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Abstract 
Machine learning-assisted computer vision represents a state-of-the-art technique for extracting meaningful features from 
visual data autonomously. This approach facilitates the quantitative analysis of images, enabling object detection and 
tracking. In this study, we utilize advanced computer vision to precisely identify droplet motions and quantify their impact 
forces with spatiotemporal resolution at the picoliter or millisecond scale. Droplets, captured by a high-speed camera, are 
denoised through neuromorphic image processing. These processed images are employed to train convolutional neural 
networks, allowing the creation of segmented masks and bounding boxes around moving droplets. The trained networks 
further digitize time-varying multi-dimensional droplet features, such as droplet diameters, spreading and sliding motions, 
and corresponding impact forces. Our innovative method offers accurate measurement of small impact forces with a 
resolution of approximately 10 pico-newtons for droplets in micrometer range across various configurations with the time 
resolution at hundreds of microseconds.  
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FIGURE 1 Regime map illustrates different approaches for measuring droplet impact forces. Both piezoelectric and beam 
sensors can measure impact forces down to 10-3 N. In contrast, the vision-based approach proposed in this study can measure 
extremely small droplets with the forces of 10-9 to 10-7 N by taking advantage of the spatiotemporal resolution of a high-
speed camera.  
 

Liquid-droplet impact behavior on flat or tilted surfaces is a fundamental phenomenon in many engineering scenarios 
involving mechanical components, such as solid material erosion1, turbine blade surface damage2, soil loss3, and triboelectric 
nanogenerators4. The droplet impact behavior encompasses the dynamic processes of droplet spreading, rebounding, contact 
angle beating5, droplet vibration, and droplet contact line motions6. Recent studies for droplet impact behaviors yield visually 
interpretable data on these phenomena, laying the groundwork for qualitative assessments of solid-fluid interactions during 
the droplet approaching and impacting processes7. Specifically, when it comes to the use of droplets in energy harvesting 
using triboelectric nanogenerator applications, such data are crucial for exploring charge transfer mechanisms and their 
relationships with droplet impact dynamics. However, there remains a gap in quantifiable analyses that link droplet impact 
behaviors with the resultant electrical signals generated from triboelectric nanogenerators, indicating an area ripe for further 
investigation. Understanding droplet impact behavior, as well as the magnitudes and temporal distributions of droplet impact 
forces, is crucial for designing and maintaining systems and components in the aforementioned scenarios.  

Bridging this gap requires an accurate and automatically analyzing method to track the magnitude and temporal 
information of droplet locations, dimensions, and the impact forces exerted by droplets on the substrate materials. Previous 
researchers have employed several methods including piezoelectric sensors, beam sensors, and others to gain a complete 
view of the droplet impact mechanism. Researchers commonly assumed water droplets to be incompressible and used the 
model � = Āý2� to express the transient droplet impact force, where Ā is the water density, ý is the droplet impact velocity 
just before impact, and � is the transient droplet area of contact8. However, this approach fails to address the compressional 
wave that exists in the droplet impact process. The utilization of piezoelectric sensors helps address this problem. 
Piezoelectric sensors are capable of directly capturing the real droplet movements on surfaces and measuring the temporal 
profile of droplet impact forces. Consequently, researchers extensively equip piezoelectric sensors in experiments to study 
the force, pressure, strain, and acceleration during the droplet impact process. For instance, a study accurately measures the 
times and magnitudes of droplet impact forces with 3.31, 3.83, and 4.51 mm in diameter9 using a piezoelectric sensor. 
Piezoelectric sensors are broadly used to extract the droplet impact force for low impact velocity droplets10–13, various density 
droplets12, and droplet impacting processes under sub-atmospheric ambient pressure14. However, to study the dynamics of 
droplet impacts with high impact velocities, researchers need to combine high-speed photography techniques with 
piezoelectric sensors or solely rely on the theoretical analysis of the expansion fan and shock wave during high-velocity 



droplet impacts15. Some studies have used numerical tools to investigate the fluid dynamics of high-impact-velocity droplets 
on rigid substrates15,16, providing an alternative approach to exploring these extreme impact conditions instead of relying 
solely on piezoelectric sensor. Resolution limitations and thermal operating requirements are other drawbacks of 
piezoelectric sensors. The minimum achievable resolution of piezoelectric sensors is around 0.1 mg8, where the sensors have 
high temperature sensitivity. These constraints further limit the application of piezoelectric sensors in certain scenarios.  
    To expand the application of force sensors in various scenarios, cantilever beams present a viable option. They find 
widespread use in contexts including structural design sensitivity analysis17, material damping18, vibration characterization19, 
joining phenomena analysis20, and measuring mechanical properties21,22. Notably, beam sensors demonstrate promising 
capabilities in measuring detailed information about droplet impact on elastic substrates. On these substrates, droplet impact 
motions can be amplified by visually distinguishable beam deformation amplitudes and vibration frequencies at the beam 
tips. Common practices here include binding the piezoelectric structure to one (or both) ends of the beam 23 and assembling 
the beam material with polyvinylidene fluoride (PVDF)24,25. Through these practices, displacements and frequencies at the 
beam tips are directly measured through optical methods. Researchers can then estimate the droplet impact force using the 
beam equations26,27. However, to generate a measurable optical displacement on common elastic materials, the water droplet 
size is limited to several millimeters, corresponding to a droplet impact force of around several millinewtons, as illustrated 
in Figure 1. This indicates that the applications of beam sensors are also constrained by the measurement limitation. 
    Conventional force sensors, such as piezoelectric and beam sensors, as mentioned above, have limitations in measuring 
droplet impact forces. Some popular computer vision models qualify to address this concern by analyzing transient graphical 
data extracted from the droplet impacting process. Previous computer vision models, including edge detection and 
thresholding methods28–30, rely on the employment of one or multiple thresholds. In these methods, the edge locations 
correspond to the pixel brightness gradients, and the object and background are distinguished by clusters of varying 
brightness intensities, lacking the capability to process noisy data. Computer vision models like region growing31 and spatial 
clustering32 are also potential candidates for object detection. However, most of them require human intervention or 
additional image processing to adjust for image background differences and extract droplet impact information using a 
consistent standard.  

With recent advances in AI-based machine learning technology, a tremendous amount of readily established artificial 
neural networks33 are available and suitable for enhancing data inference. This includes tasks such as identifying and tracking 
moving objects from visual data. For example, a high-quality object instance segmentation framework called Mask R-CNN34, 

which is an extension of vision-based technologies focusing on Fast R-CNN and Fully Convolutional Network (FCN). 
Instead of detecting objects purely based on the color intensity and distribution of images, these deep learning -enabled 
computer vision techniques approach the final object segmentation by learning features from multiple convolutional layers, 
allowing the continuous capture of these features through a sequence of images. 
    In pursuit of quantifying the impact force of droplets in picolitres or even smaller volumes, this work proposes a novel 
framework that extracts transient impact information from droplets with minimal weights. The framework begins by using 
experimental visual data as the optical input for the denoising module. The purpose of this module is to extract all droplet 
motions that can be represented by brightness variation from traditional camera videos and then convert these motions to 
dynamic vision sensor (DVS) videos35–37. This process helps eliminate the original video background, including the 
impacting substrate, noise points, and unevenly distributed LED background light. Additionally, the slomo option in this 
module aids in augmenting the optical input data with the existence of droplet movements. After the denoising module, we 
then employ a deep learning-based computer vision model to track moving objects (i.e., droplets) across frames via a 
customized Mask R-CNN38–40. The proposed framework in this work can be further extended to investigate various droplets 
under different conditions (e.g., droplets on surface inclination angles41, or electrically charged droplets) as long as visual 
data are available. 



FIGURE 2 Vision-based framework of digitizing droplet impacts. (a) The proposed framework consists of optical input, 
denoising, object detection, object tracking, and data processing modules to obtain physically meaningful droplet features, 
such as: (b) droplet dimensions, (c) droplet velocities, (d) impact forces on tilted surface, and (e) contact angles.  
 
The proposed framework consists of denoising processing, object detection, and object tracking where each module is 

assisted by AI technologies, followed by a data processing module. The denoising process utilizes neuromorphic processing 
techniques, including v2e35 and the event-based image reconstruction tool e2vid36,37. Notably, the denoising process not only 
aids in noise reduction but also in visual data augmentation, effectively doubling the number of images used in the impact 
analysis. Detailed explanations of denoising processes are provided in Section 5.2 and Supporting Information. The object 
detection module incorporates a custom-trained instance segmentation model that assigns unique identifiers (IDs) to droplet 
masks38. This module processes the denoised and augmented images and delivers outputs such as the droplet sizes, centroids, 
bounding boxes, and segmented masks. Following this, the object tracking module takes over, utilizing the IDs of detected 
objects associated with temporal and spatial details of each droplet to extract the statistics of the impacting droplets. This 
tracking process is supported by TrackPy, a dedicated toolkit39,40, with comprehensive details provided in Sections 5.3 and 

5.4. Therefore, our framework allows us to extract physically meaningful features that include instantaneous droplet 
centroids (Ă, ă), droplet dimensions (height / and width ā), velocities (ÿ and Ā), impact force � , and dynamic contact 
angles �, where þ = 0 sec represents the instant of droplet impact, as illustrated in Figures 2b to 2e. Specifically, the droplet 
demographics, such as droplet centroids Ă, ă, height /, and width ā, are collected based on bounding boxes from the object 
detection module. Here, the height and width of bounding boxes are utilized to represent the droplet dimensions / and ā on 
both the flat and tilted surfaces, as illustrated in Figure 2c and the bottom-right illustration in Figure 1. The droplet centroids 
at the onset of impact are taken as the origin of the coordinates (0,0).  
 

  

 
Once scientific features are extracted from the framework, they can be used to compute physical quantities of interest, such 

as velocity, acceleration, and forces. First, the changes in droplet centroid locations in the x- and y-directions are used to 
calculate instantaneous velocities and accelerations based on: ÿ = �ý�ý                               (1) Ā = �þ�ý                                            (2) 

where the time step (&þ) is usually < 1 ms. The droplet accelerations �x and �y can be derived from the transient droplet 

impact velocities ÿ and Ā, separately. 



�x = �þ�ý                                             (3) �y = �ÿ�ý                                             (4) 

As shown in the illustration from Figure 2d, we redefine the droplet accelerations �⊥(�) in the perpendicular-surface 
direction using �x and �y for a surface with inclination angle � as: �⊥(�) = 2�x ∙ ýÿĀ � + �y ∙ �āý �                           (5) 

Here, we assume the droplet as a sphere with radius �i which is the droplet radius at the onset of impact (þ =  0). Then, the 
droplet mass ÿ can be written as: ÿ = Ā 43 ÿ�i3                             (6) 

Considering all the forces (supporting force �N, friction force �μ, and gravity ÿĀ) acting on a droplet from a tilted surface, 

along with Newton9s second law, in the perpendicular-surface direction, we obtain: �N 2 ÿĀ ∙ �āý � = ÿ ⋅ �⊥(�)                                       (7) 
where Ā  is the gravitational acceleration. According to Newton9s third law, in the perpendicular-surface direction, the 
combined force that a droplet experiences from the surface equals the perpendicular-surface force that a droplet exerts on 
the surface. Therefore, we have: �⊥(�) = �N = ÿ ⋅ �⊥(�) + ÿĀ ∙ �āý �                                      (8) 
Then, �⊥(�) is the graphically measured droplet impact force on a surface with an inclination angle of �. Here, the initial 
droplet radius �i  is used to calculate the droplet volume by assuming the droplet maintains a spherical shape right before 
impact. �⊥(�) = Ā 43 ÿ�i3 �þ�ý ∙ ýÿĀ � + Ā 43 ÿ�i3 �ÿ�ý ∙ �āý � + ÿĀ ∙ �āý �                                                              (9) 

On flat surfaces, with the inclination angle � of the impact surface equals to zero (i.e., ýÿĀ 0∘  = 0, �āý 0∘  = 1), Eq. (9) is 
rearranged as: �⊥(0) = Ā 43 ÿ�i3 �ÿ�ý + ÿĀ                        (10) 

We separately calculate the impact forces using a model called the self-similarity model42,43, which proposes that the wall 
surface is compressible at the early stage of droplet impact, causing surface erosion and deformation to occur due to the high 
impact pressure along the droplet-solid contact surface. All fluid motions inside the droplet are assumed to be irrotational 
and axisymmetric in derivation, which might not be ideal for tilted surfaces. By assuming the droplet to be an ellipsoid, the 
instantaneous effective droplet diameter �e is defined as:  �e = :/ ∙ ā23

                                 (11) 
The total droplet impact force42 on the flat substrate is calculated starting from the Navier-Stokes equation using similarity 
nature to simplify the expression of pressure field during the droplet impact. By integrating the pressure between the droplet-
solid contact surface as boundary conditions, the impact force �model(0) on a flat surface can be simplified as: �model(0) = 6:3ĀĀ05/2(�e/2)3/2:þ                       (12) 
where Ā0 is the average droplet velocity within 2 ms before the onset of impact. As for the droplet impact surface with an 
inclination angle �, we express the forces perpendicular to the surface as: �model,⊥(�) = 6:3ĀĀ05/2(�e/2)3/2:þ ∙ �āý �                                  (13) 

Furthermore, we quantify dynamic contact angles �l and �r by determining the intersection angles between the impacting 
substrate and the slope of the liquid-air interface (i.e., droplet profile) at the droplet contact points, as shown in Figure 2e. 
Additionally, we explore the frequency of dynamic contact angles by applying a non-uniform fast Fourier transform (nFFT) 
algorithm to the time sequences of both �l and �r. 



 

3.1 Droplet impact behaviors  

 

 



 

FIGURE 3 Droplet centroid locations and velocities on various surfaces. (a) Time-series droplet captures from a high-speed 
camera, neuromorphic-assisted denoising process, and reconstructed frames with object detection bounding boxes, along 
with ă (pink circles) and Ā (purple triangles) on the flat bare copper surface, (b) droplet captures and Ă or ă (pink circles), ÿ 

or Ā (purple triangles) on 30° tilted bare copper surfaces, and (c) droplet captures and Ă or ă (pink circles), ÿ or Ā (purple 
triangles) on 45° tilted bare copper surfaces. Here, droplet centroids Ă and  ă are defined as the relative distance in x- and y-
direction between droplet9s instant location and the droplet-surface first contact at (0,0). The black dashed lines refer to the 
onset of droplet impact.  

We focus on the analysis of droplet spreading and recoiling dynamics. It presents a series of optical, denoised, and 
reconstructed images that concurrently document the behavior of droplets impacting both flat and tilted surfaces within a 
10-millisecond timeframe, as depicted in Figures 3a-3c. It should be noted that all centroid information discussed in this 
and subsequent sections is derived from the 2D centroid of the blue bounding box, as shown in the reconstructed images in 
Figures 3a-3c, which capture droplets from a side view. We have chosen to use the 2D centroid (Ă, ă) as a proxy for the 3D 
centroid of the droplets. Here, the denoising process selectively preserves the dynamically moving objects in the optical 
images, thereby ensuring that the reconstructed images retain only the motion of the droplets of interest and successfully 
remove unnecessary background in optical images. In addition to the visual documentation, this study provides detailed 
temporal variations of position and velocity parameters (Ă, ă, ÿ, and Ā) associated with the droplet impact images. Before 
impact, the average velocities in the y-direction (Ā) are observed to be approximately 0.8 – 0.9 m/s. Notably, the magnitude 
of variation in terms of Ă, which physically represents the relative sliding distance from the initial impact point (where Ă =0), is found to be larger on the 45° tilted surface (approximately 1.5 mm) compared to the 30° tilted surface (approximately 
1.3 mm), as illustrated in Figures 3b and 3c. Here, a positive Ă value indicates the droplet sliding towards the left. By the 
10-millisecond mark, droplets achieve a state of equilibrium where their ă approximates 0 mm on both the 30° and 45° tilted 
surfaces. Concerning absolute sliding distances, denoted by Ă, these are recorded as 0.2 mm for the 30° surface and 0.8 mm 
for the 45° surface, indicating a shorter droplet displacement on the 30° inclined surface in comparison to the 45° surface. 
Consequently, this suggests a lower degree of viscous energy dissipation on surfaces with lesser inclination angles.  



 
FIGURE 4 Dynamic droplet features such as dimensions and dynamic contact angles. (a) Instantaneous droplet dimensions ā (dashed lines) and / (dotted lines) on flat surfaces, (b) on surfaces tilted at 30°, (c) on surfaces tilted at 45°, (d) droplet 
contact angles �l (purple solid lines) and �r (yellow dotted lines), and the nFFT frequency of �l (purple squares) and �r 
(yellow circles) on flat surfaces, (e) surfaces tilted at 30°, and (f) surfaces tilted at 45°.  

The transient nature of droplet impact behavior on both flat and tilted surfaces is characterized by instantaneous droplet 
dimensions, such as ā and /, displayed in Figures 4a to 4c. The amplitude peaks for both ā and / are more pronounced in 
Figures 4a and 4b, reaching approximately 6 mm for cases of no inclination or smaller inclination angle (30°), while Figure 
4c exhibits a reduced peak amplitude of around 4 mm on surfaces with larger inclination angle (45°). This distinction 
highlights the influence of surface orientation on the spreading and vertical displacement of droplets upon impact.  Due to 
the viscous energy dissipation through droplet spreading behavior, we recognize a decaying trend in droplet height / 
amplitude as time passed in Figures 4a to 4c. The amplitudes of droplet width ā and height / keep decreasing on flat surface. 
Contrast to Figure 4a, the amplitude of the second peak in ā is larger than that of the first peak tilted surfaces in Figures 

4b and 4c. The spreading motion of the droplet on tilted surfaces is facilitated by the component of gravity acting parallel to 
the surface, denoted as ÿĀ ∙ ýÿĀ �, which aids in the droplet sliding action and contributes to the increase in the wetted area. 
The dynamic contact angles refer to interfacial phenomena and are useful information. The magnitude of droplet vibration 
is quantified through the analysis of time-varying dynamic contact angles (�l and �r) and their normalized Fast Fourier 
Transform (nFFT) frequency distribution plots in Figures 4d to 4f. These plots are instrumental in defining the intensity of 
vibrations before the droplets achieve a complete steady state. The concept of a steady state in this context implies the ful l 
conversion of droplet kinetic energy into friction-induced heat, internal energy within the droplet, and other forms of energy 
dissipation. As the component of gravity acting parallel to the surface increases with the surface inclination angle (�), a 
smaller frequency distribution area is observed on the 45° tilted surface (Figure 4f) compared to the flat and 30° tilted 
surfaces (Figures 4d and 4e). This observation suggests that an increased component of parallel-surface gravity accelerates 
the dissipation of droplet impact energy through viscosity due to a longer sliding distance on the surface, thereby enabling a 
quicker transition to the steady state.  

 



3.2 Droplet impact forces  

    In the following section, the features extracted from our framework enable us to compute the impact forces for droplets 
in both nanoliter and picoliter sizes, in Figures 5 and 6, respectively. In addition, we validate the graphically extracted 
droplet impact force with the impact force model proposed by42,43 in SI. For both flat and tilted surfaces, all the droplet 
impact force �⊥(�) validations are executed at early droplet impact times (i.e., within 0.8 ms upon impact).  

FIGURE 5 Droplet impact force measurements for nanoliter droplets. (a) Comparison between time-varying droplet impact 
force �⊥(�) from the vision-based measurements (green diamonds) and self-similarity model42 (green dashed lines) on the 
flat copper surfaces, (b) the comparison on tilted bare copper surfaces with inclination angles of 30°, and (c) the comparison 
on tilted bare copper surfaces with inclination angles of 45°. Specifically, the initial data points here represent the impact 
forces calculated from acceleration data obtained from the first three frames right after the impact. 
 

We demonstrate the capability of this vision-based approach to calculate nanoliter droplet impact forces on flat and tilted 
surfaces. The green dashed lines represent the �model,⊥ 42,43 as expressed in Eq. (13). For this analysis, droplet initial radii �i 
are measured based on the frame showing the onset of droplet impact, which equal 0.61, 0.70, and 0.60 mm for flat, 30°, and 
45° tilted surfaces, respectively. While the flat surface shows comparable results of �⊥(0), the deviations between �⊥(�) 
and �model,⊥ in Figures 5b to 5c increase over the time. The self-similarity model consistently overestimates �model,⊥ 

compared to calculations derived from the vision-based approach, particularly for cases of 45° tilted surfaces. This 
discrepancy can be explained with three reasons: (1) The discrepancy arises because droplets on tilted surfaces exhibit both 
spreading and sliding behaviors41, in contrast to droplets on flat surfaces, where only spreading phenomenon occurs. It should 
be noted that the model account for impact behavior only and is only limited to the cases for flat surfaces. The vision-based 
approach measured sliding distances of droplets on tilted surfaces are 0.19 mm for surfaces with 30° and 0.42 mm for 45° 
inclination angles, corroborating the earlier statement. The more pronounced overestimation for the 45° tilted surface is due 
to the greater energy dissipation from frictional forces encountered during the sliding phase, resulting from the increased 
mobility of the droplet on more steeply angled surfaces. (2) Moreover, the model heavily relies on the droplet dimensions 
such as w and h. Due to the nature or transient phenomena from bouncing and oscillating behavior, w and h consistently 
changes, as described in Figure 4a-4c, however, this is not well captured. (3) The model solely defines the early stage of 
droplet impact and is limited to the point of contact so that we report the forces within the time range of 0.8 ms. Note that 
the calculations are close at the impact point within 0.2 ms for all the cases. This implies that the valid time range 
corresponding to the self-similarity model should be reported within this range. 



 
FIGURE 6 Droplet impact force measurements for picoliter droplets. Comparison between the time-varying picolitre droplet 
impact force �⊥(�)  within 2 ms upon impact on the flat bare nickel surface obtained from the vision-based approach (green 
diamonds) and �⊥(�) calculated based on the self-similarity model42  (green dashed line) at early impact times along with 

the ă on the images (pink circles).  
To further test the application of the vision-based approach proposed in this study, we follow the same procedure as 

utilized above to measure a smaller size of droplet, which is a picolitre droplet. The droplet of a diameter of 44.6 µm and a 
volume of 46.4 pL is captured at 1,000 fps. Figure 6 shows the transient droplet impact forces �⊥(�)  along with the 
simultaneous ă within 2 ms upon impact. We observe a reasonable agreement between the droplet impact force from the 
vision-based measurements and the self-similarity model42 predictions, particularly, near the impact. Here, we notice a 
similar increase in overestimations from the self-similarity model to vision-based approach calculations over time, which 
reiterates our observation from the previous section. It is also important to highlight that, as depicted in Figure 6, our 
proposed vision-based approach for measuring droplet impact forces achieves a force sensitivity of approximately 10 pN, 
coupled with a time resolution of hundreds of µs. 

 

4. Conclusion 

We propose a fast and efficient machine vision-assisted framework that extracts transient droplet impact data, including 
droplet velocity, beating frequency, and droplet impact force. This framework processes non-equilibrium droplets and is 
more versatile, as it can be applied to the conditions where the conventional force sensors are not suitable. Here, the dynamic 
droplet impact behaviors on non-conventional surfaces, for example, tilted surfaces, are characterized and discussed. The 
effects of inclination angles on the droplet dimension and beating frequency magnitudes are investigated.  In addition, this 
framework can achieve extreme spatial and temporal resolutions, along with force sensitivity, characterized by 
measurements in the picoliter range, hundreds of microseconds accuracy, and a force sensitivity of approximately 10 pN, 
respectively. We verify the feasibility and accuracy of this framework by comparing the droplet impact force results from 
the vision-based measurements with the self-similarity droplet impact force model and with experimental droplet impact 
force data from previous literature, demonstrating good agreements. In terms of the strength of our proposed vision-based 
measurement technique, it demonstrates enhanced ability in capturing droplet impact data under a wide array of conditions. 
Leveraging a novel neuromorphic-based denoising image processing approach, it addresses conditions that have been 
underexplored by other computer-vision models, such as varying background illumination, textured impact surfaces, and 
more, showcasing its superior adaptability and precision in complex environments. Providing that the droplet impact 
conditions are within the camera9s field of view and that visually interpretable data is obtainable, our methodology enables 
a direct analysis of droplet dynamics using the visual information. To further improve the accuracy of the proposed work, 
we suggest reconstructing droplet shapes in 3D for centroid computations. This approach may require capturing multiple 
views instead of relying on a single camera measurement. With the additional enhancement, this technique is poised to make 
contributions to practical fields, notably in advancing our understanding of water or energy harvesting methods involving 
droplets, such as raindrops, in future applications. 

 

5. Methods 



5.1 Droplet impact experiments             
High-spatial resolution images capturing droplet impact behavior are experimentally attained. The droplet impact 

processes are explored on both bare copper and nickel substrates, for nanoliter or picolitre droplets, respectively. For the 
copper substrate41, we manually polish the 1 cm x 1 cm copper sheets using sandpaper (MacMaster Carr) to make the 
roughness evenly distributed on the surface. After polishing, we characterize the surface wettability by performing the 
contact angle measurement with a microscopic contact angle meter (Kyowa Interface Science, MCA-4) from which the 
contact angle of the copper substrate is 107°. We then test the droplet impact processes on both flat and tilted substrates. We 
place the copper sheets onto plastic supports with different inclination angles (30° and 45°) to change the inclination angle � of the impacting surface. The fluid for creating the droplets is introduced by a syringe pump (11 Plus, Harvard Apparatus) 
with 0.3 ± 0.00075 mL/min flow rate. Considering the accuracy limitation of the syringe pump, we place the capillary tip 
(Kyowa Interface Science) 4.5 cm above the impacting substrates and control the droplet impact velocity at around 1 m/s 
for all nanoliter droplet cases. Eventually, we collect the sequence of side-view images before and during the droplet impact 
using a high-speed camera (FASTCAM Mini AX50, Photron; 2,000 frames per second; and 1,024 × 1,024 pixels) on copper 
substrates. In terms of the picolitre droplet impact experiment, we use the bare nickel with a contact angle of 120° as the flat 
impact substrates. The microscopic contact angle meter (Kyowa Interface Science, MCA-4) is used to capture the side-view 
picolitre droplet impact images on nickel substrates with image resolution of 896 × 704 pixels and frame rate at 1,000 – 
2,000 frames per second. It contains a precise electric micro-injector system which can generate micro-droplets in a range 
of 10 to 1,000 pL. 

 
5.2 Neuromorphic-based denoising process  

Once we collect the images from a high-speed camera, the images are post-processed to remove the background and noise 
in the denoising module. To do this, we employ the neuromorphic processing techniques. First, we employ the v2e35  
technique (video frames to dynamic-vision-sensor events) to generate denoised event data based on the high-speed optical 
videos. This process involves automatically transforming the optical video frames into luma frames, where each pixel denotes 
a brightness value. Following this, the event data are derived by applying brightness intensity -based algorithms on these 
luma frames. Finally, this data is processed using an event-based image reconstruction tool, implemented as a neural network 
named FireNet, under the e2vid36,37 framework. This step allows us to reconstruct a sequence of droplet impact images, 
effectively remove video background and noise for clearer visualization.  

It is important to note that the reconstruction quality of the final denoised images using the v2e technique is particularly 
sensitive to two threshold parameters: 8thres9 and 8sigma9. Here, 8thres9 refers to the threshold in logarithmic (log_e) intensity 
change required to trigger a positive or negative event, while 8sigma9 represents the one standard deviation threshold 
variation in logarithmic intensity change. In our practice, 8thres9 is set at 0.2 and 8sigma9 at 0.02 to achieve optimal deno ised 
results. 
 
5.3 Data training and extraction 

The post-processed images are fed to our customized object detection and object tracking modules, as illustrated in Figure 

2. The object detection module employs a fast and efficient customized object instance segmentation technique called Mask 
R-CNN34,38. This neural network is established on the Feature Pyramid Network (FPN) and ResNet101. It allows for 
automatic segmentation. The model employed in this study is trained on a dataset of 960 images, featuring droplets under 
condensing on and sliding off a subcooled pipe, with image resolution of 1,280 ×  720. In each image, it contains 
approximately 100 to 200 droplets (96,000 – 192,000 droplets in total), all of which are manually labeled by researchers in 
Won Lab using Supervisely (a platform helping with the creating, labeling, and annotating the graphical machine-learning 
training data). Additionally, for validating the accuracy of object detection module, another dataset of 500 to 800 images is 
annotated. Each image in this dataset displays the side-view of a droplet impacting on flat or tilted surfaces. Details are 
discussed in Figures SI1 and SI2 in the Supporting Information. Next, we harness this trained object detection model to 
make predictions on a new sequence of droplet impact images. These detected bounding boxes and masks, along with 
associated object IDs, are then fed into the object tracking module, aiming at extracting the spatiotemporal data of the 
impacting droplets. We utilize TrackPy in this module, a specialized tracking toolkit38–40, which enables precise monitoring 
of each droplet's trajectory and movements throughout the image sequence. 
 
5.4 Accuracy validation 

The overall performance of the data extraction framework is predominantly controlled by the accuracy of object detecting 
and tracking modules. We record the accuracy of these two modules by investigating four different scores, including 
accuracy, recall, F1 score, and precision. The instance detection performance is acceptable based on the evaluation metrics 
with 99.8% in accuracy, 97.2% in recall, 92.4% in F1-score, and 87.9% in precision. The accuracy of the imaging data 
extraction is confirmed by using the in-house code that evaluates the scores, as explained in Figure SI1 in Supporting 



Information. 
 
5.5 Contact angle calculation 

    Utilizing side-view images of droplets, in this section, we focus on determining the contact angles at two specific liquid-
solid contacting points on either side of the droplet. By converting the segmented masks into binary format, we assign a pixel 
value of 0 to represent the background and a value of 1 to signify the droplet. We employ edge detection tools available in 
the Matlab Image Processing Toolbox, which are designed to detect significant changes in pixel values (from 1 to 0 or vice 
versa) within the binary image. This process enables us to delineate a continuous edge profile of the droplet from the 
binarized segmented masks. Subsequently, we perform curve fitting on the coordinates near the droplet9s contact points to 
derive the curve functions that describe the droplet's profile on both sides as expressed in Eq. (14) and (15). ăl = ÿl(Ă)                         (14) ăr = ÿr(Ă)                           (15) 
Finally, we calculate the contact angles from the first derivative of ăl and ăr to determine the contact angles �l and �r at two 
contacting points. �l = �þ�Ā �þl�ý                                 (16) �r = �þ�Ā �þr�ý               (17) 



References 

1. Cook SS. Erosion by water-hammer. Proc R Soc Lond A Math Phys Eng Sci. 1928;119(783):481-488. 
2. Ahmad M, Schatz MCMV, Casey MV. Experimental investigation of droplet size influence on low pressure steam 

turbine blade erosion. Wear. 2013;303(1-2):83-86. 
3. Sharma PP, Gupta SC. Sand detachment by single raindrops of varying kinetic energy and momentum. Soil Sci 

Soc Am J. 1989;53(4):1005-1010. 
4. Wang L, Song Y, Xu W, et al. Harvesting energy from high‐frequency impinging water droplets by a droplet‐

based electricity generator. EcoMat. 2021;3(4), p.e12116. 
5. Kannan R, Vaikuntanathan V, Sivakumar D. Dynamic contact angle beating from drops impacting onto solid 

surfaces exhibiting anisotropic wetting. Colloids Surf A Physicochem Eng Asp. 2011;386(1-3):36-44. 
6. Chhasatia VH, Sun Y. Interaction of bi-dispersed particles with contact line in an evaporating colloidal drop. Soft 

Matter. 2011;7(21):10135-10143. 
7. Li X, Zhang L, Feng Y, et al. Visualization of Charge Dynamics when Water Droplets Bounce on a Hydrophobic 

Surface. ACS nano. 2023;17(23): 23977-23988. 
8. Regtien PPL. Sensors for Mechatronics. Elsevier; 2012. 
9. Pruppacher HR, Pitter RL. A semi-empirical determination of the shape of cloud and rain drops. J Atmos Sci. 

1971;28(1):86-94. 
10. Nearing MA, Bradford JM, Holtz RD. Measurement of force vs. time relations for waterdrop impact. Soil Sci Soc 

Am J. 1986;50(6):1532-1536.  
11. Li J, Zhang, B, Guo P, Lv Q. Impact force of a low speed water droplet colliding on a solid surface. J Appl Phys. 

2014;116(21):214903. 
12. Zhang B, Li J, Guo P, Lv Q. Experimental studies on the effect of Reynolds and Weber numbers on the impact 

force of low-speed droplets colliding with a solid surface. Exp Fluids. 2017;58(9):1-12. 
13. Grinspan AS, Gnanamoorthy R. Impact force of low velocity liquid droplets measured using piezoelectric PVDF 

film. Colloids Surf A Physicochem Eng Asp. 2010;356(1-3):162-168. 
14. Mitchell BR, Bate TE, Klewicki JC, Korkolis YP, Kinsey BL. Experimental investigation of droplet impact on 

metal surfaces in reduced ambient pressure. Procedia Manuf. 2017;10:730-736. 
15. Haller KK, Ventikos Y, Poulikakos D. Wave structure in the contact line region during high speed droplet impact 

on a surface: Solution of the Riemann problem for the stiffened gas equation of state . J Appl Phys. 
2003;93(5):3090-3097. 

16. Haller KK, Ventikos Y, Poulikakos D. Computational study of high-speed liquid droplet impact. J Appl Phys. 
2002;92(5):2821-2828. 

17. Chang K-H. Design Theory and Methods using CAD/CAE: The Computer Aided Engineering Design Series. 
Academic Press; 2014. 

18. El-Nasr AA. Evaluation of damping behavior of spray deposited SiC particulates reinforced Al composites. In: 
Current Advances in Mechanical Design and Production VII. Pergamon; 2000:407-414. 

19. Wang H, Jasim A. Piezoelectric energy harvesting from pavement. In: Eco-Efficient Pavement Construction 
Materials. Woodhead Publishing; 2020:367-382. 

20. Troughton MJ. Handbook of Plastics Joining: A Practical Guide. William Andrew; 2008. 
21. Delrio FW, Carraro C, Maboudian R. Small-scale surface engineering problems. Tribology and Dynamics of 

Engine and Powertrain. Woodhead Publishing; 2010:960-989. 
22. Chen H, Zhang X, Garcia BD, et al. Drop impact onto a cantilever beam: Behavior of the lamella and force 

measurement. Interfacial Phenom Heat Transfer. 2019;7(1). 
23. Viola F. Comparison among different rainfall energy harvesting structures. Appl Sci. 2018;8(6):955. 
24. Hao G, Dong X, Li Z, Liu X. Water drops impact on a PVDF cantilever: droplet dynamics and voltage output. J 

Adhes Sci Technol. 2021;35(5):485-503. 
25. Jellard SCJ, Pu SH, Chen S, Yao K, White NM. Water droplet impact energy harvesting with P(VDF-TrFE) 

piezoelectric cantilevers on stainless steel substrates. Smart Mater Struct. 2019;28(9):095002. 
26. Gart S, Mates JE, Megaridis CM, Jung S. Droplet impacting a cantilever: A leaf-raindrop system. Phys Rev 

Applied. 2015;3(4):044019. 
27. Dong X, Huang X, Liu J. Modeling and simulation of droplet impact on elastic beams based on SPH. Eur J Mech 

A Solids. 2019;75:237-257. 
28. Canny J. A Computational Approach to Edge Detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-

8(6):679-698. 
29. Lim JS. Two-Dimensional Signal and Image Processing. Prentice-Hall, Inc; 1990:478-488. 



30. Chow CK, Kaneko T. Boundary detection of radiographic images by a threshold method. In: Frontiers of Pattern 
Recognition. Academic Press; 1972:61-82. 

31. Espindola GM, Camara G, Reis IA, Bins LS, Monteiro AM. Parameter selection for region‐growing image 
segmentation algorithms using spatial autocorrelation. Int J Remote Sens. 2006;27(14):3035-3040. 

32. Li N, Huo H, Zhao YM, Chen X, Fang T. A spatial clustering method with edge weighting for image 
segmentation. IEEE Geosci Remote Sens Lett. 2013;10(5):1124-1128. 

33. Visin F, Ciccone M, Romero A, Kastner K, Cho K, Bengio Y, Matteucci M, Courville A. Reseg: A recurrent 
neural network-based model for semantic segmentation. InProceedings of the IEEE conference on computer 
vision and pattern recognition workshops. 2016;pp.41-48. 

34. He K, Gkioxari G, Dollar P, Girshick R. Mask r-cnn. Proceedings of the IEEE International Conference on 
Computer Vision. 2017. 

35. Delbruck T, Hu Y, He Z. V2E: From video frames to realistic DVS event camera streams. arXiv preprint 
arXiv:2006. https://arxiv.org/abs/2006 (Submitted June 13, 2020. Accessed March 1, 2022.). 

36. Cadena PRG, Qian Y, Wang C, Yang M. SPADE-E2VID: Spatially-Adaptive Denormalization for Event-Based 
Video Reconstruction. IEEE Trans Image Process. 2021;30:2488-2500. 

37. Scheerlinck C, Rebecq H, Gehrig D, Barnes N, Mahony R, Scaramuzza D. Fast image reconstruction with an 
event camera. Proc IEEE/CVF Winter Conf Appl Comput Vis. 2020. 

38. Suh Y, Lee J, Simadiris P, Yan X, Sett S, Li L, Rabbi KF, Miljkovic N, Won Y. A Deep Learning Perspective on 
Dropwise Condensation. Adv Sci. 2021;8(22):2101794. 

39. Suh Y, Bostanabad R, Won Y. Deep learning predicts boiling heat transfer. Sci Rep. 2021;11(1):1-10. 
40. Suh Y, Chang S, Simadiris P, Inouyet T, Hoque MJ, Khodakarami S, Kharangate C, Miljkovic N, Won Y. 

VISION-iT: Deep Nuclei Tracking Framework for Digitalizing Bubbles and Droplets. 2023; Available at SSRN 
4491956. 

41. Zhao C, Montazeri K, Shao B, Won Y. Mapping between surface wettability, droplets, and their impacting 
behaviors. Langmuir. 2021;37(33):9964-9972. 

42. Philippi J, Lagrée PY, Antkowiak A. Drop impact on a solid surface: short-time self-similarity. J Fluid Mech. 
2016;795:96-135. 

43. Zhang R, Zhang B, Lv Q, Li J, Guo P. Effects of droplet shape on impact force of low-speed droplets colliding 
with solid surface. Exp Fluids. 2019;60(4):1-13. 

44. Jayawardena AW, Rezaur RB. Measuring drop size distribution and kinetic energy of rainfall using a force 
transducer. Hydrol Process. 2000;14(1):37-49. 

45. Mitchell BR, Klewicki JC, Korkolis, YP, Kinsey BL. The transient force profile of low-speed droplet impact: 
measurements and model. J. Fluid Mech. 2019;867, pp.300-322. 

46. Lichtensteiner P, Posch C, Delbruck T. A 128x128 120dB 15µs Latency Asynchronous Temporal Contrast Vision 
Sensor. IEEE Journal of Solid-State Circuits. 2008;(2):566-76. 

47. Nozaki Y, Delbruck T. Temperature and parasitic photocurrent effects in dynamic vision sensors. IEEE Trans 

Electron Devices. 2017;64(8):3239-3245. 

 

Acknowledgements  

C.Z. expresses gratitude for the financial assistance received from the UCI Mechanical and Aerospace Engineering 
Department through the Graduate Dean9s Dissertation Fellowship. Special acknowledgment goes to Quang Pham and 
Bowen Shao for their contribution of experimental droplet impact data, as well as to undergraduate students in Won Lab 
for their efforts in annotating droplets in images. The authors acknowledge the support from National Science Foundation 
(award number 2045322). 

 

Conflict of Interest  

The authors declare no conflict of interest. 

 

Additional Information 

Additional supporting information can be found online in the Supporting Information section at the end of this article. 



 
Nomenclatures � acceleration (m2/s) ÿ droplet edge curve function Ā gravitational acceleration (m2/s) / droplet height (mm) ÿ droplet weight (g) þ droplet impact time (s) ÿ droplet impact velocity in the x-direction (m/s) Ā droplet impact velocity in the y-direction (m/s) ā droplet width (mm) Ă x coordinates of the droplet centroid (mm) ă y coordinates of the droplet centroid (mm) � side-view area of droplet (mm2) � droplet diameter (mm) � force (N)  � droplet radius (m) þ droplet volume (m3) � inclination angle of the impacting surface (°) � dynamic contact angle (°) Ā water droplet density (kg/m3) 
 

Subscripts 0 average droplet velocity within 2 ms before the onset of impact e effective diameter of droplets i at the onset of impact l left model total droplet impact force calculated by self-similarity model r right x direction normal to the gravity force y direction parallel to the gravity force N supporting force from impacting surface μ frictional force from impacting surface ⊥ direction normal to the impacting surface (perpendicular-surface direction) ∥ direction parallel to the impacting surface (parallel-surface direction) 

 

 


