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Abstract—This letter develops a new direction-of-arrival
(DOA) estimation method for mixed coherent and uncorrelated
signals through the reconstruction of a set of Toeplitz matrices.
More specifically, Toeplitz matrices are formed by utilizing the
rows and columns of the covariance matrix, and their average
is used by subspace-based algorithms to effectively estimate
the signal DOAs. Compared to existing methods, the proposed
approach provides a high number of degrees of freedom and
requires a low computation complexity.

Index Terms—Direction of arrival estimation, Toeplitz matrix
reconstruction, mixed coherent and uncorrelated signals.

I. INTRODUCTION

IRECTION-of-arrival (DOA) estimation is an important

area of research in array signal processing applied to
radar, sonar, and wireless communications [1]-[6]. Among
the various methods developed for DOA estimation, subspace-
based approaches, such as the MUItiple SIgnal Classification
(MUSIC) [7] and Estimation of Signal Parameters via Rota-
tional Invariance Techniques (ESPRIT) [8], are popularly ex-
ploited due to their capability to achieve high-resolution DOA
estimation with a low complexity. Leveraging the eigenstruc-
ture of the covariance matrix of the sensor array output, these
methods are most effective when all the impinging signals are
uncorrelated and, as a result, the yielding covariance matrix
is full rank. However, in real-world applications, we often
encounter coherent signals that may arise due to phenomena
such as multipath propagation in wireless communications as
well as low-angle reflection in radar sensing [9], [10]. In such
cases, the obtained covariance matrix becomes rank-deficient
and, as a result, direct application of the subspace-based DOA
estimation methods becomes infeasible.

Several methods have been developed to decorrelate co-
herent signals and restore the rank of the covariance matrix.
Among them, the well-known spatial smoothing method par-
titions the array into multiple overlapping subarrays and aver-
ages the covariance matrices over these subarrays to construct
a full-rank covariance matrix [11]. The main drawback of this
approach is that the number of degrees of freedom (DOFs) is
limited to approximately half of the number of sensors. In [12],
the forward-backward spatial smoothing technique was devel-
oped to increase the number of DOFs to approximately two-
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thirds of the number of sensors. By forming a Toeplitz coveri-
ance matrix, a computationally efficient method was developed
in [13] to estimate the signal DOAs without performing spatial
smoothing. However, similar to the spatial smoothing, the
number of resolvable signals remains approximately half of
the number of sensors. This method is further improved by
increasing the dimension of the signal subspace in [14] by
utilizing both forward and backward vectors lying in the signal
subspace. Two methods are developed based on this concept,
namely, the eigenvector method (EVM) and the correlation
vector method (CVM), to obtain the forward and backward
vectors. These approaches achieve a similar number of DOFs
as the forward-backward spatial smoothing. This decorrelation
concept is extended to two-dimensional sparse arrays in [15],
where the four-dimensional covariance tensor is decorrelated
by exploiting a particular slice from the covariance tensor and
rearranging it in a Toeplitz fashion. In [16], a DOA estimation
method based on maximum likelihood (ML) estimation is
developed, exhibiting robust performance even in the presence
of coherent signals. This method is further extended to sparse
arrays [17], showing the capability of detecting more sources
than the number of sensors in a sparse array.

Detecting a mixture of coherent and uncorrelated signals
can be even more challenging. Such problem is considered
for uniform linear arrays (ULAs) in [18] by first detecting the
uncorrelated sources using subspace-based algorithms, such as
MUSIC, and the symmetric array configuration is exploited
to remove their contribution from the data covariance matrix,
leaving only the coherent components. This coherent covari-
ance matrix is then decorrelated by constructing a Toeplitz
matrix [13], enabling the estimation of the coherent sources.
In [19], DOA estimation of mixed coherent and uncorrelated
signals is addressed within a multiple-input multiple-output
(MIMO) radar framework. In this approach, both the transmit
and receive arrays are sparse ULAs forming a coprime sum
coarray. The DOAs of the coherent signals are estimated using
complex Bayesian compressive sensing techniques [20].

In this letter, we develop a new DOA estimation method
for mixed coherent and uncorrelated signals by exploiting
multiple rows and columns of the rank-deficient covariance
matrix to construct a set of Toeplitz matrices. The average
of these matrices exhibits a Toeplitz-Hermitian property and
recovers the full rank of the covariance matrix. The resulting
decorrelated covariance matrix is then utilized to detect mixed
coherent and uncorrelated sources using subspace-based DOA
estimation methods. The proposed methods can resolve more
sources than spatial smoothing [11], Toeplitz reconstruction-
based methods [13], and their associated forward-backward



variances [12], [14]. This method also provides comparable
performance to the ML-based approach [16] but with signifi-
cantly lower computational costs.

Notations: We use bold lower-case (upper-case) letters to
describe vectors (matrices). Specifically, I represents the
identity matrix of size L x L, and Oy, and 1 denote L x 1
vectors consisting of all zero elements and all one elements,
respectively. (-)T, (-)* and (-)! respectively indicate the
transpose, conjugate, and conjugate transpose (Hermitian) of
a matrix or a vector. triu(-) denotes the upper triangular ele-
ments of a matrix, whereas tril(-) denotes the lower triangular
elements with the diagonal elements excluded. Furthermore,
symbols o, @, (-)°™ denote the element-wise (Hadamard)
product, division, and the mth power, respectively. The symbol
j = +/—1 represents the unit imaginary number and |- |
denotes the floor operation. Finally, E(-) denotes the statistical
expectation, diag(-) and bdiag(-) respectively represent the
construction of a diagonal matrix and a block-diagonal matrix,
and d,, ; denotes the Kronecker delta function.

II. SIGNAL MODEL

Consider a ULA consisting of M omnidirectional sensors,
and P far-field narrowband signals impinge on the array from
DOAs 0 = [01,0,,--- ,0p]T. Among them, the first L signals
exhibit mutual coherence, while the remaining P — L signals
are uncorrelated with each other and with the coherent group.
The signal vector received at time ¢ can be expressed as

L P
o(t) =s1(t) > aa(l)+ Y si(t)a(0;) +n(t) 0
=1 i=L+1

= A.8.(t) + Aysy(t) + n(t) = As(t) + n(t),
where a(ei) _ [1,e—j2T"dsin9i’_” 7€—j27"(M—1)dsin97¢]T c
CMx1 s the steering vector associated with DOA 6,

A = [a(01), - ,a(0p)] € CM*P is the array mani-
fold matrix with A, = [a(b1), - ,a(fr)] and A, =
[a(@r41),- - ,a(fp)] respectively representing the array man-

ifold matrices for the coherent and uncorrelated sources,
s(t) = [s1(t),s2(t), - ,sp(t)]T € CF*! is the signal
waveform vector, and n(t) ~ CN(0,02I) is the additive
white Gaussian noise vector. The waveforms of the coherent
signals are identical to the reference signal s1(t) up to a scalar
coefficient a;, i.e., s;(t) = a;s1(¢), for 1 <i < L.

The covariance matrix of the received signal vector x(t)

can be expressed as
R=E[z(t)z™(t)] = ARA" + 621, o
= AR A" + A R, A" 1 521,

where R. and R, are the source covariance matrices for
coherent and uncorrelated signals, respectively, and R, =
bdiag(R., R,,) represents the source covariance matrix for the
mixed signals. Due to the correlation assumption, the source
covariance matrices R, and R, can be expressed as

R.= UfaaH 3)

and
R, =diag ([07 1, - ,0%]), 4)

where o7 is the signal power of the ith signal and o =

[1, a2, ,ar]" denotes the complex attenuation vector for
the coherent signals. The (m, k)th element of R is given as

L P
R(m, k) :E{ s1(t) Z ajram (0;) + Z sif(t)am(@/)]

ir=1 i'=L41
L P
: [ST(UZO&?GZ(@)+ > Sf(t)aZ(l%)]}
i=1 i=L+1
+ Ui(sm}k

&)
for m,k € [0,1,--- , M — 1], where a,,(f) denotes the mth
element of the steering vector a(6). Considering that

o2, i=1i =1,
Els;(t)si(t)] = {07, i=1i"#1, (6)
0, T
we have
L L
Rm,k) = 0?3 avan(0:) S atai(6))
i'=1 =1
P
+ Y olam(0)ap(0:) + 020mis (D)
i=L+1
P
:de 7;6]’2T7Tclksin€i +0—3,5mk7
=1
where

L _ 2 Gn g, .
otar Yy age i Fdmsints 19 L
52 53 . .
o2e i 5 dmsint:, i=L+1,---,P.

®)

III. DOCORRELATION OF THE COVARIANCE MATRIX

Due to the presence of cross-correlations between the co-
herent sources, as evident from Eq. (7), the covariance matrix
R exhibits a rank deficiency problem and loses its Toeplitz
structure. As a result, applying subspace-based methods di-
rectly to R cannot resolve the coherent sources. To address
this issue, we develop an effective decorrelation technique to
decorrelate the covariance matrix and recover its full rank.

Consider a vector 7,,, = [rp(—(M —1), -+ 7 (M —1)]%,
whose elements are arranged from the elements in the mth
row and the mth column of the covariance matrix R, i.e.,

Tr=[0 (R (m: M —1,m)J) (R(m,m+1: M—1)) Oﬁ}T

c C2M71

(©))
where J is an exchange matrix containing ones in the antidi-
agonal and zeros elsewhere. Such vectors are arranged in the
following way to obtain a Toeplitz matrix,

7 (0) rm(1) T (M — 1)
- Tm(_l) 7‘,”(0) TM(M - 2)
R(m) = : : :
Tm(l - M) Tm(2 - M) Tm(O)

= triu( AE°™ D(m)A™) + ril(A(E°™)" D" (m) A™),
(10)
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(a) Proposed method. (b) Methods [14] and [16]

Fig. 1: DOA estimation results of 18 uncorrelated and 3
coherent sources. The red crosses represent the estimated
DOAs using the method in [14].

where D( ) = sdmp) and E =
d1ag(e]7r xdsindy . Another vector ¢ is
constructed Wthh contalns the occurrence of a corre-
lation corresponding to a particular lag as c¢(m) =
[0}, 13/ _om_1 O] ", We obtain matrix C (m) by arranging
the vector c¢(m) similar to (10). The matrices R(m) for

diag(dm 1y

6]7r A dsmép).

m=1,---,(M —1)/2 are averaged to obtain matrix R as
(M—-1)/2 (M—-1)/2
R= Z Rm)|o| > Cm) (11)
m=0

It is noted that the rank of the noise-free Hermitian Toeplitz
matrices R(m) is P, since both AE°"D(m)A"™ and
AE°™D(m)A™ are of rank P. Therefore, each of R(m)’s
has P nonzero eigenvalues. Let \,(m) be the pth nonzero
eigenvalue of R(m) when ordered in ascending order, and
let \, be the pth nonzero eigenvalue of Z (M 1)/ > R(m)
when ordered in ascending order. Then, accordlng to Weyl’s
inequality [21], for these Hermitian matrices, we have

(M-1)/2

Ap > Z Ap(m) #0

Therefore, the term Z (M 1 )/2 R(m), and hence R, has at
least P nonzero elgenvalues As a result, rank(R) > P, ie.,
the Toeplitz Hermitian matrix R recovers the full rank of the
covariance matrix. Additionally, since the number of rows in
A is M, P can be at most M — 1 for DOA estimation using
subspace-based methods, such as the MUSIC algorithm.

In comparison, the methods developed in [13], [14] decorre-
late the covariance matrix by reconstructing a single Toeplitz
matrix. [13] utilizes one row of the covariance matrix. As
such, the dimension of A is reduced by half, thus only
detecting at most |(M + 1)/2] sources. [14] utilizes the
primary eigenvector corresponding to the largest eigenvalue. It
considers the forward vector, which is the primary eigenvector,
and a backward vector, which is its flipped and conjugated
form. Two Toeplitz matrices are obtained from the forward
and backward covariance matrices, and the final decorrelated
matrix is the concatenation of these two matrices. This method
can detect at most |2M /3] sources.

(12)

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

The computation of the decorrelated covariance matrix R
can be decomposed into the following steps.
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(a) Proposed method

Fig. 2: DOA estimation results of 15 uncorrelated and 3
coherent sources.
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(a) Proposed method (b) Methods [14] and [16]

Fig. 3: DOA estimation results of 13 uncorrelated and 5
coherent sources.

1) Construction of 7,,: This involves flipping and con-
catenation of vectors. It does not require any matrix
multiplication.

2) Construction of R(m) : Reshaping r,, into a Toeplitz
matrix R(m) does not require any additional arithmetic
operations [22].

3) Construction of R : To construct R, there are (M —1)/2
additions for R(m) and (M — 1)/2 additions for C(m),
and their element-wise division, requiring a complexity
of O((M —1)?).

Compared to the ML-based approach developed in [16], the
proposed approach results in significantly lower computational
complexity. In [16], the alternating direction method of mul-
tipliers (ADMM) is used to solve a reformulated ML-based
estimation problem. The overall algorithm consists of N, outer
loops for the majorization maximization algorithm and N;
inner loops for the 5 update equations in the ADMM algo-
rithm. Each inner loop requires a computational complexity
of O(M?3). Therefore, the total complexity is O(N,N; M?),
which is much higher than that of the proposed algorithm.
On the other hand, the ESPRIT-based method with forward-
backward vectors (EFBV) requires a lower complexity of
O(M) [14], but the number of DOFs is lower compared to
the other two methods.
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Fig. 4: DOA estimation results of 18 partially correlated
sources.
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V. SIMULATION RESULTS

We consider a ULA consisting of M = 25 sensors to
estimate the DOAs in a mixed coherent and uncorrelated signal
scenario. We compare the proposed method with the EFBV
[14] and the ML-based estimation via sequential ADMM
(MESA) [16] in terms of the number of DOFs and DOA
estimation performance.

We first consider a high number of sources which is close
to the number of sensors. In Fig. 1, 21 sources are considered.
Among them, 18 sources are uncorrelated with DOAs —60°,
—b4°, —42°, —36°, —30°, —24°, —12°, —6°, 0°, 6°, 12°, 18°,
30°, 36°, 42°, 48°, 54°, 60°, whereas 3 sources with DOAs
—48°, —18°, 24° exhibit mutual coherence. The attenuation
factors ¢ are sampled from a complex Gaussian distribution
as a ~ CN(0,Iy). The input signal-to-noise ratio (SNR) is
10 dB, and 100 snapshots are considered. Fig. 1(a) verifies
that the proposed method successfully detects all sources.
Note that, the method in [14], which is based on Toeplitz
matrix reconstruction using forward and backward vectors, can
resolve at most |2M /3| = 16 sources and thus fails to detect
the 21 sources as evident from the red crosses depicted in
Fig. 1(a). The DOA estimation performance based on [16]
is depicted in Fig. 1(b), where one of the coherent sources is
undetected. The proposed approach provides a similar number
of DOFs and more robust performance compared to [16],
particularly when the number of coherent sources is high. We
illustrate this by considering 18 mixed sources. As shown
in Fig. 2, for 3 coherent sources, both approaches detect
all signals successfully. However, as the number of coherent
sources increases to 5, as shown in Fig. 3, one of the coherent
sources detected using [16] becomes slightly off from its true
DOA. EFBV does not perform well in this case either, since
the number of sources is higher than the number of DOFs
offered by the EFBV.

In addition to the fully coherent case, the proposed model
also works for partially correlated sources as well. In Fig. 4,

we consider the same 18 sources with correlation coefficients
p = 0.3 and p = 0.6. The figure clearly shows that the
proposed method resolves all partially correlated sources.

Fig. 5(a) compares the root mean-squared error (RMSE)
performance with respect to the input SNR for the considered
approaches. The RMSE is calculated as

Q
RMSE = Q% ZZP: (6 - ép,q)Q,

q=1p=1

13)

where () is the number of Monte Carlo trials. In this example,
14 mixed sources are considered, 11 of them being uncor-
related with DOAs —55°, —50°, —40°, —35°, —25°, —20°,
—5°,0°, 10°, 15°, and 20°. The remaining 3 sources are coher-
ent with DOAs 30°, 45°, and 44°. 500 trials are performed for
each input SNR to compute the RMSE value. From Fig. 5(a),
it is evident that the proposed method provides significantly
better performance than [14] and similar performance to [16].
Fig. 5(b) compares the RMSE performance with respect to the
number of snapshots. In this case, the input SNR is fixed at 10
dB, and the number of snapshots are varied between 50 and
150. In this case, both the proposed method and the MESA
method exhibit similar performance.

To study the robustness, we perform 500 trials as the input
SNR varies between —20 dB and 20 dB for a total 14 sources,
11 of which are uncorrelated and the other 3 are mutually
coherent. In each trial, the DOAs are randomly generated
from a uniform distribution between —60° and 60°. A DOA
is labeled misdetected if the absolute estimation error is larger
than 1°, i.e.,

1
D,,=<"
a.p {07

where Dy, = 1 indicates the misdetection of the pth source
in the gth trial. Therefore, the number of misdetection per trial

is obtained as
1 L
D) I

q=1p=1

“gq - éqm‘ 2 107

14
otherwise, 14

15)

Fig. 5(c) depicts a negligible number of misdetection obtained
from the proposed model when the input SNR is higher than
—10 dB. The number of snapshots is considered to be 500.
Fig. 5(d) illustrates the number of misdetections versus the
number of sources for the proposed method. The figure shows
that, even with 20 sources, the proposed approach detects them
effectively, with fewer than 1 average missed detection over
500 trials for input SNRs higher than —8 dB. This confirms
that the proposed approach can detect more sources than those
in [11], [13], which can detect a maximum of 13 sources, and
[12], [14], which can detect up to 16 sources.

VI. CONCLUSION

In this letter, we addressed the issue of DOA estimation in
a mixed coherent and uncorrelated signal scenario. Compared
to existing methods based on spatial smoothing and Toeplitz
matrix reconstruction, the proposed approach can achieve a
higher number of DOFs. Additionally, the proposed approach
provides performance similar to the ML-based approach but
with significantly lower computational complexity.
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