Check for
Updates

MuV?: Scaling up Multi-user Mobile Volumetric Video
Streaming via Content Hybridization and Sharing

YuLiu Puqi Zhou*

University of Southern California

ABSTRACT

Volumetric videos offer a unique interactive experience and
have the potential to enhance social virtual reality and telep-
resence. Streaming volumetric videos to multiple users re-
mains a challenge due to its tremendous requirements of
network and computation resources. In this paper, we de-
velop MuV?, an edge-assisted multi-user mobile volumetric
video streaming system to support important use cases such
as tens of students simultaneously consuming volumetric
content in a classroom. MuV? achieves high scalability and
good streaming quality through three orthogonal designs: hy-
bridizing direct streaming of 3D volumetric content with re-
mote rendering, dynamically sharing edge-transcoded views
across users, and multiplexing encoding tasks of multiple
transcoding sessions into a limited number of hardware en-
coders on the edge. MuV? then integrates the three designs
into a holistic optimization framework. We fully implement
MuV? and experimentally demonstrate that MuV? can de-
liver high-quality volumetric videos to over 30 concurrent
untethered mobile devices with a single WiFi access point
and a commodity edge server.

CCS CONCEPTS

+ Information systems — Multimedia streaming; - Human-
centered computing — Ubiquitous and mobile comput-
ing systems and tools; Mixed / augmented reality.

KEYWORDS

Volumetric Video Streaming, Mobile Mixed Reality, Edge
Computing, Quality-of-experience (QoE).

This work is licensed under a Creative Commons Attribution International 4.0 License.

ACM MobiCom °24, November 18-22, 2024, Washington D.C., DC, USA
© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0489-5/24/09...$15.00
https://doi.org/10.1145/3636534.3649364

Zejun Zhang Anlan Zhang Bo Han®

*George Mason University

Zhenhua Li* Feng Qian

*Tsinghua University

ACM Reference Format:

Yu Liu, Puqi Zhou, Zejun Zhang, Anlan Zhang, Bo Han, Zhenhua
Li, Feng Qian. 2024. MuV?: Scaling up Multi-user Mobile Volu-
metric Video Streaming via Content Hybridization and Sharing.
In International Conference On Mobile Computing And Network-
ing (ACM MobiCom °24), September 30—October 4, 2024, Washing-
ton D.C., DC, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3636534.3649364

1 INTRODUCTION

The rapid advancement of virtual reality (VR), mixed reality
(MR), and augmented reality (AR) stimulates different for-
mats of immersive and interactive experiences [9, 27, 42, 45].
Notably, the volumetric video stands out by offering an even
more interactive experience compared with other immer-
sive video formats such as 360° video. Volumetric videos are
formed by sequences of 3D representations captured from
real scenes, usually via point clouds [32] or meshes [43]. Its
inherent 3D nature empowers 6-degree-of-freedom (6DoF)
movement in both the rotational domain (yaw, pitch, roll) and
translational domain (x, y, z). The unique 3D representation
of volumetric video and its immersive experience opens up
novel opportunities across various applications. For instance,
volumetric videos can support telepresence and facilitate
immersive remote meetings [11, 24, 49].

Despite its potential, streaming volumetric videos to mo-
bile devices faces many challenges. Due to the 3D repre-
sentation of volumetric videos, their data volume signifi-
cantly surpasses that of traditional video formats. Moreover,
there is a lack of an efficient volumetric content compression
algorithm, further increasing the challenge of volumetric
video streaming. State-of-the-art systems seek to reduce the
data volume to be directly streamed [17, 33, 42], or leverage
an edge server to perform remote rendering and transcode
the volumetric video frames into a traditional 2D video
view [14, 15, 37]. Recent emerging deep learning models
such as NeRF [39] can also be used to convert RGB images to
3D views and facilitate volumetric video streaming. There are
several studies targeting real-time live volumetric content
streaming with direct streaming [20, 25, 41].

The above-mentioned systems target a single-user stream-
ing scenario, ignoring the potential of volumetric videos for
larger groups. In a multi-user scenario, the 6DoF interaction
can bring a more tailored experience to users. For instance,

https://doi.org/10.1145/3636534.3649364
https://doi.org/10.1145/3636534.3649364
https://doi.org/10.1145/3636534.3649364
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636534.3649364&domain=pdf&date_stamp=2024-05-29

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

System #. Users g;:ﬁ; Limited By
DirectM Unicast [17]* | Very small | Highest | Bandwidth
DirectM Multicast [56] Small Highest | Bandwidth

TransM [15]* Small Low Computation
MuV? (this work) Large High N/A

* Extended by us from their original single-user systems.
Table 1: Summary of different multi-user volumetric
video streaming systems.

in a large classroom, students can access volumetric videos
(e.g., a live-streaming lecture) on their own mobile devices,
allowing each student to choose their preferred viewing an-
gles and accommodate individual learning needs. Likewise,
museums can offer introductory volumetric videos about the
displayed objects for a group of tourists to enhance the expe-
rience. Other use cases of multiple users watching volumetric
videos simultaneously include large-group entertainment,
many-to-many immersive conferencing, and product demon-
strations and advertisements. It is worth mentioning that for
multi-user cases, mobile devices such as untethered headsets
and smartphones are preferred.

Scaling up the aforementioned single-user systems to a
multi-user setting while maintaining good video quality is
highly challenging. For direct streaming, its high bandwidth
consumption hinders the practical support of multiple users
even with optimizations to reduce data volumes. Within this
category, M5 [56] is to our knowledge the only multi-user
volumetric video streaming system. M5 leverages mmWave
multicast to improve scalability. However, due to the low
throughput of wireless multicast [35] and the high data rate
of volumetric videos, M5 can only support at most 5 users si-
multaneously. For edge-assisted transcode systems, they often
suffer from lower visual quality due to network latency, or
viewport mismatch [14]. Additionally, with each connected
user, the incorporation of remote rendering and encoding
introduces extra computation overhead. Consequently, this
accumulation of the above overhead could surpass the capac-
ity of the edge server, preventing the edge from supporting
more users. Last but not least, using known human models to
reconstruct volumetric content or leveraging deep learning-
based approaches such as NeRF [39] can potentially improve
the visual quality and thus boost the user experience. How-
ever, they incur high computation resource usage even when
processing a single user’s volumetric content stream, let
alone in a multi-user setting.

The goal of this paper is to use a single commodity AP
and edge server to support, for the first time, at least 20 to 30
concurrent live or on-demand volumetric video streaming
sessions, which suits our targeting use cases such as class-
rooms and museums. Our design aims to leverage limited

Yu Liu, et al.

but heterogeneous resources while maintaining high and fair
visual quality across users to achieve scalability. Specifically,
our system design incorporates the following key principles:
First, it fully utilizes the available network and computation
resources, minimizing the chance of either becoming the
bottleneck. Second, it decouples the computation resource
demand from the number of users. Third, even after the de-
coupling, the edge’s workload may still be excessive; our
design thus also efficiently multiplexes the multi-user work-
load into the limited hardware capacity. To instantiate these
principles, we design and implement MuV?, an innovative
edge-assisted streaming system that scales up multi-user
volumetric streaming for on-demand and live streaming.

Content hybridization (§3.4). MuV? achieves a balance
between network and computation resource utilization through
a hybrid streaming approach. Recall that either direct stream-
ing or transcode streaming only leverages one type of re-
source whose limited capacity can easily throttle the whole
system. To overcome this issue, MuV?2 performs edge-assisted
transcoding by default, and judiciously streams volumetric
frames to selected users to compensate for their visual qual-
ity loss from transcoding. This hybrid approach not only
improves the overall image quality but also reduces the risk
of a monolithic resource bottleneck. To determine the actual
frame type assignment policy, we conducted a measurement
study (§3.2) and observed that users’ distance to the volumet-
ric content is a key factor affecting visual quality. Therefore,
MuV? adaptively assigns volumetric frames within band-
width capacity to users who are close to the video content.

Cross-user view sharing (§3.5). MuV? boosts the scala-
bility on the user level with Transcoded View-sharing, which
decouples the computation overhead from the number of
concurrent users. Specifically, according to the available com-
putation capacity, the edge server selects and shares each
transcoded view with one or more viewers. Upon receiving
the view, each user performs image warping [13] if needed
to render a novel view based on their real-time viewport po-
sition. Note this sharing approach differs from those of prior
multi-user VR/MR systems [34, 36]: MuV? targets view shar-
ing of dynamic volumetric content, while prior work [34, 36]
caches and reuses previously rendered frames of static scenes.
The key challenge here is to determine which view(s) to ren-
der and how to share them in real-time. We formulate the
problem of view selection as a modified K-median cluster
problem and design an approximation solution based on
the forward greedy algorithm [12]. To efficiently determine
the distortion incurred by image warping, we derive a data-
driven machine learning model (§3.2) that characterizes the
performance of image warping from different views on volu-
metric videos.

Encoder Multiplexing (§3.6). We find that even with the
above two optimizations, the number of transcoding sessions

may still exceed the number of available hardware encoders.
MuV? thus incorporates a novel design allowing multiplex-
ing transcoding sessions into a smaller number of encoders
available on the edge. Specifically, MuV? allows view streams
(each corresponding to a view-sharing group/cluster as de-
scribed above) to time-share the same encoder, with the
group-of-pictures (GOP) size of each stream properly config-
ured to balance the latency and bandwidth usage. We also
design a mechanism to handle dynamic changes of transcod-
ing groups as users’ views change.

Integrated Real-time Optimization (§3.3). The above
three design aspects bear different goals and balance differ-
ent tradeoffs. To coordinate them, we integrate them into a
holistic, principled real-time optimization framework, which
incorporates our design principles with an overarching goal
of maximizing resource utilization and visual quality.

Implementation and evaluation (§5). We implement
MuV? on an edge server and commercial smartphones with
more than 6K LoC and demonstrate its efficiency and scalabil-
ity through comprehensive evaluations. We compare MuV?
with four multi-user live-streaming systems, two of which
are extended from single-user state-of-the-art volumetric
streaming systems [15, 17] to multi-user, and the other two
are variants of MuVZ2. We highlight our evaluation results as
follows.

e MuV? can support more than 30 users at 1080P with a
single commercial WiFi access point of ~450 Mbps capacity,
significantly improving the scalability compared to baselines.
e View-sharing across users only introduces a small visual
distortion compared to the baseline.

o Jointly streaming volumetric frames and transcode frames
further improves the visual quality by 47% compared to
streaming transcode views alone.

e An IRB-approved user study with 11 users indicates that
MuV? can provide a better visual quality compared with
transcoding streaming baselines with 90% of users giving
positive feedback.

To the best of our knowledge, MuV? is the first scalable
multi-user volumetric video streaming framework. MuV?
makes it feasible to leverage affordable hardware such as a
single WiFi AP and an edge server with a single commodity
GPU to support use cases such as tens of students’ mobile vol-
umetric content consumption in a classroom. This research
does not incur any ethical issues.

2 MOTIVATION

Streaming volumetric videos to multiple users is challenging
given its demanding resource requirement. In this section,
we first discuss the limitation inherent in extending single-
user volumetric content streaming systems to a multi-user
context. We then present a series of noteworthy observations

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Figure 1: Video quality when supporting different num-
bers of users (left to right: 5, 10, 20 users).

related to users’ engagement with volumetric videos. These
insights serve as a pivotal motivation for our design of MuV?2,

2.1 Extend Existing Solutions to Multi-user

Direct streaming. We can extend the direct streaming system
to multi-user scenarios, referred to as DirectM, by stream-
ing compressed volumetric video frames to each client. The
volumetric video is rendered locally on each client, ensuring
high visual quality and minimal latency. However, due to the
lack of an efficient compression algorithm, the compressed
volumetric video frame still consumes high bandwidth, pre-
venting DirectM from achieving high scalability while main-
taining high visual quality. Take ViVo [17] as an example.
The average bandwidth consumption to losslessly stream a
volumetric video is around 90 Mbps. For a commercial AP
with a bandwidth capacity of 500 Mbps, ViVo can ideally
support at most 5 users. To serve additional users, DirectM
needs to reduce the video quality, compromising the overall
viewing experience, as demonstrated in Figure 1. In summa-
tion, simply extending the existing direct streaming systems
is insufficient to stream volumetric videos to a substantial
user base while preserving optimal visual quality.
Transcode streaming. We extend the edge-assisted transcode
streaming to multi-user, referred to as TransM, by remotely
rendering and encoding 2D views for each connected client.
TransM can support more users under the same network
than DirectM due to its lower bandwidth requirement. How-
ever, TransM requires extra optimizations to maintain visual
quality. Currently, there are two state-of-art solutions: multi-
view [37] streams multiple 2D views, allowing the client to
select the optimal view and maximize the visual quality; im-
age warping [15] streams an RGB view with a corresponding
depth map. Clients then perform image warping to gener-
ate novel views based on their real-time viewport position.
Since we aim to maximize system scalability, TransM opts
for the image-warping approach due to its lower resource
requirement. For each client, TransM needs to render and
encode two 2D images: one RGB view and one depth map.
However, executing the rendering and encoding tasks on
the edge server introduces extra computational overhead,
restricting TransM from supporting an extensive number of
clients. We benchmark the rendering and encoding perfor-
mance on a desktop with an NVIDIA 2080Ti GPU and find

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

that it can achieve 480 FPS of encoding at 1080P resolution,
which means it can only support up to 480\30\2~8 users
simultaneously at 30 FPS. The number will further reduce if
the video is encoded in higher resolution. These limitations
underscore that a naive extension of the transcode streaming
system does not constitute the optimal solution for a scalable
multi-user streaming system with high visual quality.

Exhaustive Rendering. A potential approach to mitigate the
computation overhead of the transcoding system is through
exhaustive rendering, which pre-renders the 3D scene from
all possible viewports [8, 36]. While this strategy does not
impose any real-time computation requirement, it is not a
viable solution for volumetric video. The prior applications
of exhaustive rendering are for virtual reality, where the
users stay in a static scene with limited movement range,
resulting in a finite pre-rendering data volume. However, vol-
umetric video is a series of dynamic content, with free 6DoF
movements. Therefore, the data volume for pre-rendering
volumetric videos is exponentially larger compared to VR
applications, therefore it’s not feasible to perform in the real
world. Furthermore, as discussed above, the primary util-
ity of volumetric videos revolves around live streaming and
telepresence, where pre-rendering is simply impossible.

To summarize, transcoding and direct streaming only
work well when the computation and network resources
are sufficient, respectively. Decreasing the transcoded resolu-
tion (for TransM) or point density (for DirectM) can reduce
resource consumption and improve scalability, but it may
also downgrade the visual quality and the viewing experi-
ence. Both DirectM and TransM are thus falling short of
supporting large-scale multiuser volumetric video streaming,.
Also, although upgrading the hardware infrastructure can
improve the scalability of DirectM (with better WiFi support)
and TransM (with more advanced GPUs), there is always an
arms race between the hardware and visual quality. Con-
sidering that the human perception limit is 16K (15360 x
8640) [57], it remains challenging for today’s hardware (and
possibly those in the foreseeable future) to support high-
quality volumetric video streaming to a large group of users.

2.2 Other Key Observations

Users’ movement pattern. Previous studies have already shown
an overall similar movement pattern when watching the
same volumetric video across users [17]. We further explore
the movement pattern similarity across users on a frame-
wise level. We evaluate the similarity of users’ traces (details
in §5.1) by implementing Kmeans [48] clustering, as shown
in Figure 2. More specifically, we cluster all users’ viewpoints
on each frame and calculate the silhouette coefficient [47],
which measures the degree of similarity between clusters. By
analyzing the distribution of frames’ silhouette coefficients,

Yu Liu, et al.

of frame

N Y o (o]
o o o o
o o o o

90.2 0.0 0.2 0.4 0.6 0.8 1.0
Silhouette Score

Figure 2: The distribution of frames’ silhouette coeffi-
cient with number of clusters =6 .

Server 1
[Vol Encoder](—[Vol Divider }J—[Live Vol Frame] [Vol Frame Storage]
Capture

| Client 1
;
' Vol Decoder H Decoded Vol Frame

4

Edge
Encoded Vol Frame
Buffer (§3.4)

j
i
i

Transcoded Frame ! Decoded 2D Frame
Vol Decoder Encoder (§3.6] B H. 264 Decoder]—)[Buffer]
Decoded Vol Frame View-Sharing] 3
Buffer (§3.5) Renderer (§3.5) || @
Update Viewport H Render & Display]

Content
Hybridization (§3.4)
Offline IW Distortion | Update Offline

Model (§3.2)

Figure 3: System Architecture Design of MuV?

Buffer

Image Warping

i

;
iCIientZ Client 3 Client4 Client... !
:

we observe that the overall average is 0.41, with more than
35% of frames having silhouette coefficients greater than 0.5.
This suggests that users exhibit similar movement patterns,
highlighting a frame-level similarity in watching the same
volumetric video. Despite this similarity, directly using one
user’s view to approximate another user still yields qual-
ity issues because the shared view from another user will
still be different from their actual view. Therefore, further
optimization is required to improve viewing quality.

Performance of image warping. Image warping is a com-
puter vision technique that generates novel views from the
input RGB images and depth maps. With image warping,
users can re-project the received transcoded view based on
their real-time viewport, compensating for users’ head move-
ments during network transmission and inaccurate viewport
prediction. There are also deep learning-based solutions (e.g.
NeRF [10, 39]) that can generate novel views without re-
quiring a depth map. However, these alternatives demand
higher computational capacities at the client and could entail
prolonged processing times. Therefore, we choose the light-
weighted image warping on the client side for our study.
Despite its ability to generate a novel view, image warping
may introduce visual distortions and omissions along the
margin of the objects in the scene, especially when the input
view and targeting novel view are less similar, or when the
input view is too close to the video content (§3.2, Figure 5).
The distortion of image warping underscores the need for
further enhancements to optimize visual quality and better
support volumetric video streaming.

3 SYSTEM DESIGN

3.1 Overview

The goal of MuV? is to address the challenges of scalable
and high-quality multi-user volumetric video streaming un-
der resource limitations. To achieve this, we design three
main optimization strategies for MuV?2: content hybridiza-
tion, transcoded view-sharing, and encoder multiplexing.
Content Hybridization improves visual quality by adap-
tatively streaming volumetric frames to several users who
may encounter higher distortion with transcoded frames,
maximizing the utilization of both resources. View-sharing
decouples the overall computational requirement from the
number of concurrent clients by only rendering a selected
set of views on the edge and sharing the views across all
clients. Upon receiving, each client performs image warping
to re-render the received 2D view based on their real-time
viewport position. Through view-sharing, MuV? addresses
the challenge of the high computational requirement on the
edge server. Encoder multiplexing enables multiple en-
coding sessions with a single encoder instance by dividing
transcoded frames into smaller groups of pictures and time-
sharing the same encoder.

We present the system design of MuV? in Figure 3. As
shown in the figure, MuV? consists of a content server, an
edge server, and multiple clients that are geometrically close
to each other and wirelessly connected to the edge server
through the same Wi-Fi Access Point (AP). Note that despite
our system focusing on the scenario where all users are con-
nected to the same AP, the main algorithms and concepts
of MuV? can also be modified to apply to situations where
users are connected to different APs. The content server
supports both on-demand and live content streaming, and
streams encoded volumetric videos to the edge. The edge
server performs view-sharing and hybrid streaming while
optimizing the overall visual quality for clients. Upon re-
ceiving, the client performs image warping on transcoded
views or directly renders the volumetric data based on their
real-time viewport.

3.2 Image Warping Efficiency Profiler

One of the key features of MuV? for improving the system
scalability is view-sharing. This is realized via image warp-
ing (IW). As discussed in §2.2, IW will incur inevitable visual
distortion and impact users’ perceived quality. Therefore,
MuV? needs to carefully select the shared views to ensure
overall high visual quality is maintained. To achieve an op-
timal selection, we need to enable an efficient and accurate
way to profile the visual distortion of IW, denoted as djw,
to guide the view-sharing decision in §3.5. We measure the
distortion &y with the SSIM value [51] drop of the display

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Figure 4: Image warping performance with reference
viewport being 2.5m from video content. a) reference
view; b) IW result of a closer display view; c¢) ground
truth of b; d) IW result of a further display view; e)
ground truth of d.

Figure 5: Image warping performance, reference view-
port is 1.5m from video content.

view compared to its ground truth (where SSIM = 1):
Srw =1 —SSIM(Vg, Vrq) (1)

We use V; to denote the ground truth of the targeting display
view, V;, to denote the input reference view, and V,_4 to
denote the output view using IW to generate V; from V,.
Due to the limited rendering capacity of the edge server,
we cannot perform IW on the edge server to calculate the
distortion on time. Alternatively, we seek to generate an
offline model to profile the distortion.

We identify two features impacting visual distortion: be-
tween viewport distance (denoted as dist, ;) and video
radius (R). We demonstrate the impact of viewport distance
in Figure 4 with the same reference view. As shown in the
figure, when V; and V; are closer to each other (Figure 4 b,
c), the output view is less distorted with dry = 0.048. When
dist, 4 becomes larger, (Figure 4 d, e), the distortion value
also increases to 0.052. Video radius (R,) captures the feature
of the video content. For the videos that feature one or more
humans, we approximate the video as a cylinder with more
than 95% of the points scattered within a certain radius R,.

Based on the above two features, we measure the IW
distortion with all potential combinations of the features
(V X Vg X R,). The viewports are within a 6m range from
the video content with a stepsize of 0.1m, based on previous
studies [17, 37, 53]. In total, we collected more than 500K
data points with three different volumetric videos. We will in-
troduce more details of the videos in §5.1. From the collected

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Model (I?flf/;f;’% Pearson | Spearman | R2
LR 0.8226 0.5266 0.4975 0.2773
PR-2 0.8724 0.7567 0.7787 0.5725
PR-3 0.9098 0.8720 0.8511 0.7604
KNN 0.9582 0.9344 0.9316 0.8729
DTR 0.9921 0.9958 0.9968 0.9917

Table 2: Performance of different learning models.

data, we observe that the distance to the video content also
has a significant impact on the visual quality. We illustrate
this impact with another example in Figure 5 with the refer-
ence view closer to the video. Compared to d, e in Figure 4,
the IW distortion of Figure 5 increases to 0.090 even though
they have the same dist, 4.

Next, we test the following machine-learning models with
cross-validation and compare their performances for eval-
uating dpyy: Linear regression (LR), Polynomial regression
(PR-2 and PR-3), K-nearest neighbor regression (KNN), and
decision tree regression (DTR). We use V;, V;, and R, as the
features, and &y as the output. We show their qualitative
performance in Table 2. We use the mean absolute percent-
age error (MAPE) to indicate the accuracy of each model. We
also present the Pearson [7] and Spearman [5] values to show
the correlation between models’ output and ground truth,
and R? score [30] to measure each model’s ability to interpo-
late the data. For all metrics, a value closer to 1 indicates a
more preferred model. We find that the DT regression yields
the best score across all metrics and therefore is selected in
MuV? to evaluate the efficiency of image warping. Since our
model contains a feature for the video content, our model
can be applied to videos with similar content formats.

3.3 Generic Optimization Formulation

One of the key challenges for MuV? is how to intelligently
utilize the limited resources and maximize the visual quality
and scalability. This problem is similar to rate adaptation in
regular video streaming systems, where the server needs to
decide the resolution of each video clip for the user based on
the network condition and the user’s buffer capacity [21, 26].
However, the resource allocation algorithm in MuV? is more
complicated. MuV? needs to balance the different bandwidth
consumption and visual quality of volumetric and transcoded
frames to maximize resource utilization. Moreover, for the
transcoded views, due to the limited computation capacity,
the edge of MuV? needs to select an optimal set of views to
share across users such that the visual quality of all users is
maximized. This is a non-trivial problem to solve, as we will
introduce in §3.5. Finally, MuV? needs to encode the views
for multiple users under the hardware encoding capacity. We
present a generic cost function that characterizes the visual

Yu Liu, et al.

quality and bandwidth requirement for MuV2, then present
our three optimizations based on the cost function.

Notation. We use §(i)’ to denote the decision for hybrid
streaming: §(i)" = 1 represents sending a transcoded frame
to user i on frame ¢, and §(i)! = 0 represents a volumetric
frame. We denote V/ as the set of views selected to render
and encode at the edge server that shares among users with
(i) = 1. th represents the set of viewports from users
at frame t, where each user’s viewport is denoted as th,l..
Note that due to network transmission latency, th is not the
ground truth viewport but a predicted viewport. For user i,
We chose V! . € V! as its reference viewport.

Cost Function Factors. To derive the resource allocation
algorithm, we first define the optimization problem to be
solved with a cost function that evaluates the visual quality.
Our cost function contains the following components:

Visual Distortion. Visual distortion measures the quality
drop compared to local rendering. For 2D views, the distor-
tion is caused by image warping and is evaluated with the
model we generated at §3.2. For 3D views, the visual distor-
tion is always 0 since this is equivalent to &y (Vy, V) = 0.
We then define the visual distortion as follows:

DSTR! = 8(i)! * 6w (VL Vi) + (1= 8()) %0 (2)

Quality Switch. The quality switch evaluates the quality
difference between consecutive frames. It is a commonly
considered factor in the quality function of regular video
streaming as well [37, 54]. The quality of consecutive frames
should not differ too much, as it will also lower the viewing
experience. In MuV?, we denote the quality switch as the
difference in visual distortion:

SWI! = DSTR! — DSTR!™* 3)

Fairness. For multi-user systems, maintaining fairness
across users is also crucial [29, 36, 46]. In MuV?, we would
like to maintain a similar visual quality across all users, with
no user experiencing large visual distortion while others are
having a lower distortion. We evaluate fairness with Jain’s
fairness index [23]:

(XL, DSTIR;)?

FAIR' = ~=EL .
n Y, DSTR:

4)

Bandwidth consumption As described in §2.1, one of
the bottlenecks for direct streaming is the high bandwidth
consumption. Therefore, it’s crucial that we profile the band-
width consumption of both 3D and 2D frames and allocate
the available bandwidth accordingly. We denote the band-
width consumption of each user at frame ¢ as

BW! = 5(i)" = Sizeof (2D) + (1 — 8(i)") * Sizeof (3D) (5)

Optimization problem. We formulate our optimization
problem for the resource allocation algorithm with our cost
function as follows:

n n
min Cost(V;/,8") = & " DSTR! + > SWI! +yFAIR' (6)
i=1 i=1

n
s.t.ZBWf <BWira & |V!|<m
i

where a, f§, and y are weights for each cost factor. BW; ;41
is the total available bandwidth for all users. m is the compu-
tation capacity limit, i.e., the maximum number of concur-
rent encoding tasks.

Fast search for solution. Due to the fast-changing nature
of users’ head movements, the resource allocation algorithm
needs to make a real-time decision for each user on each
video frame based on their viewport movement. It is essential
that the algorithm can perform a fast search for the optimal
solution. However, considering the large solution space, the
dynamic nature of human movement, and the real-time con-
straint, it is difficult to analyze and solve the optimization
problem as a whole. Therefore, we consider decomposing the
resource allocation problem into three sub-problems (§3.4,
§3.5, and §3.6) and solving each subproblem separately. Note
that this decomposition strategy may not achieve a “global
optimum”. Instead, it makes MuV? scalable and practically
effective.

3.4 Content Hybridization

MuV? maximizes resource utilization by hybrid streaming

volumetric video frames to compensate for the default transcoded

frames. Since volumetric frames inhibit higher visual quality
but also higher bandwidth requirements, the overarching
goal of content hybridization is to intelligently assign volu-
metric frames to some users under limited bandwidth while
maximizing the overall visual quality. In other words, we
need to solve the decision of §(i)?. Note that MuV? performs
content hybridization before other optimizations because we
should always strictly enforce the bandwidth constraint to
avoid any potential stall [45].

MuV? applies a similar tile-based visibility optimization as
ViVo [17] to reduce bandwidth requirements for volumetric
frames. Each volumetric frame is divided into several tiles
with different quality levels. The edge will select tiles and
quality levels based on users’ visibility of the volumetric
video while maintaining the same visual quality.

To maximize the overall visual quality, MuV? assigns vol-
umetric frames to the users that are more likely to encounter
higher distortion if receive transcoded frames. Finding those
users can be non-trivial: to achieve an accurate search, we
need to first decide the distortion of each user by finding
the optimal reference view set, then identify those high-
distortion users. However, this will require extra calculation
steps as we need to re-calculate the optimal reference view-
port set for the rest of the users. To perform a faster search,

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

we apply a heuristic approach based on the observation we
made in §3.2: Users who are closer to the video content are
more likely to experience higher distortions and therefore
should be assigned volumetric frames.

We conclude our algorithm for network allocation as fol-
lows: First, we decide the tiles needed for each user based on
their viewport and calculate the corresponding bandwidth
requirement; then, we search from the closest user to the
furthest user and find the top q users (¢ < n) such that
Z?:l Sizeof(?’D)i + Z?:qﬂ Sizeof(ZD)i < BVVtotal — BWenc.
Here the BW,,, is a small bandwidth budget we reserve for
the encoding optimization (§3.6). The size of the transcoded
frame is profiled with average 2D frame sizes. After perform-
ing the bandwidth allocation algorithm, the top g users are
assigned volumetric frames and are excluded from the fol-
lowing optimizations. In a rarer case where the BW, ;4 is
too low, even sending transcoded frames to all users (g = 0)
will still exceed the total bandwidth, we should consider
reducing the resolution of the transcoded frame. Note that
this is the last resort that we can try to fulfill the bandwidth
requirement, as it further downgrades the visual quality.

3.5 User-level View Sharing

After assigning volumetric frames, the next question is to
find the optimal set of views to render and encode on the
edge server, denoted as V,, for view-sharing. The size of
V,, denoted as m, is limited by the rendering and encoding
capacity of the edge server. To reduce the overall bandwidth
consumption, each user will only receive one view from m
views. In other words, for view-sharing, we "cluster" users
into m groups and select one reference view for each cluster.
Despite the simple formulation, finding the solution is non-
trivial and faces the following challenges: first, the search
space for this problem is theoretically infinite. Anywhere
in the 3D space and any rotational angles should be in our
search space. To make the optimization feasible, we chose to
reduce the search space to the viewports of users that will
receive transcoded views. This could potentially downgrade
the final visual quality: the global optimal solution may not
necessarily include users’ viewports. For instance, for two
views V4 and Vp in the same cluster, the optimal reference
view for both of them may be somewhere else, denoted as
Vopt. However, we argue that this will have minimal impact
on the final visual quality: Since the overarching goal is to
maximize the visual quality for users, each user will receive
the reference view that is most similar to their ground truth
view. Therefore, the view of V4 and Vp should both be similar
to V,ps, meaning that there won’t be a significant difference
between Spw (Va, Vopr) + 81w (VB, Vopr) and Sy (Va, Va).
Second, searching for the optimal solution can take a long
time. There are (" 9) different combinations of a potential

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

reference viewport set V. With each combination, we also
need to find the optimal reference view for each user i that
is not selected, such that the visual quality is maximized for
each user. The search for an optimal reference viewport for
every single user then takes (n — ¢q) * m time. As a result,
performing an exhaustive search for the optimal solution
would take approximately (" 9) %(n — g) * m time, which is
not ideal if 7 is too large.

To perform a faster search, we modify the forward greedy
algorithm from the K-median clustering problem [18, 40].
The K-median clustering problem is a variation of the K-
means clustering. It finds the optimal cluster partition which
minimizes the sum of the distances from each point to its
closest cluster centroid. The K-Median problem is NP-hard,
and there exist several approximation algorithms to find a
solution fast, including the forward-greedy algorithm [6, 12].
We find our optimization problem for computation resource
allocation similar to the K-median clustering problem: the
distortion function of each user can be considered as the
distances in the K-median problem, and the centroid of each
group is the reference viewports we want to search for. In
addition to considering the distortion as in the K-median
formulation, we also need to optimize the quality switch and
fairness across all users.

We formulate our modified forward-greedy algorithm for
selecting the set of reference viewports as follows: We first
get the set of candidate viewports V}, from users with 6* (i) =
1, and remove the duplicate viewports from it. We then check
if there are already less than m candidates in the set. If so, we
do not need any further search. Otherwise, we start with an
empty set V, which stores our final selected viewports. For
each V,,; in the candidate set, we test its cost as a potentially
selected reference viewport, i.e., Cost(V, U V,,;) (6), and
add the viewport with the lowest cost to V,. We repeat this
step until we have m viewports in V,, which is the final
set of reference viewports. Finally, we decide the reference
viewport for each user i not in V, such that the overall cost
is minimized. Note that the forward greedy algorithm is an
approximation algorithm. We will show the validation of the
forward greedy algorithm in our system in §5.

Note that view sharing in MuV? adapts to the available
computation resources: when the edge server can support en-
coding and rendering for all users (m > n), no view-sharing
is performed; when the computation resource becomes lim-
ited, MuV? will share views across users to reduce the com-
putation resource usage. Also, under limited computation
resources, MuV? applies view sharing even when the view-
port similarity across users is small. Otherwise, the incurred
stalls will lead to an even more significant degradation of the
viewing experience compared to that caused by the distortion
due to image warping.

Yu Liu, et al.

3.6 Encoder Multiplexing

After view-sharing, we have generated a set of m views (V,})
to be encoded on the edge server. Users are also divided into
m groups, with each group assigned one reference view. Our
next question is how to encode those views efficiently.

Most video encoders, such as H.264, HEVC, etc, leverage
the technique of inter-frame compression to achieve high
compression ratios [22, 38]. The inter-frame compression
divides the video stream into small groups of frames, referred
to as a "group of pictures" (GOP) [52]. The first frame of a
GoP is the keyframe, which is encoded with only its own
information and can be decoded independently. The other
frames following a keyframe are P-frames or B-frames. Those
frames are encoded with a reference to the previous keyframe
and can be decoded only after decoding the corresponding
keyframe. The keyframes have a lower compression ratio
than P-frames but are necessary for encoding because they
provide key references for other frames [19]. Normally, the
video encoders are designed to encode a single video stream,
and the user is supposed to decode all the frames sequen-
tially. However, in MuV?2, the encoder needs to encode the
same video frame into multiple video sequences. If we simply
encode all views into a single video stream, then each user
would need to receive and decode all the views to ensure a
correct decoding result. This will increase the overall band-
width consumption and reduce the scalability of our system.
To maintain the high scalability of our system, we should
intelligently arrange the frames and insert keyframes so that
each user only receives one view for each volumetric frame.

One naive solution to achieve this is to encode every view
as a keyframe. Each view can be decoded independently,
but since the keyframe is much larger in size, it will require
higher bandwidth and therefore reduce scalability. Another
solution is to create m concurrent encoding sessions that
each encode one video stream for one group of users. How-
ever, although some GPUs may support creating multiple
encoding sessions, the number of sessions is limited!.

We design the following encoding scheme for MuV? to
support multi-user encoding with one single encoder. We
start with a simple scenario where the group division for
reference viewports is fixed throughout the entire video ses-
sion. For each group of users, we encode its reference view,
Vrfi and the following k frames, up to Vrt:’k , into a GOP, then
switch to the next group and encode V/ ; to Vrtjk into a GOP.
With this approach, each group of users only needs to receive
its own group of frames. Note that the GOP size k needs to be
carefully tuned: A larger k value will result in a lower band-
width requirement since it reduces the number of keyframes.

1For most Nvidia GPUs that support concurrent sessions, the up-
per limit is 3: https://developer.nvidia.com/video-encode-and-decode-gpu-
support-matrix-new

https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new

However, it will decrease fairness across users: other groups
need to wait longer for the same video frame. A smaller k
will make all users synchronous better but at the cost of a
higher bandwidth requirement. With a carefully tuned k, our
method can reduce bandwidth consumption compared to
encoding all frames into keyframes while also maintaining
high scalability by ensuring each user only receives one view
for each volumetric frame.

The above scheme works well for a fixed group division.
However, in reality, the group division will not always be
the same because of users’ dynamic movement. Forcing a
fixed division will result in users receiving less similar views
and increase visual distortion. When the group division is
dynamic, we cannot simply apply the above scheme because
users may receive mismatched keyframes and P-frames. For
example, a user may be in group i at frame ¢ but switch to
group j at frame ¢ +k. If we apply the above scheme, the user
will be missing the keyframe from group j and therefore en-
counter decoding distortion. Therefore, we need to adjust our
encoding scheme to adapt to changing group divisions. There
are two ways to address this problem: enforce the group divi-
sion or enforce the GOP division. To enforce group division,
we insert a keyframe whenever a user changes to another
group (for the above example, we will insert a keyframe for
group j at frame ¢t + k). It will maintain the visual quality for
that user but at the cost of higher bandwidth consumption.
To enforce the GOP division, we fix the group division for
every GOP (e.g. force this user to stay in the group i from
frame t to t + k). This will maintain the bandwidth require-
ment but potentially introduce higher visual distortion. We
can denote this extra visual quality loss at frame t + k as:

enc

DSTREGK = [Cost (VI Vi+F)soy = Cost (V! Vi)so| (7)

where frame ¢ is the last keyframe. In MuV?, we consider
both methods and make the decision dynamically based
on users’ viewport and available bandwidth. Note that we
should prioritize enforcing the group division if possible as
it does not reduce the visual quality. We then formulate the
optimization problem that quantifies the trade-off between
the visual quality and bandwidth consumption as follows:

min DSTR'* (®)

enc

s.t. ZSizeof(ZD)5=1 < BWapal

Recall from §3.4, we have saved some bandwidth for the
encoding scheme when allocating the bandwidth. There-
fore, we do not need to change the group of users that will
receive volumetric frames. The Band ;4 refers to the remain-
ing bandwidth after reserving for volumetric frames. In cases
where there is not enough bandwidth to insert keyframes
for all groups, we insert keyframes for the groups that will
incur the highest DSTRenc.

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

4 IMPLEMENTATION

We implement the client of MuV? on Android with Java.
The edge and server of MuV? are both implemented on
Linux with C++. The transcoded frames are encoded using
Nvidia Codec on the edge server and are decoded with Me-
diaCodec API [1] on clients. We implement image warping
with OpenGL shaders and use OpenGL ES to render both 2D
frames and point clouds on clients. For each 2D view, we ren-
der the corresponding depth map as a gray-scale image and
concat the depth map to the bottom of the RGB image for en-
coding. The RGB image and depth map are encoded in 1080P
(1920%1080) and the final transcoded view is 1920x2160. The
volumetric video compression and decoding are both imple-
mented with the open-source library, Draco [2]. To achieve
the best efficiency, we use multi-threading to encode and
decode point cloud data, and asynchronous encoding and
decoding for transcoded views. In total, we implement the
client with more than 2K LoC, and the edge server with more
than 4K LoC.

We discuss two limitations of our implementation. First,
MuV?’s viewing sharing and volumetric frame delivery are
implemented with unicast due to the poor multicast per-
formance on today’s Wi-Fi infrastructures [50]. Note that
both features are on the content level and therefore can be
implemented by multicast in the future to further reduce
the bandwidth consumption and boost the scalability. Sec-
ond, when deciding between transmitting 2D transcoded
vs. 3D volumetric content, the content hybridization mod-
ule (§3.4) considers the AP’s total bandwidth capacity as
the major network resource constraint. This is largely ac-
ceptable in our setup (WiFi shared by co-located users). In
other wireless environments, such as cellular networks, addi-
tional network resource constraints may exist (e.g., per-user
bandwidth constraints imposed by the cellular base station’s
scheduler). These additional constraints can be incorporated
into MuV?’s framework.

5 EVALUATION
5.1 Setup

Hardware Devices: We evaluate our system on 10 smart-
phones with different computational capacities: Samsung
S21+ (5), Samsung S22 (2), Samsung S8 (1), Samsung S9 (1),
ROG Phone 2 (1). The smartphones run a mix of OS versions
from Android 9 to 13. For the rest of the clients, we run
simulated client applications on three desktops with Ubuntu
22.02. We implement our edge server on a desktop server
with Intel Core i7-9700K CPU @ 3.60GHz, GeForce RTX
2080Ti GPU, and Ubuntu 20.04. Our server is implemented
on a separate desktop server with Intel(R) Xeon(R) E-2186G
CPU @ 3.80GHz and Ubuntu 18.04.

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Yu Liu, et al.

ShareM_v1
OTransM_v1
ShareM_v2
OTransM_v2

30 6

Muv? g
& Mu

25 & TransM |—I| 4
wn & DirectM -
& ShareM g

20 + HybridM = .2

.

[e]
i

15 MuV2 overlaps with ShareM [aly)

0 10 20 30 8

#.Users

Figure 6: Frame rate of the
worst-performing user.

Network condition: The content server and edge server
are co-located and connected through a high-throughput
cable to prevent transmission delay. All clients (smartphones
and emulated clients) are connected wirelessly through a
single commercial 802.11ac AP at 5GHz to the edge server.
The average bandwidth of the AP is 450 Mbps with a ping
latency of less than 10ms.

Volumetric Video Dataset and Traces: Although there
exist several public volumetric video datasets (e.g., 8i [3]),
most datasets only feature short video clips (around 10 sec-
onds) and similar video content (stationary or moving por-
traits of a single human). To capture more meaningful move-
ment traces, we recorded four longer volumetric videos (V1
- V4) by merging captured point clouds from several syn-
chronized stereo cameras. These volumetric videos feature
multiple people standing close together and have an av-
erage length of 77 seconds. The average point density is
120K~140K points per frame and the average bitrate after
compression is around 150 Mbps for all four videos. We
collected 33 users’ trajectory traces while watching those
videos on smartphones and replayed the traces for more
reproducible experiment results.

Test Environment: We evaluate our system in two differ-
ent live-streaming environments. Simulated live-streaming.
To make our results reproducible, we implement a simulated
live-streaming environment where the content server reads a
local volumetric video file at a fixed frame rate of 30 FPS. This
emulates a video being captured by a live camera. Real live-
streaming. To evaluate the performance of MuV? under a real
live-streaming environment, we implement a live-streaming
server with three Zed [4] cameras. The live content server
performs a one-time offline camera calibration before stream-
ing the live content. During the live-streaming session, the
content server receives raw point cloud frames from each
camera at 30 FPS and merges the point clouds in real time.
The merged point cloud is then divided into smaller tiles and
encoded with Draco compression.

System to compare: We implement the four systems for
comparison evaluation:

#. Users

Figure 7: Visual distortion of
TransM and ShareM.

ShareM_v3 ShareM_v1 | ShareM_v3
TransM_v3 6 OTransM_v1 [JTransM_v3
ShareM_v4 E ShareM_v2 ShareM_v4
TransM_v4 — OTransM_v2 [ITransM_v4
[}
o4
c
©
Q
22
[m]
: olHHZ ‘ ;
30 8 20 30
#. Users

Figure 8: Viewport distance of
TransM and ShareM

DirectM: We extend ViVo [17] to multi-user as a prototype
of DirectM. The volumetric video is divided into several 3D
tiles. For each user, the server dynamically decides the quality
of each tile to be streamed based on the user’s real-time
viewport position: the tiles that fall out of the user’s view
or are occluded by other tiles will be streamed on a lower-
quality level to reduce the overall bandwidth consumption.

TransM: We extend the transcode streaming system with
image warping [14, 15] for TransM. The edge server encodes
one RGB view along with the depth map for each user and
applies the same GOP encoding method in §3.6. The user
will then leverage image warping to generate the desired
view based on their real-time viewport.

HybridM: We implement a hybrid streaming system named
HybridM by removing the view-sharing from MuV?. HybridM
implements the same content hybridization algorithm as
MuV? to decide which users receive volumetric frames. For
the rest of the users, HybridM performs transcoding in the
same manner as TransM.

ShareM: We implement ShareM as a variation of MuV?
that only applies view-sharing. ShareM applies the same
reference view selection and encoding optimization are the
same as MuV?.

5.2 Scalability Comparison

We evaluate each system’s scalability with the frame rate of
each system when streaming to different numbers of users
under the emulated live streaming. The scalability of each
system is lower-bounded by the worst-performing user for
each system. The server of MuV? runs at 30 FPS. We show
our results in Figure 6. As shown in the figure, DirectM
has the lowest scalability with only 3 users, limited by its
high bandwidth requirement. TransM can support at most 8
users. As discussed in §2.1, TransM is limited by its computa-
tional overhead. We observe that the GPU encoding capacity
reached 95% when supporting 8 concurrent users, therefore
cannot support more users. The upper limit of HybridM is 10
users, limited by both resources. None of the above systems
achieves the desired scalability.

E 6 OTransM [JShareM E 1Random Selected Frm
5 CIHybridM g Muv?2 ® 0.6 DAssigned Vol Frm in Muv?
0 4 [
LN
= 204
s g
£2 £02
S
0 >
0.0 < 0.0
8 10 20 =] 8 20
#. Users o #. Users

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

1.0 — & concurrent users
ShareM
= * s 0s 20 concurrent users
5
PYY][R EEEET E S 505
205 W 5
c
= 0.2
£
0 0.0
8 10 12 14 16 18 20 -2 0 2
#. Users Mean Opinion Score

Figure 9: Visual distortion Figure 10: Visual quality Figure 11: Jain’s Fairness Figure 12: Mean opinion
comparing all four sys-improvement of different across all users of all sys- score comparing TransM

tems.

150 [CIDirectM PRCS_VOL RCV&DEC_VOL

? OTransM ENC_vOL RND_VOL

8 RCV&DEC_VOL DEC_TRS

o OHybridM RND_VOL B RND_TRS

E 100 [IShareM W ENC_TRS

- OMuv? SERVER EDGE CLIENT

= 1 o |

© Trs L __|

E) SERVER _ CLIENT

2 Vol

c 0

5 =

a % 0 25 50
0 = Latency Breakdown (ms)

Figure 13: Per-user band- Figure 14: End-to-end
width consumption of latency breakdown of
all systems. MuV2,

ShareM and MuV? bear the same level of scalability, which
is more than 30 users, achieving our desired scalability for
classrooms or museums. Because both systems apply the
view-sharing method and have a fixed number of views to
be encoded on the edge server, the scalability of both sys-
tems is no longer limited by the encoding capacity of the
GPU. MuV? applies a dynamic content hybridization and
streams under the bandwidth limit, therefore is not throttled
by network capacity as well. We will show later that, despite
achieving the same scalability as ShareM, MuV? improves
the viewing quality significantly compared to ShareM. Note
that the above scalability results are evaluated with a mix of
real devices and simulated clients where the ratio of the real
versus simulation is kept the same.

5.3 Efficiency of Cross-user View Sharing

Verification of forward-greedy. As described in §3.5, we
use the forward-greedy algorithm to approximate the opti-
mal solution for view selection. Therefore, we need to verify
that the forward-greedy algorithm can produce a good ap-
proximation of the global optimal solution. We verify this
by comparing the solution of the greedy algorithm with
the global optimal solution given by an exhaustive search.
Our comparison results show that the difference between
the forward-greedy solution and the global optimal solution
in terms of the final cost function value is less than 0.5%,

hybridization algorithms. tems.

and MuV2.

which means that the solution given by the forward-greedy
algorithm is a sufficiently accurate approximation of the op-
timal solution. Moreover, the exhaustive search takes 100ms,
which makes it impossible for live-streaming, whereas the
forward greedy only takes less than 10ms.

Visual distortion evaluation. We next evaluate the effi-
ciency of our view-selection and view-sharing algorithms by
comparing the visual quality of ShareM to TransM with em-
ulated live streaming. Both systems only stream transcoded
frames and apply a single encoder instance with the encod-
ing optimization described in §3.6. We evaluate the visual
quality by comparing the visual distortion caused by im-
age warping. A lower visual distortion represents a better
viewing experience.

We show the visual distortion value in Figure 7. The perfor-
mance of TransM and ShareM is the same when connected
with 8 users. Compared to TransM with 8 concurrent users,
ShareM only increases the distortion by 6.0% when con-
nected to 20 users, and 7.2% when connected to 30 users for
V4. We observe similar results for other videos as well. We
also evaluate the viewport distance between the received
view and the users’ ground truth view, as shown in Figure 8.
Compared with 8 concurrent users, ShareM encounters a
much larger distance, with an increase of 1.50m when con-
nected to 20 users and 1.58m for 30 users (V2). Despite the
large viewport distance, ShareM achieves a similar level of
visual quality as TransM. This is because our view selec-
tion algorithm targets selecting the reference views that can
minimize the visual distortion, not the viewport distance.
Our results validate the effectiveness of the view-sharing
algorithm: When the number of users increases, the selected
reference views are representative enough and ensure that
users can maintain good visual quality.

5.4 Efficiency of Content Hybridization

Next, we evaluate the effectiveness of jointly streaming vol-
umetric frames and transcoded frames. We evaluate this
by pairwisely comparing the visual distortion of HybridM
to TransM, and MuV? to ShareM. We show our results in

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Figure 9. When connected to 8 users, TransM, HybridM,
ShareM, and MuV? incur a visual distortion of 0.121, 0.063,
0.121, and 0.064, respectively. Compared to TransM, HybridM
improves the visual quality by 48%, and MuV? improves the
quality by 47% compared to ShareM We observe a similar
improvement of MuV? over ShareM when connected to 10
and 20 users. As discussed in §2.1, volumetric video frames
incur no visual distortion caused because of local rendering.
Our results indicate that jointly streaming volumetric video
frames can have a significant improvement in visual quality.

We evaluate quality fairness with Jain’s fairness index
value, as described in §3.3. A value closer to 1 indicates a
more fair system. We present our fairness evaluation result
in Figure 11. Our results indicate that ShareM can maintain
the same level of fairness for different numbers of users.
The fairness of MuV? is lower when connected to fewer
users because a higher ratio of frames is assigned volumetric
frames, which has no visual distortion and leads to a less fair
result. The quality switch (SWI) of all systems is similar and
close to 0, therefore is not shown in the figures.

We further explore the efficiency of our volumetric frame
allocation algorithm by showing the quality improvement
of MuV? over ShareM and comparing it with a random se-
lection approach. The result is shown in Figure 10. The ran-
dom selection approach randomly selects the frames to be
streamed as volumetric frames with the same ratio as MuV2.
Our results show that our view selection algorithm can re-
duce a visual distortion of 0.231 (0.230), whereas the random
selection only reduces 0.059 (0.068) for 8 users (20 users).
The results further demonstrate that our network allocation
algorithm can better improve visual quality.

5.5 Viewing Experience Evaluation

To evaluate the viewing experience and quality of MuV?,
we conduct a user study and compare MuV? with TransM.
We generate 16 video clips with 4 randomly selected users’
traces with 8 and 20 concurrent users scenarios and present
each pair of videos generated from TransM and MuV? side-
by-side for users to watch and rate. The order of the two
videos is random. Users’ ratings range from -3 (the left video
is much better) to 3 (the right video is much better), with 0
meaning "mutual quality”. We show the users’ rating results
in Figure 12, where the positive score means MuV? has a
higher visual quality than TransM. As shown, when 8 users
are connected, the visual quality of MuV? is slightly better
than TransM, with 34% positive scores and 52% mutual scores.
The visual improvement is caused by the better visual quality
of volumetric frames. When 20 users are connected, the
visual quality of MuV? is much better, with 90% of users
giving positive scores for MuV?2. This is because when 20
users are connected, TransM exceeds its capacity and will

Yu Liu, et al.

incur a much lower playback frame rate, leading to a much
worse viewing experience.

5.6 Bandwidth Usage Comparison

We show the per-user bandwidth consumption of each sys-
tem in Figure 13. Because DirectM, TransM, and HybridM
can support much fewer users than ShareM and MuV?, com-
paring the overall bandwidth consumption is meaningless.
Instead, we compare the per-user bandwidth consumption.
The average per-user bandwidth consumption of DirectM,
TransM, HybridM, ShareM, and MuV? is 134.8, 4.1, 29.4,
8.0, and 12.2Mbps, respectively. DirectM incurs the highest
bandwidth consumption because it only streams volumet-
ric videos. HybridM and MuV? both have slightly higher
bandwidth consumption than TransM and ShareM. ShareM
consumes less bandwidth than MuV? because ShareM only
streams transcoded video frames, while MuV? streams volu-
metric video frames to several users if bandwidth permits.
Our results echo our findings in §5.2: The high per-user
bandwidth consumption of DirectM and HybridM is one
of the bottlenecks that hinder supporting more users. Also,
note that the average bandwidth consumption of DirectM
is higher than ViVo [17] (not shown in Figure 13). This is
because DirectM uses a different encoding scheme compared
to ViVo. ?

5.7 End-to-end Latency Breakdown

We record the running time under the simulated live-streaming
environment and break down the running time latency of
each system function in Figure 14. As shown in the figure,
the processing latency of transcoded frames and volumet-
ric frames are 49.7ms and 25.9ms, respectively. The server
latency is the same for both frames, being 12.8ms for vol-
umetric frames processing and encoding. The transcoded
frames yield a longer process time because they require extra
process procedures on the edge side, being the receiving and
decoding of volumetric frames (3.16ms), 2D rendering, and
encoding (18.2ms). On the client side, the 2D decoding and
rendering takes 15.7ms on average. On the other hand, the
volumetric frames only require receiving, decoding, and ren-
dering on the client side, with an average latency of 13.7ms.
Note that for the transcoded frames, the 2D encoding and
decoding are performed on the hardware encoder that han-
dles its own queue. Therefore, its latency time only reflects

2Given a volumetric frame, DirectM splits its point cloud into 5 equal-
sized sets {P4y, ..., Ps} through uniform sampling and encodes each set
separately. The i-th point density level (1 < i < 5) consists of (encoded)
P; U ... U P;. In contrast, ViVo generates the i-th point density level by
directly sampling i * 20% of points from the original volumetric frame and
encoding them. While ViVo’s scheme is more bandwidth-efficient, it incurs a
much higher transcoding overhead compared to DirectM since more points
need to be encoded at runtime when i > 1.

the time during which that frame is in the encoder, instead
of the actual encoding time.

We next evaluate the live end-to-end latency under the
real live-streaming environment. We measure the stream-
ing latency by live-streaming a millisecond digital clock 3
and comparing the time difference between the clock and
the displayed video on the client. Since volumetric frames
and transcoded frames have different process pipelines and
latency, we evaluate the end-to-end latency of the two frame
types separately with DirectM for volumetric frames and
ShareM for the latency of transcoded frames. We compare
the latency with two single-user streaming systems: DirectS
and TransS, where DirectS streams single volumetric frames
and TransS streams a single transcoded frame to the client
with image warping. On average, DirectS, TransS, DirectM,
and ShareM achieve 135, 151, 171, and 217ms latency re-
spectively. Compared to the corresponding baselines, MuV?
only introduces an extra 36ms for volumetric frames and
66ms for transcoded frames. Considering the significantly
higher scalability MuV? can provide with the edge server,
we believe that this is a tolerable latency to achieve.

5.8 Energy Consumption

We measure the GPU usage with Android Studio Perfor-
mance Monitor while replaying V3 on all smartphones. On
average, MuV? incurs less than 7% CPU usage when receiv-
ing transcoded frames, and less than 25% CPU usage when
receiving volumetric frames. We measure the battery usage
by replaying V3 for 30 min and evaluating the battery drop.
The average battery usage is 9% (3D) and 6% (2D). Overall, we
believe MuV? achieves an acceptable energy consumption.

6 RELATED WORK

On-demand volumetric content streaming. There are
two types of on-demand volumetric streaming systems: di-
rect streaming and transcode streaming. Direct streaming

systems stream compressed volumetric videos to users. ViVo [17]

streams compressed volumetric videos based on users’ visi-
bility of the volumetric content and reduces the bandwidth
requirement. Yuzu [55] utilizes a super-resolution model to
boost the quality of volumetric video and reduce the band-
width requirement. Transcode streaming systems leverage an
edge to transcode video into 2D views before streaming [14,
16, 44]. Vues [37] leverages an edge server to transcode one
volumetric video frame into multiple views with viewports
from different viewport prediction models. [15] utilizes im-
age warping to reduce the viewport drift between the ren-
dered view and the user’s actual viewport.

3https://www.youtube.com/watch?v=RJfAkf Y2Ifo

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Live volumetric content streaming. Existing live volu-
metric streaming systems mainly focus on single-user expe-
rience [20, 28]. Holoportation [41] presents a real-time 3D
reconstruction and streaming system of an entire 3D scene to
create a more immersive sense of presence on an MR headset.
Starline [31] introduces a real-time bidirectional 3D commu-
nication system that captures the 3D representation of both
clients and streams to each other. HyperVR [25] proposes
a camera-agnostic live volumetric video capturing system
and an efficient mesh compression algorithm, which enables
using 50 Mbps to deliver photorealistic volumetric content
at 24 FPS.

Multi-user Volumetric Content Streaming. Several
studies have been studying streaming VR content to mul-
tiple users. Firefly [36] enables more than 10 players to
use VR together by applying a series of techniques such
as offline content preparation, viewport-adaptive streaming
with motion prediction, and adaptive content quality control
among users. M5 [56] uses mmWave network to enhance
multi-user volumetric content delivery. It proactively adapts
mmWave beams and pre-fetches frames to mitigate signal
blockage effects and uses multicast transmission to stream
the overlapped content to minimize the bandwidth require-
ment. MuVR [34] caches and opportunistically reuses static
VR background scenes (as opposed to dynamic volumetric
contents in MuV?) among multiple users via image warping.
In addition, MuVR puts all the rendering workload on the
edge without any local rendering on user devices and does
not consider balancing visual quality among users.

7 CONCLUDING REMARKS

In this paper, we present MuV?, an edge-assisted live volu-
metric video streaming system that jointly streams volumet-
ric video frames and transcoded 2D views. MuV? achieves

high scalability through a novel view-sharing algorithm facil-
itated by image warping. For each frame, MuV? dynamically

selects a reference view set and shares those views across

users. MuV? also intelligently assigns volumetric video frames
for users that may incur lower visual quality. Through an ex-
tensive evaluation, we demonstrate that MuV? can support

a significantly larger group of users compared to extending

state-of-the-art direct streaming and transcode streaming

systems to multi-users. MuV? also improves visual quality

by 47% through the hybrid of volumetric frames.

ACKNOWLEDGMENTS

We thank the reviewers and our shepherd for their insight-
ful comments. This research was supported in part by NSF
Award 2106090, 1915122, 2212298, 2128489, and a Cisco Re-
search Grant. The research of Bo Han was funded by NSF
Awards CNS-2212296 and CNS-2235049.

https://www.youtube.com/watch?v=RJfAkfY2Ifo

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

REFERENCES

[1] Android mediacodec api document. https://developer.android.com/

[2
[3

—
N
flaas?

—
w
=

[7

[9

[10

[11

[12

(13

(14

[15

[16

(17

(18

—

]

=

—

[t

—

]

]
]

]

=

]

]

reference/android/media/MediaCodec.

Draco 3D Data Compression. https://google.github.io/draco/.
Eugene d’eon, bob harrison, taos myers, and philip a. chou,
"8i voxelized full bodies - a voxelized point cloud dataset,’
iso/iec jtc1/sc29 joint wgll/wgl (mpeg/jpeg) input document
wgl11m40059/wglm74006, geneva, january 2017.

Zed camera sdk. https://www.stereolabs.com/developers/release/.

R. Artusi, P. Verderio, and E. Marubini. Bravais-pearson and spearman
correlation coefficients: meaning, test of hypothesis and confidence
interval. The International journal of biological markers, 17(2):148-151,
2002.

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pan-
dit. Local search heuristic for k-median and facility location problems.
In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 21-29, 2001.

J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson Correlation Co-
efficient, pages 1-4. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality
on mobile devices via rendering memoization. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’16, page 291-304, New York, NY, USA, 2016.
Association for Computing Machinery.

F. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. DuVall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec. Immersive Light
Field Video with a Layered Mesh Representation. In Proceedings of
ACM SIGGRAPH, 2020.

Z. Chen, T. Funkhouser, P. Hedman, and A. Tagliasacchi. Mobilenerf:
Exploiting the polygon rasterization pipeline for efficient neural field
rendering on mobile architectures. In The Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

A. Clemm, M. T. Vega, H. K. Ravuri, T. Wauters, and F. De Turck. To-
ward Truly Immersive Holographic-type Communication: Challenges
and Solutions. IEEE Communications Magazine, 58(1):93-99, 2020.

D. Dohan, S. Karp, and B. Matejek. K-median algorithms: theory
in practice. Technical report, Working paper, Princeton, Computer
Science, 2015.

C. A. Glasbey and K. V. Mardia. A review of image-warping methods.
Journal of applied statistics, 25(2):155-171, 1998.

S. Giil, D. Podborski, J. Son, G. S. Bhullar, T. Buchholz, T. Schierl, and
C. Hellge. Cloud rendering-based volumetric video streaming system
for mixed reality services. In Proceedings of the 11th ACM Multimedia
Systems Conference, MMSys ’20, page 357-360, New York, NY, USA,
2020. Association for Computing Machinery.

S. Gill, C. Hellge, and P. Eisert. Latency compensation through image
warping for remote rendering-based volumetric video streaming. In
2022 IEEE International Conference on Image Processing (ICIP), pages
2026-2030, 2022.

S. Gul, D. Podborski, T. Buchholz, T. Schierl, and C. Hellge. Low-latency
cloud-based volumetric video streaming using head motion prediction,
2020.

B. Han, Y. Liu, and F. Qian. Vivo: Visibility-aware mobile volumetric
video streaming. In Proceedings of the 26th Annual International Con-
ference on Mobile Computing and Networking, MobiCom 20, New York,
NY, USA, 2020. Association for Computing Machinery.

S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 291-300, 2004.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Yu Liu, et al.

J.He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-
Degree Streaming for Smartphones. In Proceedings of ACM MobiSys,
2018.

J. Hu, A. Shaikh, A. Bahremand, and R. LiKamWa. Characterizing real-
time dense point cloud capture and streaming on mobile devices. In
Proceedings of the 3rd ACM Workshop on Hot Topics in Video Analytics
and Intelligent Edges, pages 1-6, 2021.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson.
A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 187-198, 2014.

Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen. Analysis, fast
algorithm, and vlsi architecture design for h. 264/avc intra frame
coder. IEEE Transactions on Circuits and systems for Video Technology,
15(3):378-401, 2005.

R. K. Jain, D.-M. W. Chiu, W. R. Hawe, et al. A quantitative measure
of fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 21, 1984.

J. Jansen, S. Subramanyam, R. Bouqueau, G. Cernigliaro, M. M. Cabré,
F. Pérez, and P. Cesar. A pipeline for multiparty volumetric video
conferencing: transmission of point clouds over low latency dash. In
Proceedings of the 11th ACM Multimedia Systems Conference, pages
341-344, 2020.

B.Ji, W.Pi, W. Liu, Y. Liu, Y. Cui, X. Zhang, and S. Peng. HyperVR: a
hybrid deep ensemble learning approach for simultaneously predicting
virulence factors and antibiotic resistance genes. NAR Genomics and
Bioinformatics, 5(1):1qad012, 2023.

J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and
Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In
Proceedings of ACM CoNEXT, 2012.

Q. Jin, Y. Liu, P. Zhou, B. Han, S. Yarosh, and F. Qian. Volumivive: An
authoring system for adding interactivity to volumetric video. In 2023
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), pages 569-570. IEEE, 2023.

B. Jones, Y. Zhang, P. N. Wong, and S. Rintel. Vroom: virtual robot
overlay for online meetings. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems, pages 1-10, 2020.
V. Joseph and G. de Veciana. Jointly optimizing multi-user rate
adaptation for video transport over wireless systems: Mean-fairness-
variability tradeoffs. In 2012 Proceedings IEEE INFOCOM, pages 567-575.
IEEE, 2012.

E. Kasuya. On the use of r and r squared in correlation and regression.
Technical report, Wiley Online Library, 2019.

J. Lawrence, D. B. Goldman, S. Achar, G. M. Blascovich, J. G. Desloge,
T. Fortes, E. M. Gomez, S. Haberling, H. Hoppe, A. Huibers, et al.
Project starline: A high-fidelity telepresence system. 2021.

K. Lee, J. Yi, Y. Lee, S. Choi, and Y. M. Kim. GROOT: A Real-Time
Streaming System of High-Fidelity Volumetric Videos. In Proceedings
of ACM MobiCom, 2020.

K.Lee,J. Yi,Y. Lee, S. Choi, and Y. M. Kim. Groot: A real-time streaming
system of high-fidelity volumetric videos. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking,
New York, NY, USA, 2020. Association for Computing Machinery.

Y. Li and W. Gao. Muvr: Supporting multi-user mobile virtual reality
with resource constrained edge cloud. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC), pages 1-16. IEEE, 2018.

X. Liu, C. Vlachou, F. Qian, and K.-H. Kim. Supporting untethered
multi-user vr over enterprise wi-fi. In Proceedings of the 29th ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video, pages 25-30, 2019.

X. Liu, C. Vlachou, F. Qian, C. Wang, and K.-H. Kim. Firefly: Untethered
multi-user vr for commodity mobile devices. In Proceedings of the 2020

https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/reference/android/media/MediaCodec
https://google.github.io/draco/
https://www.stereolabs.com/developers/release/

ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

USENIX Conference on Usenix Annual Technical Conference, pages 943— [56] D.Zhang, P. Zhou, B. Han, and P. Pathak. M5: Facilitating multi-user

657, 2020. volumetric content delivery with multi-lobe multicast over mmwave.
[37] Y. Liu, B. Han, F. Qian, A. Narayanan, and Z.-L. Zhang. Vues: Practi- 2022.

cal Volumetric Video Streaming through Multiview Transcoding. In [57] W. Zhang, F. Qian, B. Han, and P. Hui. Deepvista: 16k panoramic cin-

Proceedings of ACM MobiCom, 2022. ema on your mobile device. In Proceedings of the Web Conference 2021,
[38] D. Marpe, T. Wiegand, and G. J. Sullivan. The h. 264/mpeg4 advanced WWW °21, page 2232-2244, New York, NY, USA, 2021. Association

video coding standard and its applications. IEEE communications for Computing Machinery.

magazine, 44(8):134-143, 2006.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng. Nerf: Representing scenes as neural radiance fields for view

synthesis. Communications of the ACM, 65(1):99-106, 2021.

[40] M. Moshkovitz, S. Dasgupta, C. Rashtchian, and N. Frost. Explainable

k-means and k-medians clustering. In International conference on

machine learning, pages 7055-7065. PMLR, 2020.

S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degt-

yarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al. Holoportation:

Virtual 3d teleportation in real-time. In Proceedings of the 29th annual

symposium on user interface software and technology, pages 741-754,

2016.

J. Park, P. A. Chou, and J.-N. Hwang. Volumetric Media Streaming for

Augmented Reality. In Proceedings of IEEE GLOBECOM, 2018.

J. Peng, C.-S. Kim, and C.-C. J. Kuo. Technologies for 3D mesh com-

pression: A survey. Journal of Visual Communication and Image Repre-

sentation, 16(6):688-733, 2005.

F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward Practical Volu-

metric Video Streaming On Commodity Smartphones. In Proceedings

of ACM HotMobile, 2019.

F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical

Viewport-Adaptive 360-Degree Video Streaming for Mobile Devices.

In Proceedings of ACM MobiCom, 2018.

L. Qian, Z. Cheng, Z. Fang, L. Ding, F. Yang, and W. Huang. A qoe-

driven encoder adaptation scheme for multi-user video streaming in

wireless networks. IEEE Transactions on Broadcasting, 63(1):20-31,

2016.

[47] P.]. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 20:53-65, 1987.

[48] K.P. Sinaga and M.-S. Yang. Unsupervised k-means clustering algo-
rithm. IEEE access, 8:80716-80727, 2020.

[49] E.C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cas-
siau, L. Maret, and C. Dehos. 6G: The Next Frontier: From Holographic
Messaging to Artificial Intelligence Using Subterahertz and Visible
Light Communication. IEEE Vehicular Technology Magazine, 14(3):42—-
50, 2019.

[50] Y. Sun, Z. Chen, M. Tao, and H. Liu. Bandwidth Gain From Mobile
Edge Computing and Caching in Wireless Multicast Systems. IEEE
Transactions on Wireless Communications, 19(6):3992-4007, 2020.

[51] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600-612, 2004.

[52] J. Xu, B. Zhou, C. Zhang, N. Ke, W. Jin, and S. Hao. The impact of
bitrate and gop pattern on the video quality of h. 265/hevc compression
standard. In 2018 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), pages 1-5. IEEE, 2018.

[53] M. Yang, Z. Luo, M. Hu, M. Chen, and D. Wu. A comparative mea-
surement study of point cloud-based volumetric video codecs. IEEE
Transactions on Broadcasting, 2023.

[54] X.Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Ap-

proach for Dynamic Adaptive Video Streaming over HTTP. In Pro-

ceedings of ACM SIGCOMM, 2015.

A. Zhang, C. Wang, B. Han, and F. Qian. YuZu: Neural-enhanced

Volumetric Video Streaming. In Proceedings of USENIX NSDI, 2022.

(39

—

(41

—

[42

—

[43

=

[44

=

(45

[

(46

—

[55

[

	Abstract
	1 Introduction
	2 Motivation
	2.1 Extend Existing Solutions to Multi-user
	2.2 Other Key Observations

	3 System Design
	3.1 Overview
	3.2 Image Warping Efficiency Profiler
	3.3 Generic Optimization Formulation
	3.4 Content Hybridization
	3.5 User-level View Sharing
	3.6 Encoder Multiplexing

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Scalability Comparison
	5.3 Efficiency of Cross-user View Sharing
	5.4 Efficiency of Content Hybridization
	5.5 Viewing Experience Evaluation
	5.6 Bandwidth Usage Comparison
	5.7 End-to-end Latency Breakdown
	5.8 Energy Consumption

	6 Related Work
	7 Concluding Remarks
	References

