:

L(t1) = L(t2) for some t1, t2 ∈ ∂(∆ℓ
c × ∆ℓ

∗) implies Lz(t1) = Lz(t2). If
t1 = t2,

:

there is nothing to prove,
:

; therefore, we assume t1 ̸= t2. For t1 = (¼1, . . . , ¼ℓ, x1, . . . , xℓ) ∈
∂(∆ℓ

c ×∆ℓ
∗):, we have

L2ℓ(t1) =
ℓ∑

j=1

¼jµ(xj).

Among ¼1, . . . , ¼ℓ many of them can be zero,
:

so we reduce the sum into
∑ℓ1

j=1 ¼qjµ(xqj ) where
¼qj > 0, ℓ1 f ℓ, and 0 f xq1 f . . . f xqℓ1 f 1. Next, among xq1 , . . . , xqℓ1 many can be equal to
each other. Those xqj that are equal to each other we group them together, and those xj ’s which

::::

that
:

are zero we remove from the sum by reducing the sum if necessary. This brings as
::

us
:

to the
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following expression
:

:
:

L2ℓ(t1) =
m∑

k=1

¼Ikµ(xIk),

where Ik ¢ {1, . . . , ℓ}, the sets Ik are disjoint for all k = 1, . . . ,m. Here, 0 < xI1 < . . . < xIm f 1; for
any k, 1 f k f m

:

,
:

we have xj = xIk for all j ∈ Ik; for any k, 1 f k f m,
:

we set 0 < ¼Ik :=
∑

j∈Ik
¼j .

We remark that if Ik = ∅ then the term ¼Ikµ(xIk) is zero by definition.
Similarly, for t2 = (´1, . . . , ´ℓ, y1, . . . , yℓ) ∈ ∂(∆ℓ

c ×∆ℓ
∗):,:we can write

L2ℓ(t2) =
v∑

k=1

´Jkµ(yJk)

with v f ℓ.
As in the previous section, from linear independence of the vectors µ(z1), . . . , µ(z2ℓ), where 0 <

z1 < . . . < z2ℓ f 1, it follows that L2ℓ(t1) = L2ℓ(t2) holds if and only if v = m, xIk = yJk , and
¼Ik = ´Jk for all k = 1, . . . ,m. Hence Lz

2ℓ(t1) = Lz
2ℓ(t2).

The proof for the map U2ℓ proceeds in the same way as for L2ℓ. Indeed, the equality U2ℓ(t1) =

U2ℓ(t2) implies
∑ℓ

j=1 ¼j(µ(xj) − µ(1)) =
∑ℓ

j=1 ´j(µ(yj) − µ(1)). By removing zero terms , and
grouping the similar terms inside the sums as before

:

,
:

we obtain the equation

m∑

k=1

¼Ik(µ(xIk)− µ(1)) =

v∑

k=1

´Jk(µ(yJk)− µ(1)),

where we also removed the terms containing those xj and yi which
::::

that
:

are equal to 1. Applying
Lemma 3.3 with r = 1

:

,
:

we obtain that v = m and xIk = yJk for all k = 1, . . . ,m, and ¼Ik = ´Jk .
Hence U z

2ℓ(t1) = U z
2ℓ(t2).: □

Next, we prove the analog of Lemma 3.5 for n = 2ℓ− 1.

Lemma 3.6. If U(t1) = U(t2) for some t1, t2 ∈ ∆ℓ
c × ∆ℓ−1

∗ , then U z(t1) = U z(t2). Similarly, if
L(t1) = L(t2) for some t1, t2 ∈ ∆ℓ−1

c ×∆ℓ
∗, then Lz(t1) = Lz(t2).

Proof. Without loss of generality we can assume that t1, t2 ∈ ∂(∆ℓ
c × ∆ℓ−1

∗ ) (similarly, t1, t2 ∈
∂(∆ℓ−1

c ×∆ℓ
∗) in the second claim of the lemma)

:

; otherwise the lemma follows from (2.6), (2.7), and
(2.8).

We show that the equality U(t1) = U(t2) for some t1 = (¼1, . . . , ¼ℓ, x2, . . . , xℓ) , and t2 =
(´1, . . . , ´ℓ, y2, . . . , yℓ) in ∂(∆ℓ

c × ∆ℓ−1
∗ ) implies Lz(t1) = Lz(t2). We can further assume t1 ̸= t2

:

;
otherwise there is nothing to prove. We have

¼1µ(1) +

ℓ∑

j=2

¼jµ(xj) = ´1µ(1) +

ℓ∑

j=2

´jµ(yj).(3.21)

As in the previous lemma, in the left hand
::::::::

left-hand
:

side of (3.21) we reduce the sum by removing
those ¼j ’s which

::::

that are equal to zero. We further reduce the sum by considering only positive
xj ’s. Next, among the numbers 0 f x2 f . . . f xℓ f 1, those who

::

we
:::::::

group
::::::

those
::::

that
:

are equal
to each other we group them together, and those xj ’s which

::::

that
:

are equal to 1 we group with
¼1µ(1). Eventually, the left hand

:::::::::

left-hand
:

side of (3.21) takes the form ¼I0µ(1) +
∑m

j=1 ¼Ijµ(xj),

where m f ℓ − 1, 0 < xI1 < . . . < xIm < 1, and ¼Ij =
∑

j∈Ij
¼j with ¼I0 g 0 and ¼Ij > 0 for all

j = 1, . . . ,m. Making a similar reduction in the right hand
::::::::::

right-hand
:

side of (3.21), we see that
(3.21) takes the form

(¼I0 − ´J0)µ(1) +

m∑

j=1

¼Ijµ(xIj )−
v∑

j=1

´Jjµ(yJj ) = 0.(3.22)
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Since 1+m+ v f 2ℓ−1,
:

it follows from Lemma 3.4 that (3.22) holds if and only if m = v, ¼Ij = ´Jj
for all j = 2, . . . ,m, and xIj = yJj for all j = 1, . . . ,m. It then follows that U z(t1) = U z(t2).

Next, we show that the equality L(t1) = L(t2) for some t1 = (¼2, . . . , ¼ℓ, x1, . . . , xℓ), and t2 =
(´2, . . . , ´ℓ, y1, . . . , yℓ) in ∂(∆ℓ−1

c ×∆ℓ
∗) implies Lz(t1) = Lz(t2). Without loss of generality assume

t1 ̸= t2 and y1 f x1. The equality L(t1) = L(t2) implies

(1−
ℓ∑

j=2

¼j)µ(x1) +

ℓ∑

j=2

¼jµ(xj) = (1−
ℓ∑

j=2

´j)µ(y1) +

ℓ∑

j=2

´jµ(yj),

which we can rewrite as

(1−
ℓ∑

j=2

¼j)(µ(x1)− µ(y1)) +

ℓ∑

j=2

¼j(µ(xj)− µ(y1))−
ℓ∑

j=2

´j(µ(yj)− µ(y1)) = 0.(3.23)

We would like to show Lz(t1)− Lz(t2) = 0. Notice that

Lz(t1)− Lz(t2) = (1−
ℓ∑

j=2

¼j)(µn+1(x1)− µn+1(y1)) +
ℓ∑

j=2

¼j(µn+1(xj)− µn+1(y1))−(3.24)

ℓ∑

j=2

´j(µn+1(yj)− µn+1(y1)).

Rearranging and grouping equal terms in (3.23) as in the previous arguments,
:

we can rewrite (3.23)
as

(1−
m1∑

j=1

¼I1j
− ´I0)(µ(x1)− µ(y1)) +

m2∑

j=1

¼I2j
(µ(xI2j

)− µ(y1))

+

m3∑

j=1

(¼I3j
− ´J1

j
)(µ(xI3j

)− µ(y1))−
m4∑

j=1

´J2
j
(µ(yJ2

j
)− µ(y1)) = 0,(3.25)

where m1,m2,m4 are non-negative
:::::::::::

nonnegative
:

integers with 1+m2 +m3 +m4 f 2ℓ− 1 (if mk = 0
then the corresponding sum is set to be zero), I1j , I

2
j , I

3
j , J

1
j , J

2
j are subsets of {2, . . . , ℓ}, ´I0 g 0,

¼Ikj
=

∑

j∈Ikj
¼j > 0, ´Jk

j
=

∑

j∈Jk
j
´j > 0, ¼I3j

̸= ´J1
j
, and the points x1, {xI2j }

m2
j=1, {xI3j }

m3
j=1, {yJ2

j
}m4
j=1

are different from each other, none of them (except of x1) coincides with y1, and all of them (except
of x1) belong to (0, 1]. We remark that x1 can be equal to y1. In a similar way we can rewrite (3.24)
as (3.25), i.e.

::::

that
:::

is,

Lz(t1)− Lz(t2) =

(1−
m1∑

j=1

¼I1j
− ´I0)(µn+1(x1)− µn+1(y1)) +

m2∑

j=1

¼I2j
(µn+1(xI2j

)− µn+1(y1))

+

m3∑

j=1

(¼I3j
− ´J1

j
)(µn+1(xI3j

)− µn+1(y1))−
m4∑

j=1

´J2
j
(µn+1(yJ2

j
)− µn+1(y1)).

The next lemma follows from Corollary 3.2.

Lemma 3.7. For any numbers zj, 1 f j f 2ℓ − 1, such that 0 < z1 < z2 < . . . < z2ℓ f 1, and
any r ∈ [0, 1] \ {z1, . . . , z2ℓ}, the vectors µ(z1)− µ(r), . . . , µ(z2ℓ−1)− µ(r) are linearly independent in
R
2ℓ−1.

If y1 = x1 then Lz(t1)−Lz(t2) = 0 follows from (3.25) and Lemma 3.7. If y1 < x1, then applying
Lemma 3.7 to (3.25) we see that 1−∑m1

j=1 ¼I1j
−´I0 = 0 and m2 = m3 = m4 = 0, which implies that

Lz(t1)− Lz(t2) = 0. Lemma 3.6 is proved. □
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3.3.2. The proof
::::::

Proof
:

of (2.10) and (2.11). We start with (2.10). Assume n = 2ℓ − 1. First we
show that Bsup(µ) = µn+1. We remind that

Bsup(´1µ(1) +
ℓ∑

j=2

´jµ(xj)) = ´1µn+1(1) +
ℓ∑

j=2

´jµn+1(xj),

holds for all (´1, . . . , ´ℓ, x2, . . . , xℓ) ∈ ∆ℓ
c × ∆ℓ−1

∗ . We claim that if ´1µ(1) +
∑ℓ

j=2 ´jµ(xj) =

µ(y) for some y ∈ [0, 1] then ´1µn+1(1) +
∑ℓ

j=2 ´jµn+1(xj) = µn+1(y). Indeed, µ(y) = U(t2)

with t2 = (1, 0, . . . , 0, y) ∈ ∆ℓ
c × ∆ℓ−1

∗ , and ´1µn+1(1) +
∑ℓ

j=2 ´jµn+1(xj) = U(t1) with t1 =

(´1, . . . , ´ℓ, x1, . . . , xℓ) ∈ ∆ℓ
c ×∆ℓ−1

∗ . Thus the claim follows from Lemma 3.6.
Next, we show that Bsup is concave on conv(µ([0, 1])). As

:::::

Since
:

the surface parametrized by

Un(t), t ∈ ∆ℓ
c × ∆ℓ−1

∗ , coincides with the graph {(x,Bsup(x)), x ∈ conv(µ([0, 1]))}, and Bsup ∈
C(conv(µ([0, 1]))), it suffices to show that the tangent plane T at Un(s) , for any s = (¼1, . . . , ¼ℓ, y2, . . . , yℓ) ∈
int(∆ℓ

c ×∆ℓ−1
∗ ) , lies above the surface Un. The equation of the tangent plane T at U(s) := Un(s) is

given as

T (x) := det(U´1(s), . . . , U´ℓ
(s), Ux2(s), . . . , Uxℓ

(s), x− U(s)) = 0, x ∈ R
n+1.

We have

T (x) = ¼1 · · ·¼ℓ det(µ(1), µ(y2), . . . , µ(yℓ), µ
′(y2), . . . , µ

′(yℓ), x).

To show that the tangent plane T lies above the surface, first we should find the sign of T (¼en+1) as
¼ → ∞, where en+1 = (0, . . . , 0, 1

︸ ︷︷ ︸

n+1

). For sufficiently large positive ¼,
:

we have

sign(T (¼en+1)) = sign(det(µ(1), µ(y2), . . . , µ(yℓ), µ
′(y2), . . . , µ

′(yℓ))).

On the other hand,
:

we have

det(µ(1), µ(y2), . . . , µ(yℓ), µ
′(y2), . . . , µ

′(yℓ)) =

(−1)
(ℓ−1)(ℓ−2)

2 det(µ(y2), µ
′(y2), . . . , µ(yℓ), µ

′(yℓ), µ(1)) =

(−1)
(ℓ−1)(ℓ−2)

2 det(µ(y2)− µ(0), µ′(y2), . . . , µ(yℓ)− µ(yℓ−1), µ
′(yℓ), µ(1)− µ(yℓ)) =

(−1)
(ℓ−1)(ℓ−2)

2

∫ 1

yℓ

∫ yℓ

yℓ−1

. . .

∫ y2

0
det(µ′(v2), µ

′(y2), . . . , µ
′(vℓ), µ

′(yℓ), µ
′(vℓ+1))dv2 . . . dvℓdvℓ+1.

Thus, Lemma 3.1 applied to µ shows that sign(T (¼en+1)) , for sufficiently large ¼ , coincides with

(−1)
(ℓ−1)(ℓ−2)

2 . Therefore, the surface U(t) being below the tangent plane T simply means that

(−1)
(ℓ−1)(ℓ−2)

2 T (U(t)) f 0 for all t = (´1, . . . , ´ℓ, x2, . . . , xℓ) ∈ ∆ℓ
c ×∆ℓ−1

∗ . We have

T (U(t)) =

ℓ∑

j=2

´j det(µ(1), µ(y2), . . . , µ(yℓ), µ
′(y2), . . . , µ

′(yℓ), µ(xj))

ℓ∏

k=1

¼k.

It suffices to verify that

(−1)
(ℓ−1)(ℓ−2)

2 det(µ(1), µ(y2), . . . , µ(yℓ), µ
′(y2), . . . , µ

′(yℓ), µ(u)) f 0(3.26)

for all u ∈ [0, 1]. We have

(−1)
(ℓ−1)(ℓ−2)

2 det(µ(1), µ(y2), . . . , µ(yℓ), µ
′(y2), . . . , µ

′(yℓ), µ(u))

= det(µ(y2), µ
′(y2), . . . , µ(yℓ), µ

′(yℓ), µ(1), µ(u)).(3.27)
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If u ∈ [yℓ, 1], then

det(µ(y2), µ
′(y2), . . . , µ(yℓ), µ

′(yℓ), µ(1), µ(u)) =

− det(µ(y2), µ
′(y2), . . . , µ(yℓ), µ

′(yℓ), µ(u), µ(1)) =

− det(µ(y2)− µ(0), µ′(y2), . . . , µ(yℓ)− µ(yℓ−1), µ
′(yℓ), µ(u)− µ(yℓ), µ(1)− µ(u)) =

−
∫ 1

u

∫ xj

yℓ

∫ yℓ

yℓ−1

. . .

∫ y2

0
det(µ′(v2), µ

′(y2), . . . , µ
′(vℓ), µ

′(yℓ), µ
′(vℓ+1), µ

′(vℓ+2))dv2 . . . dvℓdvℓ+1dvℓ+2

is non-positive
::::::::::

nonpositive
:

by Lemma 3.1.
If u ∈ [0, y2] we again use (3.27). Next, we move the column µ(u) to the left of the column

µ(y2). Notice that we will acquire the negative sign because passing the couples µ(yi), µ
′(yi) does

not change the sign of the determinant, the negative sign arises by passing µ(1). Using the similar
integral representation as before together with Lemma 3.1

:

,
:

we see that the inequality (3.26) holds
true in the case u ∈ [0, µ(y2)]. The case u ∈ [yi, yi+1] for some i ∈ {2, . . . , ℓ − 1} , is similar to the
previous case. Indeed, first we apply (3.27), then we place the column µ(u) between the columns
µ′(yi), µ(yi+1) (thus we acquire the negative sign), we use the similar integral representation as before
together with Lemma 3.1 to conclude that (3.26) holds true in this case too. This finishes the proof
of concavity of Bsup on conv(µ([0, 1])).

Next, we show that Bsup is the minimal concave function in a family of concave functions G
on conv(µ([0, 1])) with the obstacle condition G(µ(s)) g µn+1(s) for all s ∈ [0, 1]. Indeed, pick
an arbitrary point x ∈ conv(µ([0, 1])). We would like to show G(x) g Bsup(x). There exists

(¼1, . . . , ¼ℓ, y2, . . . , yℓ) ∈ ∆ℓ
c ×∆ℓ−1

∗ such that x = ¼1µ(1) +
∑ℓ

j=2 ¼jµ(yj). Therefore

Bsup(x) = ¼1µn+1(1) +
ℓ∑

j=2

¼jµn+1(yj) f ¼1G(µ(1)) +
ℓ∑

j=2

¼jG(µ(yj)) f G(x).

Next we consider Bsup when n = 2ℓ. We only check the concavity of Bsup because the remaining
properties (minimality and the obstacle condition Bsup(µ) = µn+1) are verified similarly as in the
dimension n = 2ℓ− 1. The equation of the tangent plane T at point

U(s) := Un(s) =

ℓ∑

j=1

´jµ(yj) + (1−
ℓ∑

j=1

´j)µ(1),

where s = (´1, . . . , ´ℓ, y1, . . . , yℓ) ∈ int(∆ℓ
c ×∆ℓ

∗), is given as

T (x) := det(U´1 , . . . , U´ℓ
, Uy1 , . . . , Uyℓ , x− U(s)) = 0, x ∈ R

n+1.

We have

sign(T (x)) = sign(det(µ(y1)− µ(1), . . . , µ(yℓ)− µ(1), µ′(y1), . . . , µ
′(yℓ), x− µ(1))).

Next,

sign(T (¼en+1)) = sign(det(µ(y1)− µ(1), . . . , µ(yℓ)− µ(1), µ′(y1), . . . , µ
′(yℓ)))

as ¼ → +∞. On the other hand,
:

we have

det(µ(y1)− µ(1), . . . , µ(yℓ)− µ(1), µ′(y1), . . . , µ
′(yℓ)) =

(−1)ℓ det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(yℓ−1), µ(1)− µ(yℓ), µ
′(y1), . . . , µ

′(yℓ)) =

(−1)
ℓ(ℓ−1)

2 det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yℓ), µ(1)− µ(yℓ)) =

(−1)
ℓ(ℓ−1)

2

∫ 1

yℓ

. . .

∫ y2

y1

det(µ′(y1), µ
′(x1), . . . , µ

′(yℓ), µ
′(xℓ))dx1 . . . dxℓ.
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Thus, it follows from Lemma 3.1 that sign(T (¼en+1)) = (−1)
ℓ(ℓ−1)

2 as ¼ → ∞. Therefore, to verify

:::

the
:

concavity of Bsup,
:

it suffices to show (−1)
ℓ(ℓ−1)

2 T (U(t)) f 0 for all t = (¼1, . . . , ¼ℓ, x1, . . . , xℓ) ∈
∆ℓ

c ×∆ℓ
∗. We have

T (U(t)) =

ℓ∑

j=1

¼j det(µ(y1)− µ(1), . . . , µ(yℓ)− µ(1), µ′(y1), . . . , µ
′(yℓ), µ(xj)− µ(1))

ℓ∏

i=1

´i.

It suffices to show that (−1)
ℓ(ℓ−1)

2 det(µ(y1)−µ(1), . . . , µ(yℓ)−µ(1), µ′(y1), . . . , µ
′(yℓ), µ(u)−µ(1)) f 0

for all u ∈ [0, 1]. Assume u ∈ [yi, yi+1] for some i ∈ {1, . . . , ℓ− 1}. We have

(−1)
ℓ(ℓ−1)

2 det(µ(y1)− µ(1), . . . , µ(yℓ)− µ(1), µ′(y1), . . . , µ
′(yℓ), µ(u)− µ(1)) =

− det(µ′(y1), µ(1)− µ(y1), . . . , µ
′(yℓ), µ(1)− µ(yℓ), µ(1)− µ(u)) = −

det(µ′(y1), µ(1)− µ(y1), . . . , µ
′(yi), µ(1)− µ(yi), µ(1)− µ(u), µ′(yi+1), µ(1)− µ(yi+1), . . . , µ(1)− µ(yℓ)) =

− det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yi), µ(u)− µ(yi), µ(yi+1)− µ(u), µ′(yi+1), µ(yi+2)− µ(yi+1), . . . , µ(1)− µ(yℓ))

= −
∫ 1

yℓ

. . .

∫ yi+1

u

∫ u

yi

. . .

∫ y2

y1

det(µ′(y1), µ
′(v1), . . . , µ

′(yi), µ
′(w), µ′(vi), µ

′(yi+1), . . . , µ
′(vℓ))dv1 . . . dwdvi . . . dvℓ,

which has a nonpositive sign by Lemma 3.1 (here yi+2 for i = ℓ − 1 is set to be 1). The cases
u ∈ [0, y1] , and u ∈ [yℓ, 1] are treated similarly.

Next, we verify (2.11). The obstacle condition Binf(µ) = µn+1 and the minimality (assuming Binf

is convex) are verified similarly
::::::

similar
:

as in the case Bsup. So, in what follows we only verify
:::

the

convexity of Binf .
Assume n = 2ℓ− 1. The equation of the tangent plane T at point

L(s) := Ln(s) = (1−
ℓ∑

j=2

´j)µ(y1) +

ℓ∑

j=2

´jµ(yj),

where s = (´2, . . . , ´ℓ, y1, . . . , yℓ) ∈ int(∆ℓ−1
c ×∆ℓ

∗):, is given by

T (x) := det(L´2 , . . . , L´ℓ
, Ly1 , . . . , Lyℓ , x− L(s)) =

det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ), x− µ(y1)) (1−
ℓ∑

j=2

´j)

ℓ∏

j=2

´j .

We have

sign(T (¼en+1)) = sign(det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ)))

as ¼ → +∞. On the other hand,
:

det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ)) =

(−1)
ℓ(ℓ−1)

2 det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yℓ−1), µ(yℓ)− µ(yℓ−1), µ

′(yℓ)) =

(−1)
ℓ(ℓ−1)

2

∫ yℓ

yℓ−1

. . .

∫ y2

y1

det(µ′(y1), µ
′(v2), . . . , µ

′(yℓ−1), µ
′(vℓ), µ

′(yℓ))dv2 . . . dvℓ.
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Thus sign(T (¼en+1)) = (−1)
ℓ(ℓ−1)

2 by Lemma 3.1 as ¼ → +∞. Therefore, Binf is convex if

(−1)
ℓ(ℓ−1)

2 T (L(t)) g 0 for all t = (¼2, . . . , ¼ℓ, x1, . . . , xℓ) ∈ ∆ℓ−1
c ×∆ℓ

∗. We have

T (L(t)) = det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ), L(t)− µ(y1)) (1−
ℓ∑

j=2

´j)
ℓ∏

j=2

´j =

(1−
ℓ∑

k=2

¼k) det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ), µ(x1)− µ(y1)) (1−
ℓ∑

j=2

´j)
ℓ∏

j=2

´j

+

ℓ∑

k=2

¼k det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ), µ(xk)− µ(y1)) (1−
ℓ∑

j=2

´j)
ℓ∏

j=2

´j .

Thus, to verify
:::

the
:

convexity of Binf , it suffices to show

(−1)
ℓ(ℓ−1)

2 det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ), µ(u)− µ(y1)) g 0

for all u ∈ [0, 1]. Notice that

(−1)
ℓ(ℓ−1)

2 det(µ(y2)− µ(y1), . . . , µ(yℓ)− µ(y1), µ
′(y1), . . . , µ

′(yℓ), µ(u)− µ(y1)) =

det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yℓ−1), µ(yℓ)− µ(y1), µ

′(yℓ), µ(u)− µ(y1)).

Next, assume u ∈ [yi, yi+1] for some i ∈ {1, . . . , ℓ − 1} (the cases u ∈ [0, y1] and u ∈ [yℓ, 1] are
considered similarly

::::::

similar). We have

det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yℓ−1), µ(yℓ)− µ(y1), µ

′(yℓ), µ(u)− µ(y1)) =

det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yi), µ(u)− µ(y1), µ(yi+1)− µ(y1), µ

′(yi+1), . . . , µ(yℓ)− µ(y1), µ
′(yℓ)) =

det(µ′(y1), µ(y2)− µ(y1), . . . , µ
′(yi), µ(u)− µ(yi), µ(yi+1)− µ(u), µ′(yi+1), . . . , µ(yℓ)− µ(yℓ−1), µ

′(yℓ))

=

∫ yℓ

yℓ−1

. . .

∫ yi+1

u

∫ u

yi

. . .

∫ y2

y1

det(µ′(y1), µ
′(v1), . . . , µ

′(yi), µ
′(w), µ′(vi), µ

′(yi+1), . . . , µ
′(vℓ−1), µ

′(yℓ))dv1 . . . dvidw . . . dvℓ−1.

Thus T (L(t)) g 0 by Lemma 3.1.
Next, we consider Binf when n = 2ℓ. As in the previous cases,

:

we only verify
:::

the convexity of

Binf (minimality and the obstacle condition Binf(µ) = µn+1 are verified easily).
The equation of the tangent plane T at point

L(s) := Ln(s) =
ℓ∑

j=1

´jµ(yj),

where s = (´1, . . . , ´ℓ, y1, . . . , yℓ) ∈ int(∆ℓ
c ×∆ℓ

∗):, is given by

T (x) := det(L´1 , . . . , L´ℓ
, Ly1 , . . . , Lyℓ , x− L(s)) = det(µ(y1), . . . , µ(yℓ), µ

′(y1), . . . , µ
′(yℓ), x)

ℓ∏

j=1

´j .

We have

sign(T (¼en+1)) = sign(det(µ(y1), . . . , µ(yℓ), µ
′(y1), . . . , µ

′(yℓ)))



SPACE CURVES WITH TOTALLY POSITIVE TORSION 29

as ¼ → +∞. On the other hand,
:

det(µ(y1), . . . , µ(yℓ), µ
′(y1), . . . , µ

′(yℓ)) =(3.28)

(−1)
ℓ(ℓ−1)

2 det(µ(y1)− µ(0), µ′(y1), . . . , µ(yℓ)− µ(yℓ−1), µ
′(yℓ)) =

(−1)
ℓ(ℓ−1)

2

∫ yℓ

yℓ−1

. . .

∫ y1

0
det(µ′(v1), µ

′(y1), . . . , µ
′(vℓ), µ

′(yℓ))dv1 . . . dvℓ.

Thus sign(T (¼en+1)) = (−1)
ℓ(ℓ−1)

2 by Lemma 3.1 as ¼ → +∞. Therefore, Binf is convex if

(−1)
ℓ(ℓ−1)

2 T (L(t)) g 0 for all t = (¼1, . . . , ¼ℓ, x1, . . . , xℓ) ∈ ∆ℓ
c ×∆ℓ

∗. We have

T (L(t)) =

ℓ∑

k=1

¼k det(µ(y1), . . . , µ(yℓ), µ
′(y1), . . . , µ

′(yℓ), µ(xk))

ℓ∏

j=1

´j .

Thus, to verify
:::

the
:

convexity of Binf , it suffices to show

(−1)
ℓ(ℓ−1)

2 det(µ(y1), . . . , µ(yℓ), µ
′(y1), . . . , µ

′(yℓ), µ(u)) g 0 for all u ∈ [0, 1].

Notice that

(−1)
ℓ(ℓ−1)

2 det(µ(y1), . . . , µ(yℓ), µ
′(y1), . . . , µ

′(yℓ), µ(u)) = det(µ(y1), µ
′(y1), . . . , µ(yℓ), µ

′(yℓ), µ(u)).

Next, assume u ∈ [yi, yi+1] for some i ∈ {1, . . . , ℓ−1} (the cases u ∈ [0, y1] or u ∈ [yℓ, 1] are considered
similarly

:::::::

similar). Set y0 = 0. We have

det(µ(y1), µ
′(y1), . . . , µ(yℓ), µ

′(yℓ), µ(u)) =

det(µ(y1), µ
′(y1), . . . , µ(yi), µ

′(yi), µ(u), µ(yi+1), µ
′(yi+1), . . .) =

det(µ(y1)− µ(0), µ′(y1), . . . , µ(yi)− µ(yi−1), µ
′(yi), µ(u)− µ(yi), µ(yi+1)− µ(u), µ′(yi+1), . . .) =

∫ yℓ

yℓ−1

. . .

∫ yi−1

u

∫ u

yi

∫ yi

yi−1

. . .

∫ y1

0

det(µ′(v1), µ
′(y1), . . . , µ

′(vi), µ
′(yi), µ

′(w), µ′(vi+1), µ
′(yi+1), . . . , µ

′(vℓ), µ
′(yℓ))dv1 . . . dvidwdvi+1 . . . dvℓ.

Thus T (L(t)) g 0 by Lemma 3.1.

3.3.3. The proof
:::::

Proof of (2.12). First we show the implicationBsup(u) = Binf(u) ⇒ u ∈ ∂ conv(µ([0, 1])).
Consider the case n = 2ℓ. Assume contrary, i.e.

::::

that
:::

is, u ∈ int(conv(µ([0, 1]))). Then,
:

using (2.4),

(2.5),
:

we can find t = (¼1, . . . , ¼ℓ, x1, . . . , xℓ) and s = (´1, . . . , ´ℓ, y1, . . . , yℓ), both in int(∆ℓ
c ×∆ℓ

∗),
such that

u =
ℓ∑

j=1

¼jµ(xj) + (1−
ℓ∑

j=1

¼j)µ(1) =

ℓ∑

j=1

´jµ(yj).

The equality Bsup(u) = Binf(u) implies (see (3.19), (3.20))

ℓ∑

j=1

¼jµ(xj) + (1−
ℓ∑

j=1

¼j)µ(1) =

ℓ∑

j=1

´jµ(yj).

We see that µ(1) is a linear combination of 2ℓ vectors µ(xj), µ(yj), j = 1, . . . , ℓ
:

,
:

which leads us to a
contradiction with Corollary 3.2. Thus u ∈ ∂ conv(µ([0, 1])).

Next, consider the case n = 2ℓ − 1 and assume the contrary, i.e.
::::

that
::

is, u ∈ int(conv(µ([0, 1]))).
Similarly as before,

:

we have

¼1µ(1) +

ℓ∑

j=2

¼jµ(xj) = (1−
ℓ∑

j=2

´j)µ(y1) +

ℓ∑

j=2

´jµ(yj)(3.29)
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for some t = (¼1, . . . , ¼ℓ, x2, . . . , xℓ) ∈ int(∆ℓ
c×∆ℓ−1

∗ ) and s = (´2, . . . , ´ℓ, y1, . . . , yℓ) ∈ int(∆ℓ
c×∆ℓ−1

∗ ).
The equality

::::::::

Equality
:

(3.29) shows that µ(1) is a linear combination of 2ℓ − 1 vectors {µ(xj)}ℓj=2,

{µ(yj)}ℓj=1which contradicts to
:

,
::::::

which
::::::::::::

contradicts Corollary 3.2.

Next we show the implication u ∈ ∂ conv(µ([0, 1])) ⇒ Bsup(u) = Binf(u). Consider n = 2ℓ.
Suppose

U(t)
def
=

ℓ∑

j=1

¼jµ(xj) + (1−
ℓ∑

j=1

¼j)µ(1) =
ℓ∑

j=1

´jµ(yj)
def
= L(s)

for some t = (¼, . . . , ¼ℓ, x1, . . . , xℓ) and s = (´1, . . . , ´ℓ, y1, . . . , yℓ), both in ∂(∆ℓ
c ×∆ℓ

∗). The goal is
to show that

U z(t)
def
=

ℓ∑

j=1

¼jµn+1(xj) + (1−
ℓ∑

j=1

¼j)µn+1(1) =

ℓ∑

j=1

´jµn+1(yj)
def
= Lz(s).(3.30)

We claim that (3.30) follows from the second part of Lemma 3.5. For this,
:

it suffices to show that any

point U(t), t ∈ ∂(∆ℓ
c×∆ℓ

∗), can be written as L(s1) for some s1 = (´′
1, . . . , ´

′
ℓ, y

′
1, . . . , y

′
ℓ) ∈ ∂(∆ℓ

c×∆ℓ
∗).

Indeed, as t ∈ ∂(∆ℓ
c × ∆ℓ

∗):,:several cases can happen. 1) If
∑ℓ

j=1 ¼j = 1, then choose ´′
j = ¼j ,

j = 1, . . . , ℓ− 1, ´′
ℓ = 1−∑ℓ−1

j=1 ¼j , and y′j = xj , j = 1, . . . , ℓ. Then

Lz(s) = Binf(L(s))
Lemma 3.5

= Binf(L(s1)) =

ℓ∑

j=1

´′
jµn+1(y

′
j) = U z(t).(3.31)

Next, 2) if at least one ¼j = 0, say ¼p = 0 for some p ∈ {1, . . . , ℓ}, then take ´′
1 = ¼1, . . . , ´

′
p−1 =

¼p−1, ´p = ¼p+1, . . . , ´
′
ℓ−1 = ¼ℓ, ´ℓ = 1−∑ℓ

j=1 ¼j , and y′1 = x1, . . . , y
′
p−1 = xp−1, y

′
p = xp+1, . . . , y

′
ℓ−1 =

xℓ, y
′
ℓ = 1 and repeat (3.31). Next 3) if xℓ = 1, choose (´′

j , y
′
j) = (¼j , xj) for j = 1, . . . , ℓ − 1, and

(´′
ℓ, y

′
ℓ) = (

∑ℓ−1
j=1 ¼j , 1) and repeat (3.31). 4) If xp = xp+1 for some p ∈ {1, . . . , ℓ − 1} then take

y′j = xj for j = 1, . . . , p; y′j = xj+1 for j = p + 1, . . . , ℓ − 1; y′ℓ = 1; ´′
1 = ¼1, . . . , ´

′
p = ¼p + ¼p+1,

´′
p+1 = ¼p+2, . . . , ´

′
ℓ−1 = ¼ℓ, ´

′
ℓ = 1 − ∑ℓ

j=1 ¼j ,
:

and repeat (3.31). Finally, 5) if x1 = 0 choose

´′
j = ¼j+1, j = 1, . . . , ℓ− 1; ´′

ℓ = 1−∑ℓ
j=1 ¼j ; y

′
j = xj+1, j = 1, . . . , ℓ− 1; y′ℓ = 1, and apply (3.31).

Next, consider n = 2ℓ− 1. Suppose

U(t)
def
=

ℓ∑

j=2

´jµ(xj) + ´1µ(1) = (1−
ℓ∑

j=2

¼j)µ(y1) +
ℓ∑

j=2

¼jµ(yj)
def
= L(s)

for some t = (´1, . . . , ´ℓ, x2, . . . , xℓ) ∈ ∂(∆ℓ
c ×∆ℓ−1

∗ ) and s = (¼2, . . . , ¼ℓ, y1, . . . , yℓ) ∈ ∂(∆ℓ−1
c ×∆ℓ

∗).
We would like to show

U z(t)
def
=

ℓ∑

j=2

´jµn+1(xj) + ´1µn+1(1) = (1−
ℓ∑

j=2

¼j)µn+1(y1) +

ℓ∑

j=2

¼jµn+1(yj)
def
= Lz(s).(3.32)

As in the case n = 2ℓ− 1
:

, we claim that (3.32) follows from Lemma 3.6. It suffices to show that for

any point U(t), t ∈ ∂(∆ℓ
c ×∆ℓ−1

∗ ), there exists a point s1 = (¼′
2, . . . , ¼

′
ℓ, y

′
1, . . . , ¼

′
ℓ) ∈ ∂(∆ℓ−1

c ×∆ℓ
∗)

such that U(t) = L(s1). Several instances may happen. 1) if
:

If
:

∑ℓ
j=1 ´j = 1. Let

(¼′
2, . . . , ¼

′
ℓ−1, ¼

′
ℓ, y

′
1, . . . , y

′
ℓ−1, y

′
ℓ) = (´3, . . . , ´ℓ, ´1, x2, . . . , xℓ, 1).

Notice that 1−∑ℓ
j=2 ¼

′
j = ´2. 2) if

:

If
:́

p = 0 for some p ∈ {1, . . . , ℓ− 1} then let

(¼′
2, . . . , ¼

′
p−1, ¼

′
p, . . . , ¼

′
ℓ−1, ¼

′
ℓ, y

′
1, y

′
2, . . . , y

′
p−1, y

′
p, . . . , y

′
ℓ−1, y

′
ℓ) =

(´2, . . . , ´p−1, ´p+1, . . . , ´ℓ, ´1, 0, x2, . . . , xp−1, xp+1, . . . , xℓ, 1).
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3) if
:

If
:

´1 = 0 then we choose y′1 = 0 and

(¼′
2, . . . , ¼

′
ℓ, y

′
2, . . . , y

′
ℓ) = (´2, . . . , ´ℓ, x2, . . . , xℓ).

4) if
:

If
:

x2 = 0 then we choose y1 = 0 and

(¼′
2, . . . , ¼

′
ℓ−1, ¼

′
ℓ, y

′
2, . . . , y

′
ℓ−1, y

′
ℓ) = (´3, . . . , ´ℓ, ´1, x3, . . . , xℓ, 1).

5) if
:

If
:

xℓ = 1 then let y1 = 0 and

(¼′
2, . . . , ¼

′
ℓ−1, ¼

′
ℓ, y

′
2, . . . , y

′
ℓ−1, y

′
ℓ) = (´2, . . . , ´ℓ−1, ´ℓ + ´1, x2, . . . , xℓ−1, 1).

Finally, 6) if xp = xp+1 for some p ∈ {2, . . . , ℓ− 1}
:

,
:

take y1 = 0 and

(¼′
2, . . . , ¼

′
p−1, ¼

′
p, ¼

′
p+1, . . . , ¼

′
ℓ−1, ¼

′
ℓ, y

′
2, . . . , y

′
p, y

′
p+1, . . . , y

′
ℓ−1, y

′
ℓ) =

(´2, . . . , ´p−1, ´p + ´p+1, ´p+2, . . . , ´ℓ, ´1, x2, . . . , xp, xp+2, . . . xℓ, 1).

Under such choices we have

Lz(s) = Binf(L(s))
Lemma 3.6

= Binf(L(s1)) = (1−
ℓ∑

j=2

¼′
j)µn+1(y

′
1) +

ℓ∑

j=2

¼′
jµn+1(y

′
j) = U z(t).

This finishes the proof of (2.12).

3.3.4. The proof
:::::

Proof
:

of (2.13). The inclusion

{(x,Bsup(x)), x ∈ conv(µ̄([0, 1]))} ∪ {(x,Binf(x)), x ∈ conv(µ̄([0, 1]))} ¢ ∂ conv(µ([0, 1]))

is trivial. Indeed, it follows from (3.19) that the point (x,Bsup(x)) is a convex combination of some
points of µ([0, 1]),

:

;
:

therefore, (x,Bsup(x)) ∈ conv(µ([0, 1])). On the other hand, no point of the
form (x, s), where s > Bsup(x),

:

belongs to conv(µ([0, 1])). Indeed, otherwise (x, s) =
∑m

j=1 ¼jµ(tj)

for some tj ∈ [0, 1] and nonnegative ¼j such that
∑m

j=1 ¼j = 1. Then

Bsup(x) = Bsup
(∑

¼jµ(tj)
) (2.10)

g
∑

¼jB
sup(µ(tj))

(2.10)
=

∑

¼jµn+1(tj) = s

gives a contradiction. Thus (x,Bsup(x)) ∈ ∂ conv(µ([0, 1])). In a similar way,
:

we have (x,Binf(x)) ∈
∂ conv(µ([0, 1])) for x ∈ conv(µ̄([0, 1])).

To verify the inclusion

∂ conv(µ([0, 1])) ¢ {(x,Bsup(x)), x ∈ conv(µ̄([0, 1]))} ∪ {(x,Binf(x)), x ∈ conv(µ̄([0, 1]))},

we pick a point (x, t) ∈ ∂ conv(µ([0, 1]))
:::::::::::::::::::::::

(x, t) ∈ ∂ conv(µ([0, 1])),
:

where x ∈ R
n, i.e.

::::

that
:::

is, x ∈
conv(µ̄([0, 1])). Clearly

:

,
:

Binf(x) f t f Bsup(x). Assume contrary that Binf(x) < t < Bsup(x). If

x ∈ ∂ conv(µ̄([0, 1])) then by (2.12) we have Binf(x) = Bsup(x), ;
:

therefore, we get a contradiction.

If x ∈ int(conv(µ̄([0, 1]))) then (2.12) and
:::

the
:

continuity of Bsup and Binf imply that there exists
a ball Uε(x) or

::

of
:

radius ε > 0 centered at point x such that Uε(x) ¢ int(conv(µ̄([0, 1]))) and

Binf(s) < t− ¶ < t+ ¶ < Bsup(s) for all s ∈ Uε(x) and some ¶ > 0. Then

(x, t) ∈ Umin{ε,¶}((x, t)) ¢ {(s, y) : Binf(s) f y f Bsup(s), s ∈ Umin{ε,¶}(x)} =

conv({(s,Binf(s)), s ∈ Umin{ε,¶}(x)} ∪ {(s,Bsup(s)), s ∈ Umin{ε,¶}(x)}) ¢ conv(µ([0, 1])),

where Umin{ε,¶}((x, t)) is the ball in R
n+1 centered at (x, t) with radius min{ε, ¶}. We obtain a

contradiction with the assumption that (x, t) belongs to the boundary of conv(µ([0, 1])).
The proof of Theorem 2.1 is complete. □



32 J. DE DIOS PONT, P. IVANISVILI, AND J. MADRID

3.4. The proof
::::::

Proof
:

of Proposition 2.2. Take µ(t) = (t, t4,−t3) on [−1, 1]. We have

(µ′, µ′′, µ′′′) =





1 0 0
4t3 12t2 24t
−3t2 −6t −6



 .

All the leading principal minors of the matrix (µ′, µ′′, µ′′′) are positive on [−1, 1]\{0}, and we notice
that 2×2 and 3×3 the leading principal minors vanish at t = 0. Assume contrary to Proposition 2.2
that the map Bsup(x, y) defined on conv(µ([−1, 1])) by (2.1) is concave. We have

B(¼(a, a4) + (1− ¼)(1, 1)) = −¼a3 − (1− ¼), ¼ ∈ [0, 1], a ∈ (−1, 1).(3.33)

In particular, g(y) := B(0, y), y ∈ [0, 1],
:::::::::::::::::::::::

g(y) := B(0, y), y ∈ [0, 1]
:

must be concave. The restriction

¼a+ (1− ¼) = 0 implies ¼ = 1
1−a . Therefore

¼a4 + (1− ¼) = a3 + a2 + a and − ¼a3 − (1− ¼) = a2 + a.

Since −a3 − a2 − a = y ∈ [0, 1]
:

,
:

we must have a ∈ [−1, 0]. Thus g(−a3 − a2 − a) = a2 + a for
a ∈ [−1, 0]. differentiating

:::::::::::::

Differentiating
:

both sides in a two times
:

,
:

we obtain

g′(−a3 − a2 − a) = − 2a+ 1

3a2 + 2a+ 1
,

g′′(−a3 − a2 − a) =
−6a(a+ 1)

(3a2 + 2a+ 1)3
> 0 for a ∈ [−1, 0).

Thus g′′ > 0 gives a contradiction.

3.5. The proof
::::::

Proof
:

of Theorem 2.3. We verify (2.14). The verification of (2.15) is similar.
Denote

M sup(x) := sup
afYfb

{Eµn+1(Y ) : Eµ(Y ) = x}, x ∈ conv(µ([a, b])).

First we show the inequality M sup f Bsup on conv(µ([a, b])). Indeed, let x ∈ conv(µ([a, b])). Pick
an arbitrary random variable Y with values in [a, b] , such that Eµ(Y ) = x. Then

Eµn+1(Y )
(2.10)
= EBsup(µ(Y ))

(2.10)+Jensen

f Bsup(Eµ(Y )) = Bsup(x).

Taking the supremum over all Y , a f Y f b, such that Eµ(Y ) = x, gives the inequality M sup(x) f
Bsup(x).

To verify the reverse inequality M sup(x) g Bsup(x)
:

, it suffices to construct at least one random
variable Y = Y (x), a f Y f b, such that Eµ(Y ) = x and Eµn+1(Y ) = Bsup(x). Notice that
Y = ·(x), where ·(x) is defined in Theorem 2.3, satisfies a f ·(x) f b, Eµ(·(x)) = x. It also follows
from (2.1) that Eµn+1(·(x)) = Bsup(x).

3.6. The proof
::::::

Proof
:

of Corollary 2.4. . The moment curve µ has totally positive torsion on
[0, 1], hence, Theorem 2.1 applies.

First we work with Bsup(x) = xn+1. Consider the case n = 2ℓ. By Theorem 2.1 there exists a

unique point (¼1, . . . , ¼ℓ, y1, . . . , yℓ) ∈ int(∆ℓ
c×∆ℓ

∗) such that
∑ℓ

j=1 ¼jµ(yj)+(1−∑ℓ
j=1 ¼j)µ(1) = x

:

,

then the value xn+1 := Bsup(x) equals to
∑ℓ

j=1 ¼jy
2ℓ+1
j +(1−∑ℓ

j=1 ¼j). We would like to show that
the linear equation

det






a0 a1 . . . aℓ
...
aℓ aℓ+1 . . . a2ℓ




 = 0,(3.34)

where ak := xk − xk+1, k = 0, . . . , 2ℓ, x0 := 1, has a unique solution in xn+1which equals to
:

,
::::::

which

::::::

equals
∑ℓ

j=1 ¼jy
2ℓ+1
j +(1−∑ℓ

j=1 ¼j). First we check why xn+1 =
∑ℓ

j=1 ¼jy
2ℓ+1
j +(1−∑ℓ

j=1 ¼j) solves
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(3.34). Notice that ak = ïyk, ´ð, where yk := (yk1 , . . . , y
k
ℓ ), and ´ := (¼1(1 − y1), . . . , ¼ℓ(1 − yℓ)).

The j’th column of the matrix in (3.34), call it wj , j = 0, . . . , ℓ, we can write as wj = ADj´T ,

where A is (ℓ + 1) × ℓ matrix with m’th column (1, ym, . . . , yℓm)T , and D is ℓ × ℓ diagonal matrix
with diagonal entries y1, . . . , yℓ. Since there exists a nonzero vector (z0, . . . , zℓ) ∈ R

ℓ+1 such that
z0D

0 + . . .+ zℓD
ℓ = 0 (the number of variables zj is greater than the number of equations, i.e.

::::

that

:

is, ℓ), it follows that the vectors {w0, . . . , wℓ} are linearly dependent, so (3.34) holds true.
To show the uniqueness of the solution xn+1,

:

it suffices to show that the leading ℓ × ℓ principal
minor R of the matrix in (3.34) has nonzero determinant. Notice that R = det(w̃0, . . . , w̃ℓ−1), where

w̃j = ÃDj´T and Ã is obtained from A by removing the last row. Assume contrary that R = 0.

Then there exists a nonzero vector (z0, . . . , zℓ−1) ∈ R
ℓ such that Ã(z0D

0+ . . .+zℓ−1D
ℓ−1)´T = 0. As

det(Ã) ̸= 0 (Vandermonde matrix)
:

, we have (z0D
0 + . . .+ zℓ−1D

ℓ−1)´T = 0. Since the entries of ´T

are nonzero and the matrix (z0D
0+. . .+zℓ−1D

ℓ−1) is diagonal
:

,
:

we must have z0D
0+. . .+zℓ−1D

ℓ−1 =

0. The last equation rewrites as ÃT zT = 0,
:

where z = (z0, . . . , zℓ−1) ̸= 0, which is a contradiction.

Next, consider n = 2ℓ−1. In this case x = (1−∑ℓ
j=1 ¼j)µ(0)+

∑ℓ
j=2 ¼jµ(yj)+¼1µ(1) for a unique

(¼1, . . . , ¼ℓ, y2, . . . , yℓ) ∈ int(conv(µ([0, 1]))), and the value xn+1 := Bsup(x) is (1−∑ℓ
j=1 ¼j)µn+1(0)+

∑ℓ
j=2 ¼jµn+1(yj) + ¼1µn+1(1). Set bk := xk − xk+1, k = 1, . . . , 2ℓ − 1. As before we would like to

show that the linear equation

det






b1 b2 . . . bℓ
...
bℓ bℓ+1 . . . b2ℓ−1




 = 0,(3.35)

has a unique solution in xn+1which equals to
:

,
::::::

which
::::::

equals
:

(1−∑ℓ
j=1 ¼j)µn+1(0)+

∑ℓ
j=2 ¼jµn+1(yj)+

¼1µn+1(1). To check that such a choice for xn+1 solves (3.35), notice that bk = ïyk, ´ð, where
yk = (yk2 , . . . , y

k
ℓ ) and ´ = (¼2(1− y2), . . . , ¼ℓ(1− yℓ)).

The j’th column of the matrix in (3.35), call it wj , j = 1, . . . , ℓ, we can write as wj = ADj´T ,

where A is ℓ× (ℓ−1) matrix with m’th column (ym, . . . , yℓm)T , m = 2, . . . , ℓ, and D is (ℓ−1)× (ℓ−1)
diagonal matrix with diagonal entries y2, . . . , yℓ. Since there exists a nonzero vector (z1, . . . , zℓ) ∈ R

ℓ

such that z1D+ . . .+ zℓD
ℓ = 0 (the number of variables zj is greater than the number of equations,

i.e.
::::

that
::

is, ℓ−1), it follows that the vectors {w1, . . . , wℓ} are linearly dependent, so (3.35) holds true.
To show the uniqueness of the solution xn+1,

:

it suffices to show that the leading (ℓ−1)×(ℓ−1) prin-
cipal minor R of the matrix in (3.35) has nonzero determinant. Notice that R = det(w̃1, . . . , w̃ℓ−1),

where w̃j = ÃDj´T , and Ã is obtained from A by removing the last row. Assume contrary that R =

0. Then there exists nonzero vector (z1, . . . , zℓ−1) ∈ R
ℓ−1 such that Ã(z1D+ . . .+ zℓ−1D

ℓ−1)´T = 0.

As det(Ã) ̸= 0 (Vandermonde matrix),
:

we have (z1D+. . .+zℓ−1D
ℓ−1)´T = 0. Since the entries of ´T

are nonzero and the matrix (z1D+. . .+zℓ−1D
ℓ−1) is diagonal

:

, we must have z1D+. . .+zℓ−1D
ℓ−1 = 0.

The last equation rewrites as ÃT zT = 0 where z = (z1, . . . , zℓ−1) ̸= 0, which is a contradiction.
Next we work with Binf(x). Consider n = 2ℓ. There is a unique point (¼1, . . . , ¼ℓ, y1, . . . , yℓ) ∈

int(∆ℓ
c ×∆ℓ

∗) such that
∑ℓ

j=1 ¼jµ(yj) = x. It suffices to show that the linear equation

det






x1 x2 . . . xℓ+1
...

xℓ+1 xℓ+2 . . . x2ℓ+1




 = 0,(3.36)

has a unique solution x2ℓ+1 =
∑ℓ

j=1 ¼jµn+1(yj). The j’th column of the matrix in (3.36), call

it wj , j = 1, . . . , ℓ + 1, we can write as wj = ADj¼T , where A is (ℓ + 1) × ℓ matrix with m’th

column (ym, . . . , yℓ+1
m )T , m = 1, . . . , ℓ, D is ℓ × ℓ diagonal matrix with diagonal entries y1, . . . , yℓ,

and ¼ = (¼1, . . . , ¼ℓ). The rest of the reasoning (including the uniqueness of the solution xn+1) is
similar to the one we just discussed for Bsup and n = 2ℓ.
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Finally, consider n = 2ℓ− 1. There exists a unique point (´2, . . . , ´ℓ, y1, . . . , yℓ) ∈ int(∆ℓ−1
c ×∆ℓ

∗)

such that
∑ℓ

j=1 ´jµ(yj) = x, where ´1 := 1−∑ℓ
j=2 ´j . It suffices to show that the linear equation

det






1 x1 . . . xℓ
...
xℓ xℓ+1 . . . x2ℓ




 = 0,(3.37)

has a unique solution x2ℓ =
∑ℓ

j=1 ´jµn+1(yj). The j’th column of the matrix in (3.36), call it

wj , j = 1, . . . , ℓ + 1, we can write as wj = ADj−1´T , where A is (ℓ + 1) × ℓ matrix with m’th

column (1, ym, . . . , yℓm)T , m = 1, . . . , ℓ, D is ℓ × ℓ diagonal matrix with diagonal entries y1, . . . , yℓ,
and ´ = (´1, . . . , ´ℓ). The rest of the reasoning (including the uniqueness of the solution xn+1) is
similar to the one we just discussed for Bsup and n = 2ℓ.

3.7. The proof
::::::

Proof of Corollary 2.5. Assume contrary that there exist n+1 points, µ(t1), . . . , µ(tn+1),
where a f t1 < . . . < tn+1 f b, which lie in a single affine hyperplane. In particular, we have

det(µ(t2)− µ(t1), µ(t3)− µ(t1), . . . , µ(tn+1)− µ(t1)) = 0.(3.38)

On the other hand, we have

det(µ(t2)− µ(t1), µ(t3)− µ(t1), . . . , µ(tn+1)− µ(t1)) =

det(µ(t2)− µ(t1), µ(t3)− µ(t2), . . . , µ(tn+1)− µ(tn)) =
∫ tn+1

tn

. . .

∫ t3

t2

∫ t2

t1

det(µ′(s1), µ
′(s2) . . . , µ

′(sn))ds1ds2 . . . dsn > 0

by Lemma 3.1. Thus we have a contradiction with (3.38).

3.8. The proof
:::::::

Proof of Corollary 2.7. To prove the formulas for the volume,
:

we apply Theo-
rem 2.1, where µ in Corollary 2.7 will be used as µ in Theorem 2.1. Let n = 2ℓ. To verify

Vol(conv(µ([a, b])))(3.39)

=
(−1)

ℓ(ℓ−1)
2

(2ℓ)!

∫

afx1f...fxℓfb
det(µ(x1)− µ(a), . . . , µ(xℓ)− µ(a), µ′(x1), . . . , µ

′(xℓ))dx,

notice that according to Theorem 2.1 the map U := U2ℓ, where

U2ℓ : ∆
ℓ
c ×∆ℓ

∗ ∋ (¼1, . . . , ¼ℓ, x1, . . . , xℓ) 7→ (1−
ℓ∑

j=1

¼j)µ(a) +

ℓ∑

j=1

¼jµ(xj),

is diffeomorphism between int(∆ℓ
c × ∆ℓ

∗) and int(conv(µ([a, b]))). In particular, by
:::

the
:

change of
variables formula, we have

Vol(conv(µ([a, b]))) =

∫

∆ℓ
c

∫

∆ℓ
∗

| det(U¼1 , . . . , U¼ℓ
, Ux1 , . . . , Uxℓ

)|d¼ dx =

∫

∆ℓ
c

¼1 . . . ¼ℓd¼

∫

∆ℓ
∗

|det(µ(x1)− µ(a), . . . , µ(xℓ)− µ(a), µ′(x1), . . . , µ
′(xℓ))|dx.

Next, using the identity

∫

∆ℓ
c

¼p1−1
1 . . . ¼

pℓ−1

ℓ (1−
ℓ∑

j=1

¼j)
p0−1d¼ =

∏ℓ
j=0 Γ(pj)

Γ(
∑ℓ

j=0 pj)
(3.40)
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valid for all p0, . . . , pℓ > 0 (see Dirichlet distribution in [17]) , and the property

|det(µ(x1)− µ(a), . . . , µ(xℓ)− µ(a), µ′(x1), . . . , µ
′(xℓ))|

= (−1)
ℓ(ℓ−1)

2 det(µ(x1)− µ(a), . . . , µ(xℓ)− µ(a), µ′(x1), . . . , µ
′(xℓ))

whenever a < x1 < . . . < xℓ < b, see (3.28), we recover (3.39). The other three identities in
Corollary 2.7 are obtained in the same way by repeating the computations with L2ℓ, and in the case
of odd dimensions with U2ℓ−1 and L2ℓ−1.

3.9. The proof
:::::::

Proof
:

of Corollary 2.8. Let n = 2ℓ (the case n = 2ℓ − 1 is similar and will be
omitted), and let us verify the identity

Area(∂ conv(µ([a, b]))) =
1

n!

∫

afx1f...fxℓfb

(√

detSTr
a Sa +

√

detSTr
b Sb

)

dx,

where Sr = (µ(x1)− µ(r), . . . , µ(xℓ)− µ(r), µ′(x1), . . . , µ
′(xℓ)). By (2.13) we have

∂ conv(µ([a, b])) = {(x,Bsup(x)), x ∈ conv(µ̄([a, b]))} ∪ {(x,Binf(x)), x ∈ conv(µ̄([a, b]))}.
On the other hand, by (2.12) and (2.3) the set {(x,Bsup(x)), x ∈ conv(µ̄([a, b]))} ∩ {(x,Binf(x)), x ∈
conv(µ̄([a, b]))} is contained in the image of C1 map of the set ∂(∆ℓ

c × ∆ℓ
∗):,:which has zero n

dimensional Lebesgue measure. Therefore, it follows from (2.4) and (2.5) that

Area(∂ conv(µ([a, b]))) =

Area({(x,Bsup(x)), x ∈ conv(µ̄([a, b]))}) + Area({(x,Binf(x)), x ∈ conv(µ̄([a, b]))}) =
∫

∆ℓ
c×∆ℓ

∗

√
detATrAdxd¼+

∫

∆ℓ
c×∆ℓ

∗

√
detCTrC dxd¼,

where A = (U¼1 , . . . , U¼ℓ
, Ux1 , . . . , Uxℓ

) with U := Un, and C = (L¼1 , . . . , L¼ℓ
, Lx1 , . . . , Lxℓ

) with
L := Ln. Notice that ATrA = RSTr

b SbR,
:

where R is 2ℓ × 2ℓ diagonal matrix with diagonal entries

r1 = . . . = rℓ = 1, and rℓ+1 = ¼1, . . . , rℓ+ℓ = ¼ℓ. Similarly,
:

CTrC = RSTr
a SaR. Therefore,

∫

∆ℓ
c×∆ℓ

∗

√
detATrAdxd¼+

∫

∆ℓ
c×∆ℓ

∗

√
detCTrC dxd¼ =

∫

∆ℓ
c

¼1 · · ·¼ℓd¼

∫

∆ℓ
∗

√

detSTr
b Sbdx+

∫

∆ℓ
c

¼1 · · ·¼ℓd¼

∫

∆ℓ
∗

√

detSTr
a Sadx

(3.40)
=

1

(2ℓ)!

∫

∆ℓ
∗

(√

detSTr
b Sb +

√

detSTr
a Sa

)

dx.

This finishes the proof of Corollary 2.8.
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