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Abstract—Data-driven Artificial Intelligence (AI) approaches
have exhibited remarkable prowess across various cognitive tasks
using extensive training data. However, the reliance on large
datasets and neural networks presents challenges such as high-
power consumption and limited adaptability, particularly in
SWaP-constrained applications like planetary exploration. To
address these issues, we propose enhancing the autonomous capa-
bilities of intelligent robots by emulating the associative learning
observed in animals. Associative learning enables animals to
adapt to their environment by memorizing concurrent events.
By replicating this mechanism, neuromorphic robots can navigate
dynamic environments autonomously, learning from interactions
to optimize performance. This paper explores the emulation of
associative learning in rodents using neuromorphic robots within
open-field maze environments, leveraging insights from spatial
cells such as place and grid cells. By integrating these models,
we aim to enable online associative learning for spatial tasks in
real-time scenarios, bridging the gap between biological spatial
cognition and robotics for advancements in autonomous systems.

Index Terms—Neuromorphic Robotics, Grid Cells, Place Cells,
Associative Learning.

I. INTRODUCTION

Nowadays, data-driven Artificial Intelligence (AI) have
demonstrated remarkable capabilities across a spectrum of
cognitive tasks [1]. These capabilities are harnessed through
the training process with tremendous data. Throughout the
training process, the Artificial Neural Networks (ANNs) com-
pare their outcomes with the labeled truth in the datasets.
The discrepancies between the output and the truth are back-
propagated into the ANNs to minimize them using the loss
function, accomplished by adjusting weights through algo-
rithms. The larger datasets and the neural networks lead to a
higher accuracy [2] [3], thereby necessitating a demand for
excessive pursuit of the large scale of datasets and neural
networks [2], [3] However, the continual expansion of ANNs
and high dependence on labeled datasets pose several critical
challenges, including high power consumption, data scarcity,
and less flexibility in autonomous operating. These limitations
hinder ANNSs from being feasible for Size, Weight, and Power
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(SWaP) restrained applications [1] [2]. For instance, planetary
rovers need to possess high adjustability and autonomous
operating capabilities with minimal human intervention in
environments characterized by constrained energy sources and
communications [2].

To overcome these challenges, we enhance the autonomous
operating capabilities of intelligent robots by mimicking the
associative learning of animals using neuromorphic robot.
Associative learning is a pervasive self-learning mechanism
observed across diverse animal species. Associative learning
presents the ability to adapt to the environment by interacting
with their surroundings and memorizing concurrent events
[4]. A classic demonstration of associative learning is an
exploration of rodents in open-field maze. In the open-field
maze, the rodents are presented with distinct stimuli or cues.
These stimuli could be visual, sound, or a combination of
sensory inputs. During the training phase, the rats learn
to associate specific stimuli with favorable or unfavorable
outcomes. Through repeated exposures, the rodent gradually
discerns the predictive relationship between the presented
cues and the associated outcomes. Thus, associative learning
has the potential to empower robots with the ability to link
information and experiences. In dynamic environments, such
as on Mars, robots equipped with associative learning can ex-
plore unknown terrains and automatically adjust their behavior
accordingly. This synergy between associative learning and
adaptivity enables robots to navigate complex scenarios, learn
from interactions, and autonomously optimize their perfor-
mance. Several studies implemented associative learning [4]—
[7]. Nevertheless, these investigations are hindered by various
limitations, including small-scale neural networks, a reliance
on pure simulation rather than experimental approaches, the
absence of deployment on robots for real-world scenarios
testing, and so forth [7].

In this paper, we explore the emulation of associative learn-
ing in rats using neuromorphic robots within open-field maze
environments, leveraging insights from spatial cells, including
place and grid cell. Spatial cells are pivotal in associative
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learning. The plasticity of neural circuits, particularly in areas
like the hippocampus and prefrontal cortex, supports this
associative process by modifying synaptic connections based
on experiences. In biological systems, this cognitive map is
primarily attributed to specialized neurons known as grid and
place cells within the entorhinal cortex and hippocampus. Grid
cells offer a multi-scale periodic coordinate system, while
place cells activate at specific locations, forming a cognitive
map. This research replicates biological spatial cognition in
robots, enabling complex navigation. The findings promise
advancements in autonomous systems for search and rescue,
planetary exploration, and GPS-denied environments, signifi-
cantly enhancing robotics and Al capabilities.
The contributions of this paper are summarized as follows:
« Integrate place and grid cell models into a neuromorphic
robot to conduct online associative learning for spatial
tasks of rodents in real-time scenarios.
e Replicate associative learning in spatial memory of ro-
dents in open-field mazes in both simulation and experi-
mental scenarios.

II. COMPUTATIONAL REPRESENTATION OF SPATIAL
NAVIGATION

In our work, we construct grid cell and place cell models
that simulate spatial navigation and memory formation. Our
grid cells are defined with spatial and angular parameters using
vector notation, transforming positions from the physical en-
vironment to a cognitive map. The simulated grid-cell models
are based on interference patterns of three two-dimensional
sinusoidal gratings oriented 60° apart, consistent with previous
theoretical and computational studies [8].

Our model accurately simulates neural activity in a virtual
environment based on these calculated parameters. Place cells
are influenced by the regularized spatial metric provided by
grid cells and exhibit firing patterns associated with specific
physical locations. The activity of place cells is precisely
modeled as a thresholded sum of outputs from multiple grid
cells. This intricate interaction between grid and place cells
ensures spatial representation and navigation with utmost
precision.

In our computational framework, grid cells are defined using
vector notation:

Gj = [Sjvejvﬁjlvlg?]: j € Z+7 (1)

where s; is the spacing of the grid cell G;, 6; € [0,7/3] is
the orientation of the grid cell GG, each grid cell j has unique
spatial and angular parameters [9]. The phases ¥; = [19;,19?]
are set within the interval [0,27] [10] [11], ensuring robust
spatial representation.

The transformation from the place-cell frame (physical
environment) to the grid-cell frame (cognitive map) is modeled

by: )
= ()
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where the position in the place-cell frame is mapped to
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the grid-cell frame xg , adjusting for preferred orientations

and phase shifts.The netral activity for each position, indicated
by the firing rate, is calculated as follows [13]:

¢; = arctan </< <% — C)) .
5j

Here, d; represents the distance from the subject’s position
to the grid cell’s preferred location. The parameter s is an
intensity control factor, and ¢ adjusts the baseline firing rate.

When the animal moves to a new environment, external
cues stimulate new place cells, forming a new local place-cell
frame, denoted as C'5. The grid-cell frame adjusts accordingly,
adapting the firing field of the grid cell based on Cs. The initial
place-cell frame C is considered the global frame.

The position transformation is modeled by:

P1 __ P2
Pi - Rplpz ‘Pi + @,

3

“

where PP* represents the position in the initial place-cell
frame, PP is the corresponding position in the current place-
cell frame, and w is the translation vector between these two
frames. The rotation matrix R, p, facilitates the transforma-
tion, adjusting the orientation between the two frames based
on the rotation angle ¢.

The rotation matrix Rp, p, is described by the rotation angle
¢ as follows:

cos(¢) —sin(¢)]"
sin(¢)  cos(¢) ’

where the superscript 7" denotes the transpose of the matrix.
This transposition is necessary to convert the coordinate sys-
tem from the current place-cell frame to the initial frame,
aligning the orientation and allowing accurate spatial analysis.

To examine the grid cell’s firing activity, we simulated a
virtual animal path by randomly walking in different virtual
environments, including a circular environment with a radius
of 1.3m. The origin points of the world frame and the place-
cell frame were assumed to be identical at the center of the
round arena. This setup enabled us to observe and measure the
grid cell’s response under controlled yet dynamic conditions,
mimicking natural movement within a confined space.

The grid cell used to generate the firing field is represented
as:

Rpip. = (&)

G = [1.0,7/4,0.5,0], (6)

with hyperparameters ¢ and x modulating the firing activity.
Higher values of « intensify the activity around firing centers,
while higher ¢ values expand the firing fields, adapting the
model to different environmental scales.

Our simulation explores the influence of four primary pa-
rameters—scale, orientation, kappa, and zeta—on the emer-
gence and structure of grid cell firing fields. Adjustments in
these parameters result in more pronounced activity around
firing centers and expanded firing fields, depicting hexagonal
patterns characteristic of grid cells. Analyzing firing rates
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along the directions of the grid-cell frame’s basis vectors
further confirms the model’s precision.

Figure 1 demonstrates the flexibility of our model by
showing how varying x and ( affect firing activities. Each
subplot represents grid cell activity under different parameter
values, illustrating the range of firing patterns our model can
generate.

Experiments with multiple cells and varying parameters
such as spacing, orientation, and phases led to significant
changes in firing patterns, validating the model’s accuracy in
replicating grid cell characteristics. Increased spacing resulted
in larger bumps, indicating broader spatial coverage, while
adjustments in orientation and phase translated and rotated
the firing fields. These results substantiate the efficacy of our
model in simulating spatial representation and highlight its
potential as a powerful tool for advancing the study of spatial
cognition and navigation in neuroscience.

Place cells in the hippocampus are critical for spatial nav-
igation and memory formation. These neurons exhibit firing
patterns distinctly associated with specific physical locations
within an environment. A place cell fires most strongly when
the subject is at a particular location, known as the cell’s
“place field.” The firing intensity of these cells decreases as
the subject moves away from this central location. This unique
firing characteristic ensures that each place cell responds
optimally at different places, creating a spatial map within
the brain.

The activity of place cells is influenced by inputs from
grid cells, which provide a regularized spatial metric. The
interaction between place cells and grid cells can be modeled

as follows: N
Pc(t)=© (Z Gci(t)> ,
i=1

where Pc(t) represents the activity function of place cells at
time ¢, © is a step function, and Gc¢;(t) denotes the activity
of the i*" grid cell. This equation implies that the place cell
activity is a thresholded sum of the outputs from multiple grid
cells, each contributing to the overall spatial representation in
the hippocampus.

To navigate and map its environment effectively, the hip-
pocampal system utilizes visual landmarks as positional ref-
erences, which are integrated into the neural representation of
space through the following response function:

(di(t) — di (1))
LP;, = Z exp { 83
_(6:i(t) - 92’-"(15))2}
9%

In this model, d,(t) and 6,(t) represent the distance and
angle of the i*” landmark relative to the subject, respectively.
At the same time, 62 and 63 are variance terms that adjust
the sensitivity of the response to positional discrepancies. This
function ensures that the spatial memory is updated accurately
by adjusting for perceptual errors and discrepancies between
remembered and observed landmark positions.

)

®)
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The integration of vibrational cues into the firing mecha-
nisms of place cells, supported by the structured input from
grid cells, offers a robust framework for understanding spatial
cognition. By adapting the neural responses based on envi-
ronmental stimuli and correcting for navigational errors using
landmark recognition, this model underscores the dynamic
nature of spatial memory and its critical role in adaptive
behavior.

III. SIMULATION AND EXPERIMENTATION OF GRID CELLS
AND PLACE CELLS

For simulating the grid and place cell behaviors in the neu-
romorphic robot, we utilized the Gazebo simulation platform,
renowned for its fidelity and dynamic interaction capabilities.
Gazebo provides a detailed environment that accurately mod-
els various navigation tasks and sensory scenarios, making it
an indispensable tool for assessing our neuromorphic models.
The simulation environment is integrated with the robot’s
ROS framework, ensuring high precision in simulating sensor
inputs and movement responses that closely resemble real-
world conditions.

Alongside Gazebo, we employ the real-time visualization
tool Rviz to immediately analyze and adjust our grid and
place cell models within a controlled yet adaptable virtual
environment. In Gazebo, we created a circular environment to
simulate the robot’s Light Detection and Ranging (LiDAR)-
based navigation, mirroring the real-world scenario intended
for testing. Rviz complements this by providing detailed visual
representations of the robot’s sensory perceptions. The red
points indicate the LiDAR’s boundary detection, limited to
270 degrees. The green line traces the robot’s path, derived
from odometry data.

Figure 2 displays our comprehensive simulation setup,
showcasing the integration of Gazebo for environment mod-
eling and Rviz for dynamic data visualization, which together
form a robust platform for developing and testing advanced
navigational strategies based on neuromorphic grid and place
cell models.

A. Integration with Neuromorphic Robot

1) Sensor Configuration and Data Flow:
The neuromorphic robot has an advanced sensor array, includ-
ing EAI X2L LiDAR, an ORBBEC® DaBai Stereo Depth
Camera, and odometers. These instruments are pivotal for the
robot’s obstacle avoidance, path routing, and control abilities.
The Inertial Measurement Unit (IMU) detects vibrations and
contributes to adjusting navigation strategies under varying
physical conditions. We explain the integration process, detail-
ing how these sensory inputs are processed within the ROS
framework to influence the grid and place cell behaviors.

2) Path Planning and Obstacle Avoidance:
The neuromorphic robot is able to achieve enhanced path plan-
ning and navigation precision through the combined data from
LiDAR and IMU. The LiDAR provides detailed environmental
mapping and obstacle detection, while the IMU supplies move-
ment dynamics and orientation data. This integration refines
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Fig. 1. Simulation of grid cell firing patterns under varying parameters. Each subplot represents the grid cell activity under different scale, orientation, kappa,
and zeta values, illustrating the range of firing patterns that our model can generate.

LiDAR detected points
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Robot

/
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Gazebo world

Fig. 2. Simulated and real-time visuals of the neuromorphic robot’s path in
Gazebo (left) and Rviz (right). The red line in Rviz shows LiDAR-detected
boundaries with gaps indicating its 270-degree range. The green line traces
the robot’s path via odometry.

the robot’s real-time trajectory, enabling safe and efficient
navigation through complex environments, optimizing routes,
and maintaining stability, thereby demonstrating its practical
value in the field of robotics.
3) Vibration Analysis and Impact on Mobility:

The IMU’s crucial role extends beyond contributing to the
odometer system; it also enables the neuromorphic robot to
analyze vibrations that affect mobility and operational efficacy.
By detecting and interpreting various vibrations and their
sources, the IMU helps adjust the robot’s movement strategies,
ensuring optimal stability and adherence to planned paths,
even on uneven or dynamically changing surfaces. This analy-

302

sis is precious in environments where maintaining balance and
precise control over movement are challenging but necessary
for successful mission outcomes.

The IMU sensors capture tri-axial acceleration data, from
which the vibration is computed using the equation:

a=+22+y2+ (z—g)2 )

where g approximates the gravitational acceleration constant
at 9.81m/s2. This calculation provides a scalar magnitude of
the vibrational force exerted on the robot due to irregularities
in the surface texture and obstacles.

We visualized the data to elucidate the contrast between
normal surface vibrations and those induced by bumper inter-
actions, as shown in Figure 3. The plot distinctly marks higher
vibration, assumed to be when the robot contacts the bumpers,
thus indicating a deviation from the baseline vibration levels
associated with average terrain.

4) Vibration with Color Recognition: In Figure 4, the robot
encounters a scenario where a red wall is presented as a visual
cue and simulated ground vibrations. This test environment
assesses the robot’s capability to prioritize visual information
in decision-making processes, remarkably when vibrations
suggest an uneven area. The associative learning model adjusts
the weight of visual cues in the robot’s navigational method,
reflecting an increased reliance on visual information when
vibrations are detected.

Integrating visual and vibrational cues is crucial for devel-
oping more robust autonomous navigation systems that can
operate in complex, multi-sensory environments.
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Fig. 3. Acceleration collected by robot in 60000 seconds, high vibration
represents the robot hits the road bumpers.

Fig. 4. Simulation of the robot facing a red wall, integrating visual and
vibrational cues.

B. Field Testing in Real-World Scenarios

The real-world experiments were conducted in a controlled
arena to simulate features and obstacles. As depicted in Figure
5, the arena spans 2.6 meters in diameter, with the neuromor-
phic robot starting at the center each time. Road bumpers are
placed to test the robot’s navigation and sensory processing
capabilities in a complex setting. The layout includes various
navigational challenges and is annotated with dimensions
and key elements, such as the neuromorphic robot and road
bumpers, to provide a scale and context.

Our real-world experimentation involved evaluating the neu-
romorphic robot’s navigational method within an open field
maze with high walls detectable by the robot’s LiDAR system.
This setup provided a continuous boundary simulating the
operational environment that grid and place cells theorize to
navigate. The testing emphasized the robot’s ability to utilize
its onboard sensors for orientation and navigation in envi-
ronments that mimic real-world scenarios. We optimized the
robot’s power management systems and adapted operational
strategies to address challenges such as energy constraints and
data limitations encountered during these tests.

IV. RESULTS OF THE EXPERIMENTS

Our experiments were designed to validate computational
models by simulating the grid’s navigational firing patterns
and placing cells within a real robot operating in a controlled
circular arena. This setup allowed us to emulate the free
movement of a rat and observe the robot’s behavior in a
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Fig. 5. Top view of the experimental arena used for real-world testing of the
neuromorphic robot.

space where the biological grid cells are known to generate
hexagonal firing fields.

Using the robot’s navigation system, we set the primary grid
cell model parameters to:

™

G =[838, 1 0.5,1.2]. (10)
we modulated the firing rate’s range and intensity with ¢ = 0.3
and x = 5.0. Concurrently, place cell models were integrated
to process vibrational data, providing additional environmen-
tal context for spatial memory and navigation. The analysis
of vibration , particularly when encountering road bumpers,
further refined the place cell response, enhancing the robot’s
obstacle detection and navigation acumen.

The navigational paths and neural activity, depicted in
Figure 6, demonstrate the robot’s capability to mirror the
characteristic hexagonal pattern of biological grid cells and
validate the integration of place cell models informed by
vibrational cues. This dual modeling approach provides ro-
bust empirical support for the accuracy of our computational
navigation system.

To enhance the robot’s ability to navigate complex envi-
ronments safely, we incorporated a vibration detection mech-
anism that triggers adaptive responses when encountering
high vibration intensities. This functionality is crucial for
avoiding potentially uneven areas that could impair the robot’s
operational integrity or hinder its path.

During experiments, the robot was programmed to alter
its navigation path whenever the detected vibration exceeded
a threshold of 5. This threshold was determined based on
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Fig. 6. Visualization of the robot’s movement paths and the corresponding neural firing activities over increasing data points. The grid and place cell firing
activities provide insight into the robot’s spatial exploration and the computational model’s response.

efficiency in autonomous navigation systems.

Our approach to enhancing the robot’s navigational capa-
bilities involved developing an associative learning algorithm
that integrates visual and vibration sensory inputs. This method
allowed the robot to learn from environmental interactions by
associating specific colors with the vibration levels.

The algorithm enables the robot to recognize and react to
environmental cues that indicate potential hazards or areas of
4 interest. It associates visual stimuli, specifically color detec-
tion, with physical sensations such as vibrations.

During the initial phases of exploration, the robot employs
its camera to detect specific colors associated with different
: terrain textures or obstacles. Simultaneously, the vibration
sensors measure the intensity of ground vibrations, which often
correlate with different surface types such as road bumpers.

As the robot encounters higher vibration intensities exceed-
ing a predefined threshold, it is programmed to associate these
intense vibrations with the visual cues at those locations. Over
time, through repeated exposure and feedback, the robot’s

preliminary tests identifying vibration intensities typical of
risky areas, such as near road bumpers or uneven terrain.

Robot Trajectory with Vibration

Vibration

-4

Fig. 7. The trajectory shows the robot avoiding areas with vibration, marked

as "Road Bumpers”. The avoidance behavior is triggered when vibration is
detected, prompting the robot to reroute.

As depicted in Figure 7, the robot effectively avoids entering
the high-vibration zones. The plotted trajectory illustrates how
the robot approaches these zones but turns away upon reaching
the vibration threshold, thus avoiding the “Road Bumpers”
area. This behavior demonstrates the robot’s capability to
respond dynamically to sensory input and highlights the po-
tential for such mechanisms to enhance safety and operational
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system learns to predict potential obstacles or uneven terrain
based solely on visual information, even without high vibra-
tions.

The associative learning model effectively adjusts the
robot’s behavior over time. Initially, the robot may try to turn
around to avoid the uneven area by detecting the vibration.
After it learns to associate specific colors with these vibrations,
it begins to initiate avoidance upon recognizing them, an-
ticipating and avoiding potential hazards before encountering
them.
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The effectiveness of this associative learning is quantified in
Figure 8, which charts the increase in the weight assigned to
color cues over time. As the robot’s exposure to color-linked
vibration areas increased, so did its reliance on color cues to
inform its navigational decisions, demonstrating a successful
integration of sensory modalities to improve autonomous nav-
igation.

Change in Synaptic Weight of the Color Neuron to the Motion Neuron
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Fig. 8. The change of synaptic weight connecting the color neuron to the
motion neuron, indicating the robot’s increasing reliance on visual cues with
vibration cues.

Figure 8 illustrates the change in the synaptic weight from
the color neuron to the motion neuron over time. The train-
ing result demonstrates a consistent increase in the synaptic
weight, which can be explained using Oja’s rule. Oja’s rule
modifies the weight update process to stabilize Hebbian learn-
ing by introducing a normalization term. The weight change,
denoted as Awyj, is influenced by both the learning rate and
the interaction between the input and the output neurons.
Precisely, the weight change is calculated using the formula:

an

In this equation, the learning rate, represented by 7, de-
termines the speed at which learning occurs. The term y;x;
represents the classical Hebbian learning component, where
the weight increases whenever the input and output neurons
are simultaneously active. This is reflected in the graph by
the upward steps, indicating periods where the activity of the
color input and the motion neuron are correlated, leading to
an increase in synaptic weight.

After the training phase, we conducted tests to verify the
robot’s ability to avoid uneven area based solely on color
recognition without relying on vibration data. This test aimed
to evaluate the effectiveness of the associative learning model
in real-time navigation, particularly its ability to trigger avoid-
ance behaviors based on color cues. The trajectory (black line)
indicates that when the robot detects a significant amount of
red pixels from the colored wall, it triggers an avoidance,
demonstrating the learned behavior without needing vibration
cues.

As depicted in Figure 9, the robot successfully avoids enter-
ing areas designated by the colored wall. The plotted trajectory

Awi; =11 (yizj — yiwi;)
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Robot Trajectory after Training
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Fig. 9. Robot trajectory after associative learning

shows that upon detecting the specified color threshold indica-
tive of an obstacle, the robot initiates an avoidance, rerouting
its path away from the obstacle. This test demonstrates that the
robot can effectively use visual cues to navigate, highlighting
the success of integrating associative learning into its sensory
processing and decision-making framework.

This adaptive behavior is critical for autonomous navigation
in complex and dynamically changing environments, where
reliance on a single sensory input may not provide suffi-
cient information for safe navigation. By integrating multiple
sensory inputs and employing associative learning, the robot
enhances its ability to navigate safely and efficiently, reducing
the likelihood of collisions and improving its operational
effectiveness in varied terrain conditions.

The implementation of this associative learning approach
in the neuromorphic robot represents a significant advance-
ment in robotics. It offers a robust method for enhancing
autonomous navigation through learned environmental inter-
actions. Integrating grid and place cell models into the neuro-
morphic robot’s control systems has shown promising results
for using neuromorphic engineering to replicate mammalian
spatial mapping. This project tested the feasibility of these bio-
inspired models in a robotic setting, focusing on their practical
application.

Our experiments demonstrated that the robot’s navigation
patterns, driven by the grid and place cell models, are similar
to spatial cognition in animals. The grid cell model adapted
well to different environmental scales and configurations,
while the place cell model updated spatial memory effectively,
especially when informed by vibrational data about different
terrains.
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In the context of our research on neuromorphic robotics,
it is pivotal to understand how our methods and results align
with or diverge from other neuroscience and neuromorphic
engineering studies. Table I provides a comparative overview
of various studies focusing on neuronal tasks, learning meth-
ods, and validation techniques. Each study is identified by its
reference number, the neuronal simulation or experiment scale,
and the learning methods employed.

TABLE 1
COMPARISON OF SCALE AND ASSOCIATION CAPABILITY WITH OTHER
STATE-OF-THE-ART WORKS.

Ref  |Neuron Task Learning Methods Validation

[14] 6 N/A N/A Simulation

[15] 3 N/A N/A Simulation

[16] 5 N/A N/A Simulation

[17] 3 N/A N/A Simulation

[18] 3 N/A N/A Simulation

[19] 3 N/A N/A Simulation

[20] 20 N/A Pretraining Simulation
[21][22]| 1419 Fear conditioning No pretraining Experiment
This work| 10 |Spatial learning and memory|  Self-learning  |Simulation & Experiment

Despite our progress, challenges remain, such as the com-
putational demands of simulating complex neural mecha-
nisms and the need for enhancements to perform reliably in
unpredictable conditions. However, the potential benefits of
this research are significant. For example, improving com-
putational efficiency could allow real-time processing, which
is essential in dynamic environments. Further integration of
learning algorithms might enhance adaptability to environ-
mental changes. Developing multi-agent systems could lead
to better collaborative mapping and task execution. Adding
more types of sensory inputs might create a fuller perception
system. Enhancing robustness for navigation in challenging
terrains could prove invaluable in areas like disaster response
or planetary exploration.

V. CONCLUSION

This study has taken some steps in neuromorphic robotics
by incorporating grid and place cell models into the neuro-
morphic robot, improving its ability to navigate and under-
stand its environment, akin to biological systems. Through
extensive testing in simulated environments with associative
learning methods, we have shown that it is possible to mimic
mammalian spatial cognition with robotic systems. This work
extends the capabilities of autonomous robots and enhances
our knowledge of neural navigation and memory mechanisms.
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