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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
integrated into vehicular systems for applications such as au-
tonomous surveillance, traffic monitoring, and navigation. These
applications rely on real-time object tracking, which has been
significantly enhanced by deep learning (DL)-based models. How-
ever, DL-based trackers remain highly vulnerable to adversarial
attacks, where imperceptible perturbations can severely degrade
tracking accuracy and reliability. To address these challenges,
we propose a pluggable defense solution designed to enhance the
robustness of UAV tracking systems without modifying existing
tracking architectures. Our approach leverages a dual-level op-
timization strategy to mitigate adversarial perturbations at both
feature and decision levels, ensuring resilient tracking perfor-
mance. Implemented as a pre-processing stage, our solution can
be seamlessly integrated with various UAV tracking systems. We
evaluate our approach against multiple adversarial attacks across
three widely used UAV tracking benchmarks: UAVTrack112,
UAV123, and UAVDT. Experimental results demonstrate that
our pluggable solution effectively restores tracking accuracy and
improves robustness under various adversarial attacks without
sacrificing tracking performance in original (attack-free) scenar-
ios. Real-world tests on a UAV platform validate the efficiency and
practicality of our method. Comprehensive results indicate our
solution can strengthen UAV tracking in real-world applications
and ensure reliable performance in adversarial environments.

Index Terms—UAV Object Tracking, UAV Security, Deep
Learning.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been widely inte-
grated into vehicular systems to enhance intelligent transporta-
tion technologies due to their high mobility and advanced sens-
ing capabilities [2]-[5]. As part of modern vehicular networks,
UAVs provide a mobile and adaptable sensing platform that
supports critical applications such as autonomous surveillance
[6]-[11], traffic monitoring and management [12]-[16] in
smart cities, and pedestrian safety monitoring [17]-[19]. A
fundamental capability enabling these UAV applications is
object tracking, which allows UAVs to detect, follow, and
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analyze the movement of objects in real time. In autonomous
surveillance, object tracking enables UAVs to continuously
monitor dynamic targets such as vehicles and pedestrians
[6]-[11]. For traffic monitoring, UAV-based tracking assists
in vehicle movement analysis, congestion detection, and law
enforcement support [12]-[16]. Additionally, UAV-based au-
tonomous navigation depends on object tracking to avoid
obstacles, maintain stable flight paths, and interact safely with
dynamic environments [20]-[23].

With the rapid advancement of Al techniques, deep learning
(DL)-based trackers have been integrated with UAVs to en-
hance the performance of UAV-based tracking systems [24]—
[31]. DL-based trackers can process complex patterns from
various onboard UAV sensors, such as cameras, LiDAR, and
thermal sensors. They can effectively handle variations in
lighting, scale, orientation, and background clutter, making
them well-suited for dynamic and diverse environments, even
in challenging scenarios involving occlusions or rapid move-
ments. However, Al and deep learning models are vulnerable
to adversarial attacks and data manipulation due to their
sensitivity to input perturbations [32]-[36]. These vulnera-
bilities arise from the data-driven nature of their learning
processes and the high-dimensional complexity of their feature
spaces. While integrating Al into UAV tracking systems brings
significant advancements and capabilities, it also introduces
critical security challenges since DL-based trackers employed
in UAV tracking systems share these vulnerabilities, which
can compromise tracking accuracy and reliability in real-
world applications. A compromised UAV tracking system
could result in security failures, inaccurate surveillance, failed
deliveries, or unreliable autonomous flight. Recent studies
have demonstrated that adversarial perturbations applied to
input data can significantly compromise the effectiveness of
DL-based UAV tracking algorithms [37]-[42]. Most existing
tracking attacks aim to mislead the tracking predictions by
manipulating video frames with pixel-level adversarial pertur-
bations taking state-of-the-art Siamese-based trackers as victim
trackers. The perturbations are generated either by inverting
the original training loss functions at tracking decision-level
[37]-[40] or disrupting the intermediate feature space by
maximizing the difference between feature maps of clean and
adversarial frames to deceive the tracker at feature-level [41],
[42].

Given the fact that object tracking is widely integrated
into various UAV applications, it is crucial to improve the
robustness of UAV tracking systems against potential attacks.
Once the tracking system is disabled by external attacks,



UAV tasks could fail and even result in severe accidents
since the entire system is exposed to adversarial environments.
Previous studies have demonstrated that methods such as
adversarial training [43], [44] and input reconstruction [45]-
[49] can effectively enhance the robustness of deep learning
models. However, directly applying these approaches to UAV
tracking systems poses several challenges. Adversarial training
is computationally intensive and can degrade model perfor-
mance due to the exposure to adversarial data during training.
Meanwhile, most input reconstruction methods are tailored to
image classification tasks and have limited effectiveness in ob-
ject tracking scenarios. Furthermore, existing defense methods
predominantly focus on mitigating decision-level attacks, often
overlooking feature-level disruptions in UAV-based tracking
systems. However, feature-level attacks can propagate through
the network, leading to cascading vulnerabilities that affect
both feature extraction and the final predictions. Therefore,
addressing only decision-level attacks is insufficient for en-
suring the robustness and reliability of UAV tracking systems.
A comprehensive defense strategy should account for both
feature-level and decision-level vulnerabilities to provide a
more effective and resilient solution.

In this paper, we propose a robust pluggable tracking
solution compatible with various Siamese-based trackers to
enhance the performance of UAV tracking systems in adver-
sarial environments. To mitigate the impact of attacks, we
develop an input reconstruction module that purifies video
frames by effectively eliminating adversarial perturbations and
restoring them to their clean versions. The key motivation
behind our design is to prevent feature variance and distortion
caused by adversarial perturbations from propagating through
the tracking pipeline to the prediction stage. To achieve this,
our module employs a dual-level optimization strategy that
operates at both feature and decision levels. This approach
ensures effective mitigation of adversarial perturbations dur-
ing intermediate feature extraction and final decision-making
stages. Consequently, the reconstructed output serves as a
robust input for the subsequent tracker, enabling accurate and
reliable tracking predictions across diverse and challenging ad-
versarial scenarios. Our reconstruction module is designed as
a pluggable input pre-processing stage to be easily integrated
into existing tracking systems, making it adaptable to different
tracking architectures without modifications.

We evaluated our solution against various recently proposed
tracking attacks towards UAV tracking systems, using three
widely adopted UAV tracking benchmarks: UAVTrack112
[50], UAV123 [51], and UAVDT [52]. To test the robust-
ness of our solution, we implemented two offline DNN-
based decision-level attacks [39], [40], one online optimized
decision-level attack [38], and one offline feature-level attack
[42]. For assessing compatibility, our reconstruction mod-
ule was integrated with three representative Siamese-based
trackers: SiamRPN++ [27], SiamAPN [30], and SiamMask
[31]. Our solution successfully restored the tracking perfor-
mance of these trackers in various adversarial environments,
achieving 95.8% and 93.2% of the original performance (on
average) across three datasets for SiamRPN++ in terms of
precision and success rate, 95.4% and 90.6% for SiamAPN,

and 94.2% and 91.2% for SiamMask. Compared with recently
proposed solutions [1], [49], our approach achieves compa-
rable performance on decision-level attacks and significantly
outperforms when handling feature-level attacks in terms of
precision and success rate. These results demonstrate that
our dual-level optimization strategy significantly improves
recovery effectiveness. We conducted real-world tests on a
UAV platform to evaluate the efficiency and practicality of
our solution. Overall, the evaluation results indicate that our
method substantially enhances tracking performance against
different types of adversarial attacks and can be transferred
to various Siamese-based trackers, achieving consistent and
significant recovery improvements.

The rest of this paper is organized as follows: We review and
discuss related works in Section II. In Section III, we present
the detailed construction of our solution. The evaluation of our
design is presented in Section IV. The transferability of our
solution to trackers with different architectures is discussed in
Section V. We conclude this paper in Section VI.

II. RELATED WORKS
A. UAV Object Tracking

The developments of deep-learning theories and computa-
tional power have encouraged the integration of deep-learning
object tracking methods with UAV systems [24]-[31]. A
novel coarse-tracker was introduced by Zhang er al. [24]
to mitigate the effects of aspect ratio variations in UAV
tracking. A coarse-to-fine deep scheme is adopted to finely
adjust the boundaries of the bounding box by generating
initial estimates of target objects and learning the sequential
actions in the following frames. To tackle the challenge of
long-distance UAV tracking, Li et al. [25] introduced an
approach integrating image super-resolution with a saliency
transformation algorithm. This method focuses on suspected
regions by applying saliency transformation and subsequently
employs a generative adversarial network on the identified
Region of Interest to achieve super-resolution for enhancing
weak targets and recovering high-resolution details of target
features.

In recent years, Siamese trackers [26]-[31] have been
widely used in applications due to their ability to achieve
a good balance between accuracy and efficiency in real-time
tasks. Siamese trackers adopt deep neural networks such as
AlexNet[53] and ResNet50 [54] as the backbone to extract
features of the template and search region patch for similarity
learning and then employ a head network for feature fusion
to produce the tracking predictions. Siam-FC [26] takes a
fully convolutional network as the backbone and a cross-
correlation layer as the head network for object localization.
Region Proposal Network (RPN) is introduced in SiamRPN
[28] to perform target region proposal extraction on the feature
maps from the backbone network to generate two-branch re-
sponse maps with tracking information including foreground-
background classification score map and object bounding box
regression map. SiamRPN++ [27] is an enhanced version
of SiamRPN that employs a spatial-aware sampling strat-
egy to aggregate feature representations from multiple layers



to realize cross-correlation operations and further improve
tracking performance. To support the semi-supervised video
segmentation tasks, SiamMask [31] extends the two-branch
head network to three-branch by adding a segmentation mask
branch to SiamRPN that encodes the feature information
to generate a pixel-wise binary mask. Siamese Transformer
Pyramid Network (SiamTPN) [29] is proposed to meet real-
time processing requirements on resource-constrained UAV
platforms. SiamTPN combines the strengths of Convolu-
tional Neural Networks and transformers by leveraging Shuf-
fleNetV2’s lightweight feature pyramid and integrating a trans-
former to build a robust, target-specific appearance model.
Siamese Anchor Proposal Network (SiamAPN) [30] consists
of a two-stage architecture where the first stage generates
high-quality anchor proposals adaptively, and the second stage
refines these proposals for enhanced precision.

B. Adversarial Tracking Attacks

Existing tracking attacks [37]-[42] can be divided into dif-
ferent categories based on their perturbation learning strategies
and adversarial objective functions targeting level. Based on
the learning strategies, the tracking attacks can be classified
into online interactive optimization-based [37], [38] and offline
deep neural network (DNN)-based attacks [39], [40]. Both
[37] and [38] implement online attacks by applying iterative
optimization algorithms such as gradient descent to generate
perturbations. To fool the GOTURN [55] tracker, Wiyatno
et al. [37] proposed a Physical Adversarial Texture attack
method utilizing a minibatch gradient descent algorithm to
optimize the pixel perturbations. Guo et al. [38] proposed a
spatial-aware online incremental attack algorithm to improve
the efficiency of real-time attacks on trackers. This approach
performs spatial-temporal sparse incremental perturbations in
real time, minimizing the perceptibility of adversarial attacks
while preserving their impact. Different from online iterative
attacks, offline DNN-based attacks pre-train a DNN model as
the adversary generator to generate perturbations at one step.
Cooling-Shrinking Attack (CSA) [39] method is designed to
deceive SiamRPN-based trackers by cooling hot regions where
targets appear on the heatmap to make the target invisible
and shrinking the predicted bounding box. Instead of adding
perturbations directly on the original video frames, Adaptive
Adversarial Attack (Ad?Attack) [40] first downsamples the in-
put frames and introduces perturbations during the upsampling
process to generate adversarial samples.

In terms of the targeting level of adversarial objective
functions, adversarial attacks can be classified into decision-
level [37]-[40] and feature-level [41], [42]. [37]-[40] are
decision-level attacks that generate perturbations to mislead
tracking predictions towards confusing the response maps
from the tracker’s head network. SPARK [38] and CSA [39]
aim to reduce the score gap between object and background
in the foreground-background classification response map.
Ad?Attack [40] deceives the tracker by reversing the object
and background scores. To force the predicted bounding box
to drift away from the object, CSA [39] introduces shrinking
loss, and Ad?Attack [40] adds noisy offsets to disrupt the

regression response map that includes the information to adjust
the bounding box. Inspired by the fact that features from inter-
mediate layers of the DNN model can affect the task-oriented
decision, feature-level attacks have attracted attention recently
by distorting feature maps of normal samples to generate
adversarial perturbations. Motivated by the observation that
features extracted from intermediate layers of different DNNs
on different data for various tasks share strong similarities,
Transferable Adversarial Perturbations (TAP) [42] introduces a
loss function to maximize the relative distance between normal
features of a sample and its adversarial counterparts extracted
from intermediate layers of a DNN model. On the other hand,
Pluggable Attack [41] corrupts the feature space from the
backbone of trackers by disordering the feature distributions.

C. Robustness Enhancement Against Attacks

Enhancing the robustness of DL-based object trackers
against adversarial attacks can generally be achieved through
two main approaches: adversarial training [43], [44] and in-
put reconstruction [45]-[49]. Adversarial training strengthens
model resilience by exposing object trackers to both clean
and adversarial data during training. Song et al. [43] intro-
duced a visual tracking framework that integrates adversarial
learning to address class imbalance issues in training, thereby
enhancing robustness. To improve inference speed, Zhong et
al. [44] developed a real-time tracking algorithm that combines
adversarial learning with a feature map masking strategy and a
randomized mechanism. Despite its effectiveness, adversarial
training poses a risk of compromising accuracy on clean data
due to exposure to adversarial examples during model training.

Input reconstruction focuses on mitigating adversarial per-
turbations by restoring corrupted inputs, which is a technique
predominantly developed for image classification rather than
object tracking. Yuan et al. [45] proposed a feedback-based
ensemble generative model that disrupts adversarial patterns
before reconstructing clean images. Ho et al. [46] introduced
a local implicit function approach that projects adversarially
perturbed inputs back onto a learned manifold using per-pixel
feature encoding. Another method, DiffPure [47], employs
diffusion models to remove adversarial noise through a for-
ward perturbation process, followed by a reverse generative
step to reconstruct clean images. However, these methods are
designed for image classification and encounter difficulties
when applied directly to object tracking, where maintaining
temporal consistency and ensuring real-time performance are
crucial.

To bridge the gap between images and videos in reconstruc-
tion methods, LRR [49] leverages semantic text guidance from
language-image models such as CLIP [56] by taking continu-
ous frames to create spatial-temporal implicit representations,
which become the input of their proposed language-driven
resample network to reconstruct incoming frames, preserving
both semantic and visual consistency with the target object and
its clean counterparts. Although LLR can achieve promising
defense performance against decision-level attacks [38]-[40],
it overlooks the feature-level attacks [41], [42] and remains
vulnerable to them, which can significantly degrade tracking



accuracy by distorting feature extraction in the early stages of
the tracking pipeline.

III. METHODS

The overall design of our solution is illustrated in Fig. 1. Our
solution is designed to enhance the robustness of UAV tracking
systems in adversarial environments by integrating a pluggable
dual-level reconstruction module to mitigate adversarial at-
tacks without compromising tracking accuracy on clean inputs.
The key idea is to filter adversarial perturbations from input
frames before they reach the tracking pipeline to ensure accu-
rate and reliable tracking. The reconstruction module operates
as an independent input pre-processing component, making
it easily pluggable into existing tracking systems without
requiring modification to the underlying trackers. We focus on
state-of-the-art Siamese-based trackers that are widely adopted
in UAV tracking systems due to their balance of efficiency and
accuracy.

The training pipeline of our dual-level reconstruction mod-
ule is shown in Fig. 2. The common backbone-head archi-
tecture of Siamese-based trackers makes them suitable for
our dual-level optimization strategy to address perturbations
at both the feature and decision levels. During training, it
takes adversarial frames I°? as input to generate reconstructed
versions I"“ using three key loss functions: decision-level
loss, feature-level loss, and Lo loss. These losses are combined
to achieve comprehensive mitigation of adversarial perturba-
tions while maintaining consistency with clean inputs. The
tracker remains frozen during training and serves as a fixed
reference with I°"% as inputs to optimize the reconstruction
module. The backward optimization pipeline (indicated by
the dashed line) iteratively updates the module to minimize
the combined losses. We only use adversarial samples during
training to guide the reconstruction module to learn features
that effectively counter perturbations. The training objective
is to reconstruct frames that are close to their clean versions.
By learning from these challenging adversarial inputs, the
reconstruction model can also handle clean frames effectively
during testing without disrupting them. Although our approach
is tailored for Siamese-based trackers, the modular nature of
our design makes it extensible to other trackers with similar
architectures.

A. Model Architecture

U-Net [57] architecture is adopted to construct the re-
construction module due to its ability to capture context at
multiple scales while preserving spatial information, making
it effective for pixel-level tasks. The U-Net architecture first
downsamples the input search regions 8 times by a factor
of 2 to capture high-level features and reduce the spatial
dimensions of the input search regions and then upsamples the
low-resolution feature maps to match the original input size.
To handle varying search region sizes NxN used by different
Siamese trackers, such as 255x255 for SiamRPN++ [27]
and 287x287 for SiamAPN [30], and in long-term scenarios
where sizes range from 255x255 to 831x831, we set the
model’s input resolution to 512x512 and the resolution gaps
are managed using bilinear interpolation.

B. Decision Loss

The Siamese-based trackers with backbone-head architec-
ture produce common task-oriented response maps at the
decision level, including a classification map and a regression
map from the head network based on the extracted features.
The classification map represents the confidence score of the
proposed bounding box being a target or background and the
regression map includes the information to adjust the bounding
box. By minimizing the difference between these two decision-
level response maps of adversarial and reconstructed frames,
our reconstruction module is optimized for accurate prediction
in the decision-making process. The overall decision loss is
defined as Lq = Lscore + Larife. The definitions for each loss
function are provided below.

1) Score Loss: The classification score map from the
Siamese tracker is reshaped to R¥>*W X2 after applying the
softmax function, which represents the target probability Py
and background probability Py, of each anchor of the predicted
bounding box, i.e. the center point of the bounding box. The
target area T and background area B in the original clean
frame I°"* can be expressed as:

T =1"[Py" > ¢

) . 1
B — IOTZ[P;))TZ < _d ( )

where € is a preset threshold, P¢" and P{™ are the target
probability and background probability of each anchor in the
original clean frame.

The score loss function is defined as follows:

o . .
Lscm’e = N(|PIEC[T] - P:‘,)” [TH + |P;€C[B} - Pgm [BH)

2)
where o is the weight of Ls.ore, N is the batch size, P;°“ and
P;¢¢ are the target probability and background probability of
each anchor in the reconstructed frame. The L., function
aims to reduce the difference between the confidence scores
of the target and background area in original clean and
reconstructed frames.

2) Drift Loss: The regression map R € RHXWx4 hag
four dimensions R(z), R(y), R(w), R(h). R(z) and R(y)
represent the center position of the bounding box. R(w) and
R(h) represent the size of the bounding box. The drift loss
function is defined as follows:

Ldrift = %{Z |chc(w)Rmc(h) _ Rori(w)Rori(h)|
T

+ (R (2) = R (2))* + (R™(y) - R ()))}
T

3)

where 3 is the weight of Ly, R™ and R°™ are

regression maps of the reconstructed frame and original frame,
respectively.

Lgyrif¢ function is designed to make the bounding box size
and center position predicted from the reconstructed frame
close to the ones from the clean frame. Here, we only consider
the potential bounding boxes within the activated target area
in the frame.
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input and outputs purified frames I"*°. The model is trained
using three losses: Lo loss between I™“ and clean frames
I°7%, feature loss comparing intermediate features from the
backbone, and decision loss based on the final response maps.

C. Feature Loss

Feature-level attacks target the intermediate feature repre-
sentations extracted by the backbone network of a tracker.
These attacks exploit the fact that neural networks process
information through multiple layers, where low-level features
are gradually transformed into high-level semantic representa-
tions used for prediction. When adversarial perturbations are
introduced at the feature level, the feature maps extracted from
the adversarial frames become misaligned with those of the
original frames. This misalignment can propagate through the

network, causing cascading disruptions that result in signifi-
cant errors in decision-level tracking predictions.

To address these challenges, our reconstruction module
incorporates a feature-level loss design that directly mitigates
feature-level disturbances. The feature-level loss L is defined
in Equation 4, where k is the total number of selected layers
producing feature maps, «y is the weight of Ly, and 7 is the
layer index. Ly is the sum of the [, norm distances between the
feature maps of the original and reconstructed frames across
selected layers of the backbone network. By minimizing Ly,
the reconstruction module learns to generate frames whose fea-
ture maps closely match those of clean frames. This alignment
effectively reduces the impact of adversarial perturbations on
the extracted features, ensuring the downstream prediction
process operates on high-quality semantic information.

k
L= % STIEMeT; — FM| @)
=1

D. Lo Norm Loss

The Lo norm loss is designed to minimize the pixel-wise
difference by calculating the Euclidean distance between the
reconstructed frame and the clean frame. This loss function
encourages the reconstruction module to generate frames that
are visually similar to the original. It is defined as follows:

Ly = %HIOT‘i _ IrecH (5)

where A is the weight of Ls loss, I°7% and I"¢¢ are the clean
and reconstructed frame, respectively.



IV. EVALUATION
A. Experiment Setup

In our experiments, we trained the reconstruction module
with different combinations of loss weights, but the perfor-
mance on the validation set showed minimal variation. This
indicates that the loss weights have little impact on the model’s
performance. To maintain consistency in loss magnitude, we
set the weight parameters as follows: @ = 1 in Equation
2, B = 10 in Equation 3, v = 500 in Equation 4, and
A = 700 in Equation 5. The batch size N is 128. We use the
state-of-the-art SiamRPN++ [27] and its backbone ResNet-
50 [58] to train our reconstruction module. The GOT-10K
[59] dataset is downsampled by selecting one frame for every
ten frames from each video. A subset of 180 videos from
this downsampled dataset is used as the validation set, and
the remaining videos form the training dataset. Two decision-
level attacks including Ad2Attack [40] and CSA [39] and a
feature-level attack TAP [42], are implemented to generate
adversarial samples for training. The effectiveness of our
method is evaluated by implementing four attack strategies
including two offline decision-level attacks Ad2Attack [40]
and CSA [39], one online decision-level attack SPARK [38],
and one offline feature-level attack TAP [42] on three UAV
benchmarks: UAVTrack112 [50], UAV123 [51], and UAVDT
[52]. To evaluate the transferability of our reconstruction
module, we also integrated our reconstruction module pre-
trained on SiamRPN++ with two other representative Siamese-
based trackers, including SiamAPN and SiamMask, to run
the test experiments. We also compare our solution with the
recently proposed solutions [49] and [1] to assess recovery
effectiveness. In addition, we retrained the approach proposed
in [1] that only considers decision loss with the same training
set to show improvements in recovery performance by our new
method against feature-level attacks.

B. Evaluation Metrics

We evaluate the tracking performance with precision and
success rate as metrics [60]. Precision measures the proportion
of frames where the predicted target center is within a specified
location error threshold 7}, from the ground truth center. The
center location error (CLE) for each frame I is computed as

CLE; = /(& — )% + (i — v:)?, (6)

where (x;,y;) and (Z;,9;) represent the ground truth and
predicted center locations, respectively. A prediction is con-
sidered precise if its CLE is less than T}, which is defined

as
1’
P = {07

The overall precision is calculated as the proportion of
predictions that satisfy the threshold 7}, constraint:

if CLE; < T),,
otherwise.

(7

N
.. 1
Precision = N Z; P, ®)

where NV is the total number of frames.

Success rate evaluates tracking performance based on the in-
tersection over union (IoU) between the predicted and ground
truth bounding boxes. A prediction is considered successful if
the ToU is equal to or greater than the predefined threshold
Trou, expressed as

IOUi > TIan (9)

Based on this criterion, the success indicator for each frame
I; is defined as

(10)

g — 1, if IoU; > Tou,
L 0, otherwise.

The overall success rate is then computed as the proportion
of successful predictions:

N
Success Rate = %Z S, (11)
i=1
where NNV is the total number of frames.
These metrics provide a comprehensive evaluation of track-
ing performance by assessing precision for target localization
accuracy and success rate for bounding box overlap quality.

C. Loss Weights Selection

Due to the varying magnitudes of the raw loss values,
we rescale them to the range [1, 10] to improve training
stability and ensure balanced influence. Fig. 3 illustrates the
convergence of training and validation loss over epochs. Early
stopping is employed to prevent overfitting, with the best
model selected at epoch 14.

Training and Validation Loss Over Epochs

S

14

—e— Training Loss
—=— Validation Loss

12

Loss

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Epoch

Fig. 3: Training and validation loss convergence.

TABLE I: Different loss weight configurations

Loss Weights Validation Performance

a | B oY A Precision | Success Rate
Raw 1 1 1 1 0.518 0.324
Selected 1 10 | 500 | 700 0.617 0.497
Comb.1 5| 15 | 550 | 750 0.609 0.472
Comb.2 3 ] 12 | 450 | 650 0.598 0.470
Decision-only 1 10 0 0 0.532 0.358
Feature-only 0 0 500 0 0.552 0.410
Lo-only 0 0 0 700 0.520 0.344

Table I compares different loss weight configurations on
validation performance. The results show that applying scaled



loss values via appropriate weights significantly improves
model performance over the unweighted (Raw) setting. The se-
lected configuration achieves the best validation performance,
showing the importance of balancing different losses. Comb.1
and Comb.2 achieve comparable performance, indicating that
moderate variations in weights have limited impact as long
as the losses remain in the same magnitude. In contrast,
using only decision-level, feature-level, or Lo loss results in
degraded performance, demonstrating that no single loss alone
is sufficient. These results highlight the importance of jointly
optimizing multiple losses to guide training effectively.

D. Loss Interaction
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Fig. 4: Cosine similarity of loss gradients.

Fig. 4 illustrates the cosine similarity of gradients between
different loss pairs during training. A cosine similarity of
1 indicates aligned gradients (i.e., losses optimize in the
same direction), 0 indicates orthogonal gradients (independent
influence), and —1 indicates opposing directions. Each box rep-
resents the distribution of loss values across training iterations,
with the median (central line), interquartile range (box), and
outliers. The feature-level loss (L) shows moderate similarity
with Lo and each decision-level 1oss (Lgscore and Lgpire),
suggesting complementary guidance during optimization. In
contrast, Lo has low similarity with the decision losses,
reflecting separate optimization directions. The decision losses
Lscore and Lgyip¢ align in gradient direction, which indicates
they collaborate with each other during model training. These
observations indicate that no single loss dominates training,
and proper weight balancing is essential for effective joint
optimization.

E. Results

The evaluation results are summarized in Table II to Table
V. The performance of our solution with different thresholds
(T, and T,y ) is also detailed in the Appendix. Table II, Table
III, and Table IV present the recovery tracking performance
achieved by our solution under various adversarial attacks with
comparison to the defense methods in [1] and [49]. Precision
values are taken at T}, = 20, and success rates are represented
by the AUC across Tj,y from O to 1 in success plots. For
decision-level attacks including Ad?Attack, CSA, and SPARK,
our method restores tracking performance with an average
precision of 96.8% and an average success rate of 95.2%

relative to the original scenarios across three benchmarks,
which is comparable to the recovery performance of [1] and
[49]. This indicates our approach can mitigate disruptions at
the decision level and ensure stable tracking performance.

For feature-level attacks like TAP, our solution achieves
an average precision of 92.7% and an average success rate
of 87.4% relative to the original scenarios for SiamRPN++
across three benchmarks, 88.9% and 76.5% for SiamAPN, and
88.9% and 83.4% for SiamMask. Our approach outperforms
the recovery method in [1] and improves precision and success
rate by an average of 8.9% and 6.7% for SiamRPN++,
8.8% and 11.7% for SiamAPN, and 4.8% and 3.3% for
SiamMask. Compared to [49], our approach improves preci-
sion and success rate by 25.3% and 27.8% for SiamRPN++,
45.4% and 39.9% for SiamAPN, and 19.6% and 20.8% for
SiamMask. These improvements result from our dual-level
reconstruction process that addresses perturbations at both the
feature extraction and decision-making stages. This capability
makes our approach more resilient to attacks targeting feature
representations.

Table V shows the performance of the solution under
normal conditions, i.e., without attacks. For all three evaluated
trackers, plugging in our solution maintains their tracking per-
formance. Therefore, our solution can enhance the robustness
of these trackers against adversarial attacks without affecting
the operation under normal conditions.

Fig. 5: Tracking examples.

F. Tracking Examples

We take frames from two videos in the UAV123 dataset to
show the effectiveness of our solution in restoring tracking
performance under the Ad2Attack. The first row in Fig.
5 displays the original tracking results for people and car
objects in the two videos: green boxes represent ground
truths, and yellow boxes denote original tracking predictions.
In the second row, red boxes indicate tracking predictions
deviating from the ground truths under attack. The third row



TABLE II: Recovery performance on SiamRPN++ under four attacks

SiamRPN++
Precision Success Rate
Dataset UAVTrack112 UAV123 UAVDT UAVTrack112 UAV123 UAVDT
Ori. 0.815 0.790 0.821 0.630 0.597 0.609

AdZAttack [40] (% of Ori.)

Recovery by [1] (% of Ori.)

Recovery by [49] (% of Ori.)
Our Solution (% of Ori.)

0.515 (63.2%)
0.776 (95.2%)
0.691 (84.8%)
0.770 (94.5%)

0.519 (65.7%)
0.748 (94.7%)
0.654 (82.8%)
0.741 (93.8%)

0.579 (70.5%)
0.818 (99.6%)
0.677 (82.5%)
0.800 (97.4%)

0.361 (57.3%)
0.596 (94.6%)
0.485 (77.0%)
0.591 (93.8%)

0.373 (62.5%)
0.562 (94.1%)
0.476 (79.7%)
0.555 (93.0%)

0.338 (55.5%)
0.588 (96.6%)
0.454 (74.5%)
0.568 (93.3%)

CSA [39] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)

0.403 (49.4%)
0.792 (97.2%)
0.755 (92.6%)
0.787 (96.6%)

0.440 (55.7%)
0.779 (98.6%)
0.756 (95.7%)
0.795 (100%)

0.452 (55.1%)
0.815 (99.3%)
0.783 (95.4%)
0.822 (100%)

0.271 (43.0%)
0.607 (96.3%)
0.540 (85.7%)
0.597 (94.8%)

0.293 (49.1%)
0.586 (98.2%)
0.553 (92.6%)
0.593 (99.3%)

0.281 (46.1%)
0.592 (97.2%)
0.540 (88.7%)
0.589 (96.7%)

SPARK [38] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)

0.405 (49.7%)
0.795 (97.5%)
0.809 (99.3%)
0.781 (95.8%)

0.578 (73.2%)
0.750 (94.9%)
0.801 (101%)
0.747 (94.6%)

0.307 (37.4%)
0.782 (95.2%)
0.830 (101%)
0.805 (98.1%)

0.303 (48.1%)
0.603 (95.7%)
0.616 (97.8%)
0.599 (95.1%)

0.424 (71.0%)
0.563 (94.3%)
0.611 (102%)
0.559 (93.6%)

0.221 (36.3%)
0.571 (93.8%)
0.620 (102%)
0.591 (97.0%)

TAP [42] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)
A(Ours—[1]) (% of Ori.)
A(Ours—[49]) (% of Ori.)

0.543 (66.6%)
0.650 (79.8%)
0.568 (69.7%)
0.783 (96.1%)
0.133 (16.3%)
0.215 (26.4%)

0.479 (60.6%)
0.676 (85.6%)
0.554 (70.1%)
0.718 (90.9%)
0.042 (5.3%)
0.164 (20.8%)

0.503 (61.3%)
0.706 (86.0%)
0.512 (62.4%)
0.749 (91.2%)
0.043 (5.2%)
0.237 (28.8%)

0.395 (62.7%)
0.513 (81.4%)
0.398 (63.2%)
0.577 (91.6%)
0.064 (10.2%)
0.179 (28.4%)

0.357 (59.8%)
0.484 (81.1%)
0.404 (67.7%)
0.530 (88.8%)
0.046 (7.7%)
0.126 (21.1%)

0319 (52.4%)
0.484 (79.5%)
0.303 (47.8%)
0.498 (81.8%)
0.014 (2.3%)
0.195 (34%)

TABLE III: Recovery performance on SiamAPN under four attacks

SiamAPN
Precision Success Rate
Dataset UAVTrack112 UAV123 UAVDT UAVTrack112 UAV123 UAVDT
Ori. 0.812 0.765 0.708 0.617 0.574 0.517

AdZAttack [40] (% of Ori.)

Recovery by [1] (% of Ori.)

Recovery by [49] (% of Ori.)
Our Solution (% of Ori.)

0.313 (38.5%)
0.775 (95.4%)
0.535 (65.9%)
0.765 (94.2%)

0.248 (32.4%)
0.693 (90.1%)
0.549 (71.8%)
0.716 (93.6%)

0.291 (41.1%)
0.691 (97.6%)
0.569 (80.4%)
0.708 (100%)

0.133 (21.6%)
0.566 (91.7%)
0.286 (46.4%)
0.561 (90.9%)

0.114 (19.9%)
0.509 (88.7%)
0.330 (57.5%)
0.527 (91.8%)

0.121 (23.4%)
0.468 (90.5%)
0.284 (54.9%)
0.493 (95.4%)

CSA [39] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)

0.762 (93.8%)
0.799 (98.4%)
0.779 (95.9%)
0.790 (97.3%)

0.717 (93.7%)
0.750 (98.0%)
0.732 (95.7%)
0.741 (96.9%)

0.680 (96.0%)
0.742 (105%)
0.629 (88.8%)
0.735 (104%)

0.525 (85.1%)
0.601 (97.4%)
0.575 (93.2%)
0.593 (96.1%)

0.517 (90.1%)
0.562 (97.9%)
0.542 (94.4%)
0.557 (97.0%)

0.397 (76.8%)
0.533 (103%)
0.442 (85.5%)
0.513 (99.2%)

SPARK [38] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)

0.240 (29.6%)
0.776 (95.6%)
0.813 (100%)
0.782 (96.3%)

0.337 (44.1%)
0.721 (94.2%)
0.771 (101%)
0.718 (93.9%)

0.161 (22.7%)
0.726 (103%)
0.729 (103%)
0.722 (102%)

0.154 (25.0%)
0.580 (94.0%)
0.620 (100%)
0.583 (94.5%)

0.209 (35.9%)
0.534 (93.0%)
0.571 (99.5%)
0.533 (92.9%)

0.096 (18.6%)
0.523 (101%)
0.523 (101%)
0.519 (100%)

TAP [42] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)
A(Ours—[1]) (% of Ori.)
A(Ours—[49]) (% of Ori.)

0.307 (37.8%)
0.648 (79.8%)
0.345 (42.5%)
0.728 (89.7%)
0.080 (9.9%)
0.383 (47.2%)

0.337 (44.1%)
0.591 (77.3%)
0.388 (50.7%)
0.655 (85.6%)
0.064 (8.3%)
0.267 (34.9%)

0.231 (32.6%)
0.590 (83.3%)
0.264 (37.3%)
0.648 (91.5%)
0.058 (8.2%)
0.384 (54.2%)

0.188 (30.5%)
0.397 (64.3%)
0.209 (33.9%)
0.486 (78.8%)
0.089 (14.5%)
0.277 (44.9%)

0.218 (38.0%)
0.400 (69.7%)
0.263 (45.8%)
0.460 (80.1%)
0.060 (10.4%)
0.197 (34.3%)

0.133 (25.7%)
0.313 (60.5%)
0.153 (30.0%)
0.365 (70.6%)
0.052 (10.1%)
0.212 (40.6%)

shows recovery tracking predictions by our solution using
reconstructed frames, depicted by blue boxes overlapping with
the ground truths.

G. Real-World Tests

Real-world tests were conducted on a UAV platform pow-
ered by NVIDIA Jetson AGX Xavier (32GB) to evaluate
the efficiency and practicality of our solution. SiamRPN-++
was deployed as the tracking model, and Ad?Attack was
implemented as the adversarial attack method. The integration
of our solution introduces additional computation cost for
better robustness, and hence reduces the tracking speed on
our UAV platform from 40 frames per second (fps) to 12
fps, i.e., 233% computation overhead. As a comparison, the
recent research [49] that is compared in our evaluation for
tracking performance requires a similar computation overhead,
i.e., 243%. Note that, although our prototype implementation
successfully supported our real-world tests, its efficiency and

computational overhead could be further optimized with opti-
mization strategies such as those proposed in recent research
[61].

Tracking results from two real-world tests are shown in
Fig. 6 and Fig. 7, where the targets are a runner and a
scooter rider. These tests evaluate our method in real-world
conditions by comparing original tracking, adversarial attacks,
and recovery with our solution. Ad?Attack degrades tracking
accuracy with significant prediction deviations. Our solution
restores performance effectively by producing bounding box
predictions that closely align with the ground truth. The IoU
curves in Fig. 6 and Fig. 7 show a drop to zero under
adversarial attack. After applying our method, IoU values
return to levels comparable to the original scenario.

Fig. 8 presents a tracking sequence from real-world UAV
scenarios. Under adversarial attacks, the tracker produces
unstable predictions (red boxes) that drift away from the target.
In contrast, our solution effectively restores accurate and stable
tracking outputs (blue boxes) that remain consistent with the



TABLE IV: Recovery performance on SiamMask under four attacks

SiamMask
Precision Success Rate
Dataset UAVTrack112 UAV123 UAVDT UAVTrack112 UAV123 UAVDT
Ori. 0.794 0.790 0.803 0.599 0.589 0.598

Ad?Attack [40] (% of Ori.)

Recovery by [1] (% of Ori.)

Recovery by [49] (% of Ori.)
Our Solution (% of Ori.)

0.504 (63.5%)
0.756 (95.2%)
0.678 (85.4%)
0.749 (94.3%)

0.577 (73.0%)
0.744 (94.2%)
0.640 (81.0%)
0.763 (96.6%)

0.521 (64.9%)
0.797 (99.3%)
0.684 (85.2%)
0.796 (99.1%)

0.298 (49.7%)
0.560 (93.5%)
0.476 (79.5%)
0.554 (92.5%)

0.375 (63.7%)
0.555 (94.2%)
0.465 (78.9%)
0.564 (95.8%)

0.256 (42.8%)
0.564 (94.3%)
0.459 (76.8%)
0.567 (94.8%)

CSA [39] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)

0.327 (41.2%)
0.779 (98.1%)
0.764 (96.2%)
0.773 (97.4%)

0.445 (56.3%)
0.772 (97.7%)
0.756 (95.7%)
0.788 (99.7%)

0.332 (41.3%)
0.772 (96.1%)
0.801 (99.8%)
0.765 (95.3%)

0.190 (31.7%)
0.577 (96.3%)
0.546 (91.2%)
0.569 (95.0%)

0.263 (44.7%)
0.572 (97.1%)
0.552 (93.7%)
0.582 (98.8%)

0.170 (28.4%)
0.553 (92.5%)
0.556 (93.0%)
0.542 (90.6%)

SPARK [38] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)

0.304 (38.3%)
0.761 (95.8%)
0.810 (102%)
0.767 (96.6%)

0.434 (61.3%)
0.738 (93.4%)
0.807 (102%)
0.731 (92.5%)

0.182 (22.7%)
0.743 (92.5%)
0.815 (101%)
0.738 (91.9%)

0.220 (36.7%)
0.568 (94.8%)
0.608 (101%)
0.570 (95.2%)

0.337 (57.2%)
0.551 (93.5%)
0.601 (102%)
0.548 (93.0%)

0.125 (20.9%)
0.531 (88.8%)
0.618 (103%)
0.533 (89.1%)

TAP [42] (% of Ori.)
Recovery by [1] (% of Ori.)
Recovery by [49] (% of Ori.)

Our Solution (% of Ori.)
A(Ours—[1]) (% of Ori.)
A(Ours—[49]) (% of Ori.)

0.541 (68.1%)
0.689 (86.8%)
0.577 (72.7%)
0.757 (95.3%)
0.068 (8.5%)
0.180 (22.6%)

0.538 (68.1%)
0.661 (83.7%)
0.559 (70.8%)
0.689 (87.2%)
0.028 (3.5%)
0.130 (16.4%)

0.479 (59.7%)
0.656 (81.7%)
0.516 (64.3%)
0.675 (84.1%)
0.019 (2.4%)
0.159 (19.8%)

0.372 (62.1%)
0.499 (83.3%)
0.403 (67.3%)
0.538 (89.8%)
0.039 (6.5%)
0.135 (22.5%)

0.386 (65.5%)
0.491 (83.4%)
0.407 (69.1%)
0.504 (85.6%)
0.013 (2.2%)
0.097 (16.5%)

0.281 (47.0%)
0.439 (73.4%)
0.306 (51.2%)
0.447 (74.7%)
0.008 (1.3%)
0.141 (23.5%)

TABLE V: Tracking performance without attack on three trackers

Precision Success Rate
Dataset UAVTrack112 UAV123 UAVDT UAVTrack112 UAV123 UAVDT

SiamRPN++ _Ori. ] 0.815 0.790 0.821 0.630 0.597 0.609
Our Solution (% of Ori.) | 0.788 (96.7%) | 0.773 (97.8%) | 0.805 (98.1%) | 0.606 (96.2%) | 0.577 (96.6%) | 0.594 (97.5%)

SiamAPN .Ori. ] 0.812 0.765 0.708 0.617 0.574 0.517
Our Solution (% of Ori.) | 0.800 (98.5%) | 0.728 (95.2%) | 0.715 (100%) 0.603 (97.7%) | 0.547 (95.3%) | 0.518 (100%)

SiamMask ‘Ori. ] 0.794 0.790 0.803 0.599 0.589 0.598
Our Solution (% of Ori.) | 0.790 (99.5%) | 0.782 (99.0%) | 0.831 (103%) 0.588 (98.2%) | 0.574 (97.5%) | 0.610 (102%)
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Fig. 6: Sample tracking frames and IoU curve - Runner. Fig. 7: Sample tracking frames and IoU curve - Scooter rider.



Fig. 8: Sample tracking sequence in real-world test.

object’s trajectory.

V. DISCUSSION AND FUTURE WORK

Our solution currently focuses on the Siamese tracker fam-
ily, which has been widely adopted for UAV tracking solutions.
In our solution, loss functions are tailored to their typical
backbone-head architectures. In these trackers, the backbone
extracts feature representations, and the head networks, includ-
ing classification and regression branches, produce response
maps for tracking predictions. Our decision-level losses are
task-specific and defined based on the output response maps
from these head networks. Recently proposed transformer-
based trackers, such as STARK [62], employ corner heads that
directly regress the coordinates of the top-left and bottom-right
corners of the target bounding box. Therefore, when adapting
our approach to transformer-based trackers, the decision-level
loss needs to be redesigned to align with the outputs of corner
heads. In our future research, we will aim to address such
challenges and further improve the generality of our solution
for more tracking systems.

VI. CONCLUSION

This paper presents a pluggable tracking solution designed
to enhance the resilience of UAV tracking systems against
adversarial attacks. Our approach functions as an input re-
construction module and employs a dual-level optimization
strategy to restore video frames at both the feature and decision
levels, ensuring accurate and reliable tracking. As an input
pre-processing component, our solution can be seamlessly
integrated with various Siamese-based trackers without requir-
ing modifications to their architectures and can easily plug
into existing UAV tracking systems. Extensive evaluations on
multiple UAV tracking benchmarks show that our solution
effectively eliminates adversarial impacts and restores tracking
accuracy across diverse attack scenarios. Real-world tests
were conducted on a UAV platform to assess the deployment
feasibility of our solution. The results indicate the practicality
and efficiency of our approach, demonstrating its applicability
for robust real-time UAV tracking in adversarial environments.

VII. APPENDIX

Fig. 9, Fig. 10, and Fig. 11 show the precision and success
rates of our solution under different thresholds. The first row
of each Figure displays the precision plots, where location
error thresholds (7,) range from 0 to 50. For each tracking
condition, the representative precision score shown next to the
plot is taken at 7}, = 20 pixels. The second row presents the
success plots, which show the proportion of successful pre-
dictions across IoU thresholds (7j,y) from O to 1, with values

10

next to the plot indicating the area under the curve (AUC).
The AUC of each success plot is used as the representative
score for a more comprehensive assessment across different
Tiou values.
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Fig. 9: Overall tracking performance of SiamRPN++ tracker under attacks (dashed lines) and recovery by our solution (solid
lines) on UAVTrack112, UAV123, and UAVDT.
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Fig. 10: Overall tracking performance of SiamAPN tracker under attacks (dashed lines) and recovery by our solution (solid
lines) on UAVTrack112, UAV123, and UAVDT.

Precision plots on UAVTrack112 Precision plots on UAV123 Precision plots on UAVDT
—— [0.794] Original —— [0.790] Original el —— [0.803] Original
[0.504] Ad2 Attack | [0.577] Ad2 Attack 0.8 [0.521] Ad2 Attack
[0.749] Ad2 Recovery [0.763] Ad2 Recovery [0.796] Ad2 Recovery
== [0.327] CSA Attack — = [0.445] CSA Attack == [0.332] CSA Attack
< — [0.773] CSARecovery € — [0.788] CSARecovery ¢ 0-6 —— [0.765] CSA Recovery
-% —~ [0.304] SPARK Attack -E —— [0.484] SPARK Attack % —~ [0.182] SPARK Attack
ki —— [0.767] SPARK Recovery ‘G — [0.731] SPARK Recovery 'S ¢ 4 —— [0.738] SPARK Recovery
2 —= [0.541] TAP Attack g —=- [0.538] TAP Attack 2 —= [0.479] TAP Attack
& — [0.757] TAP Recovery & — [0.689] TAP Recovery & —— [0.675] TAP Recovery
[ R e e B
0.0 0. 0.0
o 10 20 30 40 50 " 10 20 30 40 50 [} 10 20 30 40 50
Location error threshold Location error threshold Location error threshold
Success plots on UAVTrack112 Success plots on UAV123 Success plots on UAVDT
—— [0.599] Original —— [0.589] Original —— [0.598] Original
0.8 [0.298] Ad2 Attack 0.8 [0.375] Ad2 Attack 0.8 [0.256] Ad2 Attack
[0.554] Ad2 Recovery (0.564] Ad2 Recovery [0.567] Ad2 Recovery
] — - [0.190] CSA Attack " —— [0.263] CSA Attack o —~— [0.170] CSA Attack
E 0.6 Fe=eoll —— [0.569] CSA Recovery E 0.6 —— [0.582] CSA Recovery E 0.6 —— [0.542] CSA Recovery
@ el —— [0.220] SPARK Attack ¢ —— [0.337) SPARK Attack ¢ [~~a —~ [0.125] SPARK Attack
§ 0.4l BN —— [0.570] SPARK Recovery § 0.4 — [0.548] SPARK Recovery § ¢ 4 L ‘~~\\\ —— [0.533] SPARK Recovery
1] = =N == [0.372] TAP Attack 8 — = [0.386] TAP Attack S - P —— [0.281] TAP Attack
B T et Y — [0.538] TAP Recovery 2 — [0.504] TAP Recovery 2 T~ ~~J —— [0.447] TAP Recovery
0.2 P 0.2 0.2
o o RN o S
'%.0 0.2 0.4 0.6 0.8 1.0 '%.0 0.2 0.4 0.6 0.8 1.0 '%.0 0.2 0.4 0.6 0.8 1.0

Overlap threshold Overlap threshold Overlap threshold
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