A NEW PROOF OF THE DESCRIPTION OF THE CONVEX HULL OF SPACE
CURVES WITH TOTALLY POSITIVE TORSION

J. DE DIOS PONT, P. IVANISVILI, AND J. MADRID

ABSTRACT. We give new proofs of the description convex hulls of space curves v : [a, b] — R? having
totally positive torsion. These are curves such that all the leading principal minors of d x d matrix
&',y ... ,'y(d)) are positive. In particular, we recover parametric representation of the boundary of
the convex hull, different formulas for its surface area, and the volume of the convex hull --and the
solution to a general moment problem corresponding to ~.

1. INTRODUCTION AND A SEMMARY-SUMMARY OF MAIN-RESUEPSTHE MAIN RESULTS

Convex hull of a set K C R? is defined as

m m
conv(K) = Z)\jmj, zj € K, Z)\j =1,12>0,j=1,...,mforallm>1
j=1 J=1

Describing the convex hull of a given set K is a basic problem in mathematics. By imposing additional
geometric structures on K, one may hope to give a simpler description of conv(K). Perhaps a good
starting point is when K is a space curve, which is the topic of our paper.

Let [a, b] be an interval in R, and let v1(¢), ..., n+1(t) be real valued functions on [a,b]. We start
with two main questions, which are ultimately related to each other.

Question 1. Describe the boundary of the convexr hull of v([a,b]), where
V() = (@), Mm41(t)), T E[ab].

The next question, known as the general moment problem [16, 14, 15], is a certain probabilistic
reformulation of Question 1.

Question 2. Find
def
(1.1) M (zq, ... 2,) = sup {Evpp1(Y) : By (Y) = z1,...,Ev, (V) = z,,},
i def .
(1.2) MY (. 2,) = inf {Evy 1 (V) : Ey(Y) =21, ..., By (Y) = 2, },

where supremum or infimum is taken over all random variables Y with values in [a,b] such that
v;(Y) are measurable for all j, 1 < j <n+1.

The answers to both of these questions are given in terms of lower and upper principal represen-
tations in two remarkable monographs [15, 14] (see also a brief survey [8]) under the-assumption
(A1), which says that the sequences (1,71(t),...,vn(t)) and (1,71(t),...,Yn+1(t)) are T'i-systems
on [a, b], we refer the reader to Subsection 1.1.3 for more details.

In this paper we give a new self-contained geometric approach to both of these questions for a
subclass of (A1), curves with so called totally positive torsion.
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Definition. A curve v € C"*1((a,b),R"™) N C([a,b],R"*1) is said to have totally positive torsion
if all the leading principal minors of the matrix

(1.3) (' (0,7 (1), .../ ()
are positive for all t € (a,b).

Perhaps an instructive example to keep in mind is y(¢) = (¢,¢2,...,t",y,11(¢)), where the total
positivity of the torsion on (a,b) is the same as 'y( H)( t) >0 on (a,b).

n+

In fact the only property that will be needed from the principal minors of the-matrix (1.3) is
that they are nen-vanishingnonvanishing. Indeed, we can consider an invertible linear image of ~,
namely a new curve t — (e171(t), ..., Ent1Vn+1(t )) with an appropriate choice of signs €; = £1 and
reduce the study of the convex hulls to the curves with totally positive torsion (an invertible linear
transformation 7" maps convex hull of a set K to the convex hull of the image T'(K)).

In Section 1.1 we provide an overview of the literature on results related to Questions 1 and 2.
Section 2 is devoted to the statements of the main results of the paper, and Section 3 contains the
proofs. Here we give a short summary of the theorems that we recover in this paper. The results we

state hold in R™! for all n > 1, and all space curves 7 : [a,b] — R™"! with totally positive torsion.
def

Set ¥(t) = (71(t),...,n(t)), and let us denote by conv(7y([a,b])) the convex hull of the image of
[a, b] under the map ~.

Summary of the results:

(1) Boundary of the convex hull of ([a, b]) will be given in a parametric form.

(2) Explicit diffeomorphism will be constructed between the interior of simplicies and the interior
of the convex hull of v([a,b])._

(3) Formulas for the surface area of the boundary of the convex hull of v([a, b]) will be obtained,
Corollary 2.8, and different formulas for the volume of the convex hull will be presented,
Corollary 2.7.

(4) Any single affine hyperplane intersects the space curve v : [a,b] — R"*! in at most n + 1
points. Minimal number k points required to represent any point x € conv(vy([a,b])) as a
convex combination of k points of v([a,b]) is at most |22 |. Moreover, k = | 22| for any
interior point of conv(y([a,b])).

(5) Parametric representations will be given for functions M and M™. The obtained para-
metric forms change depending on whether n is even or odd.

(i) If n is even then

‘Mw\:

M A Aoy (D) + > AA(z5) | = Aovns1(D) + > Ajynsi(z;),

o,
i Mm\:
I

1

J

+
]
M .

M™ | Xo(a) Y(x5) | = Xovnyi(a) + >\ﬂn+1 (Y;),

.
—_
[y

Jj=
for all /\0,)\]' € [0, 1],$j € [a,bl, j=1,... ,% with Z()Skg% A= 1.
(ii) If n is odd then

n+1 ntl
2
ME™P L Ao (a) + A1y(b) + Z Aiv(x;) | = Aovnsi(a) + A Yng1(b) + Z AjYng1(z;),
Jj=2

‘:
it
pt

MUY B53(ws) | = D Bt (z5),

<.
Il
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for all /\o,Aj,ﬂj S [O, 1],a:j c [a, b], j = 1,. ce nT-&-l with ZOSJSHTH )\j = ZlSiSnTH ,Bj =1.

(6) Explicit random variables Ywill-be-construeted-, which attain supremum and infimum cor-
respondingly in (1.1) and (1.2), will be constructed for each given x = (z1,...,z,) from the
domain of definition of MS™ and M™f,

We will also see that

0 conv(y([a,b])) = {(z, M>*P(z)), € conv(([a, b]))} U {(z, M™ (), z € conv(7([a,1]))},
re-that is, the upper hull of conv(y([a,b])) coincides with the graph of M*"P —and the lower hull
with the graph of M™. Besides this summary, we also recover several results previously known to
Karlin—Sharpley [13] for moment curves using our techniques (see Corollary 2.4). In Proposition 2.2,
we also show that the results obtained in this paper are sensitive to the assumption on a curve having
totally positive torsion.

1.1. What is—knewnIs Known about Questions 1 and 27 In what follows we set x &

(x1,...,2,) € R" ;-and EY(Y) = o (Ey1(Y),...,Ey,(Y)). We remark that both M and M™
depend on n > 1, x € R", [a,b] C R, and . We shall remind the basic fact that the convex hull of a
compact set is compact. For simplicity we shall use the symbol M for M5"P(x).

There are series of results describing M for some particular v. A common goal is to have a
parametric representation for it. However, as soon as n is large, it becomes difficult to find parametric
representation for M in such generality.

1.1.1. Convez envelopes-Envelopes and Carathéodory namberNumber. Under some mild assumptions
on v, say 7y is continuous on [a, b] is sufficient (see [16, 20]), M is is defined on conv(¥([a, b])). Moreover,
for any = € conv(¥([a,b])), M(x) is the solution of the dual problem

(1.4) M(z)= inf {do+ (d,z) such that do+ (d,¥(t)) > Yp+1(t) for all ¢ € [a,b]},
do€R,deR™

where (a,b) denotes the dot product in R™. Thus M is the minimal concave function defined
on conv(¥([a,b])) with the obstacle condition M (5(t)) > yn+1(t) for all ¢t € [a,b]. So the graph
(x,M(x)), € conv(¥([a,b])) belongs to the boundary of conv(y([a,b])). Carathéodory’s theorem
says that (z, M(z)) is convex combination of at most n + 2 points from ~y([a,b]). However, due
to the fact (z, M(x)) € dconv(y([a,b])), one can see that n + 1 points suffice by considering any
affine hyperplane H supporting conv(vy([a,b])) at (x, M (x)). Since v([a, b]) lies on one side of H, it
follows that the points, whose convex combination is (x, M (z)), must lie in H, and we can apply
Carathéodory’s theorem to H N ~y([a,b]) in n + 1 dimensional space H. This leads #s-to another
representation

n+1 n+1
(1.5)  M(x)= sup ch'ym_l t) ch—l >0, treab,1<l<n+1
S ety =e j=1

Probabilistic way of looking at (1.5) is that the supremum and infimum in (1.1) and (1.2) is-are
attained on random variables Y whose density is the sum of delta masses on at most n + 1 points in
[a,b], ie-that s, Y77 ¢, with ¢; € [a,b] for all j =1,...,n+ 1.

A direction of research focuses on understanding for which curves v +-the number n + 1 appearing
in Z?ill ¢jo; can be made smaller. As we just described, this is related to the following question:

giwven—Given_a curve 7y : [a,b] — R —and a point y € dconv(y([a,b])), find the smallest number
of points b(y) on ~([a,b]) whose convexr combination coincides with x. The integer b(y) is called
Carathéodory number for y, and it is defined for all y € conv(y([a,b])). Carathéodory number b(7y)
of a set y([a, b)) is defined as

(1.6) by) € sup bla).
z€conv(y([a,b]))
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By Carathéodory’s theorem b(v) < n+2 for curves in R*™1. For certain curves v, the number b(~y)
can be strictly smaller than n + 2. Fenchel’s theorem [5, 7] asserts that if the compact set v([a, b])
cannot be separated by a hyperplane into two non-empty—disjoint-setsnonempty disjoint sets, then
b(v) < n+ 1. In particular, for continuous curves 7 over closed intervals [a, b], the Carathéodory’s
number is at most n + 1 giving one more justification of (1.5) for continuous maps 7. See [2] where
Carathéodory number and an extension of Fenchel’s theorem is-are studied for certain type of sets
in R™1,

1.1.2. A Convex Optimization Approach. Another direction of research reduces (1.4) to what is
called positive semidefinite optimization problem under the assumption

v(t) = (82, .. 1", 1(1),
where [ is an interval in R. Finding upper or lower bounds on E1;(Y) = P(Y € I) given the
first n moments of Y is of important interests as-because it would refine the classical Chebyshev
and Markov inequalities. To give a feeling how the corresponding positive semidefinite optimization
problem looks like, we cite Theorem 11 in [3]: the tight upper bound on P(Y > 1) over all nonnegative
random variables Y given the first n moments EY7 = xj, 1 < j <mn, coincides with

M®"P(z) = min do + Zd ;.

do,...,dn €ER

Subject to

0= Z tij7 621,...,771,

i, itj=20—1

(do— 1)+ Zdj @) = 00,

=t
idj<é>: Z tij, 521,...,77,,
=t

1,j 1i+j=2¢
0= Z Zig, 621,...777,,
1,J 1i+j=20—1
14 n—j
Zdj<£_j>:uz o (=0...m,
7=0 4,J 1 14j=20
T.Z >0,

where T', Z > 0 means that the matrices T' = {t;;}7;_o, Z = {2ij}]';— are positive semidefinite.

The advantage of having such a semidefinite optimization problem is that it can be solved in a
polynomial time. However, it is not clear to us how practical are these results if one wants to verify
bounds M (x) < R(z) for a given function R and all x in conv(%([0, 1])). In [3] the authors provide
explicit formulas for the tight upper bound on P(Y > A) for n = 3 over all nonnegative random
variables with given first 3-three moments.

1.1.3. T'chebysheff systemsSystems, eonvereurvesConver Curves, and Markov mement-problemMoment
Problem. The system of continuous functions (yo(%), . .., y»(t)) +on an interval [a, b] is called Tchebysh-
eff system (or T-system) if any nontrivial linear combination >%_; a;v;(t) has at meat-most n roots
on [a,b]. As-Since the monographs [15, 14] deal with general Markov moment problem with arbi-
trary Borel measures, and in this paper we consider only probability measures, in what follows we
will be assuming that vo(¢) = 1 to make the presentation consistent with [15, 14]. Under such an
assumption the corresponding curve ¢ — (y1(t),...,yn(t)) is called convex curve.
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The sequence (Yo(t), ...,V (t)) is called T4 -system if
(1.7) det({7i(t;)}ij=0) > 0
on the simplex ¥ = {a <ty < ..., < t, < b}. Notice that any T-system can be made into T';-system
just by flipping the sign in front of ~, if necessary. If (7o(¢),...,7%(t)) is a T'y-system on |a,b]
for any k = 0,...,n, then the sequence (7o(t),...,1n(t)) is called M, -system on [a,b]. Checking
the positivity of the-determinant (1.7) seems a bit unpractical as-because one needs to verify the

inequality on the simplex ¥. The following proposition gives a simple sufficient criteria for the system
to be M, system.

Theorem 1.1 (Chapter VIII, [14]). Let vo(t), ..., (t) be in C([a,b]) N C™((a,b)). Then, for the

sequence (Yo(t), ..., Yn(t)) to be M -system on [a,b], it is necessary' that det({'yi(j)(t) ﬁjzo) >0 on

(a,b) for allk =0,...,n, and it is sufficient that det({’yi(j)(t) i‘{,j:O) >0 on (a,b) forallk =1,...,n.
We say that (y1(t),...,vm+1(t)) satisfies (A1) condition if 1 (t),...,ym+1(t) are in C([a,b]) N
C"™"1((a,b)) such that

(Lyi(t)y. ., v(t) and  (1,91(¢), ..., Ym+1(t)) are T4 —systemson [a,b] (Al)

Clearly, if y(t) = (71(t), ..., 7m+1(t)) has totally positive torsion on (a,b) then the condition (A1)
holds by Theorem 1.1. On the other hand, if the sequence (yo(%), . .., Yn+1) satisfies only the-assump-
tion (A1) then the probability distribution of a random variable X achieving supremum or infimum
in Question 2 is given in terms of upper and lower principal representations, see Chapter 111 and IV
in [15], and also Proposition 2 in a brief survey [8]. In particular, Carathéodory number is at most
|43 | for the curves t — (y1(t), ..., Vnt1(t)) in R"* satisfying the-assumption (A1).

A typical example of the convex curve is the moment curve

() = (t, ..., ") e RMHL

Assume [a,b] = [0,1]. In [13] the authors show that if z = (z1,...,2,) belongs to the interior of
conv(%([0,1])) then MS"P(z) and M™(z) are the unique solutions z, 1 of the linear equations

(1.8) det(Kp+1) =0 and det(Sp41) =0,

correspondingly, where K}, Sy are defined as

1 Il cee T Tl D) oo Tl
(1.9) Sor = | : S ;
T Tkl ... T2k Th+1 LTk+2 -+ T2k+1
and
Tr1 — T2 Tro9 — I3 Tl — Tk+4+1
(1.10) Ko, = : ,
Tk — Tk+1 Tkl — Tk42 ... T2k—1 — L2k
1—.’L‘1 Tr1 — I Tk — Tk4+1
Kop1 = :
Tk — Th+1 Th41 — Tk+2 - T2k — L2k+1
A point (z1,...,2,+1) belongs to conv(y([0,1])) if and only if the matrices K,4+1 and S,41 are

positive semidefinite, see Theorem 16.1a, and Theorem 16.1b in [13], see also “truncated moment
problem”, Chapter 10 in [21]; Chapter IV, Section 2 in [1]. Also the point (z1,...,z,+1) belongs to
the interior of conv(7([0,1])) if and only if the matrices K, +; and S,,4+1 are positive definite.

MHere (") (1) = 75 1)
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An important contribution of [13] is that the authors give complete description of d conv(~([0, 1])),
which allowed them to obtain a geometric point of view on the classical orthogonal polynomials. For
example, knowing the width in x,,11 direction of the set conv(+([0,1])), one can recover the classical
fact that among all polynomials of degree n+1 on [0, 1] with the leading coefficient 1 the Fehebyshew
Chebyshev polynomials minimize the maximum of the absolute value on [0, 1] (Theorem 25.2 in [13]).

Mrﬂ%%r&%p}e%@wwmmg&dld announce an intend to settle the case when [a,d] is
replaced by [—1,1], RT, or R. After looking into a literature, to the best of our knowledge, the
corresponding results appeared in the monograph of Karlin—StuddenKarlin and Studden [14].

In [22] Schoenberg obtained a formula for the volume of a smooth closed? convex curve v : [0, 2] >
R"™ in an even-dimensional Euclidean space: _

Vol(conv(v([0,27]))) = in!(rj/Q)! /0 - det(v(t1), ..., v(tn2) V' (t1), ..o,V (tyy2))dty . . . dty o,

and as a corollary, using Fourier series, he derived an isoperimetric inequality
(length(1))" > (7n)™2(n/2)!n!Vol(conv(v([0, 27]))),

where length(r) denotes the Euclidean length of v, and Vol(-) denotes the Euclidean volume. The
volumes of the convex hull of y([a, b]), such that v(0) = 0 and the sequence (1,71 (%), ..., vn(t)) forms
the T-system, were obtained both in odd and even dimensions in [15, 14], see for example - Theorem
6.1, Ch. IV in [14].

1.1.4. Other results-Results for systems-different-Systems Different from T-system. In [24, 25] Sedykh

describes possible singularities of the boundary of convex hulls of a curve in R3. In [18], using tools
from algebraic geometry, namely, De Jonquiéres’ formula, the authors compute a number of complex
tritangent planes of the algebraic boundary of the convex hull of an algebraic space curve in R? in
terms of its genus and degree of the curve. Moreover, in [18] the authors also find an algebraic
elimination method for computing tritangent planes and edge surfaces of the boundary of the convex
hulls of algebraic space curves in R3. Algebraic boundary of the convex hull of an algebraic variety
was studied [19], where the authors extended several results from [18] to higher dimensions. In [6],
using topological results, it is shown that the number of tritangent planes to a smooth generic curve
in R? with nonvanishing torsion is even.

Convex hulls of space curves have appeared implicitly or explicitly in other works in relation
to problems not directly related to them. We do not intend to provide the full list of references,
however, let us mention some of the examples. Finding sharp constants in such classical estimates
as John-Nirenberg inequality is related to finding convex hulls in #en-conver—nonconver domains
of certain space curves. In particular, in [12, 11], an algorithm is presented, which finds the convex
hull of a space curve y(t) = (¢,t2, f(t)) defined on R, under the assumption that /() changes sign
finitely many times (notice that the sign of f” coincides with the sign of the torsion of y(t)). As
Since the number of sign changes of " increase the “complexity” of computing, the convex hull of
7(t) increases too. The method obtained in [12, 11] is illustrated on a particular example in [26]
for the family of space curves 7, (t) = (¢,t2, go(t)), where g,(t) is a parametric family of functions
defined for all a > 0 as follows:

g&ﬂz{fmﬂm . It < a

(2 —a?)cosa+ (sina — acosa)(|t| — ) —cosa, [t| > o

Notice that the quadratic part for [t| > «a is chosen in such a way that g, € C?*(R). Clearly,
g/ (t) = —sin(t) for |t| < a sand g2/ (t) = 0 for |[t| > a. We see that as « increases the number
of sign changes of ¢/ (t) increases too. In [26] the upper boundary of the convex hull of the space

2Here closed curve means v(0) = v(2r)



SPACE CURVES WITH TOTALLY POSITIVE TORSION 7

curve 7, (t), t € R, is found in the nen-eenvex parametrie-domainnonconvex parametric domain?.
Q. = {(z,y) € R? : 22 <y < 22 +¢?}. In the limiting case ¢ — 00, one recovers the upper boundary
of the convex hull of the space curve 7, (t).

In sharpening the triangle inequality in LP spaces, for each p € R\ {0}, the paper [9] finds the
boundary of the convex hull of a space curve v(t) = (t,v1 — 2, (1 —t)/? + (1 +t)/P)P), ¢t € [-1,1].
In [10] the boundary of the convex hull of a closed space curve is described, which is the union of
the following three curves:_

( (1—t) 1

1 tP 1+1¢t)P
L+ . telo, 1)
Pt (L=t + 1P+ (L—tpp+1 P+ (1—¢
2 —t)P
, L) . e,
P+ (1t + 1+ (1—t)p+1 P+ (1—t)P+

T
|

tr (1—t) 11— 2t
, te0,1].
P+ (1=t +1"t+(1—t)P+1"tP+ (1 —t)P +1

Acknowledgments. We are grateful to Pavel Zatitskiy and Dmitriy Stolyarov for pointing our
attention to the reference [15]. The authors would like to thank an anonymous referee for helpful
comments and suggestions, and V. Sedykh for providing references on topological results on the
convex hulls of space curves.

2. STATEMENTS OF MARN-RESUEFSTHE MAIN RESULTS

For any v = (v1,...,vq) € R?, we set © = (v1,...,v4_1) to be the projection onto the first d — 1
coordinates, and we set v* = vy to be the projection onto the last coordinate. For any a < b, define
the following sets:

AF = {(r,...or) €RY oy >0,5=1,... .k, ri+ ...+ < 1Y,
A ={,. ) eRF ra<y <y <. <y <D
Let n > 1. If n = 2¢, we define

Up s AL ALS Ay A m, o mg) = > Ny(ag) + (1= A)(b);

and if n = 2¢ — 1, we define

l l
Un: AL X AT S (Bry oo By ma, -y we) = (1= Bv(a) + Y Biy(ay) + By (b);
j=1

=2

¢ ¢
Lot AV AL S By B,y = (1= Biv(en) + 3 Biv(ay)-
— !
Ifn=1,weset Up:[0,1] = Al x A — (1 - B1)v(a) + B17(b) ~and Ly : [a,b] =: AY x Al — ~(z1).
We will see that the maps U,, and L,, parameterize the upper and lower envelopes, respectively. The
letters U and L are chosen as the first letters of the words Upper and Lower.

3By the convex hull of 7, in 2. we mean all possible convex combinations of those points on 7, such that the
projection of the resulting convex hull of these points onto R? lies inside Q.
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Together with maps U,, and L,, we define functions BS"? (and B™) on the image of U (or L) such
that

(2.1) B (U,) =UZ,
(2.2) B™(L,) = LZ.
We remark that at this moment BS" (and B™) is not well defined, i-e;that is, it could be that
there are points s, s2, 51 # s such that U,(s1) = Uy,(s2) and at the same time UZ(s1) # UZ(s2).
However, we will see that the next theorem, in particular, claims that both functions BS"?, B are

well defined.

Theorem 2.1. Let v : [a,b] — R be in C([a,b]) N C" 1((a,b)) with totally positive torsion.
Ifn=2¢,0>1, we have

(2.3) Ug(0 (AL x AY)) = Loe(9 (AL x AL)) = d conv(F([a, b])),

(2.4) Uy - int(AL x AL) — int(conv(¥([a,b]))) is diffeomorphism,
(2.5) Lo - int(AL x AY) — int(conv(7([a,b]))) is diffeomorphism.
If n =20 -1, we have

(2.6) Tor (8 (AL x A1) = Top (9 (A x AL)) = Deonv(7([a, 1),
(2.7) Ug_y : int(AL x ALY = int(conv(F([a, b]))) is diffeomorphism,
(2.8) Loy - int(ALY x AY) — int(conv(F([a, b]))) is diffeomorphism.

For alln > 1,
(2.9) B B™ gre well defined, B%", B™ € C(conv(F([a,b]))) N C*(int(conv(F([a, b])))).

Next, for all n > lwe-have, we have®

(2.10) B is minimal concave on conv(y(|a,b])) with B™(%) = vp41;
(2.11) B is mazimal convex on  conv(¥([a,b])) with B™(7) = Yt
Moreover,

(2.12)  BM(y) = B"(y) if and only if y € &conv(F([a,b])),
(2.13)  dconv(y([a,b])) = {(z, B>**(z)),x € conv(([a,b]))} U{(z, B™(2)), 2 € conv(7([a,b]))}.

The statement of Theorem 2.1 may seem a bit technical;—; however, we think that the intuition
behind the construction of the convex hulls is natural. We refer the reader to schematic pictures in
Fig-Figure 1 for better understanding of the claims made in the theorem. In Fig:-Figure 2 the domain
conv(¥([a, b])) of BS™ in R3 is foliated by triangles where B is linear on each such triangle.

Perhaps it may seem that the total positivity of the torsion, ie-that is, the fact that the leading

principal minors of (v ,...,7(”+1)) have positive signs on (a,b), is a redundant assumption for
Theorem 2.1 to hold true. However, the next proposition shows that the total positivity is a sensitive
assumption.

Proposition 2.2. There exists a curve v : [—1,1] — R?**! in C®([-1,1]) such that the leading
principal minors of (v',~",~4") are positive on [—1,1] except the 2 x 2 and 3 x 3 principal minors
vanish at t =0, and the map B%"P defined by (2.1) is not concave on conv(y([—1,1])).

“When n = 1, the equality B*"P(¥) = 72 should be replaced by B*"P(%) > 7.
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A

n+1=1 n+1=3 n+1=5
n+1=2 n+1=4 n+1=6

FI1GURE 1. These schematic pictures clarify how the convex hull of the space curve
~ with totally positive torsion is parametrized. If n is even then the upper hull is
described by convex combination of 5 + 1 points of v, where among these points
are free, e-that is, they are chosen in an arbitrary way on the space curve, and the
last point ~(b) is always fixed. For the lower hull v(a) is fixed instead of v(b). If n is
odd, the picture is asymmetric In this case the upper hull fixes 2-two endpoints 7y(a)
and 7(b) and has “;! free points. The lower hull has %! free points, and no fixed
points. The case n = 0 (the convex hull of an interval), not mentioned in Theorem 2.1,
was helpful to guess the construction in higher dimensions, it has two fixed points
v(a) and ~(b). Compare with the exact pictures for the cases n +1 = 2,3,4 shown
in Figures 3,4, and 2.

The next theorem answers Question 2 —and also provides us with optimizers, ie-that is, the
random variables Y shieh-that attain supremum (infimum) in Question 2.

Theorem 2.3. Let~ : [a,b] — R"" v € C([a, b])NC™ 1 ((a, b)) be such that all the leading principal
minors of the (n+1) x (n + 1) matriz (v'(t),...,7"t(t)) are positive for all t € (a,b). Then

(2.14) sw {Eyn+1(Y) : BA(Y) =2} = B (),
(2.15) Ao B (V) B3(Y) =} = B (x),

hold for all x € conv(¥([a,b])), where BS"? and B™ are given by (2.1) and (2.2). Moreover, given
x € conv(¥([a,b])), the supremum in (2.14) (infimum in (2.15)) is attained by the random variable
¢(x) (the random variable {(x)) defined as follows+—._

Case 1: n =20 —1. Then by (2.6) and (2.7), x = (1 — Z§:1 Bi)7(a) "‘Z?:z Bi7(z;) + B17(b) for
some (B1,...,Be a2, ... w¢) € AL x AL Set P(C(x) = a) = 1 — Y5_, B, P(((x) = b) = B1, and
P({(z) = xj) =B for j =2,...,L. Also, by (2.6) and (2.8), x = (I—Zf o N)T (y1)+23 o N (Y5)

for some (Xa, ..., A, y1s ..., ye) € ALTIXAL Set P(E(x) = y1) = 1_2322 jrand P(&(z) = y;) = A
forj=2,... ¢
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FIGURE 2. For n+1 = 3+1, the set conv(¥([a, b])) is foliated by triangles (simplices)
with vertices J(a),7(b), and 7(t) for each ¢t € (a,b). The function B*"P is linear on
each such triangle and BS"P(5) = 4. Also B"" = B on the edges of each triangle.

Case 2: n = 20. Then, by (2.3) and (2.4), © = Zﬁ:l Bi7(z;) + (1 — Z§:1 B;)7(b) for some
(Bi,.. s Besx1, ... xp) € AL x AL Set P(¢(z) = b) = 1 — Z?Zlﬁj —and P({(x) = z;) = B;
for j = 1,...,0. Also, by (2.3) and (2.5), v = (1 — Z§:1 Aj)F(a) + Z§:1 N7 (y;) for some
Ay A Y1, - ye) € AL X AL Set P(é(z) = a) = 1 — Zﬁ:l Aj —and P(&(x) = y;) = A; for
j=1,... 0.

The next corollary recovers the result of Karlin—Sharpley{13}--e—+the-Karlin and Sharpley [13],
that is, equations (1.8) in case of the moment curve.

Corollary 2.4. Let y(t) = (t,...,t",t"*1) . [0,1] = R L. If 2 = (21,...,2,) € int(conv(F([0,1])))
then BS'P(x) and B™(z) are the unique solutions x,.1 of the equations Kny1 = 0 and Spi1 = 0
correspondingly, where K11 and Sp41 are defined by (1.9) and (1.10).

In the next corollary we give a sufficient local description of convex curves. Recall that a curve
v : [a,b] — R™ is called conver if no n + 1 its different points lie in a single affine hyperplane.

Corollary 2.5. Let vy : [a,b] = R"™, v € C([a,b]) N C™((a,b)) be such that all the leading principal
minors of the n x n matriz (7' (t),...,7™(t)) are positive for all t € (a,b). Then 7 is convex. In
particular, for any integer k, 1 < k < n, the equation co + c1y1(t) + ...+ cxyk(t) = 0 has at most k
roots on |a,b] provided that (co,...,cx) # (0,...,0).

Recall the definition of Carathéodory number b(y) of a curve v : [a,b] — R", &e-that is, the
smallest integer k such that any point of conv(v([a,b])) can be represented as a convex combination
of at most k points of y([a, b]), see (1.6). The next corollary directly follows from Theorem 2.1 (parts
(2.6), (2.8), (2.3), and (2.5)).

Corollary 2.6. Let v : [a,b] = R"™, v € C([a,b])NC™((a,b)) be a curve with totally positive torsion.
Then its Carathéodory number equals +o-| 52 |.

In the next corollary we obtain formulas for the volumes of the convex hulls of a space curve
having totally positive torsion both in even and odd dimensions.
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Corollary 2.7. Let v : [a,b] — R", v € C([a,b]) NC™((a,b)) be a curve with totally positive torsion.
If n = 20 then

Vol(conv(v([a, b])))

=(‘(1;£)! [ e 2@ rla) 2@, (o) () o

£(0—1)
2

()" / ,
:(2@!/< o detlrlo) =v(0), () = A(0) v () o ()
If n=20—1 then

Vol(conv(y([a, b])))

(L—1)(¢—2)
2

= o L 3et00) = 5(0)2(a2) = 5(e), - A =30, r2), -7 ()
(—1)“F

= det(y(22) = 3(@1)s -+ 1(e) — 3@, 7 @1), - (20)) .
(20 =1)! Joca<..<ap<b
Let Area denote n dimensional Lebesgue measure in R*™!, and let A™ be the transpose of a
matrix A.

Corollary 2.8. Let v : [a,b] — R"" ~ € CY([a,b]) N C"1((a,b)) be a curve with totally positive
torsion. If n = 2¢ then

1
Area(d conv(~([a, b]))) = / < det STrS, + {/det SI*S, > dz,
@eomilat) = [y Vaet s,
where S, = (y(x1) — (1), ..., v(xe) — (1), ¥ (x1), ..., (x0)) is (20 + 1) x 2¢ matriz, and dz is {
dimensional Lebesgue measure.
If n=20—1 then

1 1
Area(9 conv(v([a,b]))) = — / Vdet UMW dz + — Vdet T du,
N Ja<zo<..<z,<b N Ja<z<..<z,<b
where © = (4(5)~(@), ¥(#2)~7(a), - -, () —1(@), 7 (22, - 7 (0)), B = ((2) (1), -, ()~
Y(x1), ' (21), ..., (x¢)) are 2 x (20 — 1) size matrices, and dZ denotes ¢ — 1 dimensional Lebesque
measure.

3. THE PROOF-PROOF OF MAIN-RESUEFSTHE MAIN RESULTS

Sometimes we will omit the index n and simply write U, L instead of U,, L,, and it will be clear
from the context what is the corresponding number n. Before we start proving Theorem 2.1, first
let us state several lemmas that will be helpful throughout the rest of the paper. The next lemma
illustrates local to global principle.

Lemma 3.1. If the torsion of v is totally positive on (a,b) then

(3.1) det('(21),7'(z2), ... 7 (zn41)) > 0
foralla<x <...<...<Tpy1 <b.

Proof. Without loss of generality assume [a, b] = [0, 1]. The lemma can be derived from the-identity
(9) obtained in [4]. As-Since the lemma is an important step in the proofs of the main results stated
in this paper, for the readerseenvenienee-’ convenience, we decided to include the proof of the lemma
without invoking the identity from [4].
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We have
Yi(z1)  y(x2) Vi (Zn+1)
Ya(z1)  mlz2) .. Ya(@as)
det . . . . =
’Y;H-l(xl) 77,1-1-1(332) ‘e '7;1+1($n+1)
1 1 . 1
ey e e |
det | 0 T T ey =
: : . : e
Vs (@) Yoy (@2) Yosr(@nsn) |7
71 (@1) T(z2) 7 Ai(@ag)
1 0 . 0
75 (z1) Yo(®2)  v5(z1) Yo(@nt1) (1) 1
71 (1) 7(z2)  7i(21) T Y (@ng1)  vi(21) ,
det : : . : [IiG)) =
: : . : it
Voo @) Ay (@2) A (@) Vo1 @ns1)  Apaa(er) | 7
71 (z1) 71 (z2) (@) yi(@n+) 71 (z1)
Yo(w2)  5(x1) V(@ni1) _ 25(z1)
v (@2)  q(21) o Y (@nt1)  vi(z1) n+1 o)
det : : [ =
’Y;L+1 x2) _ 7;+1(a:1) 7;L+1(a7n+1) _ 'Y;L+1($1) Jj=1
71 (22) @) T Yi(@ng) 71 (@1)
Ya(x2) _ (@) W (@nt1) _ v5(@n)
Yi(z2)  i(z1) T Y (@nt1)  vi(@n) n+1
det : : H%(ﬂfj):
'Y;L+1(m2) o 'y7’1+1(m1) ’77/1+1(xn+1) o 'Y;L_H(xn) Jj=1
71 (22) i) T i(Ens) 71 (@n)
(vé(zn))' (vg(yn))/
. - 71 (y1) n 1 (yn) n+1
/ / / det : : dyrdys . . . dyy, H’yi(mj),
LTz Tn <V,’1+1(y1)>’ (%H(yn))’ j=1
71 (y1) o 71 (yn)
where in the equality (%) we used the property of the determinant that if vq, . . ., vy are column vectors
in R* then det(vy — vy, v3 —v1,...,05 —v1)) = det(vy — vy, v3 — Vs, ...,V — vk_1) by subtracting the
columns from each other.
The leading principal minors of the matrix (v/,~”,...,7"*1) are positive. In particular ~} is
positive on (0, 1), and hence the factor H;Lill 7' (z;) > 0. To verify (3.1), it suffices to show
(%(?ﬂ))’ (7&(%))'
71 (y1) T 71 (yn)
(3.2) det : : >0 forall O0<yi<y2<...<y, <Ll
('Y;H_l(yl))/ ('Y;L.H(yn))/
71 (1) T 71 (Yn)

We will repeat the same computation as before but now for the determinant in (3.2), and, eventu-
ally, we will see that the proof of the lemma will be just n times the application of the previous
computation together with an identity for determinants that we have not described yet.

Before we proceed, let us make a couple of observations. We started with the determinant of
(n+1) x (n+ 1) matrix. Next, we divided the columns by the entries in the first row, which consist
of 4} > 0, and after the Gaussian elimination and the fundamental theorem of calculus we ended up

with the integral of the determinant of n x n, and we also acquired the factor H?;l 71 (x;) > 0. To
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repeat the same computation for the determinant in (3.2) and the ones that we obtain in a similar
manner, we should verify that the entries in the first row of all such new matrices (of smaller sizes)
are positive. Such entries are changed as follows: _

(3)
)

~

N

£

N——
_

!/

~|

2

7N
2

st$3 ) st$4
— e

’

/ !/
(33) 71 stgl (:;?) st$2

1

SN

N
2

ﬁ !
"
We claim that after the k’th step, 1 < k < n, the obtained entry is of the form %, where

k

Ay denotes the leading ¢ x ¢ principal minor of the matrix (v/,7”,...,7™*1) (by definition we set
Ap :=1). Assuming the claim, Lemma 3.1 follows immediately because of the condition A, > 0 on
(0,1) forall 0 < £ <mn+1.

To verify the claim, we set T = (7/,~",...,7™tD). Given subsets I, J C {1,...,n+ 1}, we define
T7xy to be the determinant of the submatrix of T' formed by choosing the rows of the index set I
and the columns of index set J. We have

(7&)’ _ - Toaxoe

7 gl T{21}><{1} 7
YW\ Taoxqe)
(’j) = Téi’z for all £ > 2;
1 {1x{1}

N/ /
%
(7‘;) _ <T{1,£}><{1,2} )' ) Toox 3T eyx 2y — Tax 1,23 770,2px{1,3)
(%2)’ T(1,2yx 41,2} T{21,2}><{1,2}
1

(=) Ta2gxq123) Tiyxquy

(3.4) , forall £>3,

T2
{1,2}x{1,2}

where (x) follows from the identity (T7x (1,2, k—1,6})" = Trx{1,2,...k—1,k+1}, and (xx) follows from the

following general identity for determinants:

(35)  Typ—2,0x{ k=20 Tie—1)x(k=1] — Tyie—2],03 x [o—1) Tik—1)x{ k=216 = L{k—10,03 x 1] T 1—2) x [k —2]

for all k,3 < k < n+ 1, where we set [d] := {1,2,...,d} for a positive integer d. Before we verify
the-identity (3.5), notice that it also implies

Tip—20,0px k=11 \ " _ Tyte—21,0x{6—21,6} L= 1)x o= 1) — T(t—21,03 % (o1 o= 1] x {[r—21,k}
Tik—1]x[k—1 B T2 e
[k—1]x [k—1] [k—1]x[k—1]
_ T x 0 Tie-2)x (k2]
— = ,
[k—1]x[k—1]

land k — 1< /¢ <n+ 1. Therefore

(3.6)

for all k, ¢ such that 3 < k <

_l’_

~

N
242l

(3.4) (T{1,2,e}x{1,2,3} )' 3.6) Tqra1.0x 4 2] < [2)

T(1,2,3)%{1,2,3} T[23]X[3}

N |/~
EIENETEN

~
N

/N
24
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. . TiyxiaT]
In particular, after step 3, the entry in (3.3) becomes ~2XH=EXEL ~ () hecause T x (k) = Ag- It then
[3]x[3]

follows that after step k, the entry in (3.3) takes the form

<T{[k—1],k+1}><[k]>/ 35) Theraix o To-nixo-y _ AuprBia
Ty (k) Ty Ay :
for all 1 < k < n. Thus the proof of Lemma 3.1 is complete provided that the determinant identity

(3.5) is verified. Let A be an invertible (k —2) x (k—2) matrix, p, w,u,q € R¥=2, and let a,b, c,d € R.
To verify the-identity (3.5), it suffices to show that

A ¢ A ol A ol A T A ul g
(3.7) det(w >dt(p b) dt( )dt(p d)—det p b d|detA.

w c a

Since det (é g) = det A det(D — CA~'B) for an invertible m x m matrix A, and arbitrary n x n

matrix D, n x m matrix B, and m X n matrix C, we see that (3.7) simplifies to

(det A)? [(a— wA g (b — pA~ ) — (¢ — wA ) (d — pA_qu)] =

(det A)? det <(IC) Z) _ (i) A (uTqT)> :

pAfluT pAfqu

. p -1 (,T,T _
which holds because (w) A (u q ) = <wA_1uT wA-LgT

). The lemma is proved. O

Corollary 3.2. Let a < b, and let 3 : [a,b] — R™ be a curve § € C([a,b]) N C™((a,b)) with totally
positive torsion. Choose any a < z1 < ... < zym < b and r € [0,1]\ {z1,...,2m}. Then the vectors
B(z1) = B(r), ..., B(zm) — B(r) are linearly independent in R™.

Proof. Let v, 0 < v < m, be chosen in such a way that r € [z,, z,4+1]. Here we set zyp := a ~and
Zm+1 := b. We have

det (5 (= )—ﬁ(r),--- B(zm)—ﬁ(r))z
+ det (B (z2 = B(2), B(zv41) = B(r), -, B(2m) = Blzm-1)) =

/ /zyﬂ/ H / det(B'(s1), .-, 8'(s0), B (sv41), - B'(sm))ds1 . . . dsym # 0

by Lemma 3.1. g

Certain parts of the proof of Theorem 2.1 will require induction on the dimension n + 1. In
particular, we will need to verify the base cases when n = 1 (the odd case) and n = 2 (even case).
In what follows, without loss of generality we assume [a,b] = [0, 1], and v(0) = 0.

3.1. The proof-Proof of Theorem 2.1 in dimensien-Dimension 141. This case is trivial and
Theorem 2.1 essentially follows by looking at Fig-Figure 3.

If we reparametrize the curve v as 5(t) := v(v; (1)), t € (0, 71(1)), then 4 has totally positive
torsion. So ¥(t) = (¢,¢(t)),t € (0,71(1)) where ¢g(0) = 0, and dtgg( ) > 0 for all ¢t € (0,71(1)). We
have U1 (p1) = B1v(1), 81 € [0, 1] +is the line joining the endpoints of 4. Also Li(x1) = v(x1),21 €
[0, 1] +is the curve coinciding with 4. It is easy to see that in this case Theorem 2.1 holds true.

3.2. The proeef-Proof of Theorem 2.1 in dimension-Dimension 2+1.
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Ur ={(1-a)y(a) + ay(b)}

FIGURE 3. Proof of Theorem 2.1 for dimension n+1 =1+ 1.

3.2.1. The ltewer-hullLower Hull. Recall that
Ly: Al x Al =[0,1]% 3 (a, z) — oF(z).

We claim
(3-8) La(9([0,1]%)) = d(conv(7([0,1])));
(3.9) Ly : int([0,1)?) + int(conv(7([0,1]))) is diffeomorphism.

To verify (3.8), it suffices to show that 7 is the convex curve in R?. Convexity of ¥ can be verified
in a similar way as in Section 3.1. However, here we present one more proof, which later will be
adapted to higher dimensions too. Assume contrary, i-e-that is, there exists 0 < a < b < ¢ < 1 such
that ¥(a),7(b),7(c) lie on the same line, i-e-that is,

o b c
(3.10) 0 = det(7(b) — 7(a),7(c) — 7(b)) = / /b det (7 (41), 7 () dys g

The-equation-Equation (3.10) is in contradiction with Lemma 3.1 applied to 7.

To verify (3.9), by Hadamard-Caceioppeti-Hadamard—Caccioppoli theorem it suffices to check that
the differential of L := Lo at the interior of [0,1]? has full rank, and the map Ly is injection. The
injectivity will be verified later in all dimensions simultaneously (see the section on proofs of (2.7),
(2.8), (2.4), and (2.5)). To verify the full rank property, we have DL = (Lq, L;) = adet(¥(z), 7 (z)).
On the other hand,

Lemma 3.1

(3.11) det(7(x). 7 (x)) = /0 "ot (7 (50). 7 () gy "

Thus, see Fig:Figure 4,

Ly : AL x AL =10,1)? 5 (o, 2) = ay()

parametrizes a surface in R?, which is a graph of a function B™! defined on conv(5([0, 1])) as follows:

B (oy(z)) = ays(z), forall (a,z) €0, 1]2.
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FIGURE 4. Two pieces of the boundary of the convex hull of v: the lower hull Lo
(left) and the upper hull Us

Let us check that B'™ is convex. Indeed, at any point (g, o) € int([0, 1) the set of points £ € R?
belonging to the tangent plane at point Lo(ag, zp) is found as the solution of the equation

(3.12) det(La (0, 0), Lz (a0, x0), € — L{a, 20)) = ag det(v(x0), 7 (20), &) = 0.
For & = e3, where e3 = (0,0, 1), we have

(3.11)
det(vy(z0),7'(z0), e3) = det(F(x0),7 (z0)) > 0.

Therefore, to verify the convexity of B, ie.that is, the surface L([0,1]?) lies above the tangent
plane at point L(ayg, zg), it suffices to show that

det(v(20), 7 (20), L(a, x)) = a det(v(20), 7 (o), 7(x)) = 0.
If © = x¢, there is nothing to prove. If x > xg then

ma 3.1

det((z0), ¥ (x0), () = /0 " e (). ). (s

Similarly, if z < xg, by Lemma 3.1 we have

detr(z0). o)1 (@) = [ /0 " det(+ (1), 7 (20) ' (u3) dn s > 0.

To verify that B™ is the maximal convex function defined on conv(%([0,1])) such that B(¥(s)) =
v3(s), notice that since every point (¢, B™(£)), where ¢ € conv(([0,1])), is the convex combination
of some points of ~, it follows that any other candidate B would be smaller than B by convexity.

3.2.2. The wpper-huttUpper Hull. Consider the map
Uy AL x AL = 10,1 3 (, 2) = a7 (z) + (1 — a)7(1).
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Similarly as before, ® satisfies (3.8) and (3.9). Fhe-property—Property (3.8) follows from frem-the
convexity of 7. Fhe-propertyProperty (3.9) follows from

1
det(Ua, Uy) = adet(F(z) —7(1),7' (z)) = / det(¥'(x), 7' (y2))dy2 # 0

for all (o, x) € int([0, 1]?) by Lemma 3.1 applied to 7.
Next, we show that
B (a7y(z) + (1 = a)y(1) = ays(z) + (1 — a)ys(1)

defines a minimal concave function on conv(%([0, 1])) with the property BS'P(¥) = 73, see Fig-Figure
3. Let U(a,x) = ay(z) + (1 — @)y(1). The equation of the tangent plane at point U(ayg, zg), where
(ap, 70) € int([0, 1]?), is given by

det(Ua (a0, z0), Uz (o, 20), & — Ulan, z0)) = ap det(y(xo) — ¥(1),7 (z0), & — ao(y(x0) — (1)) —¥(1))
= agdet(y(zo) —v(1),7'(x0), & — (1)) = 0.

For £ = Ae3 with A — 400, we have
sign[det(y(zo) — v(1),7'(20), Aes — ¥(1))] = sign[det(F(z0) — 7(1),7 (z0)]

1
= sign [/x det (7' (z0), 7(y2))dy2

0

by Lemma 3.1 applied to 7. Therefore, the concavity of B%"P would follow from the following
inequality:

det(vy(zo) — v(1),7 (w0), U(a,2) = v(1)) = adet(vy(zo) — v(1),7 (o), v(2) — (1)) <0

for all zg,a,x € [0,1]. If x = xp, there is nothing to prove. Consider z > ¢ (the case = < z¢ is
similar). Then

det(y(zo) — (1), (z0),v(x) — (1)) = det(y(xo) — (1),
— det(y(z0) — 7(x), 7 (20),7(1) — Y(x0)) / / det(y/ (1), 7' (20), 7 (92))dyaddys < 0

by Lemma 3.1.

’Y/(xo) v(z) = v(20)) =

The-properties-Properties (2.12) and (2.13) will be verified in seetions-Sections 3.3.3 and 3.3.4.

3.3. The preef-Proof of Theorem 2.1 in an arbitrary-dimensien—Arbitrary Dimension
n+ 1.

Proof. Since Theorem 2.1 contains several statements, the whole proof will be split into several parts.

The proof of claims (2.6) and (2.3).

The proof will be by induction on n. We have checked the statement for n = 1,2. First we
consider the case when n = 2¢ —1. We shall verify the claim (2.6) by showing that Ugp_1] A(ALXAL s
i-e-that is, the restriction of Ugy_1 on (AL x ALY scoincides with maps Ugy_o and Loy_o (similarly
for fgg,lla(Aﬁqu)). Since by the induction the union of the images of Uss_o and Loy_o coincides

with the boundary of the convex hull of 7([0, 1]), see (2.13), we obtain the claim.
Recall that

UQZ*l : Aﬁ X Aiil > (Bla-'wﬂfayQa"'ayf ’_>517 +ZB‘]’Y y] i
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and
-1 -1
Upe—n : AT X AT S (Mg, Mmoo men) = Y AT () + (1= A)A(1),
j=1 J=1
-1
Lop—o : ATV AT S (M, Nemn, 21, zm1) 2 Y AT(2).
j=1

If 81 = 0 then Ugy_; coincides with Loy 5. If > i1 B =1, kethat is, B1 = 1 — Zﬁ:z Bj, then
Ugy_q coincides with Usy_o. Thus, we have

8 conv(7([0,1])) " Ugy_o (ALY x ALY U Loy o( AL x ALY € Uaypo1 (0 (AL x ALY,

On the other hand, if 3, = 0 for some p € {2,...,¢}, then Uy coincides with Los_o restricted
to z1 = 1. If at least one of the following conditions hold: a) yo = 0; b) ys = ys4+1 for some
s€{2,....,0—1}; ¢) yo = 1, then Ugy_1 coincides with U5 restricted to 21 = 0. Thus we obtain
0 conv(7([0. 1])) = Unp1(0 (AL x AL1)),

Next, we verify that dconv(F([0,1])) = Lar_1(9 (A1 x AL)). We recall

~

14
f26—1 : Aﬁ_l X Ai > (527 cee 7/3£7y1’ cee 795) = Eﬁ]ﬁ(yj) + (1 - Zﬁ])ﬁ(yl)
p= =2

If y; = 1 then Loy_; coincides with Usgs—s. If 4y = 0 then Lgy_; coincides with Loy_o. Thus, by
induction 9 conv(5([0,1])) C Lar_1(9 (AL x AL)).

Next, if ys = ysi1 for some s € {1,...,£ — 1}, then Loy ; coincides with Lo, o restricted to
At =1-=Y'Th\;. Also, if Y25, 8 = 1 then Ly,_; coincides with Ly,_». Finally, if 8, = 0 for
some s € {2,...,0}, then Ly, 1 coincides with Loy 5 restricted to Z?;i Aj = 1. Thus we obtain

0 comv(7([0, 1)) = Lar1(8 (AL x AL)),

Next, we assume n = 2. First we verify (2.3). As before, we claim that the restriction of Uy
on I(AL x Af) coincides with maps Uyy_1 and Log_; (similarly for Lo). Since by the-induction the
union of the images of Usy_1 and Loy coincide with the boundary of the convex hull of 7([0, 1]),
see (2.13), we obtain the claim.

We recall that

y4 V4
Uae: ALx ALS (M, A,y me) = > NA(g) + (1= ) 3)F(1);
j=1 j=1
and
l
UZE—l : Ag X Ai_l > (ﬂla oo aﬁﬁ?y% cee 7y€) = 517(1) + Zﬁjﬁ(y‘])a
j=2
/ V4
L2€—1 : Aﬁil X Afi > (/827~ . '7ﬂg7zla .. ‘7Z£) = (]‘ - Z/B])W(Zl) + 25]7(2])
j=2 j=2

Notice that if Z§=1 Aj = 1 then Uy coincides with Lgs_;. On the other hand, if 21 = 0 then
Uy coincides with Upy_;. Thus, by induction we have 0 conv(F([0,1])) C Uqp(d (AL x AL)). Also
notice that if A, = 0 for some p € {1,...,¢} (or x5 = x4y for some s € {1,...,£ —1}, or xp = 1)
then Uy coincides with Ugy_q restricted to the boundary of Aﬁfl x Al (if Ay, =0 or zp = 1 take
Bi = 1— 350 o8 if mg = w41 take By = 1 — 325, B;). Thus we obtain conv(7([0,1])) =
Uz(0 (AL x AL)).
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Next, we verify the claim Lo (0 (AL x AL)) = conv(F([0,1])). We recall that
fgg : Aﬁ X Ai ) ()\1, - ,)\g,xl, - ,J}g) —> Z)\JW(‘%]),

If Zﬁ 1Aj = 1 then Loy coincides with Loy_1. If 2y = 1 then Loy coinci(ges with Ugp_1. Thus by
induction we have &ee&v{%[@—lﬁ—}ebzz{é%é%ﬁéﬁ—} conv(7([0,1])) C Loe(0 (AL x AL

If A, =0 for some p € {1,...,¢} ;or 1 = 0, then Loy coincides with Usgy_; if we choose 31 = 0.
Finally, if 25 = 2541 for some s € {1,...,£ — 1}, then Ly coincides with Usy_; if we choose 31 = 0,
and Bsi11 = As + Asp1. Therefore, we have Log(0 (AL x AL)) € 0 conv(F([0,1])), and the claim (2.3)
is verified.

The proof of claims (2.7), (2.8), (2.4), and (2.5).

We start by showing that the Jacobian of the map U, has full rank at the interior points of
its domain. Hence the map is local diffeomorphism by the inverse function theorem. Therefore,
the map is surjective, otherwise the image of its domain would have a boundary in the interior of
the codomain (boundary goes to boundary by (2.3) and (2.6)) and this would contradict the local
diffeomoerphismdiffeomorphism. Next, we show that the map U, is injective, and hence proper. So
we conclude that U, is diffeomorphism. Similar reasoning will be done for L,,.

First we verify that the Jacobian matrices VU,, and VL,, have full rank at the interior points of
their domains.

Assume n = 2¢ — 1. We have

det(VUgg_l) = det(ﬁ(l),ﬁ(l’g), - ,7(%5), 527’(3;2), RN ﬁg’y

(e

¢
= £ det(T(22),7 (22),7(23), 7 (3), - .., F(we), 7 (we), 7(1)) H Bj
= £ det((w2) —7(0), 7 (w2), V(ws) — A(w2), 7 (23), - .. ¥ (we) = Flwe), 7 (@), 7(1) =7 (xe) [ ] 85

L 1 x3 D)
—= 18 [ o[ et o0 7 w2 T ). 7 )T (s0) s s
=2 Ty x9 0

Thus det(VUsq_1) is nonzero by Lemma 3.1.
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Next, we verify that det(VLgs_1) # 0. Indeed,
det(Vfggfl) =

l
det(F(z2) = 7(21), ¥(w3) = F(w1), ., V(@e) = F(@1), ¥ (@1), - V(@)1= D _B) [[ 85 =
j=2
¢ l
det(7(w2) = 7(01), T(w5) = F(w2), - Awe) = F(we1), 7 (1), T @) (1 =3 87) [] 65 =
l l
£ det(F'(21), (z2) — F(@1), 7' (22), ¥(@3) — F(@2), - .., F(2we) = F(2e=1), 7 (20)) (1 — Z s 116 =

1—26] Hﬁj

/ / / det(¥ (z1),7 (51), ¥ (x2), 7 (s2), - - -, 7 (50-1), 7 (w¢))ds1dsy . . . dsg—1 # 0

by Lemma 3.1.
Assume n = 2¢. We have

det(VTze) = det(F(21) = F (1), .., Flae) — F1), 7 (1), ... 7 (xe) [[ Ay =
j=1

+ det (' (1), F(x1) — F(w2), T (22), 7 (w2) — F(3), ..., 7 (xe), F(xe) = (1) [[ A5 =

1 T3 )
ﬂ:/ / / det (7 (1), 7 (51), 7 (@2), 7 (5), - 7 (20), 7 (50) )ds1ds . ngH)\],
i) T2 Ja1

which is nonzero by Lemma 3.1.
Finally, we verify det(V Lgs) # 0. We have

det(VLae) = det(F(x1), ..., ¥(e), 7 (1), ... 7 () [ A =
+ det(F(x1) — 7(0), 7 (21), (w2) — F(@1), 7 (2), - - ., () — F(we-1), ¥ (@) [[ s =

Ty X2 Z1
[0 [ et 0,7 0.7 5.7 w2, T (50 s dsZHA.
Tp_q T 0

Thus det(VLy) # 0 by Lemma 3.1.

Next, we show that the map U, is injective in the interior of its domain. Assume n = 2/. Let
(M, Aoy 1, .. x) and (Br,..., Be, Y1, ..., ye) be two different points in int(A%L x Af) such that
U, takes the same values on these points. Then

l J4
(3.13) > NG = F(1) = > B (we) —7(1) =0.
j=1 k=1

We claim that (3.13) holds if and only if z; = y; and A\; = §; for all j =1,...,¢. Indeed, we need
the following lemma.
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Lemma 3.3. For any numbers z;, 1 < j < 20, such that 0 < 21 < 20 < ... < 290 < 1, and any
r€[0,1]\ {z1,..., 200}, the vectors ¥(z1) —F(r), ..., 7(220) — 7J(r) are linearly independent in R

Proof. The lemma follows from Corollary 3.2 applied to 8 =7. (|

Let N be the cardinality of the set @ = {x1,...,z¢} N {y1,...,y¢}. If N = £ then necessarily
xj =y, forall j =1,...,¢, and the-equation (3.13) combined with Lemma 3.3 implies that \; = 3;
for all j = 1,...,¢. Therefore, assume N < ¢. Then we can split the sum (3.13) into the sum of
3-three terms: the sum of \;(5(z;) — (1)) where z; ¢ Q; the sum (\; — 8;;)(¥(z;) — (1)) where
xj € Q; and the sum £;(¥(y;) —7(1)) where y; ¢ Q. Since 3; and \; cannot be zero, then applying
Lemma 3.3 with r = 1 we get a contradiction.

Next, we verify the injectivity of Loy on the interior of its domain. Let (A1,...,\s, 21,...,2) and
(B1,...,Be,yt1,- .., ye) belong to int(AL x AL) and satisfy

4

¢
> A (@) = BiA(uk) = 0.
k=1

j=1

By applying Lemma 3.3 with r = 0 and invoking the set () as before, we obtain z; = y;, A\; = 3; for
all j=1,...,¢. o
Assume n = 2¢ — 1. To verify the injectivity of Ugs_1 on the interior of AL x AL, we pick points

(A, Ao, @2, ... xg) and (B, .., Be, Y2, - - -, ye) from int(AL x A1), and we assume
4 L
(3.14) (M= BOF(L) + > A7) = > B(y;) =0.
7=2 7=2
Lemma 3.4. For any numbers 0 < z; < ... < zy_9 < 1, the vectors F(z1),...,7(220—2),7(1) are

linearly independent in R2~1,

Proof. The lemma follows from Corollary 3.2 applied to 8 =7, 2901 = 1, and r = 0. O

Invoking the set Q --and repeating the same reasoning as in the case of injectivity of Uy, we see
that the-equality (3.14) combined with Lemma 3.4 implies z; = y; for all j =2,...,¢, and \; = j;
forall j =1,... ¢

To verify the injectivity of Ly, on the interior of A1 x A%, we pick points (Xa, ..., A, 21, ..., 2¢)
and (Ba, ..., Be,Y1,---,ye) from int(AST x AY), and we assume
¢ ¢ ¢ ¢
(3.15) (L= (@) + ) A7) = (1= B)w) + Y B(y)).
j=2 j=2 j=2 j=2

Without loss of generality, assume y; < 1. We rewrite (3.15) as follows: _

¢ l ¢
(3.16) (1= M) @) =) + > \F(s) = F(w) = > Bi(F(y;) —F(w)) = 0.
j=2 j=2 j=2
Notice that if the points z1,...,x4,y1,...,2, are different from each other, and they belong to

the interval (07 1)7 then the vectors 7(131) - i(yl)v s 77(11@) - ﬁ(yl)aﬁ(yQ) - ﬁ(yl)v s aﬁ(yé) - ﬁ(yl)
are linearly independent. The proof of the linear independence proceeds absolutely in the same

way as the proof of Lemma 3.3, therefore we omit the proof to avoid the repetitions. Let @ =
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{za, ..., xe} N {y2, ..., ye}, X ={x9,..., x4}, and Y = {yo,...,ys}. Then (3.16) takes the form

l
L= M) =7+ Y N0 = 7))+
j=2 Jjrx;eX\Q
(3.17) > =B @a) = Fw) - D Bi(Ayy) — () =0.
jix;€Q Jiy; EY\Q
If 41 < z1 then from the linear independence we obtain that z; = y; for all j = 1,...,/, and
Aj =B forall j =2,...,4. In what follows we assume y; < .

Notice that if for any y € Y\ @ we have y # x1, then (3.17) contradicts te-the linear independence.
On the other hand, if for some y;+ € Y\ Q we have y;» = x; (we remark that there can be only one
such yj= in Y\ @, moreover, y;+ ¢ Q) then (3.17) we can rewrite as

(1-5; —Z)\ )+ D ) =)+
Jrz;eX\Q
(3.18) > (N = Bey) () = () — > Bi(¥(y;) — (1)) = 0.
jrzjeQ 7y €EY\Q, Y #£Y *

Invoking the linear independence, we must have 1 — B;-k — Z§:2 Aj = 0. Since \j, 8; > 0, we have
X\ Q and Y\ (QU {y;-}) are empty. Then @ has cardinality £ — 1 and @ does not contain y;=,
which is a contradiction.

3.3.1. The proof-Proof of (2.9). Assume n = 2{. Since U, and L, are diffeomorphisms between
int(AL x A%) and int(conv(F([0, 1]))), we see that the equations

(3.19) B (T(1)) = U (1),
(3.20) B (L(1)) = L*(1)

for all ¢ € int(AL x AY) define functions B*"? and B™f uniquely on int(conv(F([0,1]))). We would
like to extend the definitions of BS"® and B™ to the boundary of conv(5([0,1])) just by taking
t € (AL x AY) in (3.19) and (3.20). To make sure that the choice t € d(AL x Af;) in (3.19) defines
Bs" (and B™) uniquely and continuously on conv(5([0, 1])), we shall verify the following. _

Lemma 3.5. If U(t;) = Ul(tz) for some t1,ta € AL x AL, then U*(t1) = U?(ty). Similarly, if
L(t1) = L(t2) for some ty,ta € AL x AL, then L*(t1) = L*(t2).

Proof. Without loss of generality we can assume that t1,ty € (AL x AL); otherwise the lemma
follows from (2.3), (2.4), and (2.5).

First we show that L(t;) = L(tz) for some t1,t2 € (AL x AL) implies L*(t1) = L*(t2). If
t1 = to, there is nothing to prove; therefore, we assume t; # to. For t1 = (A,..., Ag,x1,...,2¢) €
(AL x AY), we have

J4
Loo(t1) = > A(a;).
j=1

Among Ai,..., Ay many of them can be zero, so we reduce the sum into 2?:1 Ag;Y(Tq;) where
)\qj >0,0 </l and 0 < zg < ... < T, < 1. Next, among Zgp,- .., Tq, Many can be equal to
each other. Those x4, that are equal to each other we group them together, and those x; “s—whieh
that are zero we remove from the sum by reducing the sum if necessary. This brings as-us to the
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following expression: _

Loy(t1) Z)\Ik (1, ),

where I}, C {1,...,¢}, the sets I} are disjoint for all k=1,...,m. Here, 0 <z, < ... <z, <1;for

any k,1 <k <m, we have x; = xy, for all j € I}; forany k, 1 <k < m, weset 0 < Ap, ::Zjelk)‘j'
We remark that if I, = 0 then the term A r.Y(xr,) is zero by definition.
Similarly, for to = (B1, ..., Be, Y1, - -, ye) € (AL x AY), we can write
Loy(t2) ZﬁJﬂ YJy)
with v < /.
As in the previous section, from linear independence of the vectors J(z1),...,7(z2¢), where 0 <

21 < ... < z9 < 1, it follows that Los(t;) = Lay(t2) holds if and only if v = m, z;, = y;,, and
Ar, =By, forall k =1,...,m. Hence L3,(t1) = L3,(t2).

The proof for the map Uy, proceeds in the same way as for Lyy. Indeed, the equality Usgp(ty) =
Usge(t2) implies Z§:1 Xi(7(zy) —7(1)) = Z] 1 Bi(A(y;) —7(1)). By removing zero terms —and
grouping the similar terms inside the sums as before, we obtain the equation

Z)\Ik :Elk Zﬁ‘]’“ ka (1))7

where we also removed the terms containing those x; and y; which-that are equal to 1. Applying
Lemma 3.3 with » = 1, we obtain that v = m and zj, = yj, for all k =1,...,m, and A\, = B,.
Hence U3,(t1) = U3, (t2)._ O

Next, we prove the analog of Lemma 3.5 for n = 2¢ — 1.

Lemma 3.6. If U(ty) = Ul(ts) for some ty,ta € AL x ALY, then U?(ty) = U?(tz). Similarly, if
L(t1) = L(tp) for some t1,ty € ALY x AL, then L#(t1) = L*(t2).

Proof. Without loss of generality we can assume that t1,to € A(AL x ALY (similarly, t1,ty €
O(AL 1 x AY) in the second claim of the lemma); otherwise the lemma follows from (2.6), (2.7), and
(2.8)

We show that the equality U(t;) = U(ts) for some t; = (Ai,..., A\, T2,...,27¢) +and ty =
(Bi,--s Besy2, - - -, ye) in (AL x ALY implies L?(t1) = L*(t2). We can further assume t; # to;
otherwise there is nothing to prove. We have

1
(3.21) Ay(1) + Z () = Biy(l) + ZﬁjV Yj)-

As in the previous lemma, in the left-hand-left-hand side of (3.21) we reduce the sum by removing
those \; “s—which-that are equal to zero. We further reduce the sum by considering only positive
z;°s. Next, among the numbers 0 < x5 < ... < xy < 1, these-who-we_group those that are equal
to each other we-group—them-together, and those x; ‘s—whieh-that are equal to 1 we group with
A7(1). Eventually, the left-hand-left-hand side of (3.21) takes the form A, 7(1) + >0 Ar7(z;),
where m </ —1,0<wxp <...<wp, <1,and \j; = Zjelj Aj with Az, > 0 and A7; > 0 for all
j =1,...,m. Making a similar reduction in the right-hand-right-hand side of (3.21), we see that
(3.21) takes the form

(3.22) (A1, — B J7(1) + Z A () =Y B (y,) =
j=1
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Since 1+m+wv < 20— 1, it follows from Lemma 3.4 that (3.22) holds if and only if m = v, Aj, = 8,
forall j =2,...,m, and zj; =y, for all j =1,...,m. It then follows that U*(t1) = UZ(t2).

Next, we Show that the equality L(t1) = L(tg) for some t1 = (Ag,..., \¢,21,...,2¢), and to =
(B2, Bes Y1, - - -, ye) in O(ALY x AL) implies L#(t1) = L*(t2). Without loss of generality assume
t1 # t and y; < 1. The equality L(t1) = L(t2) implies

14 )4 4
1—ZA (1) + D A(ey) = (L= Bi)lun) + > B(ws),
=2 j=2 j=2
which we can rewrlte as
)4
(3.23) (1- Z A) (1)) + Z A ) = Y Bi(y;) — () = 0.
=2

We would like to show L*(ty) — L*(t2) = 0 Notice that
14

J4
(3.24)  LA(t1) — L7(t2) = Z)\a ) i1 (@1) = Y1 (U1) + D A1) = g1 (1)) —

‘
> Bi(ma1(yj) = Y1 (m))-

j=2
Rearranging and grouping equal terms in (3.23) as in the previous arguments, we can rewrite (3.23)
as

<1—ZAI;—B10><7 (1) +ZM2 T(wz2) = T(y1))
(3.25) —|—Z Aﬂ‘ﬂﬂ)( (3713 - Zﬁﬂ CUJ2 —7(y1)) =0,
7j=1

where my, ma, my are > Wmtegers with 1+ma+ms+my <20—1 (if mp =0
then the corresponding sum is set to be zero), IJI,IJQ,I]‘%, JJI, J? are subsets of {2,...,¢}, B, > 0,
A= 2jers Aj > 0, Byk = 35 gk B > 0, Aps # B1, and the points a1, {ep}i2 Az p 2 v it
are different from each other, none of them (except of x1) coincides with y1, and all of them (except
of z1) belong to (0, 1]. We remark that z; can be equal to y;. In a similar way we can rewrite (3.24)

as (3.25), +e.that is,
L*(t1) — L*(t2) =

(1- Z )\1; = B1y) (m+1(21) = Y1 (y1)) + Z )\1]2 (%H(ﬂfff) = Tn+1(y1))

J=1 j—l
m3
+ Z;()‘[? = By) (1 (@) — Mt (yn)) 2@72 Yot1(Y52) = Ynt1(y1))-
J= J

The next lemma follows from Corollary 3.2.
Lemma 3.7. For any numbers z;, 1 < j < 20 — 1, such that 0 < 21 < 22 < ... < 290 < 1, and
any r € [0,1)\ {21, ..., 220}, the vectors ¥(z1) —75(r), ..., 7(220—1) — Y(r) are linearly independent in
RQZ_l.

If y; = 21 then L*(t1) — L*(t2) = 0 follows from (3.25) and Lemma 3.7. If y; < z1, then applying
Lemma 3.7 to (3.25) we see that 1 —> " )\I; — B1, = 0 and my = m3 = my = 0, which implies that
L?(t;) — L*(t2) = 0. Lemma 3.6 is proved. O
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3.3.2. The proof-Proof of (2.10) and (2.11). We start with (2.10). Assume n = 2¢ — 1. First we
show that B*'P(%) = v,,4+1. We remind that

l
B (B1y(1) + Zﬂﬂ 7)) = Bimr1(1) + Y Bivnsr (@),

=2
holds for all (Bi,..., B x2,...,¢) € AL x A7l We claim that if £7(1) + Z] o B () =
J(y) for some y € [0,1] then Biryns1(1) + X5y Bynt1(2) = myr(y). Indeed, F(y) = U(ts)

with to = (1,0,...,0,y) S Aﬁ X Aiil, and 61’}%4.1( ) + Z] 2,83’)/114,_1(.%3) = U(tl) with ¢
(B1,..., Be,x1,. .., x0) € AL x A1, Thus the claim follows from Lemma 3.6.

Next, we ShOW that B®'P is concave on conv(¥([0,1])). As—Since the surface parametrized by
Un(t), t € AL x AL coincides with the graph {(z, BS"’(z)),z € conv(7([0,1]))}, and BS"™ ¢
C’(conv( ([0, 1]))), it suffices to show that the tangent plane T" at Uy, (s) +for any s = (A1,..., A, 42, .. .
int (AL x AL lies above the surface U,. The equation of the tangent plane T' at U(s) := U,(s) is
given as

T(z) := det(Up,(5),...,Us,(8), Usy(8), ..., Uy, (s), 2 —U(s)) =0, xe&R"M™.
We have
T(x) = A1+ Aedet(y(1),v(y2), - - 7(Ye)s Y (y2)s - -7 (e), @)

To show that the tangent plane T lies above the surface, first we should find the sign of T'(Ae,11) as
A — oo, where e,41 = (0,...,0,1). For sufficiently large positive A\, we have
~—————

n+1
Sign(T()\enJrl)) = Slgn(det(7(1)>7(y2)a s 7ﬁ(yﬁ)77,(y2)7 s aﬁl(yﬁ)))
On the other hand, we have

det(¥(1),7(y2)s - - Y(We) . 7 (y2), ..., 7 (ye)) =
(—1) 5 det ([ (), 7 (W), - - T (), T (), 7(1)) =
<1>*“ 5 et (wa) — 7(0), 7 (W), - F(we) — Fwe-1), 7 (), 7(1) — 7 (we)) =

<e 1(¢=2) Ye Y2 _ — —
/ / / det(¥ (v2), ¥ (y2), - - -, 7 (ve), ¥ (ye), ¥ (vey1))dva . . . dvedvpyq.
Yo JYr—1

Thus, Lemma 3.1 applied to 7 shows that sign(7'(Ae,+1)) +for sufficiently large A\ +—coincides with
(—1)“71)2([72). Therefore, the surface U(t) being below the tangent plane 7' simply means that
(1)) <0 forall t = (B, ..., Beoa, .. a0) € AL x AL We have

14 V4
= Z 5] det(’Y(l)’ ’Y(y2>v o 77(?/@)5 ’yl(y2)7 ce avl(yﬂ)a ’Y(:C])) H )‘k
j=2 k=1

It suffices to verify that

(e— 1)(Z 2)

(3.26) (—1) det(y(1),v(y2), - - Y(We), Y (y2), -7 (ye), y(w)) <0
for all u € [0,1]. We have

(=) det(v(1), 7(w)s - W)Y W), -2 (), ()

(327) = det(V(y2)7 Y (y2)7 st 77(?/@)7 ’}/(yﬁ)a 7(1)’ 7(“))

7yﬁ) S
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If w € [ys, 1], then

det(’Y(yZ)a’y/(yQ)a" ( ) ( )77(1)77(u))
— det(y ( )v’(y2) -~,7(ye) Y (ye), v(u),v(1)) =
— det(v(y2) = v(0), 7' (¥2), - -+, Y(We) = ¥(We—1):7 (ye), ¥ (w) — v(ye), ¥(1) = y(u)) =
/ / / " / ” det(v'(v2), 7' (y2), - - -7 (ve), ¥ (o), 7 (ves1), 7 (vera) )dva - . . dvpdvegrdug

is nen-pesitivenonpositive by Lemma 3.1.
If u € [0,y2] we again use (3.27). Next, we move the column vy(u) to the left of the column

v(y2). Notice that we will acquire the negative sign because passing the couples v(y;), 7' (y;) does
not change the sign of the determinant, the negative sign arises by passing v(1). Using the similar
integral representation as before together with Lemma 3.1, we see that the-inequality (3.26) holds
true in the case u € [0,7(y2)]. The case u € [y;, yi+1] for some i € {2,...,¢ — 1} +is similar to the
previous case. Indeed, first we apply (3.27), then we place the column ’y(u) between the columns
v (yi),v(yi+1) (thus we acquire the negative sign), we use the similar integral representation as before
together with Lemma 3.1 to conclude that (3.26) holds true in this case too. This finishes the proof
of concavity of B*"P on conv(7([0, 1])).

Next, we show that B%"P is the minimal concave function in a family of concave functions G
on conv( ([0,1])) with the obstacle condition G(F(s)) > ynt1(s) for all s € [0,1]. Indeed, pick
an arbitrary point x € conv(5([0,1])). We would like to show G(z) > B*'P(z). There exists
(Ao Ao, 2,55 90) € AL x AL1 such that 2 = A\7(1) + Z?:Q Aj¥(y;). Therefore

¢ ¢
BP(z) = My (1) + ) At () < MG(G(1) + Y AG(I(y))) < Gla).

j=2 j=2

Next we consider BS"P when n = 2¢. We only check the concavity of B%"P because the remaining
properties (minimality and the obstacle condition B%'P(¥) = ~,+1) are verified similarly as in the
dimension n = 2¢ — 1. The equation of the tangent plane T' at point

l l
U(s) = Un(s) = > _ Bivly;) + (1= Bi)v(1)
j=1 j=1

where s = (B1,..., 80, y1,...,y) € int(AL x AY), is given as
T(z) :=det(Ugs,,...,Us,, Uy, ..., Uy, o —U(s)) =0, xe&R"M
We have
sign(T'(z)) = sign(det(v(y1) = v(1),- -, v(we) = ¥(1):7 (1), -7 (o), = — v(1))).

Next,

sign(T'(Aen1)) = sign(det((y1) — F(1), ..., 7(ye) = 7(1), 7 (w1), -, 7 (e)))
as A = 4+00. On the other hand, we have

det(Y(yr) =7(1), -7 (ye) =7(1), 7 (W1)s -7 (we) =

(-1 )edet(f( 2) —7(1/1), T W) = F(We-1). (1) = F(e), T (1), - -7 (we)) =

(-1 (V' (1), 7 (y2) =7, -7 (o), 7(1) = F(ye)) =

e(z 1) _, _,
— / / det (7 ¥ (x1), - ¥ (ye), ¥ (xg))dxy . . . dy.
e y1
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—1)

Thus, it follows from Lemma 3.1 that sign(T(Aep+1)) = (— )
o(e—1)

the concavity of BS"P, it suffices to show (—1)" 2z T(U(t)) <0 for all t = (A1,..., ¢, x1,...,2¢) €
AL x AL. We have

as A — oo. Therefore, to verify

L
=D Apdet(y(y1) = 7(1)s- - (ye) = (1), Y (W1)s -7 (o), y(x5) = (1) [ ] i
J=1 .

2(e—1)
It suffices to show that (=1)" 2 det(y(y1) =¥(1), ..., ¥(ye) =7(1), 7 (w1), - -, 7 (ye), 7 () =7(1)) <0
for all u € [0,1]. Assume u € [y;, yi+1] for some i € {1,...,¢ —1}. We have

(1) det(y () — (1), () — (1 A 00,50 =3 (0) =

—det(y'(y1),7(1) = v(¥1), - - ’(yz),v(l) Y(ye), (1) = y(u) =

det(y'(y )7(1) 'Y(ZUl) . (yz),'v(l) V(i) v(1) = (), ¥ (itr1), v (1) = y(it1)s - v (1) = v(ye) =

— det('(y1 ), Y W), () = (W), Y(Wir1) = (W), Wi 1), Y(Wiv2) = YWir1)s -7 (1) = Y(we)

Yi+1 Y2
/ / / det( (51), 7' (01), -+ (), 7 (), 7' 03), 7 (Gi41)s -7 (00)) o ... duwddv .. doy,
Ye 0 Y1

which has a nonpositive sign by Lemma 3.1 (here y;4o for i = ¢ — 1 is set to be 1). The cases
u € [0,y1] -and u € [yp, 1] are treated similarly.

Next, we verify (2.11). The obstacle condition B™ (%) = ,,4+1 and the minimality (assuming B™f
is convex) are verified simitarly—similar as in the case B%"P. So, in what follows we only verify the
convexity of B™™f.

Assume n = 2¢ — 1. The equation of the tangent plane T at point

l
L(s) := Ly(s) = (1 - (1) + > By (),
j=2 =2

where s = (B2,...,Be, Y1, .-, ye) € int (AL x AL), is given by

T(x) :=det(Lgy, ..., Lg,s Ly, s .., Ly, v — L(s)) =

l
det(v(y2) —v(y1), - (o) = v(W1), Y (1), (o) w — (y1)) (1 — Zﬁj) 1155

We have

sign(T'(Aep+1)) = sign(det(Y(y2) — (1), - - - ¥(we) = F(y1): 7 (W1), - -7 (ye)))
as A = 400. On the other hand,_
det(i( ) - ﬁ(yl)v s 77(3/@) - i(yl)ai/(ylx s ai,(yZ» =
(—1)2 " det (7 (1), 7(y2) — V(w1 - -7 (1) Twe) — Fwe—1), 7 () =
Y2
(—1) / / det (7 ¥ (e)y o 7 (Yeo1), 7 (ve), 7 (ye) )dvs . . . dvy.
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£(6—1)

Thus sign(T'(Xepy1)) = (—1)" 2 by Lemma 3.1 as A — +oo. Therefore, B™ is convex if
(—1)“FETLE) > 0 for all t = (Ao, ..., Mgy 1, - -, 24) € A1 x AL We have

V4 V4

T(L(t)) = det(Y(y2) — Y(y1), - -, ¥(We) — v(w1), v W), - -7 (we), L(t) — v(y1)) (1 — Zﬂj) H Bj
V4 ya

(1- Z)\k) det(y(y2) = v(1), - v (we) = YW1), Y (1), - Y (We), v(z1) — (1)) (1 — Zﬁj) H Bj

l 4
+ > Akdet(v(y2) = ¥(wa), - Y (we) = Y(W1), Y W),y (o) v (k) — () (1= B) [ 8-
k=2 J=2

Thus, to verify the convexity of B it suffices to show

2(2 1)

(—1) det(y(y2) = v(y1), - ¥ (We) = v(W1): 7' (W1), -7 (W), v(w) = ¥(y1)) > 0

for all u € [0,1]. Notice that

£(e=1)
2

(1) (V(y2) = v(W1), - v(We) = (W), Y (W), - (we), v (w) = (1)) =
det(v'(y1), y(y2) = ¥(W1)s -7 (We-1),v(we) — Y1), ¥ (ye), y(u) — v(y1)).

Next, assume u € [y;,y;+1] for some ¢ € {1,...,¢ — 1} (the cases u € [0,y1] and u € [yp, 1] are
considered simitartysimilar). We have

det(v'(y1), v(y2) = ¥(W1)s -7 (We—1),v(we) = Y1), ¥ (we), y(u) — v(y1)) =
det(v'(y1), ¥(y2) = Y1), -7 (W), v(w) = (1), Y(Wir1) = Y1), Y Wik1)s - ¥ (we) = v(w1), 7 (ye)) =
det('v’(zn),v(y (yl o W)y () = (W), Y(Wirr) = (@), Y Wiv1), Y (We) — ¥ (We-1), 7 (ye))

det(V'(yl)ﬁ ( 557 ( z’)ﬁ (W), 7' (i), Y (Y1) - -7 (e-1), 7 (e))dvr - . . dvgdw . . . dvg_y.

Thus T'(L(t)) > 0 by Lemma 3.1.

Next, we consider B™ when n = 2¢. As in the previous cases, we only verify the convexity of
B (minimality and the obstacle condition B™ (%) = ~,,1 are verified easily).

The equation of the tangent plane T at point

)4
L(s) := Ln(s) = Y _ B;7(j),
j=1
where s = (B1,..., 86, Y1, -, y¢) € int(AL x AL), is given by

4
T(x) :=det(Lg,, .., Lg, Ly, -, Ly w = L(s)) = det(y(y1), ..., v (we), ¥ (W), -7 (we), =) [ 85
=1

We have

Sign(T()‘en—H)) = Sign(det(ﬁ(yl)’ ce aﬁ(yfxil(yl)v s 77/(y€)))
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as A — -+00. On the other hand,_
(3.28) det(F(y1), - - 7We), 7 (1), - -7 (o) =
(-1 >g det(F(y1) = 7(0), 7 (), - - () — A(e—1). 7 (we)) =
st / / det(F'(01), 7 (1), -7 (00), 7 () . . du.

Thus sign(T'(Aep+1)) = (—1) Lemma 3.1 as A\ — +4oo. Therefore, B™ is convex if
£(6—1)

(=1) 2 T(L(t)) > 0 for all t = ()\1, A1, xg) € AL x AL We have

¢
Z )\k- det (yé) v (y1)7 ce 77,(y€)77(xk‘)) H 6]
j=1

Thus, to verify the convexity of B it suffices to show

(1) det(y(y1), - v(We), Y (1) -7 (ye),¥(w)) > 0 for all w € [0,1].
Notice that

e(e
(=) det(v (), -+ V(W)Y W1)s -+ 7 () Y (1)) = det(y(yn), 7 (), -« - Y(we)s Y (o), Y(1)-
Next, assume u € [y;, yi+1] for some i € {1,...,¢—1} (the cases u € [0,y1] or u € [y, 1] are considered

similarlysimilar). Set yo = 0. We have
det(v(y1), 7' (1), - - Y (W), Y (), ¥ (u)) =
det(v(y1), 7' (W1), - - v Wi)s Y (Wi)s Y (W), Y (Wir1), Y (Wis1), -+ ) =

(4 D)

det(y(y1) —v(0),7' (Y1), - - v (Wi) = v(Wi-1), 7 (i) v(w) = ¥ (i) Y(Wiv1) — v(w), Y (Wir1), ) =
Yi— Yi
/yz 1 / /yz /yz /
det(y'(v1),7' (1), - -5 (00), Y (i), 7 (W), Y (vis1), ¥ (i), - -7 (00), 7 (we) )dvs - . dvidwdvigy .. . dvy.

Thus T( (t)) > 0 by Lemma 3.1.

3.3.3. The proof Proof of (2.12). First we show the implication B¥" (u) = B™(u) = u € 9 conv(7([0, 1])).
Consider the case n = 2¢. Assume contrary, e-that is, v € int(conv(%([0,1]))). Then, using (2.4
(2.5), we can find t = (A\1,...,Ap,21,...,2¢) and s = (B1,...,Be,Y1,---,Ye), both in int(AL x A’
such that

);
)

)

V4 V4 l
w="Y_ AF(zs) + (1= A1) = B7(y;).

j=1 Jj=1 Jj=1
The equality BS"(u) = B (u) implies (see (3.19), (3.20))
4 1 l
D M) + (=3 2 () =3 B(wy):
j=1 j=1 j=1
We see that (1) is a linear combination of 2¢ vectors v(x;),v(y;),j = 1,...,¢, which leads us to a

contradiction with Corollary 3.2. Thus u € 0 conv(7%(]0, 1])).
Next, consider the case n = 2¢ — 1 and assume the contrary, e-that is, u € int(conv(7([0,1]))).
Slmllarly as before, we have

V4 l V4
(3.29) Ay + D Xy = (1= B)v() + > Biv(ws)
= =2

=2
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forsomet = (Ai,..., A, 2o, ..., 2) € int(ALx AL ) and s = (Ba, ..., Be, Y1, - - -, ye) € int(ALx AL,
The-equality-Equality (3.29) shows that (1) is a linear combination of 2¢ — 1 vectors {fy(xj)}§:2,
{’y(yj)}f | whieh-eentradiets—+to-, which contradicts Corollary 3.2.

Next we show the implication u € 8conv(7([0,1])) = B*P(u) = B™(u). Consider n = 2.
Suppose

l

U(t) €Y Aalz;) + (1 - S Al Zﬁﬂ (y;) & L(s)

j=1 j=1

for some t = (\,..., \g,z1,...,2¢) and s = (51,...,Bg,y1,...,yg) both in O(AL x AY). The goal is
to show that

V4 l y4
(3.30) U*(6) €3 N () + (1= Y A)vme1(1) = 3 B () = L3(s).
J=1

j=1 j=1
We claim that (3.30) follows from the second part of Lemma 3.5. For this, it suffices to show that any
point U(t), t € I(ALxAY), can be written as L(s1) for some s1 = (8],..., 8, Y], --.,y;) € O(ALxAYL).
Indeed, as t € (AL x AY), several cases can happen. 1) If 25:1 Aj = 1, then choose ﬁ; = A,
j=1,...,0—1, Bézl—zz IAJ, and y; = zj, j =1,...,£. Then

(3.31) L7(s) = B™ (I (s)) "™ 35 pinf(T Z Bivns1(y)) = U ().

Next, 2) if at least one A\; = 0, say A, = 0 for some p € {1, ., £}, then take B8] = A\q,... p 1=

¢
)‘pfly D = )‘p+1a .. 'aﬁéfl = Afaﬁf = 172]‘:1 >‘j7 and yi = T1,-- 'ayp—l - xpflayp = Tp+1y--- 7yZ71 -
xy,yy = 1 and repeat (3.31). Next 3) if o = 1, choose ( ;,yé) = (N\j,z;) for j=1,...,4 -1, and

/A AN -1y _ _
) - = ) . : - + PR
(Beyp) = (32521 Aj» 1) and repeat (3.31). 4) If x, = 41 for some p € {1 ¢ — 1} then take

y; = for j=1,....p; y; = xj41 forj =p+1l.. =1y =10 =X, ..., B, =X+ X1,
i1 = Apr2se-, B = A, By =1 — Zﬁ 1 Aj,_and repeat (3.31). Finally, 5) if 21 = 0 choose
Bi=Nt1, j=1,..., =18y =1~ ZJ 1 A3 Y =21, 5 =1,..., 0= 1; yp = 1, and apply (3.31).
Next, consider n = 2¢ — 1. Suppose
14 L
) def _ _
< Zﬂﬂ () + A7) = (1= 3 AA0) + > Aiy) = Ls)
7j=2 7j=2 =2

for some t = (B1,..., B0 T2, ..., 20) € AL x A and s = (Mg, ..., A, y1, ..., y0) € O(ALTT x AY).
We would like to show
l

l

2 def def -,

(3.32)  UX( ZBJ’M—H(%) + P14 (1 Z)‘J Ynt1(Y1 +Z)\J’Yn+1(yj) = L*(s).
7j=2 =2 7j=2

As in the case n = 2¢ — 1, we claim that (3.32) follows from Lemma 3.6. It suffices to show that for
any point U(t), t € (AL x AL71), there exists a point s1 = (N, ..., A\j, ¥, ..., A)) € O(ALTL x Af)
such that U(t) = L(s1). Several instances may happen. 1) if-If > 2:1 pj =1. Let

(Al27 EER) )‘2717 )\/Zayllv s 7y£ 1ay£) (63a s 7B€7517x27 < Ty 1)
Notice that 1 — Z] _o N; = B2, 2) i1f B, = 0 for some p € {1,...,£— 1} then let

( /27"'7 ;) 1 pu" AZ la)‘ﬂ)y17y27"‘7y;;717y;/))°"ayé—layé) =

(/627 ey Bp—la 5p+17 s 7/837 51707332) s 7Ip—1)xp+1) <oy Ly, 1)
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3) #-If 81 = 0 then we choose 3] = 0 and

( 127"‘7)\/Zvyéa“'7yf) (/827"'7ﬁ€7x27"'7$f)-
4) #1If x9 = 0 then we choose y; = 0 and
(A/27"'a)‘2717>\/€7yév"'7y2717y2) = (53)"'7/357617'%'37"'7'%571)'
5) #-If xy =1 then let y; = 0 and
( ,27"'a)\2—1’)‘/€7yéa"' 7y2—17y2) = (52"‘ .,ﬁg_l,ﬂg+ﬁ1,$2,...,l’g_1,1).
Finally, 6) if z, = x4 for some p € {2,...,¢ — 1}, take y; = 0 and

/ / / / )\ )\ / / / AN
( 23y Ap—1r Aps Nptly - M—1> e)y27""yp7yp+17“'7y€—17yf)_
(627 v )Bp—laﬂp +5p+17ﬂp+27 B ,ﬁ[,ﬂl,{EQ, cee sy Tpy Tp4-2, - - - T,y 1)

Under such choices we have

~

L

z inf /7 Lemma in z
L*(s) = B™(L(s)) 0 Bt (T(s L= D Xt wh) + D N () = U%(@).
: ,] =2

This finishes the proof of (2.12).

3.3.4. The preof-Proof of (2.13). The inclusion
{2, B (2)), & € conv(7([0, 1))} U { (&, B™ (), 2 € conv(5([0, 1]))} € D comv(3([0,1]))

is trivial. Indeed, it follows from (3.19) that the point (z, B¥"P(x)) is a convex combination of some
points of ([0, 1]) - therefore, (z, B'P(x)) € conv(y([0,1])). On the other hand, no point of the
form (z,s), where s > B""P(x )Nbelongs to conv(y([0,1])). Indeed, otherwise (z,s) = > 12, A\jy(t;)
for some #; € [0, 1] and nonnegative A; such that 77", A; = 1. Then

(2.10)
B () = B (Y a5(1) 2 SOAB ) 2 S A lty) = s

gives a contradiction. Thus (z, BS"(z)) € dconv(y([0,1])). In a similar way, we have (z, B (z)) €
0 conv(y([0,1])) for x € conv(%([0,1])).
To verify the inclusion

0 conv(+([0,1])) € {(x, B**P(x)), € conv(5([0,1]))} U {(z, B™(2)),z € conv(7([0, 1]))},

we pick a point {a5H-cdeonv{s{0:H (2. t) € dconv(([0,1])), where x € R™, iethat is, = €
conv(%([0,1])). Clearly, B™(z) <t < BS"(z). Assume contrary that B™(z) < t < B*W(z). If

x € dconv(5([0,1])) then by (2.12) we have B (x) = B (z);; therefore, we get a contradiction.
If 2 € int(conv(5([0,1]))) then (2.12) and the continuity of B"P and B™ imply that there exists
a ball U.(z) er—of radius e > 0 centered at point = such that U.(z) C int(conv(5([0,1]))) and
Bf(s) <t —§ <t+ 8 < BW(s) for all s € U.(z) and some § > 0. Then

(1) € Uninge 5y (2, 1)) € {(s,9) = B™(s) <y < B(5), 5 € Unninfe 5y ()} =
conv({(s, B™(5)), 5 € Uninge,5}(2)} U{(s, B*"P(5)), 5 € Uninge,53 () }) C conv(7([0,1])),

where Upinge,sy((2,t)) is the ball in R™! centered at (x,t) with radius min{e,§}. We obtain a
contradiction with the assumption that (x,¢) belongs to the boundary of conv(v([0, 1])).
The proof of Theorem 2.1 is complete. U
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3.4. The preof-Proof of Proposition 2.2. Take v(t) = (t,t*, —t3) on [~1,1]. We have

1 0 0
(Y A"y = | 43 1262 24t
—3t2 —6t —6

All the leading principal minors of the matrix (7/,~”,~") are positive on [—1, 1]\ {0}, and we notice
that 2 x 2 and 3 x 3 the-leading principal minors vanish at ¢ = 0. Assume contrary to Proposition 2.2
that the map BS"P(x,y) defined on conv(¥([—1,1])) by (2.1) is concave. We have

(3.33) B(Ma,a*) 4+ (1 = \)(1,1)) = =Xa® — (1 =\, A€ [0,1],a € (—1,1).

In particular, g{4)=B04y-<10:3+ = B(0 € [0,1] must be concave. The restriction
Aa+ (1 —A) =0 implies A = ;--. Therefore

Mat+(1-XN)=d*+a’+a and —Xa®—(1-)\) =d’+a.

Since —a® — a? —a = y € [0,1], we must have a € [~1,0]. Thus g(—a® — a® — a) = a® + a for
€ [—1,0]. differentiating-Differentiating both sides in a two times, we obtain
20 +1
f_3_ .2 Nn___ carl
gla’—a”—a) a2 +2a+1’
—6a(a+1)
ne 3 2 —
gla —a —a) = G e

>0 for a€][-1,0).

Thus ¢” > 0 gives a contradiction.

3.5. The preof-Proof of Theorem 2.3. We verify (2.14). The verification of (2.15) is similar.
Denote
M (z) := sup {Evp1(Y) : E(Y) =z}, x € conv(¥([a,b])).
a<lY<b

First we show the inequality M*"P < BS"P on conv(7([a,b])). Indeed, let = € conv(F([a, b])). Pick
an arbitrary random variable Y with values in [a, b] +-such that E5(Y") = . Then
(2.10) sup (2.10)+Jensen Sup T sup

By (Y) "="EB™(H(Y)) < B™W(EN(Y)) =B (a).
Taking the supremum over all Y, a <Y < b, such that Ey(Y) = z, gives the inequality M*"P(z) <
B ().

To verify the reverse inequality MS"P(x) > BS"P(x), it suffices to construct at least one random
variable Y = Y (z), a <Y < b, such that E§(Y) = = and Ev,41(Y) = B*'P(z). Notice that
Y = ((z), where ((x) is defined in Theorem 2.3, satisfies a < {(x) < b, E¥({(x)) = z. It also follows
from (2.1) that Evy,+1(¢(x)) = B%*P(z).

3.6. The proef-Proof of Corollary 2.4. . The moment curve v has totally positive torsion on
[0, 1], hence, Theorem 2.1 applies.
First we work with B%"P(z) = x,41. Consider the case n = 2¢. By Theorem 2.1 there exists a

unique point (A1, ..., A, y1,...,%) € int(AL x AL) such that 25:1 A (y;) +(1— Z§:1 N)F(1) =,
then the value z,,11 := B%"P(x) equals %&ZJ 1 ]yJ%Jr1 +(1— Z§:1 Aj). We would like to show that
the linear equation

ap a1 ... ag
(3.34) det | =0,

apg Ggy1 ... Ay
where a 1=z, — 41, K =0,...,2¢, 2o := 1, has a unique solution in z,which-equals+te-, which
equals Zﬁ:l JyJ%"H (1— Z] 1 ) First we check why x,, 1 = 2521 )\jy?“l—k(l—Zf 1 Aj) solves
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(3.34). Notice that ay = (y*, ), where y* == (y,...,y5), and B := (A (L —y1),..., Ae(1 — p)).
The j’th column of the matrix in (3.34), call it wj, j = 0,...,¢, we can write as w; = ADIBT,
where A is (¢4 1) x £ matrix with m’th column (1, ¥ym,...,vy5)", and D is £ x £ diagonal matrix
with diagonal entries yi,...,y,. Since there exists a nonzero vector (zp,...,zs) € R such that
20D° + ... + 2D’ = 0 (the number of variables zj is greater than the number of equations, i-e-that
is, £), it follows that the vectors {wo,...,wy} are linearly dependent, so (3.34) holds true.

To show the uniqueness of the solution z,41, it suffices to show that the leading ¢ x ¢ principal
minor R of the matrix in (3.34) has nonzero determinant. Notice that R = det(wy, ..., w;—1), where
w; = ADjJ BT and A is obtained from A by removing the last row. Assume contrary that R = 0.
Then there exists a nonzero vector (2g, ..., 2z—1) € R such that fl(zoDO 442 DT = 0. As
det(A) # 0 (Vandermonde matrix), we have (20D° + ...+ 21 D187 = 0. Since the entries of 57
are nonzero and the matrix (z9D%+. . .—l—zg_lDé_l) is diagonal, we must have 20D%+. . 42z D =
0. The last equation rewrites as ATz = 0, where z = (29, ...,2¢-1) # 0, which is a contradiction.

Next, consider n = 2¢—1. In this case x = (1 —Zle A;)7(0) +Z§:2 A7 (y;) +A17(1) for a unique
(A, e Y2,y .oy ye) € int(conv(7([0,1]))), and the value x4+ := B¥'P(z) is (1—2521 Aj)Yn+1(0)+
Z?:Q XjVnt+1(Yj) + Myn1(1). Set by =z — xp41, k= 1,...,20 — 1. As before we would like to
show that the linear equation

by b2 ... by
(3.35) det | : —0,
be beyr ... bapq
has a unique solution in anwhielﬂteefu&}&G&M(l—Zﬁ:l Aj)Vn41 (0)+Z§:2 AjYnt1(y5)+

AMYns1(1). To check that such a choice for ;.1 solves (3.35), notice that by, = (y*,3), where
y' =5, yp) and B = (Na(1 = ya),. ., (1 — ).

The j’th column of the matrix in (3.35), call it wj, j = 1,...,¢, we can write as w; = ADJBT,
where A is £ x (£— 1) matrix with m’th column (y,,...,y5)", m=2,...,¢, and Dis ({—1) x (£—1)
diagonal matrix with diagonal entries vo, ..., %. Since there exists a nonzero vector (z1,...,z) € R’

such that z;D + ... 4 2D’ = 0 (the number of variables zj is greater than the number of equations,
ie-that is, £ —1), it follows that the vectors {w, ..., wy} are linearly dependent, so (3.35) holds true.

To show the uniqueness of the solution 1, it suffices to show that the leading (¢—1) x (¢—1) prin-
cipal minor R of the matrix in (3.35) has nonzero determinant. Notice that R = det(w1, ..., w—1),
where w; = ADIBT and A is obtained from A by removing the last row. Assume contrary that R =
0. Then there exists nonzero vector (z1,...,z—1) € R~ such that fl(le +... 4z DEHBT =0.
As det(A) # 0 (Vandermonde matrix), we have (21 D+ .. 42,1 D157 = 0. Since the entries of 7
are nonzero and the matrix (z; D+. . .+Zg_1De_1) is diagonal, we must have z1D+-. . Az D1 =0.
The last equation rewrites as AT ;T = () where z = (21,...,20—1) # 0, which is a contradiction.

Next we work with B (x). Consider n = 2¢. There is a unique point (A1,..., A\, y1,...,y¢) €
int (AL x AY) such that 22:1 A7 (y;) = x. It suffices to show that the linear equation

1 i) oo Tyl
(3.36) det | : =0,

Lo+l Te42 -0 T4

has a unique solution x9p41 = Z§:1 AjYn+1(y;). The jth column of the matrix in (3.36), call
it wj, 7 = 1,...,£+ 1, we can write as w; = ADINT | where A is (£ + 1) x ¢ matrix with m’th

column (Y, ..., yf,fl)T, m=1,...,¢, D is ¢ x £ diagonal matrix with diagonal entries y1,...,yy,
and A = (A1,...,A\¢). The rest of the reasoning (including the uniqueness of the solution 1) is

similar to the one we just discussed for BS"P and n = 2/.
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Finally, consider n = 2¢ — 1. There exists a unique point (32,..., B¢, y1,...,ye) € int(A x AL)
such that 2221 Bjv(yj) = x, where 1 :=1 — E§:2 B;. It suffices to show that the linear equation

1 Ty ... Xy
(3.37) det | : =0,

Ty Loyl - TN

has a unique solution zgy = Z§:1 BiVn+1(yj). The jth column of the matrix in (3.36), call it
wj, 5 = 1,...,0 4+ 1, we can write as w; = ADI=18T where A is (¢ 4+ 1) x £ matrix with m’th
column (1, ym,...,y5)T, m =1,...,¢, D is £ x £ diagonal matrix with diagonal entries 1,...,ye,
and 8 = (B1,...,08¢). The rest of the reasoning (including the uniqueness of the solution z,41) is
similar to the one we just discussed for BS'P and n = 2/.

3.7. The preofProof of Corollary 2.5. Assume contrary that there exist n+1 points, y(t1), ..., v(tn+1),
where a < t; < ... < tyyr1 < b, which lie in a single affine hyperplane. In particular, we have

(3.38) det(v(t2) = v(t1),v(ts) — v(t1), ..., ¥(tn41) — ¥(t1)) = 0.
On the other hand, we have

det(~(t )—y(tl) Y(t3) = y(t1), -, Y(tng1) — (1))
(v(t2) 1),7(t3) —v(t2), .-, Y(tns1) — v(tn))

det(
n+1 t3 t2
/ / / det(y'(s1),7'(52) - .., (8n))ds1dss . . .dsy, > 0
tn to t1

by Lemma 3.1. Thus we have a contradiction with (3.38).

3.8. The preof Proof of Corollary 2.7. To prove the formulas for the volume, we apply Theo-
rem 2.1, where v in Corollary 2.7 will be used as 7 in Theorem 2.1. Let n = 2¢. To verify

(3.39) Vol(conv(v([a,b])))

- (_:(26)‘2 /<x1< <z,<b det(’)/(xl) - fy(a)v te 77(x5) - 7(a)7 7/(x1)’ e 7")/’($g)>dx,

2(0—1)

notice that according to Theorem 2.1 the map U := Uy, where

l L
UQK : Aﬁ X Ai > ()‘h e '7)\Za$17 s a;UE) = (1 - Z/\J)/Y(a) + Z)\JW(%%

J=1 J=1

is diffeomorphism between int(A%L x A%) and int(conv(y([a,d]))). In particular, by the change of
variables formula, we have

Vol(conv(’y([a,b])))—/ / |det(Ux,, ..., Ux, s Uzys ..o, Uy, |dN dz =
AL JAL

/ A1 AdA / |det(’y<1‘1) _7(66)7""7(‘%'@) _V(Q)ﬂq/(xl)’”'771(x5))’dx'
AL AL

Next, using the identity

L L
- T(p;
(3.40) / AL =D AT = M
AL j=1 F(Zj:opj)
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valid for all pg,...,pg > 0 (see Dirichlet distribution in [17]) s-and the property
|det(v(z1) = (a),. .., v(@e) — (@), (z1), ..., (1))

ee—1)
= (_1) 2 det(’}/(l‘l) - y(a), s 77(1’15) - V(a)f}/(ajl)? e ,’}/(l'g))

whenever a < 1 < ... < zy < b, see (3.28), we recover (3.39). The other three identities in

Corollary 2.7 are obtained in the same way by repeating the computations with Loy, and in the case

of odd dimensions with Usy_1 and Loy_.

3.9. The preef-Proof of Corollary 2.8. Let n = 2/ (the case n = 2¢ — 1 is similar and will be
omitted), and let us verify the identity

Area(d conv(v([a, B]))) = — / <\/det SIS, +y/det strsb> d,
a<z1<...<z¢<b

~nl
where S, = (y(z1) = y(r), ..., v(xe) = v(r), 7 (21),...,7 (x)). By (2.13) we have
0 convi(([a, B])) = {(z, B (x)), x € conv(3([a, B)} U {(z, B (2)), 2 € conv(7([a, )}
On the other hand, by (2.12) and (2.3) the set {(z, B"?(x)),z € conv(5([a,b]))} N {(x, B (x)),z €

conv(¥([a,b]))} is contained in the image of C' map of the set O(A% x Af), which has zero n
dimensional Lebesgue measure. Therefore, it follows from (2.4) and (2.5) that

Area(d conv(v([a, ]))) =

Area({(z, B**P(x)),z € conv(¥([a,b]))}) + Area({(z, Binf(x)),a: € conv(¥([a,b]))}) =
/ Vdet ATr A dzd\ + Vdet CTrC dzd\,
Abx AL Abx AL

where A = (Uy,,...,Uy,,Usy,...,Uy,) with U := U,, and C = (Ly,,...,Lx,, Ly, ..., Ly,) with
L := L,. Notice that AT"A = RSbeSbRkWhere R is 2¢ x 2¢ diagonal matrix with diagonal entries

rp=...=rg=1,and ro41 = A1,...,704¢ = A¢. Similarly, CT"C = RS*S,R. Therefore,
/ Vdet ATr A dxd\ + Vdet CT'C dzd\ =
ALxAL ALx AL

Jdet ST Jdet §Tr S, dar P20
/A ﬁ AL Apd\ /A é det ST Sydx + /A ﬁ AL AgdA /A ﬁ det STr S, dx
1
(26)'/ <\/det Sl;rer + \/det SaTrSa> dl'
: Aﬁ

This finishes the proof of Corollary 2.8.
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