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Abstract

The majority of current research on the application of artifi-
cial intelligence (AI) and machine learning (ML) in science,
technology, engineering, and mathematics (STEM) education
relies on centralized model training architectures. Typically,
this involves pooling data at a centralized location along-
side an ML model training module, such as a cloud server.
However, this approach necessitates transferring student data
across the network, leading to privacy concerns. In this pa-
per, we explore the application of federated learning (FL),
a highly recognized distributed ML technique, within the ed-
ucational ecosystem. We highlight the potential benefits FL.
offers to students, classrooms, and institutions. Also, we iden-
tify a range of technical, logistical, and ethical challenges
that impede the sustainable implementation of FL in the ed-
ucation sector. Finally, we discuss a series of open research
directions, focusing on nuanced aspects of FL implementa-
tion in educational contexts. These directions aim to explore
and address the complexities of applying FL in varied edu-
cational settings, ensuring its deployment is technologically
sound, beneficial, and equitable for all stakeholders involved.

Introduction

The integration of artificial intelligence (AI) and machine
learning (ML) in the educational ecosystem marks a sig-
nificant shift from traditional teaching methods. This tech-
nology offers substantial benefits for the entire educational
ecosystem: it enhances student learning experiences (Dil-
lon et al. 2022), optimizes classroom environments (Pham
et al. 2023), and improves institutional policy optimization
and decision-making (Brdesee et al. 2022). Nevertheless, ad-
vancing educational systems with AI/ML models face sig-
nificant challenges at the student, classroom, and institution
levels. A paramount challenge stems from using centralized
ML techniques in STEM education, where individual AI/ML
models are trained using data exclusive to each educational
entity, e.g., an institution (Jalil, Hwang, and Dawi 2019).
Firstly, centralized ML approaches cannot access the pat-
terns shared across collective datasets from different insti-
tutions, leading to a lack of data diversity when training
the AI/ML models. Such a lack of diversity results in ML-
driven student models that are biased toward the majority
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population at each institution, failing to meet the needs of
underrepresented students. Additionally, such isolated train-
ing methods fail to capitalize on the wealth of distributed
data available across different educational entities. A seem-
ingly straightforward solution to these issues would be to ag-
gregate data of educational entities to a centralized location
(e.g., on a cloud server) and then use the aggregated data for
training ML models. However, this approach raises signifi-
cant data privacy concerns: transmitting student data away
from their home institutions threatens the confidentiality of
their sensitive information. Distributed ML techniques have
the transformative potential to address these challenges: they
enable the obtaining of ML models using the distributed data
without the need for cross-institutional data sharing.

This visionary paper explores the potential of an emerging
distributed ML technique, federated learning (FL), within
the educational ecosystem. FL’s implementation signifies a
potential breakthrough in achieving high-performance ML
models by utilizing distributed data across educational enti-
ties yet maintaining the locality of their collected data. The
general training architecture of FL, illustrated in Figure 1,
consists of two key operations: (i) Local Model Training:
In this phase, each training unit (e.g., a local server at an
institution) independently develops a local ML model, typ-
ically a neural network, using its own dataset. (ii) Global
Model Aggregation and Broadcast: Following local training,
a central server periodically pulls and combines these local
models into a comprehensive global model, which is then
broadcast back to the units for further refinement. This step
helps achieve a coherent global model that leverages learn-
ings from all participating units. FL’s architecture maintains
data privacy by solely relying on the transfer of model pa-
rameters, preventing data transfers across the network.

FL has demonstrated success in applications within the
healthcare (Thwal et al. 2021; Ngetal. 2021; Lee et al. 2021;
Kumaresan, Kumar, and Muthukumar 2022; Lu et al. 2022;
Linardos et al. 2022; Adnan et al. 2022; Oldenhof et al.
2023; Wu et al. 2023) and social science/communication do-
mains (He et al. 2019; Shen, Gou, and Wu 2022; Salim et al.
2022; Khelghatdoust and Mahdavi 2022); however, its im-
pact is still underexplored in education domain. In particu-
lar, FL holds the potential to enhance Al-assisted education
in several critical domains. It can contribute significantly to
student experiences by delivering personalized educational
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Figure 1: FLs distributed training architecture in education.
Local models are (i) trained at three different levels, (ii) ag-
gregated to a global model at the server, and broadcast across
the network to initiate the next local training round.

support that is both equitable and unbiased. In classrooms,
FL enables educators to make informed decisions based on
evidence, enhancing curriculum development and optimiz-
ing resource allocation. Finally, by delving into data-driven
insights, FL becomes instrumental in shaping policies and
guiding decision-making processes within educational insti-
tutions, particularly in the pursuit of improving student suc-
cess and retention rates. This paper inspects such unique ad-
vantages and potential of FL in this ecosystem. Discussing
the challenges introduced by implementing FL in education,
it proposes a series of open research problems, serving as a
roadmap for future research in this emerging field.

Related Work

The prevalence of AI/ML applications in education has been
increasing in recent years (Garcia et al. 2007; Zawacki-
Richter et al. 2019; Williamson and Eynon 2020; Holmes
and Tuomi 2022). Over time, Al-assisted learning has in-
troduced various AI/ML models of students’ learning tra-
jectories crucial in developing educational tools. For ex-
ample, open learner models (Hooshyar et al. 2020; Susn-
jak, Ramaswami, and Mathrani 2022; Shahbazi and Byun
2022; L. Leite et al. 2022; Ramaswami et al. 2023) can
track and represent learners’ progress effectively (Bull and
Kay 2010) and improve metacognitive activities, fostering
self-monitoring (Bull and Kay 2007), which is referred as
self-regulated learning (Corno 1986; Henderson 1986; Zim-
merman and Martinez-Pons 1988; Zimmerman 1990, 2015).
Al-assisted learning has also been shown to be capable of
adapting to educational and pedagogical approaches to each
student, referred to as personalized learning, which is an
effective strategy for improving students’ learning experi-
ences and outcomes at the classroom and institutional level
(Jiang et al. 2019; Intayoad, Kamyod, and Temdee 2020;
Fallah, Mokhtari, and Ozdaglar 2020). Despite the bene-
fits of AI/ML for education, the conventional centralized
ML training methods (Rastrollo-Guerrero, Gémez-Pulido,
and Duran-Dominguez 2020; Albreiki, Zaki, and Alashwal
2021; Kotsiantis, Pierrakeas, and Pintelas 2004; Su, Lin,
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and Liu 2022) — commonly pursued to obtain AI/ML mod-
els to enhance educational systems — encounter three no-
table challenges. First, the distributed nature of data and fre-
quent data insufficiency across educational entities (Kuleto
et al. 2021) can limit the effectiveness of AI/ML models
when trained on the data available to each education entity,
e.g., an institution. Second, the persistent problem of unbal-
anced data, even in the presence of large student datasets,
increases the risk of bias towards majority groups (Dablain,
Krawczyk, and Chawla 2022; Sha, Gasevi¢, and Chen 2023;
Pagano et al. 2023; Zhang et al. 2023). This can potentially
undermine the effectiveness of AI/ML models, especially
in addressing underrepresented student minorities, such as
women in STEM fields. Lastly, data privacy (Boulemtafes,
Derhab, and Challal 2020; Tungar and Patil 2023; Svendsen
et al. 2023), particularly when data from different sources
are aggregated and used for ML model training, sensitive
student data may get exposed.

To address these challenges, there have been some recent
efforts in exploring the use of distributed ML approaches,
particularly FL, in the education ecosystem (Wu et al. 2021;
Bhattacharya et al. 2023; Sengupta et al. 2024). Despite
these emerging contributions, applying FL in education is
still relatively in its infancy. A comprehensive and visionary
work that sums up the application of FL across various levels
of the education ecosystem, its adoption and adaptation chal-
lenges, and the future opportunities it presents for enhancing
Al-assisted education is noticeably absent. This paper aims
to fill this gap and further presents future research avenues
that enable the ubiquitous adoption of FL in education.

Potential Use Cases of FL in Education

In this section, we discuss the practical implementations that
can harness the full potential of FL in the education sector.

FL for Students: Personalization and Privacy: One of
the key benefits of Al-assisted educational tools is their abil-
ity to provide students with personalized learning opportu-
nities. This includes supporting students with regard to three
main constructs of learning psychology: (i) affective (i.e.,
increasing engagement and reducing frustration), (ii) cogni-
tive (i.e., individualized hint, feedback, and mastery-based
problem-solving), and (iii) meta-cognitive (i.e., planning,
monitoring, and evaluating) (Azevedo and Strain 2011).
While centralized ML has achieved notable successes in en-
hancing students’ experience and outcomes regarding each
psychological construct, the bias and privacy concerns re-
garding students’ data have limited their scalability and re-
liability. FL alleviates these major limitations by enabling
a distributed ML training platform in which each student’s
device independently refines a model of the student based
on unique learning interactions, like completing exercises
and time spent on tasks, without sharing raw data with the
central server. Periodically, insights from these local mod-
els are aggregated on a central server through FL, creating
a global model that combines knowledge shared across stu-
dents without compromising privacy.

FL for Classrooms: Improving Learning Environments:
Even though students in a classroom exhibit common behav-



ioral patterns, each course presents unique characteristics
for distinguishing successful from struggling students. FL
can simultaneously capture shared behavioral patterns with
a global model and individual nuances through locally tai-
lored models (e.g., through meta-learning approaches (Chu
et al. 2022)). For instance, integrating FL into the learning
management system (LMS) can enable a collaborative, pri-
vate, and unbiased model training to predict students’ per-
formance across courses with real-time feedback for educa-
tors (Rubin et al. 2010). It can also offer tailored suggestions
for study sessions, materials, and strategies based on each
student’s evolving learning patterns. Insights derived from
FL can further inform the development of culturally respon-
sive curricula and teaching methods, fostering environments
where all students have equal opportunities for success.

FL for Educational Institutions: Strategic Insights and
Decisions: Through exposure to distributed and diverse
data, FL can build ML models that mitigate biases. This
enables institutions to devise student retention and success
strategies, particularly for minority students. Accurately
identifying factors influencing retention and success can fur-
ther refine the institutions’ informed decision-making capac-
ity (Aljohani 2016). As a result, educational institutions will
immensely benefit from the unbiased policy-making and eq-
uitable strategic planning enabled by implementing FL.

Challenges of FL in Education

As we advocate for implementing FL in education, we must
consider the challenges educational institutions might face
with its deployment. Below, we highlight several of such
challenges, understanding of which is essential to move this
promising research avenue forward.

Network Infrastructure Limitations: As FL relies on
the extensive transfer of models between a central server and
distributed nodes (e.g., students’ devices or school servers),
the process requires a robust and reliable network infrastruc-
ture (Konecny et al. 2016; Li et al. 2020). Institutions with
inadequate network facilities might experience delays or in-
terruptions, impacting the efficiency and effectiveness of the
model training process.

Computational Disparities: FL requires a certain level of
computational power for local training on devices/servers.
This can create a divide between well-resourced and under-
resourced institutions, where the latter might struggle with
insufficient computational abilities. Such heterogeneity may
lead to uneven participation of institutions, impacting model
performance, especially for under-resourced institutions.

Data Heterogeneity: Distributed data, often produced in
diverse contexts, leads to significant variations across dif-
ferent partitions, a phenomenon referred to as data hetero-
geneity (Zhao et al. 2018; Hsieh et al. 2020). Educational
data varies greatly in demographics, regional specifics, and
educational approaches. This non-independent and identi-
cally distributed (non-IID) nature of data leads to potentially
skewed model training that can affect generalization across
diverse educational landscapes. For instance, when collabo-
rating institutions aim to create ML models for personalized
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learning, variations in course structures, teaching styles, and
student demographics may lead to locally biased models,
limiting the effectiveness of the aggregated global model.

Interactive User Interfaces (Uls): Currently, there is no
interactive Ul for teaching the stakeholders how to operate
FL-based approaches. Training staff and educators to use
these systems effectively can be resource-intensive.

System Performance Maintenance: Regular updates and
maintenance of the FL system require continuous resource
allocation, leading to high costs over time. Institutions with
no access to high-performance computing (HPC) hardware
might struggle with limited resources and the financial bur-
den (e.g., caused by excessive energy consumption) of FL.

Privacy and Ethical Considerations: Using student data
in ML models requires careful attention to ethicality, con-
sent, and transparency. Moreover, models can become sus-
ceptible to unauthorized access if the central server is com-
promised in FL settings. This could lead to data inference
attacks, where private data can be recovered through model
exploitation. Applying differential privacy techniques can
hinder attackers’ ability to recover genuine information from
the models to some extent (Dwork 2006). However, genera-
tive adversarial networks (GANSs) can still use the compro-
mised ML models to generate synthetic data identical to the
training data (Hitaj, Ateniese, and Perez-Cruz 2017).

Evaluation and Benchmarking: Due to the diverse ed-
ucational settings and goals across institutions and class-
rooms, establishing effective benchmarks and evaluation
metrics (e.g., ML model accuracy, ML model fairness, ML
model false positives/negatives) for FL. models in educa-
tion is challenging. While benchmarking measures and tech-
niques have been proposed in other domains (Taik and
Cherkaoui 2022; Wu et al. 2022), the issue remains persis-
tent in the education domain.

Future Opportunities

Despite its challenges, integrating FL into the educational
landscape presents exciting opportunities for groundbreak-
ing research and exploration in previously understudied ar-
eas. Some of these opportunities are highlighted below.

Blockchain-Assisted FL: Blockchain-assisted FL repre-
sents an emerging and promising field of research in educa-
tion, having already sparked interest in other domains, e.g.,
wireless communications (Alghamdi et al. 2022; Jaberzadeh
et al. 2023; Billah et al. 2022; Chhetri et al. 2023; Salim,
Turnbull, and Moustafa 2021; Li et al. 2024). Combining
FL’s distributed learning framework with blockchain’s ro-
bust, immutable ledger system can increase accountabil-
ity in managing student records, improve resource sharing
across institutions, and foster trust in handling student data.
However, the inherently resource-intensive nature of FL and
blockchain technologies can lead to substantial computa-
tional power requirements. This could be a concern for ed-
ucational institutions, especially regarding the financial and
environmental impacts.



Multi-Modal FL over Unbalanced Modalities: Re-
search in domains like medicine and wireless networks have
demonstrated the potential of multi-modal FL, which en-
ables using different types/modalities of data during ML
model training (Xiong et al. 2022; Lin et al. 2023; Che et al.
2023; Borazjani et al. 2024). Similarly, educational data,
which encompasses a variety of modalities, e.g., text, audio,
video, and interactive activities, is inherently multi-modal.
Multi-modal FL can thus offer a promising solution to take
advantage of the available data in the educational context.
However, the heterogeneity of data modalities (e.g., some
classrooms may only have text and audio data, while oth-
ers have video and audio) presents a significant challenge
for implementing multi-modal FL in the education context.
When integrating unbalanced and diverse data types, there
is a further risk of introducing biases into the models. These
biases can arise from the unequal representation of different
data types across various classrooms and institutions.

FL for Large Language Models (LLMs): Integrating
LLMs within the FL framework represents an enticing re-
search area that has recently gained significant attention
(Ezzeldin et al. 2022; Yu, Muiioz, and Jannesari 2023; Ju
et al. 2023; Fan et al. 2023). The FL approach to LLM train-
ing proves advantageous by leveraging diverse data sources
(Yu, Mufioz, and Jannesari 2023), supporting optimization
tasks like fine-tuning, prompt tuning, and pre-training. In the
education sector, this methodology can allow for the devel-
opment of comprehensive LLMs, enriched with a wide ar-
ray of linguistic inputs and learning contexts, making them
highly adaptable to different educational needs, including
enhancing interactive learning tools and providing personal-
ized assistance in adaptive learning environments. However,
this innovative approach faces a significant challenge be-
yond the hurdle of existent heterogeneous data: the resource-
intensive nature of training LLMs. In particular, LLMs re-
quire significant computational resources for training. This
burden is further distributed across multiple educational en-
tities in an FL setup, which may not have enough or uniform
computational capabilities.

Internet of Things (IoT) System Integration: Recent ad-
vancements in FL have extended its application to IoT net-
works (Sahinbas and Catak 2021). This integration is par-
ticularly promising in the educational sector, where many
IoT devices, e.g., smart whiteboards and student tablets, can
collect diverse data in a distributed manner. This results
in allowing real-time data processing across the education
ecosystem. For example, FL can optimize the learning envi-
ronment by adjusting conditions or tailoring content based
on student engagement levels captured through student-to-
device interactions. This approach enables responsible use
of the vast amounts of data generated by IoT devices and
supports the creation of a reciprocal educational system.
Such a system can adapt to the evolving needs of students
and educators, offering a more interactive and tailored ed-
ucational experience. However, establishing such a system
requires further attention to address data inference attacks to
ensure using dispersed student data without compromising
the leakage of private information in such data.
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Mental Health Benefits: FL has recently found its appli-
cation in mental health research (Pranto and Al Asad 2021;
Khalil, Tawfik, and Spruit 2024). Applying FL also holds a
notable promise for improving student mental health aware-
ness in the education sector. For instance, educational insti-
tutions can use the ML models developed via FL to identify
patterns indicative of mental health concerns. In particular,
FL can obtain ML models that track students’ progress, on-
line behaviors, engagement levels, and stress state. FL in-
sights can subsequently guide the development of person-
alized ML-driven interventions, including mental health re-
sources and counseling services, fostering supportive learn-
ing environments. However, the interdisciplinary nature of
research at the intersection of education, mental health, and
ML presents complexities. More precisely, integrating in-
sights from psychology is critical to understanding and ad-
dressing students’ sensitivity to the interventions proposed
by ML models.

Explainable AI (XAI): Recent explorations in XAI have
shown its utility in decision-making within FL systems for
a variety of domains, such as social media (Salim, Turnbull,
and Moustafa 2021; Liu et al. 2022; Chen et al. 2022; Huong
et al. 2022; Arisdakessian et al. 2022). Applying XAl in
FL also holds substantial potential for the education sector,
particularly in enhancing transparency and understanding of
Al-driven decisions. One practical implementation of XAI
in education is through online student/instructor dashboards.
These dashboards are interfaces for educators and decision-
makers to analyze, understand, and refine ML-based student
models. XAI, combined with FL, can also have a nuanced
role in education by revealing biases in decisions at both
the classroom and institutional levels. This can be achieved
by comparing ML models trained on skewed datasets (e.g.,
predominantly featuring data from the majority of student
groups inside an institution) against models specifically de-
signed for underrepresented groups that can be obtained
via personalized FL approaches (Chu et al. 2022). Despite
these enticing applications, the integration of XAI within
FL in education is largely overlooked, making interpret-
ing model-generated insights challenging for various edu-
cational stakeholders.

Conclusion

In this visionary paper, we explored the potential impact of
federated learning (FL) in education, emphasizing its ca-
pacity to revolutionize the educational landscape. We high-
lighted the opportunities FL presents in creating privacy-
preserving ML models using the distributed data available
across the educational ecosystem. We revealed how FL
can be applied beneficially at different levels of the educa-
tional system, including students, classrooms, and institu-
tions. These applications showcase FL’s versatility and po-
tential to enhance educational processes and outcomes while
maintaining data privacy. We then provided a series of open
problems, laying out potential avenues for future research.
These problems, when addressed, could further solidify the
impact and efficiency of FL in education, paving the way for
a more innovative and supportive educational landscape.
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