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ABSTRACT

This paper presents a novel approach for crowd analytics
using a single monostatic mmWave radar. We propose a new
mathematical model that infers the crowd size for dynamic
and quasi-dynamic crowd behaviors. More specifically, we
derive a novel closed-form mathematical expression that
describes the statistical dynamics of undercounting due to
crowd shadowing. This new methodical finding allows for
significantly improved crowd density estimates. For spatially-
patterned crowds where the mathematical solution does not
extend, we then develop a Temporal Convolutional Network
(TCN) which is purely trained on simulated data. We perform
extensive testing over a total of 22 experiments, with up to
(and including) 21 people and in 4 different areas, including
indoors, and the proposed mathematical solution achieves
a Mean Absolute Error (MAE) of 1.53. Lastly, we show how
our framework can infer anomalies, bottlenecks, and crowd
engagement level. Overall, the paper can have a significant
impact on crowd management and urban planning.
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1 INTRODUCTION

Crowd analytics brings insight into collective pedestrian be-
haviors by estimating crowd size, gauging arrival/departure
rates, detecting anomalies, predicting behavior, and assess-
ing interactions within an environment. This information
plays a pivotal role for many applications. For instance, smart
cities (e.g., a train station, traffic intersections) can utilize
crowd analytics for applications such as traffic flow man-
agement and evacuation planning [45]. Crowd analytics is
also important for safety planning, for instance during rit-
ual or political gatherings [4, 44], as well as in the context
of roadside safety and autonomous vehicles. Furthermore,
crowd analytics is important for smart buildings, i.e., to opti-
mize heating/cooling/lighting, and in retail, where it can be
used to infer customers’ shopping interests [12, 35]. Occu-
pancy estimation can also be critical during a pandemic to
evaluate whether crowd count limitations are being violated
[26]. Learning attributes of collective behaviors, however,
becomes challenging as an area gets more crowded.

On the other hand, recent years have witnessed rapid
growth in the number of wirelessly-connected devices [2],
including cost-effective off-the-shelf transceivers (e.g., TI
board AWR2243BOOST). This has motivated the use of wire-
less signals for tasks beyond communication, such as sens-
ing and learning about the environment. This is particularly
evident from the vision of the 6G cellular system, where
Integrated Sensing and Communication (ISAC) is envisioned
to be a foundational component [29]. In ISAC, transmitted
mmWave signals are used for both sensing and communi-
cation. Specifically, these systems are expected to augment
situational awareness in urban areas, complementing the
capabilities of vision systems. This enhancement has the po-
tential to deliver significant advantages for applications such
as autonomous driving and roadside assistance systems.

In this paper, we focus on using off-the-shelf mmWave
signals (e.g., TT AWR2243BOOST) for crowd analytics. Most
work on crowd analytics utilizes vision systems (see Section 2
on Related Work). While such systems undoubtedly play a
role in this domain, their applicability may be limited by
availability and potential privacy concerns, as evidenced
by various surveys [11, 37]. As such, crowd analytics with
off-the-shelf (or existing) RF transceivers provides a good
alternative to vision systems.



ACM MobiCom ’24, November 18-22, 2024, Washington D.C., DC, USA

Spatially
Patterned

Dynamic

Quasi-dynamic

kp@

AW

Fig. 1: Classification of crowd behaviors based on de-
gree of correlation and extent of crowd mobility.

In recent years, great progress has been made in using RF
signals to sense and learn about the environment for various
applications. However, inferring collective crowd behaviors
with RF signals is considerably challenging, especially as
the area gets more crowded. As such, there is little work on
crowd analytics with RF signals. For instance, there are a few
existing works on using WiFi for crowd analytics. However,
they rely on occupants crossing the line from the transmitter
to the receiver to be counted. Furthermore, they suffer from
the inherently low resolution of these signals.

mmWave signals, on the other hand, have been success-
fully used for many sensing applications. However, employ-
ing mmWave signals for crowd analytics presents a formida-
ble and largely unexplored challenge. This complexity stems
from the significant attenuation these signals experience in
crowded areas, where individuals frequently obstruct one an-
other, consequently diminishing the reflected signal’s ability
to convey information about obstructed individuals back to
the transceiver. In other words, the total number of observed
individuals can be far less than the true count due to block-
age by the rest of the crowd, a phenomenon we describe
as crowd shadowing. Section 2 provides a comprehensive
review of the state of the art in crowd analytics.

In this paper, we provide a new foundation for using off-
the-shelf mmWave signals for crowd analytics. We next dis-
cuss different crowd behaviors of interest to this paper.

Different Crowd Behaviors

Individuals in a crowd can utilize the space in many dif-
ferent ways. This has been studied extensively, and there are
underlying crowd behaviors that have been observed and
categorized in the literature [44, 56]. Here, we summarize
three that are relevant to this paper, as shown in Fig. 1.

Dynamic Crowds: Individuals in a dynamic crowd are
characterized by constant motion and uncorrelated move-
ment patterns. They typically do not stop that often and
traverse the area in an uncorrelated manner. Crowds at a
train station or a public square fall in this category.

Quasi-dynamic Crowds: A quasi-dynamic crowd refers
to a congregation of individuals exhibiting some degree of
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movement or fluctuation in their spatial arrangement, albeit
at a slower, or, more irregular pace compared to dynamic
crowds. Changes in spatial distribution tend to occur over
longer time intervals. Examples include gatherings such as
a mingling where individuals traverse the area, stopping
occasionally to socialize or explore the environment.

Spatially-patterned Crowds: Spatially-patterned crowds
move in a more structured way than dynamic or quasi-
dynamic crowds, so that trajectories demonstrate greater
spatiotemporal correlation. For instance, entering a class-
room and finding a seat, i.e, a source-absorption pattern, falls
in this category, where the traversed paths are predictable.

We next summarize our key contributions:

Statement of Contributions:

a) We propose a new mathematical model that infers the
crowd size with mmWave signals. More specifically, we de-
rive a novel closed-form mathematical expression describing
the statistical dynamics of undercounting due to crowd shad-
owing. Our approach mathematically finds the probability of
any given undercounting, i.e., the probability of observing k
individuals given N > k are present. By deriving a PDF that
models the occurrence for all such k values, we then infer
the total population count by comparing this theoretical PDF
against the histogram of the observed data. This new method-
ical finding allows for significantly improved crowd density
estimates. For instance, our mathematical characterization
enables counting crowds of up to (and including) 21 people
for both dynamic and quasi-dynamic crowds, resulting in a
Mean Absolute Error (MAE) of 1.53 over 17 experiments in
4 different areas, with an emphasis on larger crowds.

b) While well-suited for dynamic and quasi-dynamic crowds,
which already cover many scenarios, the proposed mathe-
matical model does not extend to spatially-patterned crowds.
Thus, we further develop a simple convolutional neural net-
work (CNN), capable of learning temporal correlation, which
is solely trained on a small set of simulated data. This pipeline
can then provide crowd analytics for a larger set of crowd
behaviors, including spatially-patterned crowds.

c) We extensively validate the proposed theories and algo-
rithms with several experiments. When processing real data,
we further propose a simple yet novel feedback-based ap-
proach to declare human presence, which properly strikes a
balance between sensitivity and robustness. Overall, we test
with a total of 22 experiments in 4 different areas, including
indoors, and encompassing the three broad categories of
crowd behavior shown in Fig. 1. Our experiments involve
up to (and including) 21 people and are generally geared
towards larger crowds, as mmWave signals can easily track a
small number of people. Overall, our proposed mathematical
model results in an MAE of 1.53 over all the experiments.
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Fig. 2: A mmWave transceiver placed at origin emits
chirps that are scattered by a crowd of moving agents.

d) In addition to crowd counting, we show how our frame-
work can also infer crowd anomaly (i.e., abnormal crowd
behavior), as well as crowd bottlenecks, validated with a
number of experiments. Lastly, we introduce a metric that
well-reflects the level of engagement of the crowd with the
space (e.g., to stop and look at a landmark, or to socialize).
Overall, the paper lays a comprehensive foundation for
crowd analytics with mmWave signals, via 1) a novel mathe-
matical solution with a broad applicability, 2) a complemen-
tary machine-learning pipeline (trained on a small simulated
dataset) for spatially-correlated crowds, where mathematical
modeling does not extend, and 3) extensive experimenta-
tion with crowd counting, in addition to anomaly detection,
bottleneck inference, and space interaction analysis.

2 RELATED WORK

Occupancy estimation via a variety of sensing modalities has
attracted significant attention over the past several decades
due to the broad set of related applications in domains rang-
ing from commerce to public safety. Vision-based methods
have benefited from the central place that image classifica-
tion has long held in the development of machine learning,
which has produced a number of sophisticated approaches
for crowd analytics [10, 31, 43]. However, the use of vision
systems in many common settings raises serious privacy
and security concerns, promoting an attitude of cautious
skepticism [11, 37], as we reviewed earlier.

In the area of RF sensing, researchers have also explored
using RF signals for crowd analytics, albeit to a lesser ex-
tent than other RF sensing applications, and mainly with
WiFi [13-16, 26, 57]. However, due to the poor resolution
of WiFi, other assumptions were needed, such as requiring
that occupants cross the link between the TX and RX to be
counted [14, 57]. Other WiFi-based efforts have focused on
counting a seated crowd [26].

Recently, mmWave systems have risen as an industry
contestant for next-generation sensing [58]. As with WiFi,
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mmWave radars avoid privacy concerns present in vision sys-
tems, and they have proven effective in functioning within
non-ideal environments such as through fog [19], offering
an advantage over other sensing modalities, such as vision or
LiDAR systems [54]. However, prior work on human motion
sensing with mmWave radars has been predominantly re-
stricted to identification and tracking of a small number of in-
dividuals [9, 24, 30, 38]. Similarly, while prior work has exam-
ined occupancy estimation, the maximum considered crowd
size is relatively small, i.e, 6 or less [6, 22, 23, 30, 41, 42, 53].
An exception is [27], in which the maximum reported crowd
size is 10. However, in that work, all experiments are con-
ducted in the same area, and minimal information is given
on the clustering method and other aspects of the pipeline.
Furthermore, much of the existing work on mmWave occu-
pancy estimation utilizes radar boards with a wide field of
view [23], a network of multiple radars [8], or a physical
setup with the radar placed at an ideal vantage point [22], to
circumvent the problem of crowd shadowing introduced in
Sec. 1, while still only addressing lower counts.

In this paper, we propose a new foundation for crowd
counting utilizing only a single commodity mmWave radar.
Our key observation is that while several agents may not be
observable to the radar board at any point in time, resulting
in severe undercounting, the statistics of the undercounting
carries crucial information on the crowd size, for which we
then propose a new mathematical model. This novel solu-
tion effectively estimates the total number of people for both
dynamic and quasi-dynamic categories, as we show with ex-
tensive experimentation with crowds of up to (and including)
21 people across 4 different areas. We additionally design
a simple convolutional neural network to handle spatially-
patterned crowds, while solely training it on simulated data,
and further validating it experimentally. Finally, we show
how our foundation can infer other crowd attributes, e.g.,
crowd anomalies, bottlenecks, and crowd engagement level.

3 PROBLEM STATEMENT

Consider the monostatic sensing scenario shown in Fig. 2,
where a fixed mmWave transceiver (TRX) located at the ori-
gin of the coordinate system emits FMCW pulses (chirps)
that interact with a crowd of moving agents. We define
r[w] = [ri[w], ..., rn[w] ] as the vector of radial distances
between each agent in the crowd and the TRX at a discrete
time step, w. In this paper, we aim to estimate the size of
the crowd, N, with a single TRX, given noisy and incom-
plete observations of r[w] over a fixed time horizon. Denote
the observation of r[w] as T[w]. We next discuss two major
roadblocks to solving this problem.

Challenges in Estimating N from f[w]: Due to the
quasi-optical nature of mmWave radiation [8, 9, 32], the line-
of-sight (LOS) path for a single TRX is crucial for monostatic
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Fig. 3: Range-Doppler spectra for N = 4 and N = 21
person crowds: (a) Clear separability of clusters allows
efficient occupancy estimation of N = 4 person crowd
(b) Estimation for N = 21 person crowd, however, be-
comes considerably challenging,.

sensing. As such, the likelihood of a direct path to all agents
in a crowd decreases as N grows, leading to undercounting.
We next identify two key culprits that can result in under-
counting and a third that produces spurious entries in T.

1) Crowd Shadowing Effect: As an area gets more crowded,
there is a higher chance that individuals block each other
more frequently. In this paper, we refer to this recurring
blockage as the Crowd Shadowing Effect, which results in
severe undercounting and is quite challenging to address.

2) Adjacent Human Merging: If two individuals are too
close to each other (either next to each other or at close
enough ranges), they may be detected as one, resulting in un-
dercounting. Thus, F[w] may include the radial information
of only a random subset of the agents.

3) Background Noise: The TRX is also more sensitive to
background noise due to the lower wavelength of mmWave
radiation, leading to overcounting. More specifically, effects
such as secondary reflections off of static objects [9, 20] and
environmental motion (e.g., wind-blown foliage [40]) may
produce entries in T that do not correspond to any agent.

To summarize, our goal is to design a robust occupancy
analytic inference system using only noisy and incomplete
observations of the radial information of moving agents,
f[w]. We next provide a brief primer on the traditional range-
Doppler analysis and then introduce a different representa-
tion that helps us capture fine-grained human activity across
the sensing range. We leverage this representation in the
later sections to develop a system for occupancy estimation
of large crowds, using only a single mmWave radar.

4 FMCW RADAR SIGNAL PROCESSING

We start this section with a brief primer on FMCW signaling
and the traditional range-Doppler analysis [46, 55]. We sub-
sequently leverage this foundation to introduce our Phase
Spectral Bandwidth Modeling approach, which offers a suit-
able framework for crowd analysis.
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4.1 Range-Doppler Spectrum

Consider a monostatic mmWave FMCW TRX which peri-
odically transmits a chirp sinusoid whose frequency grows
linearly from f;. Mathematically, frx(t) = fo+5t,0 <t < T,
where S = B/T, denotes the chirp slope, B is the band-
width and T, denotes the chirp duration. The complex base-
band signal of the m'™ chirp is then given by spx(m,t) =
VPrx exp (j{2m fot+mSt?}), where Prx denotes the TX power.
Consider an object located at a distance d[m] from the TRX,
moving with a radial speed of vy. The received signal after
scattering is then given by spx (m, t) =stx (m, t—14)/d[m]?,
where 7;=2d[m]/c is the round-trip time-of-flight, and sgx
is mixed with s7x to yield the IF signal [39, 46],

sip(m, t) = spy (m, t)srx (m, t)

Let s;r[m, n] denote the discretized IF signal, with T, denot-
ing the discretization time step, N, = T./T, denoting the
number of discrete range bins, and Ty = N T representing
the considered time duration. By performing a 2D DFT on
sir[m, n], we then obtain Qrr[v, ] = Fmn{sir[m, n]} as the
traditional range-Doppler spectrum?:

VPrx Vo do
X D[22 —o)Dy |2 - 2
Z Nel 7g ") PN 2 T ()

where Dk (x) = kK=—01 exp (jz”%) is the Dirichlet kernel,
Ad = c/2B is the range resolution and Av = ¢/2f;Ty is the
velocity resolution. The range and velocity of an object can
then be estimated by locating the peaks of the spectrum.

Fig. 3 (a) shows a sample range-Doppler map for an N = 4
person experiment. Given the low number of occupants and
their sufficient separation, we are able to accurately estimate
occupancy through the identification of well-defined peaks.
On the other hand, Fig. 3 (b) shows a range-Doppler map for
an N = 21 person crowd. As can be seen, the information per-
taining to the subjects is non-resolvable, due to detrimental
factors such as crowd shadowing, coupled with inherent res-
olution constraints. Consequently, delivering accurate crowd
analytics poses a significant challenge in this case, which is
the main motivation for the work of this paper.

We next set forth a different representation that instead
considers a 1D indicator of motion across the sensing range.
This framework not only better illuminates the impact of

|Qrr[ov, r]| =

factors such as blockage and resolution limitations, but also
provides a suitable starting point for our proposed crowd
analytics methodology.

'We ignore the variations in 1/d[m]? over Tf and assume d[m] ~ dp.
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4.2 Phase-Bandwidth Analysis

In this paper, we propose to use the bandwidth of the wrapped
phase as a fine-grained detector of the non-blocked motion
in a dynamic scene. Traditional approaches rely on Doppler
spectrum for distinguishing people from stationary objects,
but in quasi-dynamic scenarios, relying solely on speed may
result in false negative detections, as people may remain
relatively still. By examining the bandwidth of velocity sig-
nals, even minor movements like breathing or fidgeting can
be detected sensitively, enhancing human detection even at
low motion speeds. We next outline a brief derivation and
introduce the resulting Human Trace Map as an effective
representation of the crowd’s visible motion, which sets the
stage for our proposed mathematical framework.

Wrapped Phase Spectrum: Given a frame of chirp recep-
tions s;p[m,n],m = 0,1,..., N; — 1, we begin by computing
the FFT across n to obtain the Range-FFT:

Nt 27znr

Rip[m,r] = ; sip[m, n] exp ( N )

Unlike the traditional Doppler-FFT, we instead perform

the Short-Time Fourier Transform (STFT) of Arg(R;r[m,r])

over m, where Arg(fe/?) = ¢ mod 27 denotes the wrapped

phase of a complex number. We motivate this by observing

that Arg(Be’?) exhibits a jump discontinuity for every ¢ >

2Kn, K € Z, thus providing a higher sensitivity to changes

in ¢, compared to fle/?. Using a moving window of W chirps
and a shift of « chirps, we have the following STFT:

w+W

2mqi
Orplq,w,r] = Z Arg(Ryr(i, r]) exp (—' 1
i=w

i=E) o

Human Trace Map: For each point (ry, wy) in space and
time, we then obtain ®;r[g,w = wo, 7 = ro], which is a
sensitive indicator of visible motion spectrum at that coor-
dinate. However, ®;f is a tensor of rank 3, which compli-
cates our subsequent analysis and visualization. We thus
collapse the g—dimension by computing the bandwidth of
Orpg, w = wo, r = ro] for each (ro, wp), which captures the
intensity of motion at that coordinate. More specifically, we
introduce the observed Human Trace Map, H:

H[W, r] = 1ﬂq(cI)IF [q’ w, r])’ (4)

with0 < w < [(Ne=W)/a],0 <7 < N,-1,and T, (f(q)) €
R is a measure of the bandwidth of f(g).

Fig. 4 shows a 25s sample of H (normalized by the window
energy across depth) for an N = 11 person crowd. The fig-
ure shows the range of the visible individuals as a function
of time. Furthermore, it explicitly highlights the underly-
ing challenges in extracting crowd analytics as the size of
the crowd increases, namely the Crowd Shadowing Effect
and Adjacent Human Merging. In the subsequent sections,
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Fig. 4: Human Trace Map (H) of an N = 11 sized crowd
showing inferred range of visible individuals as a func-
tion of time, while also highlighting challenges such as
Crowd Shadowing Effect and Adjacent Human Merg-
ing, which results in undercounting for large crowds.

we then propose a new foundation for crowd analytics that
can efficiently infer crowd information from H, despite the
underlying challenges. In order to simply indicate the pres-
ence/absence of inferred human motion, we then translate
H to a binary version to generate H,yis[w, r], which we
refer to as the observed Binary Trace Map.

Binary Trace Map: In this paper, observed Binary Trace
Map refers to Hyyvis, @ binary map where, H, vis[w,r] = 1
indicates that the presence of human is inferred for range r
at time window w, while zero indicates otherwise. We em-
phasize that FH,yis can only capture the presence for visible
non-blocked motion. As such, it serves as our starting point
for developing our proposed methodology for crowd analyt-
ics. Sec. 7 presents our novel and efficient algorithm for this
binarization, based on a simple feedback design that strikes
a balance between sensitivity and robustness.

We now formally pose our problem statement.

Problem Statement: Consider an area where a mmWave
monostatic transceiver makes measurements in the vicinity
of a crowd. Given the inferred Binary Trace Map, Hh,yis, we
are interested in finding the true crowd count, N. We note
that the crowd count can be time-varying.

The aforementioned problem is considerably challenging,
as severe undercounting can happen, for instance, due to
recurring crowd shadowing.

Baseline Solution: A first-attempt solution would be
to take the time average of the number of visible partici-
pants as our baseline for occupancy estimation, given by
K= EW{Z::ON’ Hyvis [w, r]}. While this can work for a small
number of people, it results in severe undercounting as the
size of the crowd increases. For instance, a crowd of 18 will
be counted as 12 or 11 (see table in Fig. 11), necessitating a
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more fundamental approach, which is the main motivation
for the proposed work of the subsequent sections.

5 A MATHEMATICAL SOLUTION FOR
DYNAMIC/QUASI-DYNAMIC CROWDS

In this section, we propose a new mathematical foundation
for estimating the true size of the crowd for the dynamic
and quasi-dynamic cases (see Sec. 1, or Fig. 1). As discussed
in Sec. 1, these scenarios have little spatial bias if observed
over a sufficient period of time. Consider Hj,yis. As discussed
earlier, a column of Hj, ;s indicates the ranges at which the
corresponding human targets became visible at that time.
As the size of the crowd, N, increases, the number of visible
agents will be further from the true count due to the greater
likelihood of crowd shadowing, leading to undercounting.
Denote n[w] as the number of visible individuals at time
window w: n[w] = ZZ};I’ Hyvis[w, r]. The histogram of
n[w] gives us the experimental density function represent-
ing how often a given number of people were observable
throughout the observation period. We next show a novel
mathematical approach which characterizes the probability
mass function of n[w] mathematically, for any given crowd
size. By comparing this with the experimental histogram,
we can estimate the true crowd size as the total number of
people that minimizes the difference between the two. We
next set forth the details of the proposed approach.

Consider the scenario shown in Fig. 2, where our goal is
to estimate the crowd size, with the individuals modeled as
discs of radius p. Without loss of generality, we restrict the
crowd to a quadrant. We further assume no spatial biases, i.e.,
each agent is equally likely to be at any location in space at
a given time. As discussed earlier, this is a very good model
for dynamic crowds, and it serves as a good approximation
for many quasi-dynamic cases, as we shall see. We then aim
to evaluate the likelihood that exactly n[w] = K agents are
visible given a crowd of size N. To this end, we first derive
the following lemma to establish the probability that a single
agent is visible in a dynamic crowd of size N.

LEmMA 5.1. Consider a dynamic/quasi-dynamic crowd of N
independent agents, each a disc of radius p, that are uniformly
located in the area of Fig. 5 (a), with a maximum sensing depth
Fmax- Denote V' as the event “an arbitrary agent is visible to
the TRX” and A = nr? /4. We then have the following for the

probability of V given N:

BOVIN) = 2(AN (- NN+ 1)) )

AN+1 - (A_ p\/rgnax_ PZ)N(NP\/”gnax_ Pz +A)

Proor. Denote the agent being tested for visibility by D.
We first find the probability that D is present at the depth r.

X

Pallaprolu, et al.

@ Y Agent D ®)

» X

N
TRX!

Fig. 5: Agent with radius p and at depth r is visible if
the region A(r) contains no other agents.

We can easily confirm the following geometrically:

-1
Pr(r) = Zr(rfnax - pz) , P ST < Foaxe (6)

We next condition on D’s existence at depth r to evaluate the
probability of its visibility. Consider the geometry of Fig. 5
(a), wherein we denote A(r) as the area in front of agent D
that must not be occupied by any other agent, in order for
D to be visible. From Fig. 5 (b), we can then see that A(r) =
p/r? — p?.If another agent is outside of A(r), the chance that
they block D is very small.? Consequently, for D to be visible,
the rest of the N — 1 agents can lie anywhere in the region
except over A(r), as that would entail crowd shadowing.
Mathematically, we have the following expression

P(VIN,r) = A~ N-D(a- AV )

Combining Eq. 6 and Eq. 7, we then have the following for
the probability that D is visible in a crowd of size N

P(VIN) = / " PR(PP(VIN, r)dr
p
B rmaxz ( ) 2)—1 —(N-1) N-1
= rlri. —p°| A (A=A(r))" dr
P

Tmax
= 2N = ) [ A gV
P
By substituting A — p/r? — p? = u, we can simplify the
integral to the following expression

Q
P(VIN) = 2(AN " p? (rl s — pz))_1 / WV (u - A)du,
A

where Q = A — p+/rZ.. — p2. The integrand is now a polyno-
mial and can be directly evaluated to obtain Eq. 5. O

To summarize, Lemma 5.1 presents the likelihood of an
arbitrary agent being visible in a crowd of N agents. As we
consider the scenario of a dynamic/quasi-dynamic crowd, we
assume that the locations of the N agents are independent.

Note that this chance is not zero as other agents get close to the boundary
of A(r). However, it is small, thus approximated by zero in our derivations.
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We can then estimate the probability of exactly K agents
being simultaneously visible, given N total agents, as a bino-
mial distribution over K, as follows:

THEOREM 5.2. Consider a crowd of N independent agents,
each a disc of radius p, that are uniformly located in the area
of Fig. 5 (a), with a maximum sensing depth rpg,. Let A =
7r2 ./ 4. Then, assuming independent visibility, the probability
of exactly K agents being visible in the region is given by

Po(K|N) = (II\([)P(‘VIN)KX (1=B(VIN)N K. (8)

Let P.(K = k) denote the empirical density given by the
histogram of observed n[w]. We then estimate the true oc-
cupancy of a dynamic crowd by minimizing the Kullback-
Leibler divergence between the analytical density of Eq. 8
and Pe, over N = {1, 2, .., Npnax }:

N* = argminDKL(Pe(K =kx) ||Po(K=x|N)|. (9)
NeN

As we shall see, the proposed approach estimates the
crowd size well for dynamic and quasi-dynamic cases. How-
ever, as the spatial biases get stronger in other scenarios, it
may not serve as a good model. We next propose an ML-
based approach that directly leverages H,is for estimating
N, complementing our analytical framework in cases such
as sink/source of Fig. 14, where the spatial independence
assumption is no longer a good approximation.

6 TEMPORAL NEURAL NETWORK

To estimate the true size, N, of a crowd, the analytical ap-
proach of Sec. 5 assumes that the visible count, n[w], and
observed depths, f[w] = [ri[w], ..., rn[w] [W]], are indepen-
dent across all w. More specifically, this approach ignores
the temporal correlation among columns of Hyvis, which
carries information about crowd motion. As an extension
of Sec. 5, we instead directly utilize a contiguous block of
columns from Hyyis as an input for occupancy estimation.
Such a pipeline not only estimates the size of a spatially-
patterned crowd (see Fig. 1), but also demonstrates robust-
ness to process noise that is spatiotemporally separable. We
thus propose a simple Temporal Convolutional Network
(TCN), trained purely on synthetic Hj, ;s data generated by
a lightweight crowd simulator, which we describe next.
Assembling a Simulation-based Dataset: Recall that
the Binary Trace Map Hvis, is a representation of human
presence at a certain sensing depth when observed at a given
time window. In Sec. 7, we show how to generate high-
quality Hpvis from H (Fig. 8) using our novel binarization
algorithm to uncover depth-occupancy. Using the geometric
model presented in Fig. 5 (a), we propose the generation
of synthetic Binary Trace Maps W;’::S whose entries corre-
spond to the depth-occupancy of visible agents in a simulated
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Fig. 6: Schematic of our proposed neural network.

crowd of size N. To this end, we utilize the Markov motion
model described in [14, 15] to independently evolve N ran-
domly initialized agents. At each iteration, we collect the
radial distances of all the agents, test for shadowing based
on the criterion of Fig. 5 (a), and set the entries in Wli}‘ll?s =1
if the corresponding agent is visible, to obtain a synthetic
Binary Trace Map for each random initialization.

To better model real H,, yis and prevent overfitting, we add
several non-idealities to 7-{;{:5 For instance, shadowing de-
pends upon the extent of a person’s body encroaching within
A(r) of Fig. 5 (a). We first make shadowing probabilistic by
sampling a Bernoulli random variable B(p;s) to decide if an
agent is shadowed. We further add Gaussian depth uncer-
tainty of NV (0, Ar) to the radial distance of each simulated
agent, and add depth-localized white noise to account for
environmental artifacts such as foliage. Lastly, we allow the
agents to pause intermittently, with their waiting time sam-
pled from Exp(A). We set ps = 0.8, Ar = 3cm, A = 1s, and
generate 500 such synthetic Binary Trace Maps for each N €
{1,2,..,30}, each with an evolution horizon of N,, = 3000
windows. We label each ‘]‘(]:};Ts in the dataset with a vector of
residual errors denoted by e’[w] = N-n[w],w < N,,, where
n[w] = Z;;)N’ 7’{?":5 [w, r] represents the baseline estimate
at w. Thus, the main goal of our proposed neural network is
to predict e[w] for unseen H,yis generated from real data.

Occupancy Estimation using the TCN: We utilize the
labeled pairs of (7-(;3;?5 [w,r],e[w]), as described above, to
train a TCN [5] for the task of occupancy estimation on
unseen Hj, yis. TCNs have been well-studied in several multi-
variate forecasting contexts such as generative audio [36] and
phoneme recognition [52], among others. Furthermore, they
are better suited for processing Hj vis than 2D-CNNs/RNNSs,
as they exploit spatiotemporal correlations and simplify
setup and training. The block diagram of our neural net-
work is shown in Fig. 6, and is based on the architecture
of [1, 5]. More specifically, our network sequentially utilizes
two TemporalBlock class instances (Fig. 6), each of which
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Fig. 7: Small training for depth-occupancy detection:
(a) Depth estimation of humans in each frame of the
concurrent video feed (b) Associating each video-based
human depth to the nearest prominent peak in H.

further comprises a Conv1D + ReLU layer, Batch Normaliza-
tion (¢ = 107, a = 0.1) and Dropout (p = 0.5). We do not
enable dilation for either Conv1D layer, leading to a highly-
localized temporal neighborhood as the receptive field for the
task of occupancy estimation. Due to the sparsity of Hp yis,
we employ residual skip connections [21] to avoid padding-
driven feature contamination, and train the network using
Stochastic Gradient Descent on an NVIDIA RTX 3060Ti.

Our neural network corrects the residual errors caused
by under/overcounting per time step, giving us a more agile
estimate of the true crowd size N. More specifically, the TCN
can be characterized as a function G : {0, 1}V *Nw — RNw,
which maps a Binary Trace Map Hpyis[w, ] to the resid-
ual error e[w] across time. We thus estimate the occupancy
by adding e[w] to the baseline estimate: N*[w] = n[w] +
G (Hbvis) [w]. While the occupancy estimate of the network
exhibits short-term variations due to the high chirp rate of
the radar, a moving average is applied over the predictions to
achieve a more robust and representative value. We utilize a
sliding frame of columns of Hy,vis[w, r] over w for spatially-
patterned crowds that do not achieve an equilibrium, and for
the cases of dynamic and quasi-dynamic crowds of a fixed
size, we instead convolve over an expanding frame of analy-
sis. This prevents the network from being biased by outliers
in H,yis, enabling robust estimation of the equilibrium size.
We next detail our adaptive thresholding approach for gen-
erating Binary Trace Maps (Hb vis) from Human Trace Maps
(H), by detecting human occupancy in H across space and
time.

7 PRACTICAL DEPTH-OCCUPANCY
DETECTION

The Human Trace Map, H, includes a number of undesir-
able artifacts and requires careful processing before use in
our prediction algorithms. Utilizing standard thresholding
approaches such as CFAR [17] or DBSCAN [18] may be frus-
trated by conflicting requirements. On the one hand, Crowd
Shadowing Effect and Adjacent Human Merging necessi-
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Fig. 8: (a) Sample Human Trace Map of an N = 11 crowd.
(b) Corresponding Binary Trace Map as the output of
the GBM ensemble. See PDF for optimal viewing.

tate a high sensitivity to distinguish returns from nearly-
collocated or partially occluded people. On the other hand,
a single person spans multiple depth bins (see Fig. 4) and
the same sensitivity that distinguishes individuals may also
lead to counting the same person multiple times. Finally,
detecting agents at farther depths is challenging due to the
r~* SNR decay of monostatic sensing, which may require
depth-dependent thresholds. Thus, optimizing parameters
for robust detection with standard approaches is challenging.

To tackle these challenges, we introduce a machine learn-
ing approach that enables human range detection while also
denoising H. More specifically, we employ a Gradient Boost-
ing Machine (GBM) [25], which is a lightweight and scalable
supervised learning technique that can outperform even
Deep Neural Networks in certain tasks [7], and utilizing an
ensemble of multi-scale GBMs has been shown to further
improve generalization capacity in recent work [28]. We thus
propose an ensemble of GBMs trained on a small dataset of
concurrently collected video and radar data. Importantly, the
Human Trace Maps utilized for generating this dataset are
distinct from those on which our approach is validated. To
construct our dataset, we collect 15 minutes of concurrent
video and mmWave data for N = 1, 2, 5, 6 agents in a single
area, while the participants naturally traverse the area, in or-
der to capture the impact of Crowd Shadowing and Adjacent
Human Merging on the labeled trajectories. The video frame
at window w is then used to produce ground-truth binary
labels D[w, r] at each sensing depth r using the YOLO V5
network [50]. To achieve this, we use the predicted bounding
boxes to perform a perspective projection [47], and generate
a bird’s eye view of the scene. As the quality of this step
depends on the camera’s viewpoint, we match each video
depth estimate to the most prominent peak in H [w=wy, r],
within r,) = 1.5m of the estimated depth, as shown in Fig. 7.

We next detail the training of our GBM ensemble. Each
GBM in the ensemble is trained independently using a stan-
dard supervised learning approach to learn the mapping
from the Human Trace Map, H [w, r], at a single time step,
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Fig. 9: Sample experimental setup and testing areas: (Top) (a) Monostatic radar faces the crowd during FMCW
transmission, connected to a laptop via Ethernet (b) Front view of the radar. (Bottom) Open areas with foliage
(Areas 1 and 3), rooftop of a building with multipath scattering (Area 2) and stage of an indoor theater (Area 4).

w, to the binary label vector D[w, r]. To achieve this, the
j*" GBM in the ensemble is parameterized by a depth-scan
window of size R;, and we slide this window along the
r-axis of H[w,r] to obtain R;-wide windows denoted by
Aj[w,r] = H[w,r — [R;/2] : r + |R;/2]]. For each w, the
aim of the j* GBM is to classify a window Aj[w,r] as 1if
there exists a peak at its center. As motivated earlier, due
to high levels of signal attenuation at the mmWave band,
windows with peaks at far sensing depths can appear similar
to noisy windows at nearer depths, which may lead to higher
false negatives. Thus, it is important to incorporate the depth
information when inferring the presence or absence of a peak
at a given depth. To this end, we include the depth, r, along
with the R;-wide windows (of the Human Trace Map) in our
training data. That is, we train the j* h GBM on

Input: (r, Aj[w,r]), Label: D[w,r]

for 0 < w < N,,, |R;j/2] <r £ N, —|R;/2], where N, is
the total number of sensing depths (see Sec. 4). Assembling
our training data this way yields a dataset of 5 million radar
windows. Due to the low training time of 3 minutes, we tune
the GBM hyperparameters [3] using 5-fold CV across 100
iterations to obtain a final validation accuracy of 98.7%.

In our implementation, we use an ensemble of 4 GBMs
for multi-scale trajectory detection, with scan window sizes
of R; = 4pj meters, j = 1,2,3,4, in order to generate four
predicted occupancy labels D; from H. The choice of the
smallest window size is set to approximately twice the av-
erage diameter of a human torso, to avoid the detection of
extremely narrow yet prominent peaks. The four predictions
from the ensemble are then combined to create a quantized
Human Trace Map, H = (1/4) 231:1 D; whose entries be-
long to the set {0,0.25,0.5,0.75, 1}. We select a detection
threshold that is tied to an initial baseline estimate of the

s Sample Hp vis (Area 2, N=17) s Sample Hyp. vis (Area 2, N = 18)

Range (m)

(b)o0

50 100 150
Time (s)

Fig. 10: Binary Trace Maps for (a) dynamic crowd of
Fig. 11 (b) and (b) quasi-dynamic crowd of Fig. 11 (e).
See PDF for optimal viewing.

crowd size, to strike a balance between sensitivity and ro-
bustness. We observe from simulations that for rp.x = 15m,
the baseline solution is less likely to undercount for N < 10,
requiring lesser sensitivity. More specifically, we generate
the Binary Trace Map, Hj, yis, from H, by first selecting the
initial threshold as 0 and defining Hi, as the output after
thresholding. We evaluate no[w] = Z:i\]’ Hpo[w, r] and
raise the threshold to 0.5 if E,,{ny[w]} < 10, i.e., when the
crowd size is sufficiently low. We then re-threshold H based
on this heuristic to finally generate Hj, yis. Fig. 8 shows the
result of our strategy when applied to an unseen H.

In conclusion, we have designed a robust peak detection
pipeline that efficiently detects trajectories in 4 and obtains
consistent FHp,yis for further analyses.

8 EXPERIMENTAL VALIDATION

We next extensively validate our proposed system for crowd
occupancy estimation with several real-world experiments,
wherein we generate H,, ;s from real data using the adap-
tive depth-occupancy detection strategy of Sec. 7. We first
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Area 1[1[3]2f2[4Ja[1]1[3[1]1]1][1][3]1]3
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Fig. 11: (Top) Three examples of dynamic crowds, (Middle) Three examples of quasi-dynamic crowds, (Table) True
and estimated occupancy across several experiments. “D" indicates Dynamic, while “Q" indicates Quasi-dynamic.

introduce our experimental setup and testing areas, followed
by several empirical results (i.e., 22 experiments) to demon-
strate occupancy estimation and crowd analytics for crowds
of up to (and including) 21 people.®> More specifically, we
achieve a Mean Absolute Error (MAE) of 1.44 and 1.62 for
dynamic and quasi-dynamic crowds, respectively, using only
a single radar, and in environments that exhibit multipath
and foliage, using the proposed mathematical solution of
Sec. 5. Furthermore, we show the performance of our pro-
posed neural network on several spatially-patterned crowds.
Finally, we demonstrate how to infer features such as crowd
engagement level, crowd anomalies, and bottlenecks.

8.1 Experimental Setup

We validate our proposed system with a TT AWR2243BOOST
off-the-shelf mmWave radar board [48], as shown in Fig. 9 (b).
We set the base frequency, fy, as 76GHz and transmit FMCW
pulses with a bandwidth B = 5GHz. We configure the chirp
rate, f., at 400Hz and restrict our attention to estimating
the occupancy within a maximum sensing depth of r,, =
15m, by discarding any detection found beyond that range.
While the radar possesses multiple antennas, we exploit the
antenna diversity for denoising, thereby emulating a single
TRX configuration. The Channel State Information (CSI) off
of the radar is captured by a DCA1000EVM FPGA [49], which
is connected to an external laptop via Ethernet. We collect
radar data for a duration of up to 300s, but as we shall see in
Sec. 8.2, we converge much faster, e.g., within 90s (average
of 75.4s) when observing a dynamic crowd.

Experimental Areas: We conduct our experiments in
three outdoor environments and one indoor environment,

30ur Institutional Review Board (IRB) committee has reviewed and ap-
proved this research.

as shown in Fig. 9 (Bottom). Area 1 is a 12.8 m X 15 m open
area with seating spaces to one side and a trailer on the other.
Area 2 is a 15.2 m X 10.2 m open rooftop of a building that
exhibits multipath activity, Area 3 is a 15.1 m X 12 m open
area with considerable foliage in the vicinity, and Area 4
is a 10.8 m X 15 m stage of an indoor theater. We do not
explicitly define the trajectories of our participants during
data collection, ensuring natural crowd activity.

8.2 Experimental Results

We next discuss several empirical results that validate the
performance of our system across four experimental areas,
with crowds of up to (and including) 21 people. To generate
H, we use the 90'! percentile bandwidth for I;(-) in Eq. 4. In
the analytical approach of Eq. 9, the body radius, p, is conser-
vatively set to 0.25m, based on values of the biacromial width
reported in [34, 51]. Furthermore, to avoid numerical issues,
if P, or P, in Eq. 9 are 0 for any k, we set the probability to
€ = le—8 and then renormalize the distribution.

Occupancy Estimation of Dynamic Crowds Using
Proposed Mathematical Model: We conduct a total of 9
dynamic crowd experiments across all four areas, with crowd
sizes of up to (and including) 21 people. In these experiments,
participants behave as if they were at the concourse of a train
station or a busy city square, leading to a less cohesive crowd
pattern. As can be seen in Fig. 10 (a), the sample Binary Trace
Map, Hh,yis, shows participant trajectories that span a wide
range of sensing depths. Fig. 11 (Table) demonstrates the
efficacy of our proposed analytical optimization of Eq. 9,
which achieves an MAE of 1.44 across all crowd sizes, while
the baseline approach (see Section 4.2) does not scale beyond
N = 10, leading to an MAE of 4.4 at larger sizes due to
increased Crowd Shadowing and Adjacent Human Merging.
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Fig. 12: Convergence of estimated occupancy given by
Eq. 9 for (a) the dynamic crowd of Fig. 11 (b) and (b) the
quasi-dynamic crowd of Fig. 11 (e).

In indoor areas, secondary bounce off of static objects
makes counting large crowds difficult. However, simple cali-
bration of rpy,x may be sufficient to overcome this challenge.
In particular, for the indoor experiment in Area 4, we set
rmax = 10.8m to account for the distance between the radar
and the wall, and were able to accurately count 14 people.

Occupancy Estimation of Quasi-dynamic Crowds Us-
ing Proposed Mathematical Model: We conduct a total of
8 quasi-dynamic crowd experiments across Areas 1, 2, and 3,
with crowd sizes of up to (and including) 21 people. In these
experiments, the participants either visit a poster session or
mingle at a party, leading to crowds with lower mobility. As
can be seen in Fig. 10 (b), while Hj,is shows localization of
trajectories at distinct sensing depths, we do observe tran-
sitions between these levels as the participants move from
one stable depth to another. Fig. 11 (Table) once again shows
that our analytical optimization of Eq. 9 achieves an MAE of
1.62 across various crowd sizes, supporting the probabilistic
model of Sec. 5. Notably, the baseline approach achieves an
MAE of 5.3 for crowds of more than 10 people.

Convergence Analysis: Fig. 12 (a) demonstrates that our
analytical approach converges to the final estimate within
80s of data collection, and we obtain a mean convergence
time of 75.4s over all the dynamic crowd experiments. In
stark contrast, Fig. 12 (b) shows a relatively longer conver-
gence time of 160s for a quasi-dynamic crowd, due to fre-
quent stopping of the participants requiring more temporal
observations. We obtain a mean convergence time of 112.7s
over all the quasi-dynamic crowd experiments, thus demon-
strating the impact of lower crowd mobility.

Inferring Crowd Engagement Level: Dynamic and
quasi-dynamic crowds differ in the extent of a participant’s
level of engagement with the occupied space. For instance,
people exploring a landmark, or at a poster session of a
conference, remain stationary for long durations, leading to
low crowd mobility. Given that n[w] represents the num-
ber of visible people at time w, we propose to exploit the
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Fig. 13: Autocorrelation of n[w] can reveal level of en-
gagement of crowd with the space. (a) Quasi-dynamic
crowds take longer to decorrelate compared to dynamic
crowds (b) Variability of 7, across all experiments.

first zero-crossing point 7z of its ACF, given by K,,[7] =
E{n[w]n[w+1]}, to capture the level of crowd engagement.

We obtain an average 7 of 9.8s and 24.4s for all our dy-
namic and quasi-dynamic crowd experiments, respectively.
In other words, quasi-dynamic crowds take longer to decor-
relate on average, when compared to dynamic crowds, and
we motivate 7z as a measure of “engagement” in a crowd.
Fig. 13 (a) demonstrates a comparison of K,,,[7] evaluated
for a sample pair of dynamic and quasi-dynamic crowds. We
observe a clear separability in the crowd engagement level,
with 7z = 4.08s for the dynamic crowd and 77 = 46.08s for
the quasi-dynamic crowd. Fig. 13 (b) further demonstrates
the higher variability of 7 for quasi-dynamic crowds. Thus,
we see that quasi-dynamic crowds show a higher engage-
ment level, requiring longer observation times.

Occupancy Estimation in Spatially-patterned Crowds
Using Temporal Convolutional Network: We now demon-
strate the performance of our proposed Temporal Neural Net-
work in providing on-line occupancy estimates of spatially-
patterned crowds. Fig. 14 (a) shows participants following a
source-absorption-sink configuration enter one-by-one from
a narrow opening, sit at random locations, wait for 15s, and
exit through the same entry point. Fig. 14 (b) shows a sce-
nario where participants exit an auditorium after a lecture
and leave the radar’s field-of-view. We process Hj, vis for both
cases by applying our network over sliding frames of 30s to
estimate the occupancy. Fig. 14 (right) shows that our net-
work provides estimates that are comparable to vision-based
ground truth, thus enabling occupancy estimation of com-
plex crowd topologies. Notably, our network also accurately
estimates the sizes of dynamic and quasi-dynamic crowds,
with an MAE of 0.88 and 1.5, respectively.

Inferring Crowd Anomaly: While the examples of
Fig. 14 involve a gradual change in the crowd size, the iden-
tification of an abrupt shift in occupancy holds practical
significance in the context of panic event response. To this
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Fig. 15: Crowd anomaly detection: A dynamic crowd
rapidly evacuates upon receiving a signal. Neural net-
work is able to precisely detect this event.

end, we conduct an experiment where the participants of a
dynamic crowd receive an external signal to rapidly evacuate
the experimental area. We exploit the causal nature of our
network to scan over 5 second wide frames (without having
to re-train the network) as the event itself occurs within a
span of < 10 seconds. As can be seen from Fig. 15, the slope
of the occupancy curve is ~ 3 people/s, whereas it is < 1
person/s for the case of Fig. 14 (a). Thus, our neural network
is able to precisely detect a sudden shift in the occupancy,
identifying such crowd panic events in real-time.
Inferring Crowd Bottleneck: We now demonstrate our
neural network’s ability to infer the size of a bottleneck.
Figs. 16 (a) and (b) depict scenarios in which participants
enter an area through a variable-size opening and emulate a
dynamic crowd. We employ our neural network to process
FHo.vis by averaging over an expanding time frame. As seen in
Fig. 16, the occupancy estimates show distinct profiles while
converging to the true size of the subsequent dynamic crowd.
Specifically, the faster crowd flow due to the wider bottleneck

is clearly demonstrated by the larger slope of the estimated
occupancy, compared to the slope for the narrow bottleneck.
Thus, we indirectly establish the size of the bottleneck by
observing the slope of the occupancy estimates over time.

9 DISCUSSION & FUTURE WORK

Execution Time: Our proposed solution of Sec. 5 takes 1ms,
while our neural network takes 0.5s, to estimate occupancy
from 180s of FMCW data on a 13™ Gen Intel Core i7 CPU.

Impact of crowd density/experimental area: As N in-
creases, the difference between the distributions P, (K|N)
and P, (K|N + 1) shrinks, making it harder to correctly esti-
mate N. This saturation occurs more rapidly in smaller areas.
Further characterization is a direction for future work.

Evaluation in More Complex Environments: The quasi-
optical nature of mmWave [32] leads to pronounced Ghost
Multipath Reflections (GMRs) [20], i.e., secondary bounces
off of static objects in the vicinity of human motion [8, 9].
Some of our presented results already have nearby objects
that can cause such multipath (e.g., Areas 2 and 4 of Fig. 9).
If the secondary reflector is not a very strong reflector, then
its impact may not affect the performance. However, for
stronger secondary reflectors, the performance can degrade
if GMRs are not addressed. One way to address GMRs is
based on the geometry of the area. For instance, the GMRs
due to the wall in Area 4 of Fig. 9 lie beyond the sensing range
of the radar and were naturally filtered, thus not affecting our
performance. However, if a strong reflector is not beyond the
sensing range of the board, these GMRs can appear as highly-
correlated trajectories with human motion. Fig. 17 shows
such a case where a person is walking near a large lateral
wall. Addressing the impact of GMRs, using recent work
such as [33], is thus an interesting future work direction.
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Fig. 16: Crowd bottleneck inference: A dynamic crowd
enters through a narrow (a) and wide (b) opening. Our
approach detects bottlenecks based on flow rate.

Comparison with Existing Techniques: Our framework
enables counting large crowd sizes. As extensively discussed
in Sec. 2, most existing work counts based on tracking, which
limits their capability to small crowds. Further, they typi-
cally require more processing/information (e.g., AoA). Since
tracking individuals in a large crowd is an open problem, a
straightforward baseline is to count based on the number of
visible participants, as done in our paper (i.e., time-average of
number of visible participants in Table of Fig. 11), which did
much worse than the proposed method. Notably, counting
based on the maximum number of visible individuals does
even worse than the average. In our pre-processing mod-
ule, which takes raw radar returns and produces the Binary
Trace Maps, the use of Wrapped Phase Spectrum instead of
traditional range-Doppler analysis (Fig. 3) is also novel for
producing high-quality H, s, especially for denser crowds.

Challenges and Extensions: We identify three key direc-
tions for future work. First, NLOS scenarios add complexity
not considered in our framework, which can be addressed
by increasing TX power to overcome high penetration loss
or using environmental knowledge to geometrically resolve
multipath effects. Second, challenges in counting very large
crowds (e.g., over 20) could be mitigated by incorporating re-
liable angle of arrival (AoA) information, enabling counting
in specific angular sectors. Finally, our current approach does
not account for all crowd dynamics, such as transient scenar-
ios or spatial bias in crowd density, which could be addressed
by tailoring the analytical model to the scenario. This opens
an intriguing avenue for future research, potentially using
vision-based methods to automatically learn these priors and
improve occupancy estimation accuracy.

10 CONCLUSION

In this paper, we perform occupancy estimation over a di-
verse set of crowd behaviors using only a single mmWave
radar. We introduce a novel mathematical model for crowd
size inference using mmWave signals, addressing the prob-
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Fig. 17: GMR’s impact: Large wall causes Ghost Multi-
path Reflections that mirrors human trajectory.

lem of crowd shadowing by statistically quantifying its im-
pact. This forms the basis for a fast, simple predictor which
achieves a Mean Absolute Error of 1.44 and 1.62 for dynamic
and quasi-dynamic crowds, respectively, across 17 experi-
ments in 4 distinct locations. While excelling in dynamic
and quasi-dynamic scenarios, the applicability of our model
is further extended to spatially-patterned crowds through
a temporal convolutional neural network. Extensive real-
world validations show robust and accurate crowd counting,
and its application in crowd dynamics inference.
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