

Low-energy Injection and Nonthermal Particle Acceleration in Relativistic Magnetic Turbulence

2 DIVJYOT SINGH , ^{1, 2, 3, *} OMAR FRENCH , ^{1, 4, †} FAN GUO , ^{1, 5} AND XIAOCAN LI

3 ¹ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

4 ² Department of Engineering Sciences & Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA

5 ³ Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 1800 Sherman Ave, Evanston, IL 60201, USA

6 ⁴ Center for Integrated Plasma Studies, Department of Physics, 390 UCB, University of Colorado, Boulder, CO 80309, USA

7 ⁵ New Mexico Consortium, Los Alamos, NM 87544, USA

ABSTRACT

10 Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles
11 in high-energy astrophysics. The particle energization may be contributed by both magnetic recon-
12 nection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested
13 that during magnetic reconnection the parallel electric field dominates the particle acceleration up
14 to the lower bound of the power-law particle spectrum, but recent studies show that electric fields
15 perpendicular to the magnetic field can play an important, if not dominant role. In this study, we
16 carry out **two-dimensional** fully kinetic particle-in-cell simulations of magnetically dominated decaying
17 turbulence in a relativistic pair plasma. For a fixed magnetization parameter $\sigma_0 = 20$, we find that
18 the injection energy ε_{inj} converges with increasing domain size to $\varepsilon_{\text{inj}} \simeq 10 m_e c^2$. In contrast, the
19 power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We
20 trace a large number of particles and evaluate the contributions of the work done by the parallel (W_{\parallel})
21 and perpendicular (W_{\perp}) electric fields during both the injection phase and the post-injection phase.
22 We find that during the injection phase, the W_{\perp} contribution increases with domain size, suggesting
23 that it may eventually dominate injection for a sufficiently large domain. In contrast, **on average**,
24 both components contribute equally during the post-injection phase, insensitive to the domain size.
25 For high energy ($\varepsilon \gg \varepsilon_{\text{inj}}$) particles, W_{\perp} dominates the subsequent energization. These findings may
26 improve our understanding of nonthermal particles and their emissions in astrophysical plasmas.

1. INTRODUCTION

27 Magnetic turbulence in plasmas reveals itself through
28 fluctuating magnetic fields, bulk velocity, and density
29 over a broad range of spatial and temporal scales. It is
30 commonly found and studied in astrophysical environ-
31 ments such as pulsar wind nebulae (Porth et al. 2014;
32 Lyutikov et al. 2019; Cerutti & Giacinti 2020; Lu et al.
33 2021), stellar coronae and flares (Matthaeus et al. 1999;
34 Cranmer et al. 2007; Liu et al. 2006; Fu et al. 2020;
35 Pongkitwanichakul et al. 2021), black hole accretion
36 disks (Balbus & Hawley 1998; Brandenburg & Subra-
37 manian 2005; Sun & Bai 2021), radio lobes (Vogt &
38 Enßlin 2005; O’Sullivan et al. 2009), and jets from ac-
39 cative galactic nuclei (Marscher et al. 2008; Zhang et al.
40 2023). All of these systems exhibit high-energy emis-
41

42 sions that suggest nonthermal particle acceleration. In
43 turbulent plasmas, the kinetic energy from large-scale
44 motion cascades to smaller and smaller scales, which
45 is eventually dissipated through turbulence-particle in-
46 teractions. Understanding how particles in turbulent
47 plasmas get accelerated to high energy is an unsolved
48 problem in high-energy astrophysics.

49 Turbulence is often invoked as a particle accelera-
50 tion mechanism that leads to nonthermal particle spec-
51 tra. Recently, several studies have used kinetic particle-
52 in-cell (PIC) simulations to gain insight into nonther-
53 mal particle acceleration mechanisms in its relativistic
54 regime (Zhdankin et al. 2017; Zhdankin et al. 2018;
55 Comisso & Sironi 2018, 2019; Wong et al. 2020; Hankla
56 et al. 2021; Vega et al. 2022). The most commonly dis-
57 cussed acceleration mechanism in magnetic turbulence
58 is stochastic Fermi acceleration (Fermi 1949; Petrosian
59 2012; Lemoine & Malkov 2020), where particles can gain
60 energy by scattering back and forth in the turbulent

* dsingh@u.northwestern.edu

† National Science Foundation Graduate Research Fellow.

fluctuations. Magnetic reconnection (Biskamp 2000; Zweibel & Yamada 2009; Yamada et al. 2010; Ji et al. 2022; Yamada 2022), which occurs naturally as magnetic turbulence generates thin current sheets, may also support strong particle acceleration (Sironi & Spitkovsky 2014; Guo et al. 2014; Guo et al. 2015; Werner et al. 2016; Guo et al. 2020). More interestingly, magnetic reconnection can have an intriguing relation with turbulence and their interplay during particle acceleration is not completely clear (Loureiro & Boldyrev 2017; Dong et al. 2018, 2022; Comisso & Sironi 2019; Li et al. 2019; Zhang et al. 2021, 2024a; Guo et al. 2021). Nevertheless, these recent numerical simulations and theoretical models suggest that magnetic turbulence, especially in its relativistic limit ($\sigma \equiv B^2/4\pi h \gg 1$; i.e. the magnetic enthalpy $B^2/4\pi$ greatly exceeds the plasma enthalpy h), plays a major role in nonthermal particle acceleration.

In general, Fermi acceleration requires particle injection mechanism(s) to accelerate particles to energies that enable them to participate in a continual acceleration process. This process naturally defines an *injection energy*, beyond which injected particles enter the power-law range of the particle spectrum (French et al. 2023). The injection problem has recently been studied in the context of relativistic magnetic reconnection (Guo et al. 2019; Ball et al. 2019; Kilian et al. 2020; Sironi 2022; French et al. 2023; Guo et al. 2023). While it has been suggested that during magnetic reconnection the parallel electric field $\mathbf{E}_{\parallel} \equiv (\mathbf{E} \cdot \mathbf{B})\mathbf{B}/|\mathbf{B}|^2$ dominates the injection (Ball et al. 2019), studies have shown that perpendicular electric fields ($\mathbf{E}_{\perp} \equiv \mathbf{E} - \mathbf{E}_{\parallel}$) can play an important, if not dominant role (Kilian et al. 2020; French et al. 2023). Meanwhile, X-points with $|E| > |B|$ are shown to be negligible for particle injection and high-energy acceleration (Guo et al. 2019; Guo et al. 2023). Particle injection has also been investigated in relativistic magnetic turbulence (Comisso & Sironi 2019), where parallel electric fields in reconnection diffusion regions were concluded to dominate the injection process. Meanwhile, the subsequent particle energization in the power law was shown to be dominated by perpendicular electric fields (\mathbf{E}_{\perp}) from stochastic scattering off turbulent fluctuations. However, Comisso & Sironi (2019) focused only on a small population of high energy particles with final energies many times greater than the injection energy. Since the importance of \mathbf{E}_{\perp} has been demonstrated in magnetic reconnection, it is worthwhile to investigate whether \mathbf{E}_{\perp} is important in magnetic turbulence as well.

In a recent study, French et al. (2023) analyzed particle injection and further acceleration in relativistic magnetic reconnection with emphasis on the influence of

guide field and domain size. They measured the injection energy of each nonthermal particle spectrum using a spectral fitting procedure. They decompose the work done by parallel and perpendicular electric field components and quantify the contributions by different mechanisms, thereby illuminating which mechanism dominates the initial energization and the subsequent nonthermal acceleration. In this paper, we employ a similar methodology to study collisionless relativistic turbulence by carrying out two-dimensional (2D) PIC simulations and calculating the shares of work done by parallel (W_{\parallel}) and perpendicular (W_{\perp}) electric fields. We find that, similar to magnetic reconnection, the contribution of W_{\perp} to particle injection grows with increasing domain size until the largest simulation domain, and may all exceed 50% contribution for macroscale systems. However, in contrast to magnetic reconnection, the relative contributions of W_{\parallel} vs W_{\perp} to subsequent energization of particles of energies $\varepsilon > \varepsilon_{\text{inj}}$ is relatively insensitive to domain size.

The rest of the paper is organized as follows: Section 2 describes our simulation setup. In Section 3 we present the simulation results and analyses for understanding the particle injection and nonthermal particle acceleration. Section 4 discusses implications for observations and summarize the conclusions.

2. NUMERICAL SIMULATIONS

We use the Vectorized Particle-In-Cell (VPIC) simulation code to investigate nonthermal particle acceleration in relativistic magnetic turbulence. VPIC solves the relativistic Maxwell-Vlasov equations to self-consistently evolve kinetic plasmas and their interaction with electromagnetic fields (Bowers et al. 2008a,b, 2009). We simulate magnetically-dominated decaying turbulence in a two-dimensional (2D) square domain (x - y) of size L^2 . The initial setup is similar to earlier work (Comisso & Sironi 2019; Pongkitiwanichakul et al. 2021; Zhang et al. 2023), where an electron-positron pair plasma is initialized with a turbulent magnetic field $\mathbf{B} = B_0\hat{\mathbf{z}} + \delta\mathbf{B}$. B_0 is the magnitude of the uniform component and $\delta\mathbf{B}$ is the fluctuating component, which is given by

$$\delta\mathbf{B}(\mathbf{x}) = \sum_{\mathbf{k}} \delta B(\mathbf{k}) \hat{\xi}(\mathbf{k}) \exp[i(\mathbf{k} \cdot \mathbf{x} + \phi_{\mathbf{k}})] \quad (1)$$

Here, $\delta B(\mathbf{k})$ is the Fourier amplitude of the mode with wavevector \mathbf{k} , $\hat{\xi}(\mathbf{k}) = i\mathbf{k} \times \mathbf{B}_0/|\mathbf{k} \times \mathbf{B}_0|$ are the Alfvénic polarization unit vectors, and $\phi_{\mathbf{k}}$ expresses random phases. \mathbf{k} represents the wavevector such that $\mathbf{k} = (k_x, k_y)$, where $k_x = 2m\pi/L$ and $k_y = 2n\pi/L$ with $m \in \{-N, \dots, -1, 1, \dots, N\}$ and $n \in$

$\{-N, \dots, -1, 1, \dots, N\}$. N is the number of modes along each dimension, which is set to be 8 in this panel per. We also define wavenumber $k = |\mathbf{k}| = \sqrt{k_x^2 + k_y^2}$ as the amplitude of the wavevector. The boundary conditions are periodic for both particles and fields. The initial electric field \mathbf{E} is set to 0.

We initialize the plasma and magnetic fields with magnetization parameter $\sigma_0 \equiv B_0^2/(4\pi n_0 m_e c^2) = 170 \omega_{ce}^2/2\omega_{pe}^2 = 20$, where $\omega_{pe} \equiv \sqrt{4\pi n_e e^2/m_e}$ is the plasma electron frequency and $\omega_{ce} \equiv eB_0/m_e c$ is the electron cyclotron frequency defined using the uniform background magnetic field B_0 . Here, m_e is the electron mass, c is the speed of light, e is the electron charge, and $n_0 = n_p + n_e$ is the number density of the pair plasma in the simulation domain. The turbulence amplitude $\delta B_{rms0}/B_0 = 1$, where δB_{rms0} is the space-averaged root-mean-square value of the initial magnetic field fluctuations. The domain size L is normalized by the electron skin depth $d_e \equiv c/\omega_{pe}$ and each d_e is resolved to 4 grid cells (i.e., $d_e = 4\Delta x$). To allow most of the turbulent magnetic energy to be converted to the particles, the simulations are run for two light crossing times $2L/c$. To independently examine the influence of domain size on our results, we run an array of otherwise identical simulations with $L/d_e \in \{512, 1024, 1440, 2048, 2880, 4096\}$.

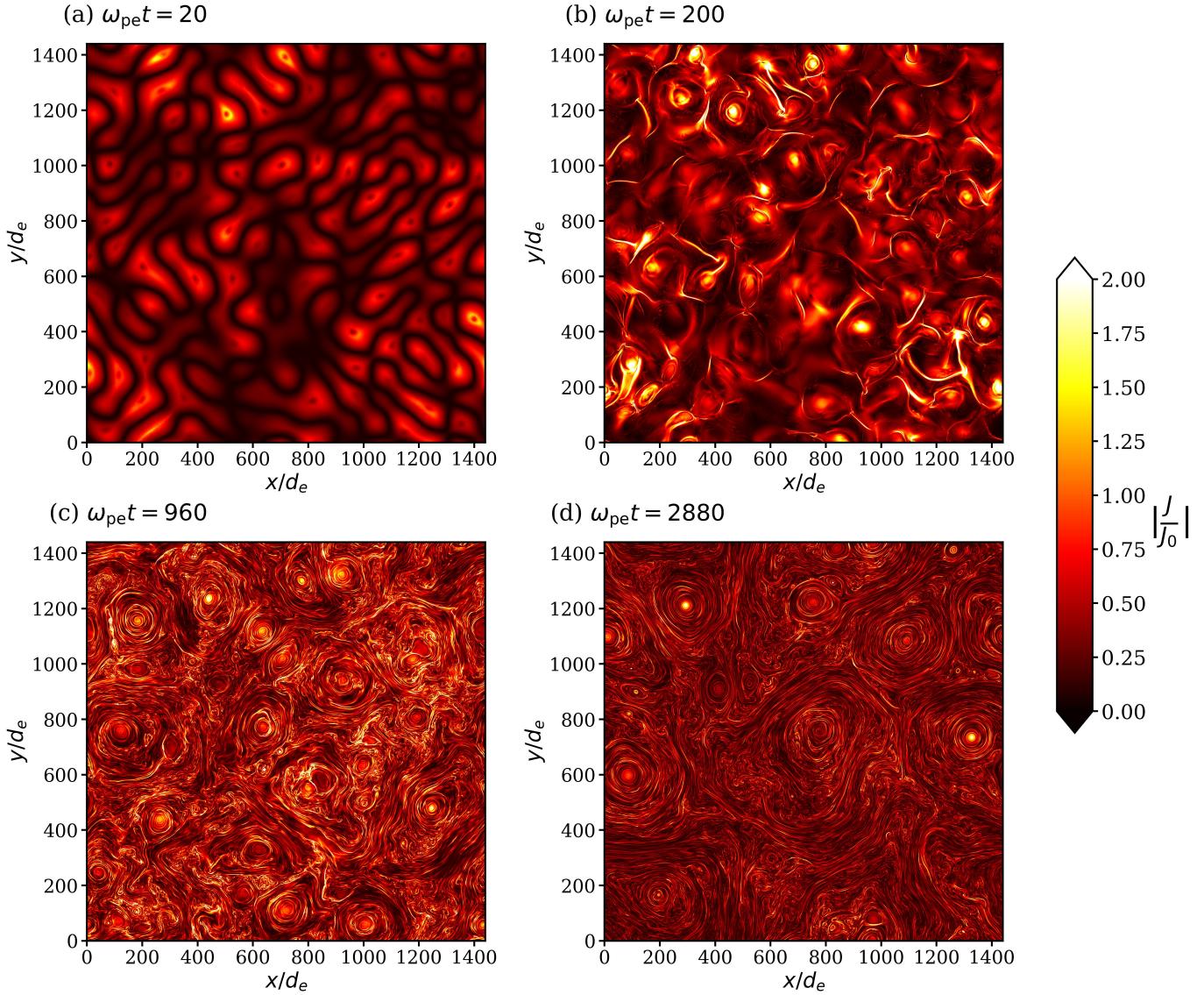
In all our simulations, we use 100 particles of each species per cell that are initialized with a Maxwellian distribution with dimensionless temperature $\theta_0 \equiv 190 k_B T_0/m_e c^2 = 0.3$. Here, k_B is the Boltzmann constant and T_0 is the initial plasma temperature. We also have done some test simulations with a larger number of particles per cell and/or higher spatial resolution and found that the results described below still hold.

For each simulation, we trace $\sim 200,000$ particles of each species and save the electric and magnetic fields \mathbf{E} and \mathbf{B} as well as velocities \mathbf{v} at their positions at every time step, to understand their injection and nonthermal particle acceleration (Li et al. 2023).

3. SIMULATION RESULTS

Figure 1 shows the evolution of the magnitude of electric current density $|J/J_0|$ in the simulation domain for the simulation with $L/d_e = 1440$ at times $\omega_{pe}t =$ (a) 20, (b) 200, (c) 960, and (d) 2880, normalized to $J_0 \equiv n_0 e c/2$. The initial perturbation seen in panel (a) generates fluctuations across different scales, after a brief initial phase. As turbulence develops, many

plasmoids¹ and current sheets are produced in 2D turbulence, where magnetic reconnection is likely to happen (panel b).


Figure 2 zooms in on a reconnection site occurring in the simulation at $\omega_{pe}t = 960$ and displays colormaps of (a-b) the absolute current density $|J/J_0|$, (c-d) the parallel electric field E_{\parallel} , and (e-f) the perpendicular electric field E_{\perp} . Here, E_{\parallel} and E_{\perp} are plotted in units of $B_0/\sqrt{2\sigma_0}$. From inspecting these figures we see that $E_{\perp} \gg E_{\parallel}$ on a global scale, and it becomes clear that E_{\parallel} is well-localized to reconnection X-points at plasmoid interfaces. However, E_{\perp} can still have a substantial strength at reconnection regions owing to the reconnection outflow immediately downstream of these X-points (French et al. 2023).

In Figure 3, we show how the fractions of energy stored in particles, magnetic fields, and electric fields evolve as the simulation proceeds. The total energy is well conserved. As the turbulence decays and reconnection events begin liberating magnetic field energy into nearby particles, the fraction of energy stored by particles grows from $\sim 2.5\%$ at $t = 0$ to $\sim 35\%$ by the final time. This corresponds to the decrease of magnetic field energy. Since the initial electric field is set to be zero and induced rapidly due to the changing magnetic field, its energy experience a strong, transit growth in the initial stage $\omega_{pe}t < 500$.

Figure 4 shows the power spectra of magnetic field fluctuations $\delta\mathbf{B}$ for various domain sizes at 2 light crossing time. The power $P(k)$ is normalized by the total power for that simulation at that time. In all the cases, we observe that a Kolmogorov-like $k^{-5/3}$ scaling quickly established and last until the end of the simulation. For larger domains, the fluctuations extends to larger spatial scales (lower k), and the small scale fluctuations have lower amplitude. Meanwhile, the amplitude of the fluctuation δB_{rms} decays from 1.0 to about 0.5 in the end of the simulation, quite consistently in all simulations.

We analyze the nonthermal spectra for all of our simulations, and quantify several spectral features: power-law index p that represents the slope in the nonthermal region of the spectrum, the injection energy ε_{inj} and cut-off energy ε_c that mark the lower and upper energy bounds of the nonthermal region respectively, and the power-law extent $R \equiv \varepsilon_c/\varepsilon_{inj}$. From these nonthermal particle spectra, we perform a fitting pro-

¹ Note that many of the large plasmoids are due to the initial evolution of the initial perturbation, whereas during the evolution of the simulation small-scale plasmoids are generated during the reconnection process, which indicates that the energy is transferred to smaller scales.

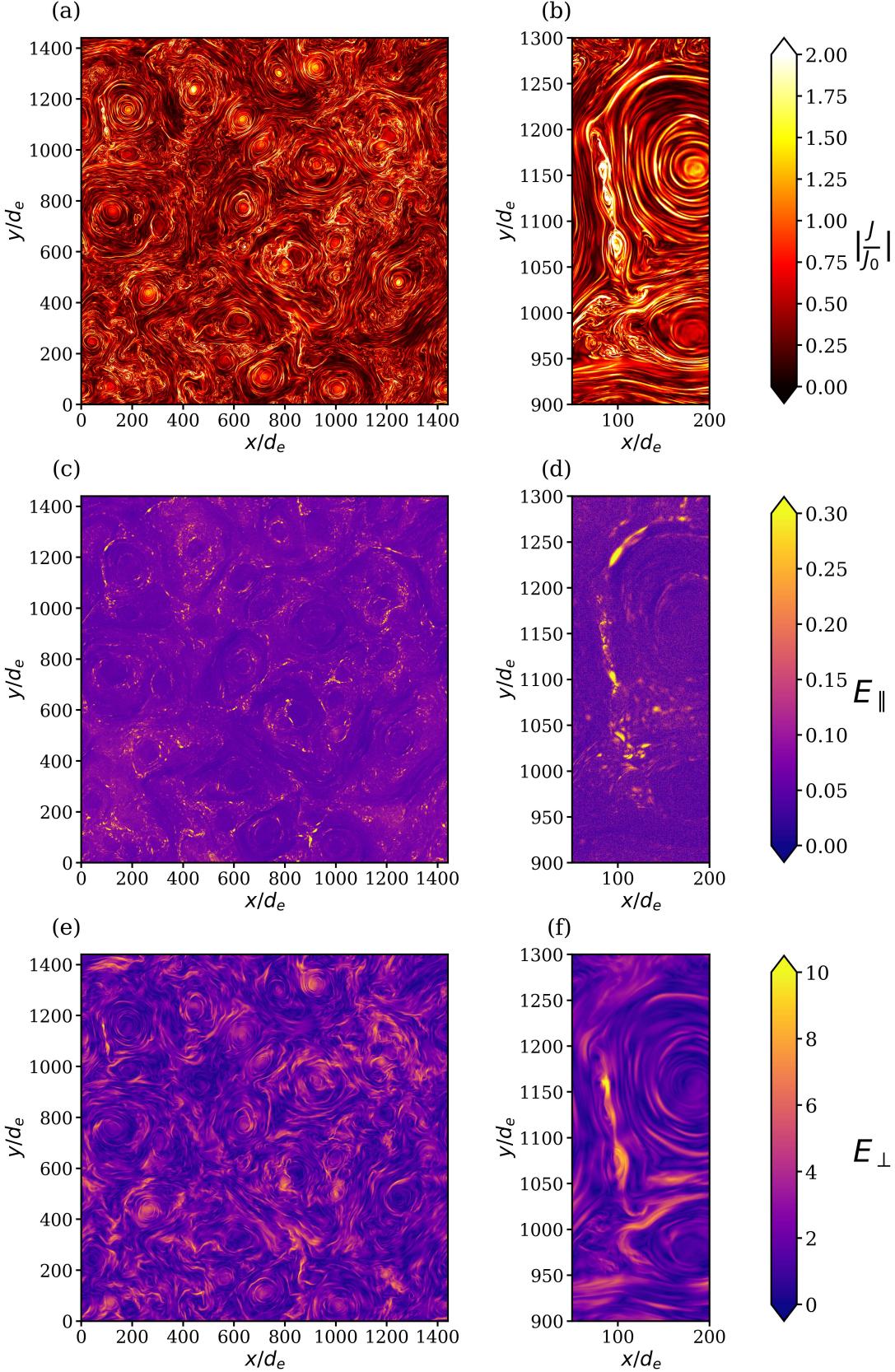
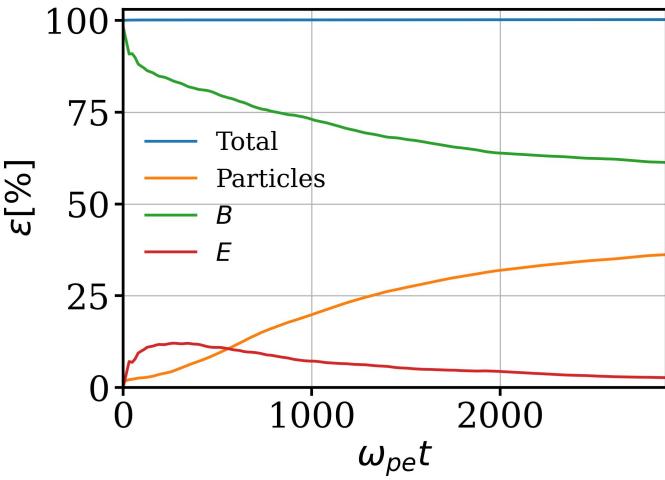


Figure 1. Current density magnitude $|J/J_0|$ of the case $L/d_e = 1440$ at times $\omega_{pe}t =$ (a) 20, (b) 200, (c) 960, and (d) 2880. An animation is also available which shows the evolution of current density from $\omega_{pe}t = 20$ to 2880 in steps of 20.


256 cedure at the end of the simulation to obtain the char-
 257 acteristic parameters (ε_{inj} , ε_c , p) of our particle spectra
 258 (Werner et al. 2017; French et al. 2023), from which
 259 we also calculate the power-law extent R . The proce-
 260 dure begins by smoothing a particle spectrum f via
 261 isotonic regression so that the local power-law index
 262 $p_\varepsilon \equiv -d \log f(\varepsilon) / d \log \varepsilon$ can be defined. Here, ε refers
 263 to the particle energy. Then all “valid” power-law seg-
 264 ments are obtained by brute force, where validity is de-
 265 termined by a predefined power-law tolerance and min-
 266 imum power-law extent, yielding a list of power-law in-
 267 dicies, injection energies, and cutoff energies (see French
 268 et al. (2023) for details). Finally, after removing dupli-
 269 cates (e.g., identical power-law segments resulting from
 270 different p -tolerances) and outliers (i.e., data points be-

271 yond ± 2 standard deviations from the mean) from each
 272 collection of values, each characteristic parameter (p ,
 273 ε_{inj} , ε_c) is defined by the mean of its collection and its
 274 error by one standard deviation of its collection.

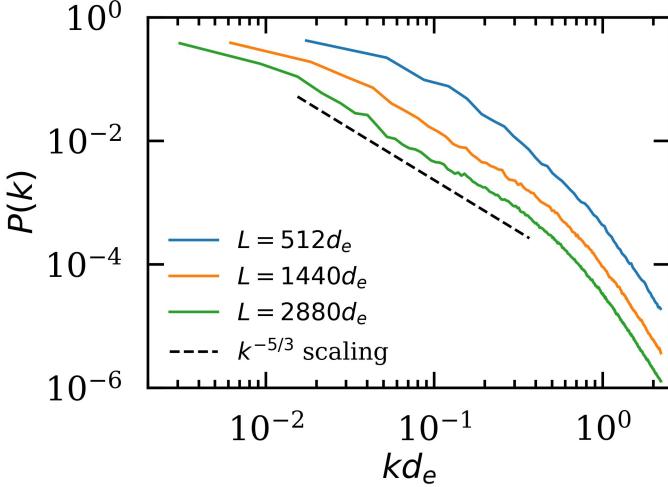

275 Figure 5(a) shows the time evolution of particle en-
 276 ergy spectra for the simulation with domain size $L/d_e =$
 277 1440. As the simulation starts, the turbulent magnetic
 278 fluctuations (Figure 1) lead to strong particle accelera-
 279 tion and the development of a clear nonthermal power-
 280 law spectrum within 1-2 light crossing times. The spec-
 281 tral index $p \sim 2.8$ and does not appreciably change in
 282 the late stage of the simulation. Figure 5(b) shows the
 283 nonthermal spectra obtained at final times for simula-
 284 tions with $L/d_e \in \{512, 1440, 4096\}$ (normalized to the
 285 total number of particles in each simulation). By per-

Figure 2. Color maps of (a, b) current density magnitude ($|J/J_0|$), (c, d) parallel electric field (E_{\parallel}), and (e, f) perpendicular electric fields (E_{\perp}) for $L/d_e = 1440$ when $\omega_{pe}t = 960$. The right column [panels (b, d, f)] are zoomed-in versions of the left column [panels (a, c, e)] that focus on a specific reconnection region around $x/d_e = 100$, $y/d_e = 1100$.

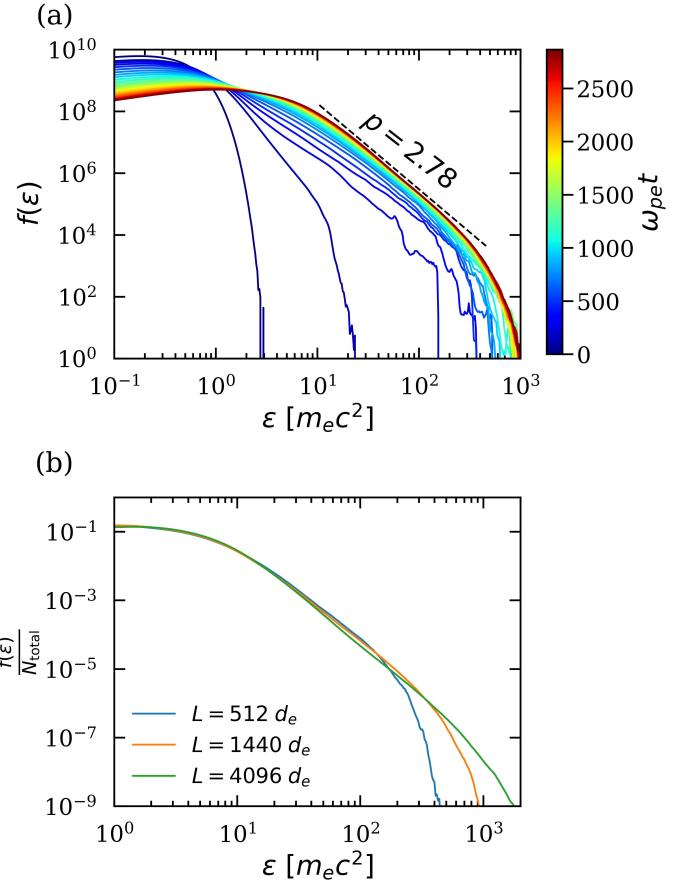

Figure 3. Evolution of the percentage of total energy stored in the particles, magnetic fields, and electric fields in the standard run with $L/d_e = 1440$.

Figure 4. Power spectra of magnetic field fluctuations normalized with the total fluctuating power as a function of wavenumber k for different domain sizes at $t \simeq 2L/c$.

286 forming the aforementioned fitting procedure on these
287 spectra, we find that the injection energy ε_{inj} is insensitive
288 to the domain size L , whereas the cutoff energy ε_c
289 steadily increases with L . The power-law index p steep-
290 ens slightly with increasing domain size (see discussions
291 below).

292 The spectral properties (ε_{inj} , ε_c , p) are plotted against
293 domain size L for all of our simulations in Figure 6.
294 We find that the simulation with $L/d_e = 512$ was too
295 small to yield precise measurements of these quantities
296 (yielding a relatively large uncertainty), and therefore
297 is not included. By inspecting Figure 5(b), we find the
298 injection energy ε_{inj} to be insensitive to domain size,
299 the power-law index p to be slightly larger for larger

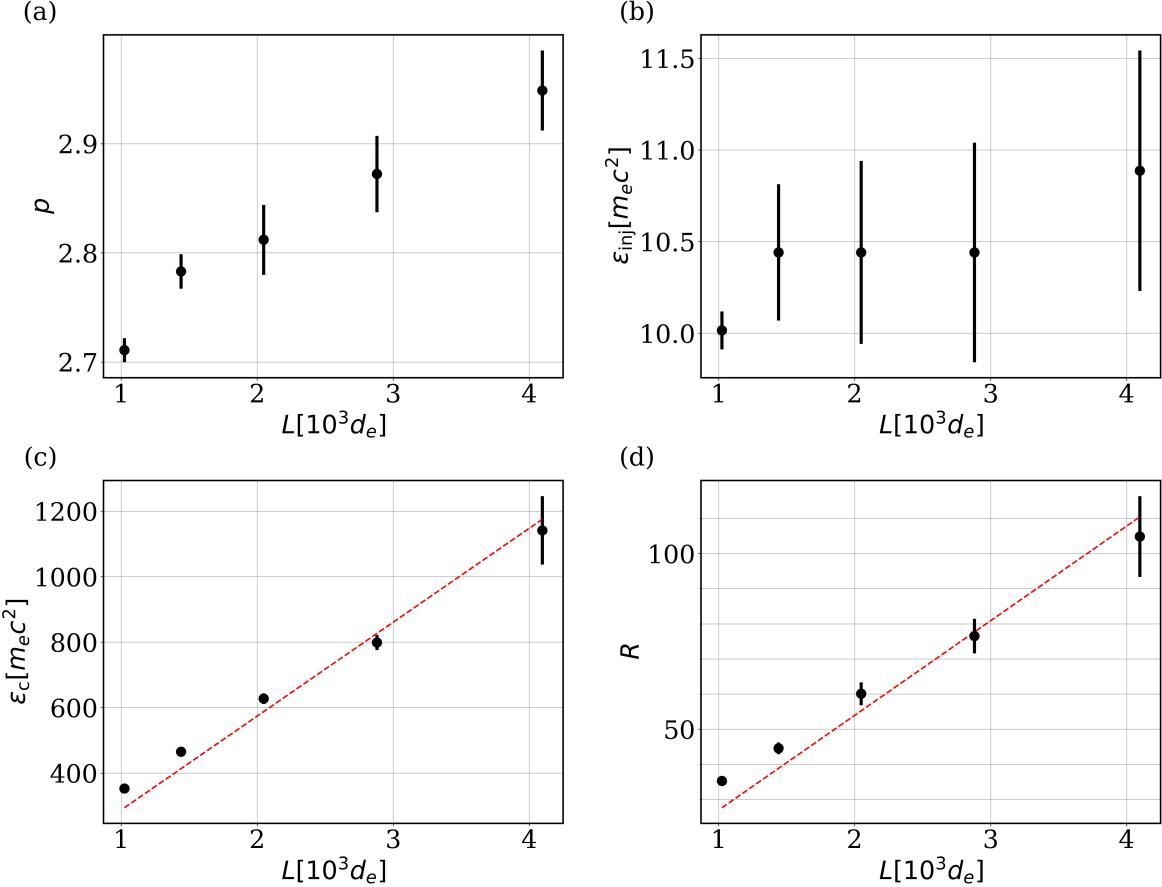
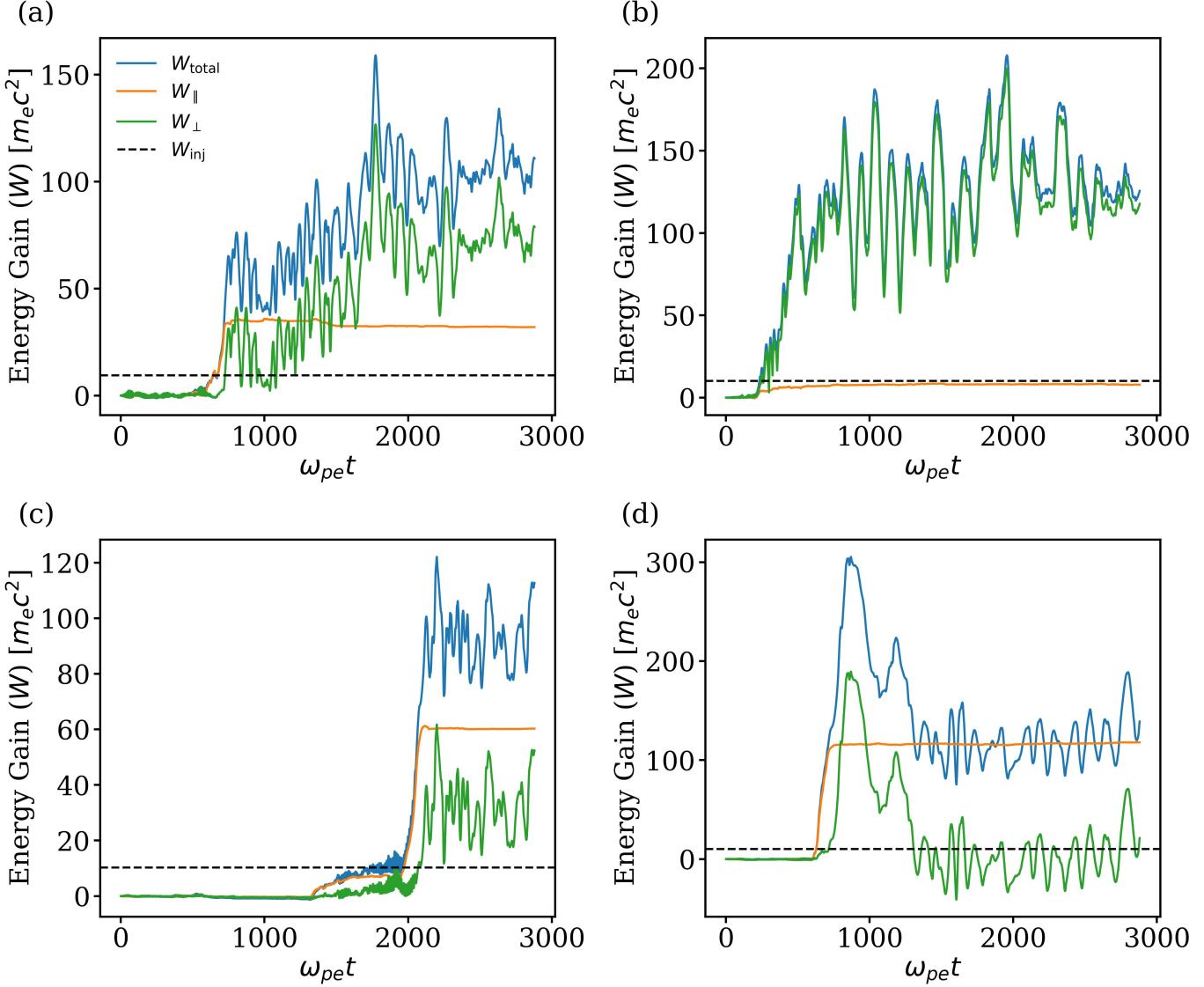


Figure 5. (a) Time evolution of the particle energy spectrum for $L/d_e = 1440$. The dashed line represents the slope of the fully evolved spectrum. (b) Normalized particle energy spectra at final times for different domain sizes.

300 domain sizes, and the cutoff energy ε_c to be larger for
301 larger domain sizes, in accordance with the trends in
302 Figure 6.

303 Figure 6(a) shows that p only weakly depends on L
304 and reaches $p \simeq 2.9$ for the largest $L/d_e = 4096$, similar
305 to Zhdankin et al. (2018). This weak dependence could
306 be due to the decay of turbulence, leading to weaker
307 acceleration in the late stage. The injection energy ε_{inj}
308 shown in Figure 6(b) follows a similar trend, converging
309 around $\varepsilon_{\text{inj}} \simeq 10.5 m_ec^2$ ($\simeq (\sigma_0/2)m_ec^2$) with an er-
310 ror $\pm 0.5 m_ec^2$. In contrast, ε_c increases linearly with L
311 (Figure 6(c)), suggesting that particles can be acceler-
312 ated to higher energies in simulations with larger domain
313 sizes. Hence the power-law extent R grows linearly with
314 increasing domain size (Figure 6(d)), owing to the in-
315 variance of ε_{inj} and linear rise of ε_c with increasing L .

316 To better understand particle acceleration mecha-
317 nisms, we analyze the energy gains of individual tracer
318 particles and break them down into the work done by
319 parallel (W_{\parallel}) and perpendicular (W_{\perp}) electric fields.

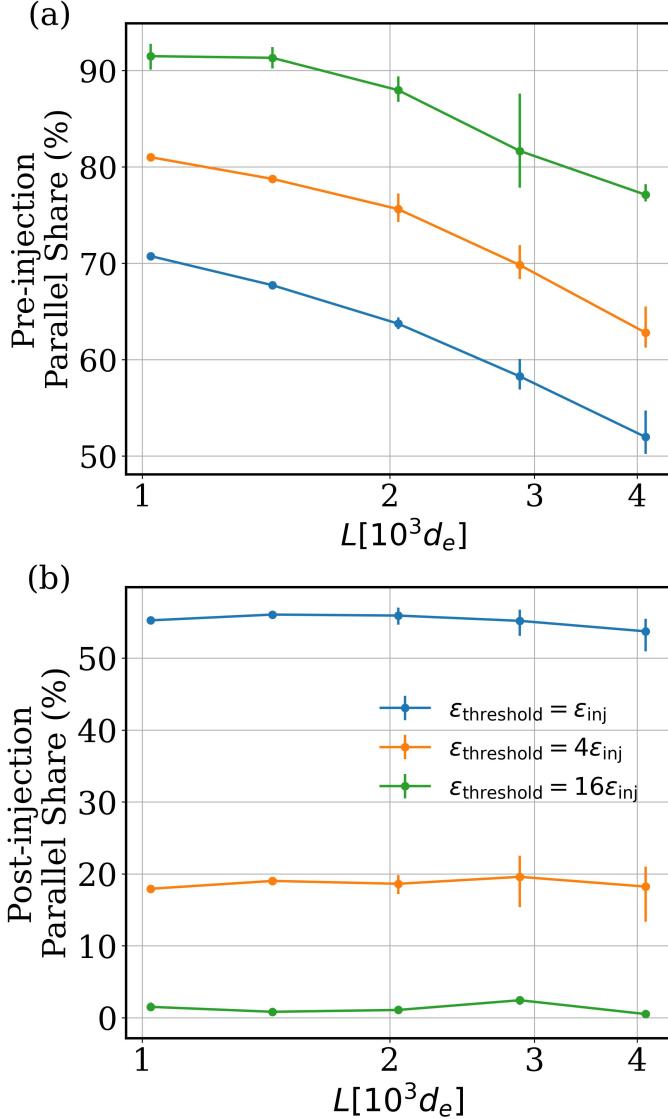

Figure 6. (a) Power law index p , (b) Injection energy $\epsilon_{\text{inj}} [m_e c^2]$, (c) cutoff energy $\epsilon_c [m_e c^2]$, and (d) power-law extent $R \equiv \epsilon_c / \epsilon_{\text{inj}}$ for different domain sizes. The red dashed lines show the linear fits (c) $\epsilon_c / (m_e c^2) = 286.92(L/10^3 d_e)$ and (d) $R = 26.96(L/10^3 d_e)$.

This is done by first using the tracked particle data to calculate the electric field parallel to the local magnetic field $\mathbf{E}_{\parallel} = (\mathbf{E} \cdot \mathbf{B}/B^2)\mathbf{B}$ and perpendicular to it $\mathbf{E}_{\perp} = \mathbf{E} - \mathbf{E}_{\parallel}$. Then we can then calculate the work done by each component, i.e. $W_{\parallel}(t) \equiv q \int_0^t \mathbf{v}(t') \cdot \mathbf{E}_{\parallel}(t') dt'$ and $W_{\perp}(t) \equiv q \int_0^t \mathbf{v}(t') \cdot \mathbf{E}_{\perp}(t') dt'$.

Four examples of such tracer particles are shown in Figure 7, with horizontal dashed lines indicating the injection threshold $W_{\text{inj}} \equiv \epsilon_{\text{inj}} - \epsilon_0$ for each particle, which represents the energy gain necessary for the particle to cross the injection energy ϵ_{inj} . Since the initial energy ϵ_0 of each particle is sub-relativistic (i.e., $\lesssim 1$), the injection thresholds W_{inj} hover just below the injection energy; in particular, $W_{\text{inj}} \simeq$ (a) $9.5 m_e c^2$, (b) $10.1 m_e c^2$, (c) $10.3 m_e c^2$ and (d) $10.1 m_e c^2$ whereas $\epsilon_{\text{inj}} \simeq 10.5$ for the case $L/d_e = 1440$.

In Figure 7(a), we see that for a high energy particle, the energy gain during injection is dominated by W_{\parallel} .

Later, W_{\parallel} flattens out, and W_{\perp} dominates the energy gain. The pattern is similar to examples shown in Comisso & Sironi (2019) and has been seen in reconnection simulations (Guo et al. 2015; Kilian et al. 2020; French et al. 2023). Hence, the subsequent acceleration for this particle to high energies is a result of the perpendicular electric fields via a Fermi-like mechanism. Figure 7(b) shows a different high energy particle for which W_{\parallel} flattens out at a much lower energy and W_{\perp} dominates both the injection and post-injection phases. We also find relatively rare cases with W_{\parallel} dominating the post-injection phase, shown in Figure 7(c) and (d). Since every particle experiences a different evolution, our analysis is performed statistically over an ensemble of tracer particles (about 10-20% of all the tracers) whose final energy exceeds ϵ_{inj} . Further, we monitor particles that cross certain energy thresholds $\epsilon_{\text{threshold}}$ separately. We break the energization process of each monitored particle into two phases: the energy gain


Figure 7. Contributions to total energy gain by W_{\parallel} and W_{\perp} for four tracer particles with final energies (a) $112 m_ec^2$, (b) $127 m_ec^2$, (c) $115 m_ec^2$, and (d) $139 m_ec^2$. The black dashed line represents the injection threshold $W_{\text{inj}} \equiv \varepsilon_{\text{inj}} - \varepsilon_0$ and has the values (a) $9.5 m_ec^2$, (b) $10.1 m_ec^2$, (c) $10.3 m_ec^2$ and (d) $10.1 m_ec^2$.

up to the injection energy ε_{inj} termed *pre-injection*, and subsequent energy gain termed *post-injection*. The “pre-injection parallel share” is defined as the fraction of monitored particles which have $W_{\parallel}(t_{\text{inj}}) > W_{\perp}(t_{\text{inj}})$ (where t_{inj} is the time step whereupon $\varepsilon = \varepsilon_{\text{inj}}$ is reached). Similarly, the “post-injection parallel share” is defined as the fraction of monitored particles whose post-injection parallel energization exceeds perpendicular energization (i.e., $W_{\parallel}(t_{\text{final}}) - W_{\parallel}(t_{\text{inj}}) > W_{\perp}(t_{\text{final}}) - W_{\perp}(t_{\text{inj}})$, where t_{final} is the final time step of the simulation). Figure 8 shows the parallel share for particles with final energy $\varepsilon_{\text{final}} \geq \varepsilon_{\text{threshold}} \in \{\varepsilon_{\text{inj}}, 4\varepsilon_{\text{inj}}, 16\varepsilon_{\text{inj}}\}$.

We ran all of our simulations twice using the random number generator seeds to be 1 and 2. The values shown

in Figure 8 are the average of these two simulations and the error bars end points are the actual values of the two simulations.

For $\varepsilon_{\text{threshold}} = \varepsilon_{\text{inj}}$ (blue line in Figure 8(a)), the pre-injection parallel share decreases with increasing domain size and drops to $\sim 50\%$ for the largest domain, implying that W_{\parallel} and W_{\perp} play a comparable role in the initial particle energization. However, this curve has not yet saturated with increasing domain size, suggesting that W_{\perp} could dominate the injection stage for larger systems. As $\varepsilon_{\text{threshold}}$ increases, the pre-injection parallel share also increases. For very high energy particles ($\varepsilon_{\text{threshold}} = 16\varepsilon_{\text{inj}}$), the energy gain for most ($> 90\%$) particles is dominated by W_{\parallel} for small L . For larger L ,

Figure 8. Variation of (a) pre-injection and (b) post-injection share of the work done by the parallel electric field with domain size before and after injection for different $\epsilon_{\text{threshold}}$. The plotted values are the weighted average of the simulations with seeds 1 and 2.

the parallel share declines to $\simeq 75\%$. This decreasing trend again indicates that the pre-injection parallel share fraction for high-energy particles could be even smaller for larger systems.

The post-injection shares are converged with system size L for each $\epsilon_{\text{threshold}}$. For $\epsilon_{\text{threshold}} = \epsilon_{\text{inj}}$, the parallel share is $\sim 50\%$, indicating that W_{\parallel} and W_{\perp} contribute comparably to particle energization in the post-injection phase. As $\epsilon_{\text{threshold}}$ increases, the post-injection parallel share decreases: When $\epsilon_{\text{threshold}} = 4\epsilon_{\text{inj}}$, W_{\parallel} contributes 20%, and for $\epsilon_{\text{threshold}} = 16\epsilon_{\text{inj}}$, the W_{\parallel} contribution is negligible. This indicates that

for very high energy particles, W_{\perp} dominates the post-injection energy gain for almost all particles.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have presented results from 2D PIC simulations with $\sigma_0 = 20$ and L/d_e varying from 512 to 4096 to investigate the mechanisms of nonthermal particle acceleration in turbulent plasma.

We find that for $\epsilon_{\text{threshold}} = 16\epsilon_{\text{inj}}$, the smaller domain sizes pre-injection parallel shares are higher than 90%, indicating that W_{\parallel} dominates the pre-injection phase for most particles. This is in alignment with the results of Comisso & Sironi (2019), where they claim that initial particle acceleration is caused by W_{\parallel} . In the post-injection case for the same $\epsilon_{\text{threshold}}$, we find that the parallel share is close to 0%, which indicates that almost all high energy particles get most of their energy from W_{\perp} . This finding also aligns with Comisso & Sironi (2019), which shows W_{\perp} dominates late-stage energization. However, it must be noted that the particles analyzed by Comisso & Sironi (2019) are all very high energy with $\epsilon_{\text{threshold}} = 18\sigma_0$. Even for high energy particles, we find that the pre-injection parallel share starts to decrease and drops to 75%, indicating W_{\parallel} only dominates the initial energization of three-quarters of the tracer particles. Given the decreasing trend continues at the largest box size (green line in Figure 8(a)), it is likely that the contribution by W_{\parallel} in the pre-injection phase might be even smaller for astrophysical scale systems. Furthermore, when we look at the full picture by analyzing all injected tracer particles ($\epsilon_{\text{threshold}} = \epsilon_{\text{inj}}$), we recognize that W_{\perp} plays a greater role in particle energization during the pre-injection phase, and W_{\parallel} also plays a more significant role in post-injection particle energization, especially particles with energy close to the lower bound of the power-law distribution.

We find strong agreement with Zhdankin et al. (2018) in how the power-law index p depends on domain size L (c.f., Figure 6). In particular, we find the power-law index to steadily steepen with increasing domain size, with $p \simeq 2.9$ when $L/d_e = 4096$. However it is still unclear at which domain size L/d_e and at what value p will converge. Simulations with continuous driving may help resolve this issue.

Our simulations use a constant magnetization $\sigma_0 = 20$ and turbulence amplitude $\delta B_{\text{rms}0}/B_0 = 1$ in an electron-positron plasma. If the mechanisms that underlie injection in relativistic turbulence are the same as those for relativistic magnetic reconnection (French et al. 2023; Vega et al. 2024), then the share of work done by E_{\parallel} (E_{\perp}) could increase with magnetization (c.f., Fig. 29 of Zhdankin et al. (2020)), but decrease with the turbu-

448 lence amplitude. While electrons and positrons undergo
 449 identical injection processes, protons may undergo sig-
 450 nificantly different processes and requires a future study.
 451 Recent studies show that proton injection and accelera-
 452 tion in turbulence and magnetic reconnection are domi-
 453 nated by perpendicular electric field (Comisso & Sironi
 454 2022; Zhang et al. 2024b). Further studies are needed
 455 to resolve these important issues.

456 We acknowledge support through [NSF Award 2308091](#),
 457 Los Alamos National Laboratory LDRD program, and
 458 DOE Office of Science. O.F. acknowledges support by
 459 the National Science Foundation Graduate Research Fel-
 460 lowship under Grant No. DGE 2040434.

REFERENCES

461 Balbus, S. A., & Hawley, J. F. 1998, *Reviews of Modern*
 462 *Physics*, 70, 1, doi: [10.1103/RevModPhys.70.1](https://doi.org/10.1103/RevModPhys.70.1)

463 Ball, D., Sironi, L., & Öznel, F. 2019, *ApJ*, 884, 57,
 464 doi: [10.3847/1538-4357/ab3f2e](https://doi.org/10.3847/1538-4357/ab3f2e)

465 Biskamp, D. 2000, *Magnetic Reconnection in Plasmas*,
 466 Cambridge Monographs on Plasma Physics (Cambridge
 467 University Press), doi: [10.1017/CBO9780511599958](https://doi.org/10.1017/CBO9780511599958)

468 Bowers, K. J., Albright, B. J., Bergen, B., et al. 2008a, in
 469 *Proceedings of the 2008 ACM/IEEE Conference on*
 470 *Supercomputing, SC '08* (IEEE Press),
 471 doi: [10.5555/1413370.1413435](https://doi.org/10.5555/1413370.1413435)

472 Bowers, K. J., Albright, B. J., Yin, L., Bergen, B., & Kwan,
 473 T. J. T. 2008b, *Physics of Plasmas*, 15, 055703,
 474 doi: [10.1063/1.2840133](https://doi.org/10.1063/1.2840133)

475 Bowers, K. J., Albright, B. J., Yin, L., et al. 2009, in
 476 *Journal of Physics Conference Series*, Vol. 180, *Journal of*
 477 *Physics Conference Series*, 012055,
 478 doi: [10.1088/1742-6596/180/1/012055](https://doi.org/10.1088/1742-6596/180/1/012055)

479 Brandenburg, A., & Subramanian, K. 2005, *PhR*, 417, 1,
 480 doi: [10.1016/j.physrep.2005.06.005](https://doi.org/10.1016/j.physrep.2005.06.005)

481 Cerutti, B., & Giacinti, G. 2020, *A&A*, 642, A123,
 482 doi: [10.1051/0004-6361/202038883](https://doi.org/10.1051/0004-6361/202038883)

483 Comisso, L., & Sironi, L. 2018, *PhRvL*, 121, 255101,
 484 doi: [10.1103/PhysRevLett.121.255101](https://doi.org/10.1103/PhysRevLett.121.255101)

485 —. 2019, *ApJ*, 886, 122, doi: [10.3847/1538-4357/ab4c33](https://doi.org/10.3847/1538-4357/ab4c33)

486 —. 2022, *ApJL*, 936, L27, doi: [10.3847/2041-8213/ac8422](https://doi.org/10.3847/2041-8213/ac8422)

487 Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J.
 488 2007, *ApJS*, 171, 520, doi: [10.1086/518001](https://doi.org/10.1086/518001)

489 Dong, C., Wang, L., Huang, Y.-M., Comisso, L., &
 490 Bhattacharjee, A. 2018, *PhRvL*, 121, 165101,
 491 doi: [10.1103/PhysRevLett.121.165101](https://doi.org/10.1103/PhysRevLett.121.165101)

492 Dong, C., Wang, L., Huang, Y.-M., et al. 2022, *Science*
 493 *Advances*, 8, eabn7627, doi: [10.1126/sciadv.abn7627](https://doi.org/10.1126/sciadv.abn7627)

494 Fermi, E. 1949, *Phys. Rev.*, 75, 1169,
 495 doi: [10.1103/PhysRev.75.1169](https://doi.org/10.1103/PhysRev.75.1169)

496 French, O., Guo, F., Zhang, Q., & Uzdensky, D. A. 2023,
 497 *ApJ*, 948, 19, doi: [10.3847/1538-4357/acb7dd](https://doi.org/10.3847/1538-4357/acb7dd)

498 Fu, X., Guo, F., Li, H., & Li, X. 2020, *ApJ*, 890, 161,
 499 doi: [10.3847/1538-4357/ab6d68](https://doi.org/10.3847/1538-4357/ab6d68)

500 Guo, F., Li, H., Daughton, W., & Liu, Y.-H. 2014, *Physical*
 501 *Review Letters*, 113, doi: [10.1103/physrevlett.113.155005](https://doi.org/10.1103/physrevlett.113.155005)

502 Guo, F., Li, X., Daughton, W., et al. 2019, *ApJ*, 879, 5,
 503 doi: [10.3847/2041-8213/ab2a15](https://doi.org/10.3847/2041-8213/ab2a15)

504 Guo, F., Li, X., Daughton, W., et al. 2021, *ApJ*, 919, 111,
 505 doi: [10.3847/1538-4357/ac0918](https://doi.org/10.3847/1538-4357/ac0918)

506 Guo, F., Liu, Y.-H., Daughton, W., & Li, H. 2015, *ApJ*,
 507 806, 167, doi: [10.1088/0004-637X/806/2/167](https://doi.org/10.1088/0004-637X/806/2/167)

508 Guo, F., Liu, Y.-H., Li, X., et al. 2020, *Physics of Plasmas*,
 509 27, 080501, doi: [10.1063/5.0012094](https://doi.org/10.1063/5.0012094)

510 Guo, F., Li, X., French, O., et al. 2023, *PhRvL*, 130,
 511 189501, doi: [10.1103/PhysRevLett.130.189501](https://doi.org/10.1103/PhysRevLett.130.189501)

512 Hankla, A. M., Zhdankin, V., Werner, G. R., Uzdensky,
 513 D. A., & Begelman, M. C. 2021, *Monthly Notices of the*
 514 *Royal Astronomical Society*, 509, 3826,
 515 doi: [10.1093/mnras/stab3209](https://doi.org/10.1093/mnras/stab3209)

516 Ji, H., Daughton, W., Jara-Almonte, J., et al. 2022, *Nat*
 517 *Rev Phys*, doi: [10.1038/s42254-021-00419-x](https://doi.org/10.1038/s42254-021-00419-x)

518 Kilian, P., Li, X., Guo, F., & Zhang, Q. 2020, *ApJ*, 899, 15,
 519 doi: [10.3847/1538-4357/aba1e9](https://doi.org/10.3847/1538-4357/aba1e9)

520 Lemoine, M., & Malkov, M. A. 2020, *MNRAS*, 499, 4972,
 521 doi: [10.1093/mnras/staa3131](https://doi.org/10.1093/mnras/staa3131)

522 Li, X., Guo, F., Li, H., Stanier, A., & Kilian, P. 2019, *ApJ*,
 523 884, 118, doi: [10.3847/1538-4357/ab4268](https://doi.org/10.3847/1538-4357/ab4268)

524 Li, X., Guo, F., Liu, Y.-H., & Li, H. 2023, *ApJL*, 954, L37,
 525 doi: [10.3847/2041-8213/acf135](https://doi.org/10.3847/2041-8213/acf135)

526 Liu, S., Petrosian, V., & Mason, G. M. 2006, *ApJ*, 636, 462,
 527 doi: [10.1086/497883](https://doi.org/10.1086/497883)

528 Loureiro, N. F., & Boldyrev, S. 2017, *PhRvL*, 118, 245101,
 529 doi: [10.1103/PhysRevLett.118.245101](https://doi.org/10.1103/PhysRevLett.118.245101)

530 Lu, Y., Guo, F., Kilian, P., et al. 2021, *ApJ*, 908, 147,
 531 doi: [10.3847/1538-4357/abd406](https://doi.org/10.3847/1538-4357/abd406)

532 Lyutikov, M., Temim, T., Komissarov, S., et al. 2019,
 533 *MNRAS*, 489, 2403, doi: [10.1093/mnras/stz2023](https://doi.org/10.1093/mnras/stz2023)

534 Marscher, A. P., Jorstad, S. G., D'Arcangelo, F. D., et al.
 535 2008, *Nature*, 452, 966, doi: [10.1038/nature06895](https://doi.org/10.1038/nature06895)

536 Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J.,
 537 & Dmitruk, P. 1999, *ApJL*, 523, L93, doi: [10.1086/312259](https://doi.org/10.1086/312259)

538 O'Sullivan, S., Reville, B., & Taylor, A. M. 2009, MNRAS, 539 400, 248, doi: [10.1111/j.1365-2966.2009.15442.x](https://doi.org/10.1111/j.1365-2966.2009.15442.x)

540 Petrosian, V. 2012, SSRv, 173, 535, doi: [10.1007/s11214-012-9900-6](https://doi.org/10.1007/s11214-012-9900-6)

542 Pongkitwanichakul, P., Ruffolo, D., Guo, F., et al. 2021, 543 ApJ, 923, 182, doi: [10.3847/1538-4357/ac2f45](https://doi.org/10.3847/1538-4357/ac2f45)

544 Porth, O., Komissarov, S. S., & Keppens, R. 2014, 545 MNRAS, 438, 278, doi: [10.1093/mnras/stt2176](https://doi.org/10.1093/mnras/stt2176)

546 Sironi, L. 2022, Physical Review Letters, 128, 547 doi: [10.1103/physrevlett.128.145102](https://doi.org/10.1103/physrevlett.128.145102)

548 Sironi, L., & Spitkovsky, A. 2014, ApJL, 783, L21, 549 doi: [10.1088/2041-8205/783/1/L21](https://doi.org/10.1088/2041-8205/783/1/L21)

550 Sun, X., & Bai, X.-N. 2021, MNRAS, 506, 1128, 551 doi: [10.1093/mnras/stab1643](https://doi.org/10.1093/mnras/stab1643)

552 Vega, C., Boldyrev, S., & Roytershteyn, V. 2024, ApJ, 971, 553 106, doi: [10.3847/1538-4357/ad5f8f](https://doi.org/10.3847/1538-4357/ad5f8f)

554 Vega, C., Boldyrev, S., Roytershteyn, V., & Medvedev, M. 555 2022, The Astrophysical Journal Letters, 924, L19, 556 doi: [10.3847/2041-8213/ac441e](https://doi.org/10.3847/2041-8213/ac441e)

557 Vogt, C., & Enßlin, T. A. 2005, A&A, 434, 67, 558 doi: [10.1051/0004-6361:20041839](https://doi.org/10.1051/0004-6361:20041839)

559 Werner, G. R., Uzdensky, D. A., Begelman, M. C., Cerutti, 560 B., & Nalewajko, K. 2017, Monthly Notices of the Royal 561 Astronomical Society, 473, 4840, 562 doi: [10.1093/mnras/stx2530](https://doi.org/10.1093/mnras/stx2530)

563 Werner, G. R., Uzdensky, D. A., Cerutti, B., Nalewajko, 564 K., & Begelman, M. C. 2016, ApJL, 816, L8, 565 doi: [10.3847/2041-8205/816/1/L8](https://doi.org/10.3847/2041-8205/816/1/L8)

566 Wong, K., Zhdankin, V., Uzdensky, D. A., Werner, G. R., 567 & Begelman, M. C. 2020, The Astrophysical Journal, 568 893, L7, doi: [10.3847/2041-8213/ab8122](https://doi.org/10.3847/2041-8213/ab8122)

569 Yamada, M. 2022, Magnetic Reconnection: A Modern 570 Synthesis of Theory, Experiment, and Observations, 571 Princeton Series in Astrophysics (Princeton University 572 Press)

573 Yamada, M., Kulsrud, R., & Ji, H. 2010, Rev. Mod. Phys., 574 82, 603, doi: [10.1103/RevModPhys.82.603](https://doi.org/10.1103/RevModPhys.82.603)

575 Zhang, H., Marscher, A. P., Guo, F., et al. 2023, ApJ, 949, 576 71, doi: [10.3847/1538-4357/acc657](https://doi.org/10.3847/1538-4357/acc657)

577 Zhang, Q., Guo, F., Daughton, W., et al. 2024a, PhRvL, 578 132, 115201, doi: [10.1103/PhysRevLett.132.115201](https://doi.org/10.1103/PhysRevLett.132.115201)

579 Zhang, Q., Guo, F., Daughton, W., Li, H., & Li, X. 2021, 580 PhRvL, 127, 185101, 581 doi: [10.1103/PhysRevLett.127.185101](https://doi.org/10.1103/PhysRevLett.127.185101)

582 Zhang, Q., Guo, F., Daughton, W., Li, X., & Li, H. 2024b, 583 ApJ, 974, 47, doi: [10.3847/1538-4357/ad6561](https://doi.org/10.3847/1538-4357/ad6561)

584 Zhdankin, V., Uzdensky, D. A., Werner, G. R., & 585 Begelman, M. C. 2018, ApJL, 867, L18, 586 doi: [10.3847/2041-8213/aae88c](https://doi.org/10.3847/2041-8213/aae88c)

587 Zhdankin, V., Uzdensky, D. A., Werner, G. R., & 588 Begelman, M. C. 2020, Monthly Notices of the Royal 589 Astronomical Society, 493, 603, 590 doi: [10.1093/mnras/staa284](https://doi.org/10.1093/mnras/staa284)

591 Zhdankin, V., Werner, G. R., Uzdensky, D. A., & 592 Begelman, M. C. 2017, Physical Review Letters, 118, 593 doi: [10.1103/physrevlett.118.055103](https://doi.org/10.1103/physrevlett.118.055103)

594 Zweibel, E. G., & Yamada, M. 2009, Annu. Rev. Astron. 595 Astrophys., 47, 291, 596 doi: [10.1146/annurev-astro-082708-101726](https://doi.org/10.1146/annurev-astro-082708-101726)