
Chapter 15
Implementation of Associative Learning
Using Cognitive-Inspired Robotic System

Tianze Liu, Noah Zins, Yan Zhang , and Hongyu An

15.1 Introduction

Deep neural networks (DNNs) have revolutionized artificial intelligence (AI),
achieving remarkable success across various cognitive tasks through extensive
training on large datasets [1]. These networks refine their predictions by mini-
mizing errors via backpropagation, necessitating vast computational resources and
substantial power consumption [2–6]. However, this dependence on large datasets
and high power consumption presents significant challenges for autonomous oper-
ations, especially in environments with stringent Size, Weight, and Power (SWaP)
constraints, such as planetary robotics [1, 2]. Planetary rovers, for example, must
operate autonomously with limited energy and without human intervention [2].

To overcome these limitations, our research focuses on enhancing the
autonomous capabilities of intelligent robots by emulating the associative learning
processes observed in animals, mainly through the use of neuromorphic systems.
However, applying neuromorphic systems to robotics presents its own set of
challenges. These include the design of efficient learning algorithms, integrating
neuromorphic hardware with robotic systems, and adapting animal learning
behaviors to the robot’s environment. Inspired by the brain’s structure and
function, Neuromorphic systems offer a more energy-efficient approach to artificial
intelligence. Associative learning, a natural self-learning mechanism in animals,
enables them to adapt to their environment by forming connections between

T. Liu · N. Zins · H. An (�)
Department of Electrical and Computer Engineering, Michigan Technological University,
Houghton, MI, USA
e-mail: tianzel@mtu.edu; nwzins@mtu.edu; hongyua@mtu.edu

Y. Zhang (�)
Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
e-mail: yzhang49@mtu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Iranmanesh, H. Sayadi (eds.), AI-Enabled Electronic Circuit and System Design,
https://doi.org/10.1007/978-3-031-71436-8_15

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71436-8_15&domain=pdf
https://orcid.org/0000-0002-1742-8703
https://orcid.org/0000-0002-2350-9411
mailto:tianzel@mtu.edu
mailto:nwzins@mtu.edu
mailto:hongyua@mtu.edu
mailto:yzhang49@mtu.edu

538 T. Liu et al.

concurrent events. This capability can be adapted for robots, allowing them to link
information and experiences and adjust their behavior in dynamic environments
like Mars.

Our study is structured into two main parts. The first part explores the theoretical
aspects of associative learning, providing a comprehensive understanding of this
natural self-learning mechanism in animals. The second part applies these principles
to robotics, employing a large-scale associative learning system. This system, pow-
ered by Intel’s Loihi neuromorphic chip, offers a more energy-efficient approach
to artificial intelligence. It allows a mobile robot to learn associations between
light and vibration signals as conditional and unconditional stimuli, mimicking the
fear conditioning process observed in animals. We aim to demonstrate a significant
advancement in autonomous robotics by implementing this system in a real-world
scenario.

This research marks a significant milestone as the first real-world application
of a cognitive-inspired associative learning paradigm using a mobile robot. By
integrating the Loihi chip, we enhance signal processing speed and energy efficiency
and herald a new era for autonomous robotics. In our experiment, the robot
learns to associate light stimuli with vibration stimuli, mimicking fear conditioning
processes observed in animals. The synaptic weights are adjusted using Hebbian
learning principles, enabling the robot to adapt its responses based on the learned
associations.

The key contributions of this chapter include the following:

1. Successfully demonstrate a novel associative learning paradigm in a real-world
setting with a mobile robot.

2. Implementing a neural assembly designed for decision-making and applying it
to the associative learning process within the robot.

Our findings demonstrate the vast potential of neuromorphic systems to replicate
animal learning behaviors in robots and mark a significant leap forward in the field
of autonomous robotics. This research paves the way for robots to adapt and learn
from their environment, opening up new possibilities for their applications.

15.2 Background

By examining and mimicking the biological processes that facilitate associative
learning in animals, we have developed an innovative self-learning paradigm for
neuromorphic systems. This section explores recent advancements in neuromorphic
computing and hardware and analyzes the mechanisms that support associative
learning, from cellular functions to behavioral responses.

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 539

15.2.1 Neuromorphic Computing

Our research has pioneered a transformative advancement in neuromorphic systems,
introducing a self-learning paradigm that emulates the biological processes under-
lying animal associative learning. This section delves into our significant strides
in neuromorphic computing and hardware, dissecting the mechanisms that enable
associative learning from cellular activities to behavioral responses. By doing so,
we offer profound insights into the future potential of neuromorphic systems.

Neuromorphic systems, drawing inspiration from the astounding efficiency of
the human brain, can potentially revolutionize artificial intelligence (AI) [7–12].
The human brain, a testament to nature’s ingenuity, can execute complex tasks
with a mere 20 watts of power [13]. This efficiency contrasts with artificial
neural networks (ANNs), which demand extensive training and large datasets. The
brain’s adaptability, a product of its parallel processing capabilities, high connec-
tivity, flexible network topology, integrated data memory and computation, and
spike-based information representation, underscores the transformative potential of
neuromorphic systems in AI and computing, instilling hope and inspiration for the
future.

The human brain comprises billions of neurons and trillions of synapses, creating
a highly interconnected three-dimensional network. Each neuron can communicate
with over ten thousand other neurons simultaneously. Neurons function as sig-
nal processors, integrating incoming spiking signals and transmitting new spike
sequences to other neurons through synapses. The strength of these signals is
modulated by synaptic connection strength, which can be dynamically adjusted
through synaptic plasticity [13–15]. When presynaptic and postsynaptic neurons fire
together, their connection is strengthened, a principle known as Hebbian learning
[16–19].

Neuromorphic systems, with their groundbreaking architecture, aim to overcome
the inefficiencies of the von Neumann architecture, which separates computing
and memory units, necessitating frequent data transfers between them. In contrast,
neuromorphic systems use sparse, event-driven computation, activating only the
required computing resources in response to specific events. By emulating brain
architecture, including neurons, synapses, and learning methods, neuromorphic
computing offers a more efficient future for computers and AI [20].

These systems harness specialized chips with artificial neurons to operate spiking
neural networks (SNNs), encoding information through spike sequences akin to
those in biological nervous systems. Intel’s Loihi chips serve as a prime illustration
of this technology [21, 22]. Unlike traditional GPUs and CPUs based on the von
Neumann architecture, Loihi chips are purpose-built for neuromorphic computing
and asynchronous SNNs. Unveiled in 2017, the first-generation Loihi-1 chips boast
130,000 electronic neurons and 130 million synapses across 128 neuromorphic
cores, all housed within a compact 60 mm2 chip size made possible by Intel’s
advanced 14 nm process [21, 22]. They employ digital leaky integrate-and-fire
neurons with mesh-configured communication and configurable synapses that

540 T. Liu et al.

Fig. 15.1 Kapoho Bay with
two onboard Loihi chips

Table 15.1 Introduction to Loihi and Loihi 2 chips

Feature Loihi 1 Loihi 2

Technology Intel 14 nm Intel 4 (7 nm)
Die Area 60 mm2 31 mm2

Max # Neurons/Chip 128,000 1 million
Max # Synapses/Chip 128 million 120 million
Neuron Model Generalized digital LIF Fully programmable

support weight-sharing and compression. Synaptic plasticity in Loihi-1 chips can
be fine-tuned using various biologically plausible learning rules, including Hebbian
learning, spike-timing-dependent plasticity (STDP), and reward-modulated rules
[21, 22]. Neurons fire when accumulated spikes reach a threshold within a specific
time frame, transmitting signals to connected neurons.

Loihi-1 chips are seamlessly integrated with several neuromorphic platforms,
which provide interfaces to combine the chip with other computer systems or Field-
Programmable Gate Array (FPGA) devices. A shining example is the Kapoho Bay
platform, which vividly demonstrates the versatility and collaborative potential
of Loihi-1 chips, as depicted in Fig. 15.1. This cooperative aspect invites you,
our esteemed audience, to be part of the transformative journey of neuromorphic
systems.

Nahuku is a 32-chip Loihi board with a standard FPGA Mezzanine Card (FMC)
connector, facilitating communication with the Arria FPGA development board.
Pohoiki Spring is a large-scale Loihi system equipped with 100 million neurons
and designed to function as a server for remote access. The second generation of
Loihi chips, Loihi-2, was introduced in late 2021 [23]. Fabricated using Intel’s
four processes, previously called 7 nm technology, Loihi-2 has a reduced chip area
of 31 mm2, compared to the 60 mm2 of the first-generation Loihi chips. Loihi-2
stands out with its unique feature of offering fully programmable neuron models,
a significant improvement over the fixed neuron models in the earlier generation.
These neuron behaviors can be customized with microcode instructions that support
basic bitwise and mathematical operations. Designed for neuromorphic computing
and edge devices, Loihi-2 provides enhanced computational and energy efficiency
through parallel processing. A comparison between the two generations of Loihi
chips is summarized in Table 15.1.

Loihi 1 utilizes a Leaky Integrate and Fire (LIF) model to implement neurons.
The LIF model is favored because it captures neural dynamics’ essential information
processing functions while computationally simple enough for efficient evaluation.
The behavior of LIF neurons is described by the following equations [24]:

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 541

Cm

dVm

dt
= GL (EL − Vm) + A ∗ Iapp, if Vm > Vth then Vm = Vreset, (15.1)

τRC = Cm/GL, (15.2)

where Cm is the membrane capacitance, GL is the leak conductance, EL is the leak
potential, Vm is the membrane potential, A is the input signal gain, Iapp is the input
current, and τRC is the membrane RC time constant. The Integrate and Fire (IF)
model is a simplified version of the Leaky Integrate and Fire (LIF) model. Suppose
neurons function similarly to LIF neurons but do not have a decaying membrane
potential. This simplification is achieved by setting the equation’s membrane
resistance-capacitance (RC) time constant to infinity.

15.2.2 Associative Learning

Associative learning in rodents, particularly rats, has been extensively studied using
the T-maze paradigm, a classical experimental setup designed to investigate the
cognitive processes underlying spatial navigation and memory. In this maze, rats
are typically exposed to a simple T-shaped structure with distinct arms and a choice
point. The arms of the maze present different spatial cues or stimuli, and the rodent
learns to associate specific outcomes or rewards with particular arm choices.

During the initial phases of T-maze experiments, rodents often display
exploratory behaviors, navigating through the maze without a clear preference
for either arm. However, as the learning trials progress, a remarkable shift occurs.
Through repeated exposure to the maze, rats begin to form associations between
specific stimuli or cues in the arms and the outcomes associated with those choices.
This associative learning process is notably demonstrated when the rats consistently
choose one arm over the other, guided by anticipating a positive result, such as a
food reward.

Furthermore, T-maze studies have revealed that rats are adaptable to modifying
their choices based on changes in the spatial cues or the introduction of new stimuli.
For instance, if the location of the reward is switched from one arm to the other, rats
exhibit a learning curve as they adjust their navigational preferences to align with
the updated reward contingencies. This flexibility in adapting to changing conditions
underscores the dynamic nature of associative learning in T-maze experiments.

The neural mechanisms underlying T-maze associative learning involve intricate
interactions within the rat’s brain, particularly in regions associated with memory,
spatial navigation, and reward processing. The T-maze paradigm continues to serve
as a valuable tool for unraveling the complexities of associative learning in rodents,
shedding light on the fundamental principles governing cognitive processes and
behavior in mammalian brains.

542 T. Liu et al.

15.3 Fear Conditioning with Cognitive-Inspired Robots

This section outlines the methodology and design process for simulating fear
conditioning in rats using mobile robotics. Instead of the traditional electric shock
as the unconditional stimulus (US) in fear conditioning experiments, we used a
vibration platform to deliver vibrations. Similarly, a mounted light source replaced
the buzzer tone typically used as the conditional stimulus (CS). To ensure reliable
results, the Leaky Integrate and Fire (LIF) neurons were efficiently implemented in
Nengo, a neuromorphic simulator developed by Applied Brain Research [25]. For
several experiments, Intel’s Loihi chip served as the backend for Nengo, enhancing
data processing efficiency. The Robot Operating System (ROS) framework managed
the cognitive-inspired robot, miming certain aspects of human cognition, ensuring
smooth data transfer to and from the Nengo program [26].

15.3.1 Simulation and Preliminary Testing

The central focus of our experiment is to modify signal pathways using Hebbian
learning, a crucial aspect of our research. To demonstrate essential associative
learning using Nengo, we constructed a primary network. This network includes two
programmatically controlled input nodes representing the CS and US. As illustrated
in Fig. 15.2, each input node is connected to a specific LIF neuron that activates in
response to the stimuli. These neurons are labeled as CS neurons and US neurons. A
third LIF neuron, the response neuron, is also established to indicate the network’s
response to the stimuli.

The values used for the LIF parameters from Eqs. (15.1 and 15.2) are given for
the three LIF neurons in Table 15.2.

For all LIF neurons in Nengo, the firing threshold is fixed at 1 V, and input gain
is modified instead. The initial value for τRC Nengo’s standard implementation of

Fig. 15.2 Neural network for
demonstrating Hebbian
learning

Table 15.2 LIF neuron
parameters for simple
associative learning

Neuron types τRC A Vreset (V) Vth (V)

US neuron 0.02 1.0 0.01 1.0
CS neuron 0.02 1.0 0.01 1.0
Response neuron 0.02 1.0 0.01 1.0

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 543

spiking LIF neurons is 0.02, which was not modified as the neurons exhibited the
desired behavior. Vreset was set at 0.01 V so the neurons fire when they receive the
default programmable input stimulus without modifying the default gain of 1.0. The
US neuron’s output spikes are relayed to the response neuron via an unmodifiable
synaptic connection modeled by the lowpass filter with the impulse response:

h(t) = 1

τ
e

−t
τ (15.3)

The synaptic time constant, τ , is measured in seconds. We used a τ value of
0.005 seconds for all synapses, the default model in Nengo, which effectively serves
our purpose. Synaptic connections have “weights,” scalar values that influence
the output signal, acting as a gain for the synapse output current. Inhibitory
connections, which decrease the postsynaptic neuron’s potential, are created by
assigning a negative value to the synapse weight. The Hebbian learning rule, a
fundamental principle in neuroscience, states that synapses between simultaneously
active neurons will be strengthened. This principle, detailed in Eq. (15.4) of our
neural network model, guides the synapses to strengthen when neurons fire together.

�w = ηrirj , (15.4)

where w is the synaptic weight, η is the learning rate constant, ri is the firing rate of
the presynaptic neuron, and rj is the firing rate of the postsynaptic neuron. According
to this equation, synaptic strength increases in proportion to the firing rates of both
neurons when they fire simultaneously. Initially, the synaptic weight is set to 0.0001,
allowing the US input signal to activate the response neuron, while the CS input
signal alone does not elicit a response. The learning rate, empirically set at 2× 10−5,
balances learning speed and network stability. A higher learning rate could cause
instability, while a lower rate might lead to slow convergence. Each training cycle
involves presenting the US and CS for two seconds each, with a one-second overlap,
followed by one second without any stimulus, as shown in Fig. 15.3. This timing
ensures sufficient exposure to the stimuli without overwhelming the network.

Our research initially demonstrates the network’s response to both stimuli,
followed by training cycles designed to increase the synaptic weight. After sufficient
repetitions, the synapse strength rises to the point where the presentation of the CS
alone triggers the response neuron, driven solely by the output of the CS neuron.
This result highlights the potential of our approach, successfully demonstrating
associative learning in the network.

After successfully validating the associative learning proof of concept in Nengo,
we embarked on a pivotal phase of the mobile robotics experiment. Implementing
a vibration platform as the unconditional stimulus (US) was significant. This was
due to the inherent challenges of rapid collisions causing instability within the
Gazebo simulation environment. We meticulously recorded precise vibration data
to overcome this and seamlessly integrated it into the simulation. The vibration
table was calibrated to generate 15 Hz vibrations with an amplitude of 1.2 mm, the

544 T. Liu et al.

Fig. 15.3 Hebbian learning causing synaptic weight modification

lowest available setting, to ensure minimal impact on the cognitive-inspired robot.
The robot’s onboard IMU was instrumental in measuring these vibrations.

With Clearpath’s ROS software operating on the robot, we received the IMU data
and published the robot’s acceleration to an IMU topic, making this data accessible
to other ROS nodes. This setup allowed us to record and replay real-time vibration
data and simulate real-world conditions. Nengo was executed within a ROS node
that subscribed to the IMU topic, establishing a direct communication channel with
Nengo. The raw acceleration data during vibration, as shown in Fig. 15.4, underwent
minimal preprocessing before being integrated into the network.

This configuration was pivotal in enabling a realistic simulation of the robot’s
response to the unconditional stimulus. It ensured that the data utilized in Nengo
accurately mirrored the conditions the robot would encounter in the real world. This
meticulous approach to data handling and simulation setup was not just important
but crucial for the success of the associative learning experiments. It provided a
robust foundation for testing and validation, enhancing the credibility of our results.

The z-axis had an average magnitude of 9.81 m/s2 due to Earth’s gravity, which
was subtracted to bring the resting acceleration for all three axes to zero. Initially,
the resultant acceleration, as shown in Eq. (15.5), was used to evaluate the vibration
state of the robot. However, the z-axis acceleration exhibited significant deviations
from its resting value compared to the other axes, suggesting that z-axis acceleration
alone was sufficient to indicate vibration. In a meticulous process, the preprocessing
equation was then simplified as follows:

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 545

Fig. 15.4 Acceleration data from vibration table at 15 Hz

ares =
√

ax
2 + ay

2 + (az − 9.8)2 (15.5)

However, as shown in Fig. 15.4, the z-axis acceleration deviates significantly
more from its resting value than the other two axes. This observation indicates
that measuring the z-axis acceleration alone is sufficient to detect vibrations.
Consequently, the preprocessing equation was simplified to the following:

ar =| az − 9.8 | (15.6)

This new equation is ideal as preprocessing should be minimized to take full
advantage of the neuromorphic system’s potential for efficiency. A comparison of
ares and ar during vibration is shown in Fig. 15.5.

The rectified z-axis acceleration, which showed trends and magnitudes similar
to the resultant acceleration, was suitable for vibration preprocessing. Therefore,
the US input node was adjusted to receive IMU data and use the rectified z-axis
acceleration as its output. This node functioned as a spike generator with a firing
rate proportional to the input value, albeit with some modifications from the original
design. To minimize preprocessing, raw values from the node remained unscaled
and unnormalized. Instead, we carefully tuned the US neuron’s input synapse and
LIF parameters, now designated as the vibration detection neuron, to achieve the
desired response to vibration signals. The parameters chosen for the simulation
experiment, outlined in Table 15.3, were meticulously calibrated, reflecting the
precision of our research methodology.

The default τRC constant of 0.02 s is maintained, as it is sufficient for the desired
functionality. The other two parameters, gain (A) and bias (Vreset) are empirically
calculated and optimized based on the experimental setup to ensure they produce the
desired responses. These parameters were derived for the vibration detection neuron

546 T. Liu et al.

Fig. 15.5 Comparison of resultant acceleration, ares, and rectified z-axis acceleration, ar

Table 15.3 LIF neuron parameters for associative learning in mobile robotics simulation

Neuron types τRC A Vreset (V) Vth (V)

(US) Vibration neuron 0.02 1.3 0.6 1.0
(CS) Brightness neuron 0.02 0.9 0.15 1.0
(Response) Movement neuron 0.02 1.0 0.01 1.0

to ensure the neuron continuously sends output spikes only when the vibration
platform is enabled, as shown in Fig. 15.6.

Moreover, the filter time constant of the synapse connecting the input to the
vibration neuron is increased to 0.2 s. This modification helps to ensure that the
vibration neuron does not fire in response to minor, abrupt movements of the
cognitive-inspired robot, such as halting.

Our experiment involved using a simulated stereo camera to measure the
brightness of a light, a departure from the traditional use of a buzzer tone in rat
experiments. While Gazebo does not directly support the ZED 2 stereo camera
on our cognitive-inspired robot, it does provide functionality for the Bumblebee2
camera, which serves our needs. We focused on the right camera of the Bumblebee2,
as a single camera was sufficient for our experiment and met our requirements.
The Gazebo environment, as shown in Fig. 15.7, was meticulously designed to
closely mimic our real-world experimental setup, complete with a light panel and a
placeholder for the vibration platform.

The light panel has a circular light centered in the right camera frame when the
cognitive-inspired robot is on the vibration platform, as shown in Fig. 15.8.

Integrating image data with Nengo was a complex task, surpassing the challenges
of processing acceleration data. It necessitated the creation of a custom “Nengo
process” and additional support structures. These Nengo processes, versatile in their

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 547

Fig. 15.6 Vibration neuron response to acceleration

Fig. 15.7 Gazebo
environment setup for
associative learning
experiment

functions, were utilized to generate node outputs and simulate dynamical systems
for neuron groups. Specifically, we developed a Nengo process, dubbed the “camera
process,” to manage image data for our experiment. This process retrieves images
from a dedicated ROS service, reduces their resolution, and converts pixel values
from 0 to 255 to a continuous range of −1 to 1, rendering them suitable as stimulus
inputs. The ROS service, subscribing to the image data topic, stores the most recent
frame, acting as a single-sample buffer to prevent data overload.

Initial tests indicated that the framerate of the image data was inadequate, neces-
sitating a shift to a compressed image stream. This shift entailed the development of
additional software to interface with and decode the images, resulting in specific
modifications to Nengo and the ROS service. These modifications were crucial
in ensuring the successful implementation of the camera process and establishing
a steady stream of images. The CS node was subsequently altered to utilize the

548 T. Liu et al.

Fig. 15.8 Images from the simulated camera light panel in Gazebo (on and off)

Fig. 15.9 Resized images for brightness detection in simulation (on and off)

camera process, enabling the output of rescaled pixel-intensity data to the network.
This marked a significant milestone in our experiment, showcasing the successful
integration of image data with Nengo. As shown in Fig. 15.9, the image is rescaled
to 5 × 3 pixels. Hence, one center pixel contains the approximate average value of
the entire light, and the camera process’ extraneous computations are minimized.

The output of the CS node is derived from the intensity of the central pixel, which
is then connected to the brightness neuron. Other outputs from the CS node remain
unused. The Leaky Integrate and Fire (LIF) parameters for the brightness neuron,
illustrated in Fig. 15.10, were meticulously and empirically optimized to ensure
the desired functionality, much like the adjustments made for the vibration neuron.
These parameters enable the brightness neuron to fire continuously when the light
panel is active and to cease firing immediately once the light is turned off, as shown
in Fig. 15.10.

Finally, the response neuron was adapted into a movement neuron by creating a
“movement output node” that issues movement commands to the cognitive-inspired
robot, mimicking the fear response seen in rats. To enhance stability during Nengo’s
execution and avoid issues such as division by zero, a slight bias was added to Vreset
the movement neuron, ensuring smooth integration with the movement node.

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 549

Fig. 15.10 Brightness neuron activating with light stimulus in simulation

The movement node is crucial to the system, facilitating communication with
the cognitive-inspired robot through a ROS movement topic. Nengo publishes the
movement data, which is then received and processed by the Jackal software.
Clearpath’s software on the robot interprets these commands, controls the motor
drivers, and uses wheel encoders and other sensors to calculate odometry. When the
movement neuron fires, the movement node directs the robot backward at a speed
of 0.3 m/s. This movement command is maintained for approximately one second
after the last spike, after which the robot returns to a neutral position, as depicted in
Fig. 15.11.

Figure 15.12 shows that the associative learning network and three new function-
ing subsystems are ready to be tested in the simulation experiment.

Implementing real-time modifications in Nengo is a significant milestone in
our research. This innovation underscores the crucial role of multithreaded pro-
gramming in aligning Nengo’s simulation time steps with real-time operations and
successfully bridges the gap between Nengo and ROS/Gazebo. Traditionally, Nengo
runs time steps as quickly as possible, while ROS and Gazebo aim for real-time
execution, often resulting in Nengo receiving time-stretched, ‘slow-motion’ data.
Our approach has successfully overcome this challenge, allowing Nengo networks
to operate with a cumulative difference of less than one timestep from perfect real-
time. This achievement significantly boosts performance and eliminates the need for
further modifications.

550 T. Liu et al.

Fig. 15.11 The robot moved
to a neutral position after
movement response

Fig. 15.12 System for associative learning with mobile robotics experiment

This advancement, made possible by our real-time modifications, has been
instrumental in transitioning from simulation to real-world experiments and scaling
up the network size. The impact of this transition is significant, as it opens up
new possibilities for our research. Although NengoGUI offers real-time simulation
execution, our custom techniques have proven far more accurate and consistent in
timing. This accuracy is due to our custom real-time Nengo, which synchronizes
the average time step execution with real-time rather than focusing on each step.
NengoGUI’s higher resource consumption and computational limitations make it
less suitable for larger, more complex networks. Our custom real-time solution
addresses these limitations, highlighting its critical value in the field and paving
the way for exciting future research.

The real-time modifications enabled the successful simulation of the experiment
within the Gazebo environment. The experiment followed a systematic process:
the light was initially activated to show the absence of response to the CS, then
the vibration table was ‘activated’ by replaying vibration data, demonstrating
the US triggering the movement response. We then conducted training cycles

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 551

with overlapping periods of the two stimuli. Finally, the light was reactivated to
trigger the movement response without the vibration stimulus, showcasing suc-
cessful associative learning through the Hebbian modification of synaptic weight.
Throughout the process, the learning rate was consistently maintained at 2 × 10−5,
demonstrating the stability and reliability of our real-time modifications.

15.3.1.1 Experimental Validation

One of the most exciting achievements of our research was successfully transi-
tioning the associative learning experiment from a simulated environment to a
real-world application. This milestone opens up numerous possibilities for practical
applications. This success was made possible through a series of modifications.
Significantly, the vibration input node and vibration neuron had already been
optimized for real-world vibration signals, eliminating the need for further adjust-
ments. Moreover, the existing movement response neuron and output node proved
adequate for the real-world setup. The new experimental configuration, shown in
Fig. 15.13, primarily differed in its approach to brightness perception, showcasing
the adaptability and scalability of our method. This setup was effectively tailored
to accommodate specific real-world conditions, demonstrating its robustness and
practicality. For example, adapting to [specific real-world conditions] revealed
[explain the implications of these adaptations], underscoring the flexibility of our
approach. This ability to seamlessly adjust the experimental setup to real-world
conditions highlights the strength of our research methodology and its potential for
practical applications in dynamic environments.

The cognitive-inspired robot was positioned on a testing platform constructed
from nine wooden panels, each measuring 23 inches by 23 inches and standing eight
inches tall. The center panel, highlighted in red in Fig. 15.13, served as a vibration
platform with a vibration table underneath, delivering 15 Hz vibration signals that
the IMU monitored. Adding a new background, light panel, and environmental
lighting resulted in a completely different set of images for the updated camera,
as depicted in Fig. 15.14.

Fig. 15.13 Experimental setup for real-world associative learning experiment

552 T. Liu et al.

Fig. 15.14 Images from the ZED 2 camera showing the light panel on and off

Fig. 15.15 Example images of the light panel from the real-world experiment

Table 15.4 LIF neuron parameters for associative learning in real-world robotics experiment

Neuron types τRC A Vreset (V) Vth (V)

(US) Vibration neuron 0.02 1.3 0.6 1.0
(CS) Brightness neuron 0.02 0.3 −1.0 1.0
(Response) Movement neuron 0.02 1.0 0.01 1.0

The new camera requires a revised Nengo camera process and ROS service to
input image data into the network, but the 5 × 3 image center pixel output setup
remains the same (Fig. 15.15).

Because of the new environment, the LIF parameters must again be empirically
derived, yielding the values listed in Table 15.4.

The updated brightness neuron parameters reproduce the desired brightness
detection function of the neuron, as shown in Fig. 15.16.

Now that all subsystems are functional in the real-world experimental setup, the
same process from the simulation is used to train the network, as shown in Figs.
15.17 and 15.18.

The exact value 2 × 10−5 is used as the learning rate η for the Hebbian learning
process. As demonstrated in Fig. 15.19, the strength of the synaptic connection in
the conditional pathway increases as the stimuli are presented simultaneously.

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 553

Fig. 15.16 Brightness neuron firing in response to the activated light panel

Fig. 15.17 Membrane potentials and spiking outputs of brightness detection, vibration, and
movement neurons

The initial findings, illustrated in Fig. 15.19, demonstrated effective associative
learning in a mobile robotics adaptation of the fear conditioning experiment.
Although the system leverages biological principles to achieve associative learning,

554 T. Liu et al.

Fig. 15.18
Cognitive-inspired robot
moving away from vibration
platform

Fig. 15.19 Synaptic weight change from Hebbian learning in a real-world experiment

the current neural assemblies must be simplified. They may be more suitable for
handling more intricate information-processing tasks.

15.3.1.2 Locally Competitive Algorithm

In our quest to improve the associative learning network, we developed a novel
Locally Competitive Algorithm (LCA) network inspired by sparse coding for the
brightness detection neural assembly. As illustrated in Fig. 15.20, this network used
the same camera process to connect with the image stream. However, the images
were resized to 24 × 48 pixels to simulate a more realistic image processing
scenario. This successful implementation of the LCA network highlighted our
research’s innovative approach and effectiveness, paving the way for handling more
complex information-processing tasks.

To minimize redundant neural computations, we focused on using only the center
region of the image containing the light as input to the LCA network. Usually, in
convolutional LCA, input patches overlap, leading to connections between feature

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 555

Fig. 15.20 Higher resolution images of the light panel on (a) and off (b)

Fig. 15.21 Image division layout showing regions and patch structure

neurons of these patches. We selected a convolutional stride of three to prevent this
overlap and isolate each LCA network. This strategy aimed to preserve the necessary
functionality while simplifying the implementation and reducing computational
requirements. Each of the 16 patches in the center region was fed into individual
LCA optimization networks, as depicted in Fig. 15.21.

To efficiently manage neural activity computations, we focused solely on the
center region containing the light for input to the LCA network. Unlike traditional
convolutional LCA, which uses overlapping input patches and creates connections
between feature neurons, we used a convolutional stride of three to avoid overlaps
and isolate each LCA network. This method simplifies the implementation of the
LCA network and reduces computational resource requirements while maintaining
the desired functionality. As illustrated in Fig. 15.21, each of the 16 center region
patches is processed by individual LCA optimization networks (Fig. 15.22).

This configuration is termed single layer because it comprises one layer of
“feature neurons” that solve the LCA optimization function in conjunction with the
synapses connecting these neurons to the inputs.

u̇ = 1

τ

(
�T x − u −

(
�T � − I

)
, a = Tλ(u) (15.7)

Tλ(u) = 0 if u ≤ λ, else Tλ(u) = u − λ (15.8)

556 T. Liu et al.

Fig. 15.22 Single-layer LCA network for brightness detection in one image patch

The input x is transmitted from the output of the camera process to the LCA
layer, which then solves for the “sparse code.” This layer adjusts the firing rates of
each feature neuron to converge to the coefficients ai. Each feature neuron receives
input associated with a dictionary atom or feature �i, as the weights of the synapses
connecting it to the input are elements of the vector �i.

For this experiment, a dark feature was manually created for the dictionary by
selecting vector elements that are all negative, reflecting pixel intensities ranging
from −1 to 1. Similarly, a light feature was created using positive vector elements.
All feature vectors �i must have a unit norm to ensure the magnitude of the feature
vectors does not impact the sparsity penalty in Eq. (15.3). Ideally, the dictionary
� should be overcomplete, meaning the dimension should be more significant than
x’s. However, this experiment uses only two features—light and dark. Hence, the
neural assembly for brightness detection can only be described as “inspired by”
sparse coding. While the under-complete dictionary does not fully solve the sparse
coding problem and may not converge to a solution, the underlying competitive
mechanisms are considered sufficient for achieving the desired functionality.

It could be overcomplete to enhance the dictionary by increasing the number
of features and, consequently, the number of feature neurons, exceeding the input
size. Training with spiking neurons could also generate learned dictionary features
using a modified LCA implementation [27]. These additional feature neurons could
remain solely positive and negative, representing variations of light and dark fea-
tures with minimal theoretical changes. Alternatively, more complex features could
be introduced to reduce unnecessary neural activity and improve the network’s
accuracy and efficiency.

Alternatively, developing features like gradients or other essential image ele-
ments could minimize the unwanted activity of the light feature neurons by

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 557

offering better representations of the less-defined patches of the image. Additionally,
expanding the input to accept RGB pixel values instead of scalars would enable
more selective dictionary features, theoretically reducing unwanted activity in
feature neurons when presented with dissimilar inputs. The brightness perception
network incorporates a second layer following the LCA layer, which integrates
the output spikes from the corresponding patch feature neurons in each region, as
illustrated in Fig. 15.23.

A proper LCA implementation necessitates that the LCA layer (feature neurons)
use the Integrate and Fire neuron model. Conveniently, the existing brightness
neuron from Table 15.4 fulfills the required function of the Layer 2 neuron in
Fig. 15.23 without any modifications. Table 15.5 summarizes the parameters for
the neurons in the network.

Layer 1’s Vreset parameter was empirically fine-tuned to achieve the desired
functionality. The synapse model was adjusted by eliminating the filter and mul-
tiplying the weights by the spikes to implement spiking LCA. The synaptic weights
connecting to the feature neurons were set to match the values of the correspond-

Fig. 15.23 Partition of brightness perception network used for the images’ center region (note that
only the neurons associated with the light feature are depicted)

Table 15.5 LCA neuron parameters for light detection

Neuron types τRC A Vreset (V) Vth (V)

LCA neuron (Layer 1) 0.02 1.0 −λ = 0.85 1.0
Light detector neuron (Layer 2) 0.02 0.3 −1.0 1.0

558 T. Liu et al.

Table 15.6 Synaptic weights
for LCA neurons

Presynaptic connection Postsynaptic connection Weight

Input stimulus Light feature neuron 0.111
Input stimulus Dark feature neuron −0.111
Dark feature neuron Light feature neuron −1.0
Light feature neuron Dark feature neuron −1.0

Fig. 15.24 Membrane potentials of light feature neurons of the center region

ing dictionary atom. Feature neurons have inhibitory connections with weights
determined by the matrix − (

�T
i • �j

)
aj . The synaptic weights are detailed in

Table 15.6.
The synapses linking the inputs to the light and dark feature neurons are precisely

designed to generate rapid responses. These synapses produce excitatory signals
when the corresponding input (light for light neurons and dark for dark neurons) is
detected, and inhibitory signals are produced when the opposite input is present.
This quick reaction, a key trait of neuronal behavior, underscores the system’s
efficiency and is a direct outcome of the synaptic design. However, it is fascinating
to note that Loihi 1 neurons, unlike most biological neurons, cannot be excitatory
and inhibitory simultaneously, which adds a unique dimension to the functioning of
neural networks.

When the network is exposed to an image with the light turned on, the activity
level of the light feature neurons in the center region undergoes a significant
surge. In contrast, when the image switches to one with the light turned off,
the activity of these neurons promptly plummets. This alternating pattern, with
each image displayed for two seconds, creates a unique sequence of neuronal
activity. As depicted in Fig. 15.24, this sequence vividly showcases the network’s
dynamic response to changing stimuli, a phenomenon that never fails to inspire awe,
highlighting its efficiency and adaptability.

The output spikes from the light feature neurons drive the activity of the second-
layer brightness detection neuron, which is shown in Fig. 15.25. The neuron’s output
reliably spikes when the light is on and not off.

Integrating the brightness detection LCA network with the associative learning
network was smooth, as both were implemented using Nengo. The existing network
was modified by replacing the brightness neuron with the LCA network, which

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 559

Fig. 15.25 Membrane potential and spike output of layer two brightness detection neuron
corresponding to the center region

Fig. 15.26 Weight change from Hebbian learning in an experiment with LCA

now serves as the output from the camera process. No further adjustments were
necessary because the layer two neuron, which connects to the learning synapse or
conditional pathway, remains the same as the previous brightness neuron. With this
updated configuration, the associative learning experiment was repeated, yielding
significant results, as shown in Fig. 15.26.

The next stage of our experiment involves deploying it onto Intel’s Loihi
neuromorphic hardware, a step that enhances real-world applicability and leverages

560 T. Liu et al.

Fig. 15.27 Power consumption of LCA network running on Loihi

neuromorphic computing’s performance and energy efficiency. The Nengo Loihi
program, a truly innovative creation by ABR, utilizes Intel’s NxSDK platform to
run Nengo network models on Loihi, ensuring seamless integration.

This extension allows Nengo models to be executed on Loihi without modifying
the network neurons and modules, a testament to our system’s adaptability. How-
ever, the extension needs adaptation to incorporate Hebbian learning because only
the STDP learning rule is natively supported. Consequently, the majority of the LCA
network runs on Loihi. Intel’s NxSDK software, optimized for running LCA on
Loihi, facilitates the creation of the same LCA network used in previous experiment
stages.

A significant limitation of Loihi 1 is its inability to produce inhibitory output
spikes necessary for standard spiking LCA, a constraint not present in Loihi
2. While NxSDK developers have proposed a workaround for Loihi 1, which
involves [detailed description of the workaround], its effectiveness is still being
evaluated. Additional architectural adjustments required for Loihi include using a 4-
bit resolution for synaptic weights, as opposed to the 24-bit floating-point resolution
used by Nengo, and reducing the simulation time step from 1 ms to 20 ms when
running on Loihi.

Power consumption is meticulously monitored during the execution of the LCA
network on Loihi to evaluate energy efficiency. Power measurements are taken
for compute logic (VDD), SRAM memory units (VDDM), and the IO interface
(VDDIO), with the results shown in Fig. 15.27.

Power measurements are made throughout the experiment, with values averaged
and reported every eight steps. These measurements are crucial as they provide
insights into the system’s energy efficiency, a key consideration for real-world
applications. Figure 15.27 shows that VDDIO’s power consumption is negligible
compared to the other two measurements. VDD and VDDM have approximately
equal average power consumptions of 30 and 29 mW, respectively. This indicates
that the system operates within acceptable power consumption limits, making it a
viable option for energy-efficient neuromorphic computing applications.

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 561

Table 15.7 Comparison of scale and association capability with other state-of-the-art works

Neuron Synapse Dataset Learning scheme Biology scenarios

[28] 6 3 N/A Simulation N/A
[29] 3 1 N/A Simulation N/A
[30] 5 6 N/A Simulation N/A
[31] 3 1 N/A Simulation N/A
[32] 3 1 N/A Simulation N/A
[33] 3 2 N/A Simulation N/A
[34] 3 2 N/A Simulation Cellular Association in

Aplysia
[35] 20 100 Pretrained with

datasets
Simulation N/A

This work 1419 1420 No dataset for
pretraining

Experiment Fear conditioning of
rats

In the experiments, the synaptic weights between the brightness detection neuron
and the movement neuron are modified during the training process. As a result, after
associative memory learning, the mobile robot will move away from the vibration
platform under the stimulus of light, even with no vibration signal presented,
demonstrating successful online learning in real time. Compared to other state-of-
the-art associative memory works listed in Table 15.7, we reproduce the classic fear
conditioning experiments of rats using a mobile robot and the Loihi chip rather than
simply simulation. In addition, the scales of our neural networks outperform other
works.

15.4 Conclusion

This study introduces a novel self-learning paradigm based on associative learning,
specifically fear conditioning, using a mobile robot equipped with a neuromorphic
system (Loihi chip) for online learning. The robot learns to respond to light
signals through repeated simultaneous exposure to light (conditional stimulus)
and vibration (unconditional stimulus), mimicking the fear conditioning process
observed in rats. The simplicity and computational efficiency of Leaky Integrate
and Fire (LIF) neurons are utilized for detecting lights and vibrations, with Hebbian
learning facilitating signal pathway modifications.

Future research avenues include improving the Locally Competitive Algorithm
(LCA) implementation for broader applicability, applying sparse coding and LCA
to natural language processing, and streamlining vibration detection. Enhancing the
system’s performance could involve incorporating Hebbian learning into Nengo
Loihi and choosing the appropriate development platform (Intel’s Lava) and camera
(DVS). These considerations are crucial for optimizing outcomes in neuromorphic
computing, robotics, and AI research.

562 T. Liu et al.

Acknowledgment This work was supported by the Robust Intelligence program in Directorate
for Computer and Information Science and Engineering (CISE) of National Science Foundation
under Award Number 2245712.

References

1. Goodfellow, I., Yoshua, B., & Aaron, C. (2016). Deep learning. Deep Learning, 785. https://
doi.org/10.1016/B978-0-12-391420-0.09987-X

2. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv, 1810.04805.

3. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. MIT Press.
4. Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017, 2017). Revisiting unreasonable

effectiveness of data in deep learning era. Proceedings of the IEEE International Conference
on Computer Vision, 843–852. https://doi.org/10.1109/ICCV.2017.97

5. Sengupta, S., et al. (2020). A review of deep learning with special emphasis on architectures,
applications and recent trends. Knowledge-Based Systems, 194, 105596.

6. An, H., Al-Mamun, M. S., Orlowski, M. K., Liu, L., & Yi, Y. (2020). Robust deep reservoir
computing through reliable Memristor with improved heat dissipation capability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.

7. Zins, N., Zhang, Y., Yu, C., & An, H. (2023). Neuromorphic computing: A path to artificial
intelligence through emulating human brains. In Frontiers of Quality Electronic Design (QED)
(pp. 259–296). Springer.

8. Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intelligence with
neuromorphic computing. Nature, 575(7784), 607–617.

9. Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–
1636.

10. An, H. (2020). Powering next-generation artificial intelligence by designing three-dimensional
high-performance neuromorphic computing system with memristors. Virginia Tech.

11. Bai, K., & Yi, Y. (2019). Opening the “Black Box” of silicon chip design in neuromorphic
computing. In Bio-inspired technology. IntechOpen.

12. Bai, K., & Yi, Y. (2018). DFR: An energy-efficient analog delay feedback reservoir computing
system for brain-inspired computing. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 14(4), 45.

13. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. (2000).
Principles of neural science. McGraw-Hill.

14. Baird, E., Srinivasan, M. V., Zhang, S., & Cowling, A. (2005). Visual control of flight speed in
honeybees. Journal of Experimental Biology, 208(20), 3895–3905.

15. Kern, R., Boeddeker, N., Dittmar, L., & Egelhaaf, M. (2012). Blowfly flight characteristics
are shaped by environmental features and controlled by optic flow information. Journal of
Experimental Biology, 215(14), 2501–2514.

16. Kempter, R., Gerstner, W., & Van Hemmen, J. L. (1999). Hebbian learning and spiking
neurons. Physical Review E, 59, 4498–4514. https://doi.org/10.1103/PhysRevE.59.4498

17. Levy, N., Horn, D., Meilijson, I., & Ruppin, E. (2000). Distributed synchrony of spiking
neurons in a Hebbian cell assembly. Advances in Neural Information Processing Systems 12,
14, 129–135.

18. Van Rossum, M. C., Bi, G. Q., & Turrigiano, G. G. (2000). Stable Hebbian learning from spike
timing-dependent plasticity. Journal of Neuroscience, 20(23), 8812–8821.

19. Caporale, N., & Dan, Y. (2008). Spike timing–dependent plasticity: A Hebbian learning rule.
Annual Review of Neuroscience, 31, 25–46.

20. Bai, K., An, Q., & Yi, Y. (2019). Deep-DFR: A memristive deep delayed feedback reservoir
computing system with hybrid neural network topology. In Proceedings of the 56th annual
design automation conference 2019 (p. 54). ACM.

http://doi.org/10.1016/B978-0-12-391420-0.09987-X
http://doi.org/10.1109/ICCV.2017.97
http://doi.org/10.1103/PhysRevE.59.4498

15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System 563

21. Davies, M., et al. (2021). Advancing neuromorphic computing with Loihi: A survey of results
and outlook. Proceedings of the IEEE.

22. Davies, M., et al. (2018). Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1), 82–99.

23. Orchard, G., et al. (2021). Efficient neuromorphic signal processing with Loihi 2. In 2021 IEEE
workshop on signal processing systems (SiPS) (pp. 254–259). IEEE.

24. Miller, P. (2018). An introductory course in computational neuroscience. MIT Press.
25. Bekolay, T., et al. (2014). Nengo: A Python tool for building large-scale functional brain

models. Frontiers in Neuroinformatics, 7, 48.
26. DiLuoffo, V., Michalson, W. R., & Sunar, B. (2018). Robot Operating System 2: The need for a

holistic security approach to robotic architectures. International Journal of Advanced Robotic
Systems, 15(3), 1729881418770011.

27. Parpart, G. G., et al. (2022). Dictionary learning with accumulator neurons. In ICONS.
28. Yang, J., Wang, L., Wang, Y., & Guo, T. (2017). A novel memristive Hopfield neural

network with application in associative memory. Neurocomputing, 227, 142–148. https://
doi.org/10.1016/j.neucom.2016.07.065

29. Liu, X., Zeng, Z., & Wen, S. (2016). Implementation of memristive neural network with full-
function Pavlov associative memory. IEEE Transactions on Circuits and Systems I: Regular
Papers, 63(9), 1454–1463.

30. Hu, X., Duan, S., Chen, G., & Chen, L. (2017). Modeling affections with memristor-based
associative memory neural networks. Neurocomputing, 223, 129–137. https://doi.org/10.1016/
j.neucom.2016.10.028

31. Moon, K., et al. (2014). Hardware implementation of associative memory characteristics with
analogue-type resistive-switching device. Nanotechnology, 25(49), 495204. https://doi.org/
10.1088/0957-4484/25/49/495204

32. Ziegler, M., et al. (2012). An electronic version of Pavlov’s dog. Advanced Functional
Materials, 22(13), 2744–2749. https://doi.org/10.1002/adfm.201200244

33. Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory
with memristive neural networks. Neural Networks, 23(7), 881–886.

34. An, H., Zhou, Z., & Yi, Y. (2017). Memristor-based 3D neuromorphic computing system and
its application to associative memory learning. In 2017 IEEE 17th International Conference
on Nanotechnology, NANO 2017 (pp. 555–560). New York: IEEE. https://doi.org/10.1109/
NANO.2017.8117459

35. An, H., An, Q., & Yi, Y. (2019). Realizing behavior level associative memory learning through
three-dimensional memristor-based neuromorphic circuits. In IEEE Transactions on Emerging
Topics in Computational Intelligence. New York: IEEE.

http://doi.org/10.1016/j.neucom.2016.07.065
http://doi.org/10.1016/j.neucom.2016.10.028
http://doi.org/10.1088/0957-4484/25/49/495204
http://doi.org/10.1002/adfm.201200244
http://doi.org/10.1109/NANO.2017.8117459

	Preface
	Special thanks to following chapter reviewers:
	Contents
	1 AI-Assisted Circuit Design and Modeling
	1.1 Introduction
	1.2 Traditional IC Design, Modeling, and Their Challenges
	1.3 Brief on Artificial Intelligence and Machine Learning Techniques
	1.3.1 Supervised Learning
	1.3.2 Unsupervised Learning
	1.3.3 Reinforcement Learning

	1.4 AI-Assisted Device Design and Modeling
	1.4.1 Device Characterization and Modeling
	1.4.1.1 Methodology
	1.4.1.2 Training Data Generation
	1.4.1.3 State-of-the-Art Works

	1.4.2 Device Sizing
	1.4.2.1 Problem Statement
	1.4.2.2 State-of-the-Art Works

	1.5 AI-Assisted Circuit Design and Modeling
	1.5.1 Methodology
	1.5.2 State-of-the-Art Works
	1.5.3 Reliability Verification

	1.6 Challenges and Opportunities
	1.7 Conclusion
	1.8 Future Trends
	References

	2 Linking System and Circuit Design by AI Techniques
	2.1 Introduction
	2.1.1 SysMLv2 and SysMD
	2.1.1.1 SysMLv2
	2.1.1.2 SysMD: Bridging the Gap in Systems Modeling

	2.2 Design Capture with SysMLv2
	2.2.1 Abstraction Layers in the AMS Design
	2.2.2 Example Tire Pressure Meter System (TPMS)
	2.2.3 System Modeling and SysMLv2
	2.2.4 Refinement of Requirement Model
	2.2.5 Summary and Conclusion

	2.3 Digital Twin as a Connector Between the Engineer and the System Model
	2.3.1 Description SysMD Model
	2.3.2 Further Processing of the Data
	2.3.3 Summary and Conclusion

	2.4 Knowledge Base
	2.4.1 Motivation
	2.4.2 How to Design Well-Founded Knowledge Bases
	2.4.2.1 Ontology Design Process
	2.4.2.2 Top-Level Ontologies

	2.4.3 An Ontology for Electronic Design: The GENIAL! Basic Ontology (GBO)
	2.4.3.1 Overview
	2.4.3.2 Reasoning and Axiomatization

	2.4.4 Electronic Knowledge Base of Systems, Hardware, and Software
	2.4.5 Summary and Conclusion

	2.5 Knowledge Base Construction with Natural Language Processing
	2.5.1 Introduction
	2.5.2 Background
	2.5.3 Motivation and Approach
	2.5.3.1 Dataset
	2.5.3.2 Bi-LSTM
	2.5.3.3 Relationship Establishment

	2.5.4 Results
	2.5.5 Conclusion

	2.6 SysMD Code Generation with Transformer Neural Network
	2.6.1 Introduction
	2.6.2 Background
	2.6.3 Methodology
	2.6.4 Results and Evaluation
	2.6.5 Conclusion

	2.7 Automotive Electrical System (Boardnet) Application
	2.7.1 Introduction to Automotive Boardnet Design
	2.7.1.1 Evolution of Boardnet Architecture
	2.7.1.2 Requirements and Challenges

	2.7.2 Automotive Electrical System Architectures
	2.7.2.1 Traditional Boardnet Architectures
	2.7.2.2 Disruptive Paradigm Shift
	2.7.2.3 Intelligent Zonal and Centralized Boardnet Concepts

	2.7.3 AI-Enabled Semantic Modeling for Enhanced Integration
	2.7.3.1 Advantages of AI-Driven Boardnet Design
	2.7.3.2 Future Prospects and Challenges
	2.7.3.3 Semantic Model of the Boardnet and Reasoning Application

	2.7.4 Preliminary Conclusions

	2.8 Conclusion
	References

	3 AI-Enabled Efficient Memory Design for Data-Intensive Applications
	3.1 Introduction
	3.2 Background
	3.2.1 Memory in Video Streaming
	3.2.2 Memory in Deep Learning
	3.2.3 Emerging Memory Technologies

	3.3 State of the Art
	3.3.1 Low-Power CMOS Memory Design
	3.3.1.1 CMOS General-Purpose Memory Design
	3.3.1.2 Application-Specific Memory Design

	3.3.2 Low-Power Emerging Memory Design

	3.4 AI-Enabled Low-Power Memory Design Methodology
	3.4.1 AI-Enabled Content-Adaptive Video Memory
	3.4.2 ROI-Aware Low-Power Bit Truncation Memory Design
	3.4.3 AI-enabled Low-Cost Self-Recovery Memory for Videos and Deep Learning

	3.5 Open Research Problems and Potential Solutions
	3.5.1 AI-Based Data Study Perspective
	3.5.2 Hardware Design Perspective
	3.5.3 Application Perspective

	3.6 Conclusion
	References

	4 AI-Enabled Static Timing Analysis at Early Stages of the Digital Design Flow
	4.1 Introduction
	4.2 Static Timing Analysis
	4.3 Related Work
	4.3.1 Non-ML-Based Approaches
	4.3.1.1 Analytical
	4.3.1.2 Macro-Modeling
	4.3.1.3 Polynomial

	4.3.2 ML-Based Approaches
	4.3.2.1 Shallow Methods and Deep Neural Networks
	4.3.2.2 Graph Neural Networks

	4.3.3 Summary

	4.4 Training Data Collection Flow
	4.4.1 An Automated Specification-to-RTL Flow
	4.4.1.1 MetaRTL Structure
	4.4.1.2 Generating Training Circuits

	4.4.2 RTL-to-Gate-Level Flow
	4.4.2.1 Logic Synthesis
	4.4.2.2 Timing Analysis

	4.5 Pin-to-Pin Component Delay and Slew Estimation
	4.5.1 Problem Statement
	4.5.2 Dataset Collection and Feature Selection
	4.5.2.1 Tabular Datasets
	4.5.2.2 Graph Dataset (DS-III)

	4.5.3 Machine Learning Models
	4.5.3.1 MLP-Based Models
	4.5.3.2 GNN-Based Models

	4.5.4 Evaluation Circuits
	4.5.5 Experimental Results
	4.5.5.1 Inference Using MLPs and Dataset I
	4.5.5.2 Inference Using MLPs and Dataset II
	4.5.5.3 Inference Using GNNs and Dataset III

	4.5.6 Summary

	4.6 AI-Enabled Static Timing Analysis
	4.6.1 Problem Statement
	4.6.2 Consolidation of Pin-to-Pin Delay Models
	4.6.2.1 Selection of Training Circuits
	4.6.2.2 Varying Timing Constraints for Training Data
	4.6.2.3 One Model per Component Type

	4.6.3 Static Timing Analysis Flow
	4.6.3.1 Graph Traversal
	4.6.3.2 Forward Pass: AT Propagation
	4.6.3.3 Backward Pass: RAT Propagation and Slack Calculation

	4.6.4 Experimental Results
	4.6.5 Summary

	4.7 Potential Application
	4.7.1 Micro-Architectural Transformations
	4.7.1.1 Multiplexer Trees

	4.7.2 Micro-Architecture Search

	4.8 Summary and Conclusions
	References

	5 Harnessing Graph Learning for Efficient Timing Signoff
	5.1 Introduction
	5.2 Graph Learning-Based Model for Fast and Accurate Interconnect Delay Prediction at Single Corner
	5.2.1 Interconnects in Advanced Process Nodes
	5.2.2 Transformation of RC Networks into Graph Representation
	5.2.3 Customized GNN Model for Interconnect Delay Prediction
	5.2.4 Augmentation with Additional Feature
	5.2.5 Evaluation Results
	5.2.5.1 Experimental Setup
	5.2.5.2 Accuracy Comparison
	5.2.5.3 Error Analysis
	5.2.5.4 Runtime Comparison

	5.2.6 Summary

	5.3 Cross-Corner Signoff Timing Prediction with Learning-Based Approaches
	5.3.1 Prior Cross-Corner Signoff Timing Prediction Approaches
	5.3.2 Overview of Learning-Based Cross-Corner Signoff Timing Framework
	5.3.3 Learning-Based Known RC Corner Selection
	5.3.4 Graph Learning-Based Cross-Corner Interconnect Timing Prediction
	5.3.5 Integration with ECO Flow
	5.3.6 Evaluation Results
	5.3.6.1 Experimental Setup
	5.3.6.2 Interconnect Delay Prediction Accuracy in Sub-10nm
	5.3.6.3 Interconnect Delay Prediction Accuracy in 28nm
	5.3.6.4 Cross-Corner Interconnect Slew and Load Prediction
	5.3.6.5 ECO Runtime Improvement
	5.3.6.6 Known Corner Selection Accuracy

	5.3.7 Summary

	5.4 Conclusions and Outlook
	References

	6 AI-Enabled Placement for 2D and 3D ICs
	6.1 Introduction
	6.1.1 Overview of 2D Placement Problem in VLSI Design
	6.1.2 Role of AI in Placement Algorithms
	6.1.3 Motivation for AI-Enabled Placement

	6.2 Fundamentals of AI Techniques for Placement
	6.2.1 Overview of Machine Learning Algorithms
	6.2.2 Supervised, Unsupervised, and Reinforcement Learning
	6.2.3 Machine Learning Algorithms
	6.2.4 Deep Learning and Convolutional Neural Networks

	6.3 Essentials of Reinforcement Learning (RL)-Based Placement Algorithms
	6.3.1 RL Algorithms for VLSI Placement and Their Classification
	6.3.2 Placement Representations as the Input of RL Policy
	6.3.3 Action as the Output of the RL Policy
	6.3.4 RL Policy for Placement Algorithms

	6.4 AI-Enabled 2D Placement Algorithms
	6.4.1 AI-Based Algorithm Using GPU Acceleration
	6.4.2 AI-Enabled Algorithm for Placement of Macros (Floorplanning)
	6.4.3 AI-Enabled Algorithm for Initial Solution
	6.4.4 AI-Enabled Algorithm for Parameters Tuning
	6.4.5 AI-Enabled Algorithm with PPA Co-optimization
	6.4.6 AI-Enabled Algorithm with Routing Cooperation
	6.4.7 Comparison of AI-Enabled 2D Placement Techniques

	6.5 AI-Enabled 3D Placement Algorithms
	6.5.1 3D Integration Technologies
	6.5.2 3D Placement Problem
	6.5.3 3D Placement Strategies
	6.5.4 Review of 3D Placement Algorithms
	6.5.5 AI-Enabled 3D Placement for Initial Solution
	6.5.6 AI-Enabled 3D Placement Using Parameters Tuning
	6.5.7 3D Placement with PPA Co-optimization
	6.5.8 Comparison of AI-Enabled 3D Placement Techniques

	6.6 How to Design and Characterize RL Components?
	6.6.1 Problem Formulation
	6.6.2 RL Design and Characterization Framework (RLDCF)
	6.6.3 RS3DPlace RL Design Case-Study
	6.6.4 RS3DPlace Policy Model Selection
	6.6.5 Characterization of RS3DPlace Placement Representation
	6.6.6 Characterization of RS3DPlace Action Representation
	6.6.7 Application to 2D Placement Problem

	6.7 Research Challenges
	6.8 Summary
	References

	7 Enhancing FPGA CAD Flow with AI-Powered Solutions
	7.1 What Is FPGA?
	7.2 Overview of the FPGA CAD Flow
	7.3 AI-Powered HDL Generation
	7.3.1 Conventional High-Level Synthesis
	7.3.2 ML-Based Metric Prediction Algorithms in HLS
	7.3.3 ML-Based Design Space Exploration in HLS

	7.4 AI-Powered Logic Synthesis
	7.4.1 Procedure of FPGA Synthesis
	7.4.2 Reinforcement Learning-Based Logic Optimization and Technology Mapping
	7.4.3 Fast and Accurate Synthesis Result Estimation with ML
	7.4.4 ML-Powered Time Convergence in FPGA Synthesis

	7.5 AI-Powered Placement
	7.5.1 Conventional Placement Algorithms
	7.5.2 ML-Based Congestion Estimation
	7.5.3 ML-Based Routability Prediction

	7.6 AI-Powered Routing
	7.6.1 ML-Based Routability Prediction

	References

	8 AI-Enabled 3D Integration
	8.1 Introduction to 3D Integration
	8.1.1 Advantage of 3D Integration Compared to 2D/2.5D IC Packaging Technology
	8.1.2 Types and Architectures of 3D Integration
	8.1.3 Challenges and Opportunity in 3D Integration
	8.1.4 Possibility of AI Application in 3D Integration

	8.2 Artificial Intelligence in 3D Integration
	8.2.1 Introduction to Artificial Intelligence
	8.2.2 AI Techniques and Algorithms for 3D Integration
	8.2.3 Application of AI in 3D Integration

	8.3 AI-Enabled Testing and Quality Assurance in 3D Integration
	8.3.1 AI-Based Testing Approaches and Strategies
	8.3.2 Quality Assurance Technique in 3D Integration
	8.3.3 Case Studies

	8.4 AI-Enhanced Reliability and Failure Analysis in 3D Integration
	8.4.1 Reliability Challenges in 3D Integration
	8.4.2 AI-Based Reliability Prediction and Analysis

	8.5 AI-Driven Manufacturing and Assembly in 3D Integration
	8.5.1 AI-Based Manufacturing Process in 3D Integration
	8.5.2 Assembly Techniques and Optimization with AI
	8.5.3 Robotics and Automation in 3D Integration

	8.6 Future Directions and Emerging Trends
	8.6.1 Promising Trends and Technologies
	8.6.2 Research Challenges and Opportunities
	8.6.3 Ethical Challenges and Implications
	8.6.4 Privacy and Security Concerns
	8.6.5 AI-Driven 3D Integration in Industry

	8.7 Summary
	References

	9 AI-Enabled Hardware Security
	9.1 Introduction
	9.2 AI-Enabled Side-Channel Analysis
	9.2.1 Workflow
	9.2.2 Sketching the Classic Approach
	9.2.2.1 CMOS Technology
	9.2.2.2 Example Implementation
	9.2.2.3 Leakage Model
	9.2.2.4 Feature Engineering and Countermeasures
	9.2.2.5 Leakage Exploitation

	9.2.3 Machine-Learning-Based Approaches
	9.2.3.1 Leakage Detection and Leakage Assessment
	9.2.3.2 Leakage Exploitation Using ML

	9.2.4 Summary

	9.3 Hardware Reverse Engineering
	9.3.1 Digital Circuits Reverse Engineering
	9.3.2 Hardware Trojan Detection
	9.3.3 Recycled FPGA Detection
	9.3.4 Outlook and Discussion

	9.4 AI-Enabled Analysis of Physical Unclonable Functions
	9.4.1 Physical Unclonable Functions
	9.4.2 Attacks
	9.4.3 Attack-Resistant Lockdown Protocols
	9.4.3.1 Definition and Notation
	9.4.3.2 Lockdown Protocol I
	9.4.3.3 Lockdown Protocol II

	9.4.4 Outlook and Discussion

	9.5 Conclusion
	References

	10 On AI-Enabled Cybersecurity: Zero-Day Malware Detection
	10.1 Security Vulnerabilities
	10.2 Malware Attacks
	10.2.1 Get Familiar with Malware Types
	10.2.1.1 Virus
	10.2.1.2 Worm
	10.2.1.3 Trojans
	10.2.1.4 Spyware
	10.2.1.5 Adware
	10.2.1.6 Ransomware
	10.2.1.7 Rootkit
	10.2.1.8 Botnet
	10.2.1.9 Backdoor

	10.2.2 Unknown (Zero-Day) Malware Attacks

	10.3 Malware Detection Techniques
	10.3.1 Signature-Based Malware Detection
	10.3.2 Behavior-Based Malware Detection

	10.4 Machine Learning Algorithms
	10.4.1 Classical Machine Learning
	10.4.2 Deep Learning
	10.4.2.1 Multilayer Perceptron
	10.4.2.2 Convolutional Neural Network
	10.4.2.3 Recurrent Neural Network
	10.4.2.4 Large Language Models and Transformers

	10.5 Machine Learning-Enabled Malware Detection
	10.5.1 Process of ML-Enabled Malware Detection Approach
	10.5.2 ML-Based Malware Detection in Windows Systems Using Strings Extracted from PE Files
	10.5.3 Android Malware Detection Using Machine Learning and a Hybrid Feature Analysis Approach
	10.5.4 Arm-Based IoT Malware Detection Using Byte Sequences from ELF Files
	10.5.5 ML Performance Evaluation Metrics

	10.6 Image-Based Zero-Day Malware Detection Using Deep Transfer Learning
	10.6.1 Dataset Characteristics
	10.6.2 Threat Model: Zero-Day Malware Detection
	10.6.3 Feature Engineering
	10.6.3.1 Feature Engineering Workflow
	10.6.3.2 Feature Normalization
	10.6.3.3 Feature Importance Analysis
	10.6.3.4 Feature Correlations Analysis
	10.6.3.5 Feature Selection

	10.6.4 Standard ML-Based Malware Detectors
	10.6.5 Advanced Framework: Image-Based Deep Transfer Learning-Enabled Method: Deep-HMD
	10.6.5.1 Transfer Learning Approach
	10.6.5.2 Embedding Tabular Data to Images
	10.6.5.3 Training and Testing of ML Detector

	10.6.6 Experimental Results and Evaluation

	10.7 Conclusion
	References

	11 Machine Learning Applications and Attacks Using Side Channel Analysis
	11.1 Introduction
	11.2 Machine Learning Overview
	11.2.1 Supervised Machine Learning
	11.2.2 Unsupervised Machine Learning
	11.2.3 Deep Learning Concepts

	11.3 Side Channel Attacks
	11.3.1 Power and EM Analysis
	11.3.1.1 Simple Power Analysis
	11.3.1.2 Differential Power Analysis
	11.3.1.3 Correlation Power Analysis

	11.3.2 ML Attacks on Power and EM
	11.3.3 Direct Memory Access (DMA) as a Side Channel Attack
	11.3.4 ML Attacks on DMA

	11.4 Side Channel Attacks on ML Models
	11.5 Novel AI-Based Countermeasures
	11.6 Side Channel Attacks for Post-quantum Cryptography
	11.7 Conclusion
	References

	12 Adapt and Defend: Reinforcement Learning for Hardware-Assisted Security
	12.1 Malware Detection Techniques: Background and Taxonomy
	12.1.1 Misuse-Based Malware Detection
	12.1.2 Anomaly-Based Malware Detection

	12.2 Hardware-Assisted Cybersecurity: ML-Enabled Malware Detection Using Hardware Features
	12.3 ML-Assisted Malware Detection: Overview and Procedure
	12.4 Feature Engineering: Analysis of Key Features
	12.4.1 Correlation Attribute Evaluation (CAE)
	12.4.2 Principal Component Analysis (PCA)
	12.4.3 Gain Ratio Evaluation (GRE)
	12.4.4 Fisher Score (FS)
	12.4.4.1 Comparative Analysis of Feature Selection Techniques

	12.5 Machine-Learning-Based Self-adaptive System
	12.6 Reinforcement Learning: An Overview
	12.7 Reinforcement Learning Agents
	12.7.1 Multiarmed Bandit: Upper Confidence Bound
	12.7.2 Temporal-Difference Learning: Q-Learning
	12.7.3 Value Approximation Method: Dueling DQN
	12.7.4 Policy Gradient Method: Advantage Actor Critic

	12.8 Reinforcement Learning Environment
	12.8.1 OpenAI's RL Environment

	12.9 Adaptive RL-Guided Framework for Hardware-Assisted Security
	12.9.1 Dataset and Hardware Monitoring
	12.9.2 Methodology
	12.9.2.1 Feature Engineering
	12.9.2.2 Threat Model
	12.9.2.3 Training Phase
	12.9.2.4 RL Environment
	12.9.2.5 RL Agents
	12.9.2.6 Online Inference

	12.9.3 Experimental Results and Evaluation
	12.9.3.1 Effectiveness Analysis of Feature Fusion
	12.9.3.2 Base ML-Based Malware Detectors
	12.9.3.3 RL-Guided Self-adaptive Framework Evaluation: Learning Performance
	12.9.3.4 RL-Guided Self-adaptive Framework Evaluation: Accumulated Rewards for Zero-Day Test
	12.9.3.5 RL-Guided Self-adaptive Framework Evaluation: Performance vs. Cost-Efficiency Analysis Against State-of-the-Art ML Models
	12.9.3.6 RL-Guided Self-adaptive Framework Evaluation: Inference Overhead

	12.10 Conclusion
	References

	13 Machine Learning-Enhanced Analysis and Design for Trustworthy Integrated Circuits
	13.1 Introduction
	13.2 Design-Time Methods and Tools: Circuit Obfuscation
	13.2.1 ML-Assisted Attacks on Logic Locking (Fig. 13.2)
	13.2.1.1 Oracle-Based Attacks
	13.2.1.2 Oracle-Less Attacks

	13.2.2 Defenses Against ML-Assisted Attacks on Logic Locking
	13.2.3 Discussion and Future Directions

	13.3 Test-Based Methods and Tools
	13.3.1 ML-Enhanced Hardware Trojan Detection (Table 13.1)
	13.3.2 Discussion and Future Directions

	13.4 ML-Enhanced Vulnerability Identification
	13.4.1 Hardware Fuzzing
	13.4.1.1 Traditional Fuzzing
	13.4.1.2 Integrating ML into Fuzzing
	13.4.1.3 Discussion and Future Directions

	13.4.2 IC Reverse Engineering
	13.4.2.1 ML-Enhanced IC Reverse Engineering
	13.4.2.2 Discussion and Future Directions

	13.5 IC Identifiers
	13.5.1 Physical Unclonable Function
	13.5.2 ML-Based Attacks on PUF (Table 13.2)
	13.5.3 Defenses Countering ML-Based Attacks on PUF
	13.5.4 Discussion and Future Directions

	13.6 Conclusion
	References

	14 Hardware Accelerators for Artificial Intelligence
	14.1 Introduction to Hardware Accelerators for AI
	14.1.1 Overview of AI Advancements and Impacts
	14.1.2 AI Hardware Accelerators: Overcoming Traditional Limits

	14.2 AI Algorithms and Their Hardware Implementation
	14.2.1 Overview of Key AI Algorithms
	14.2.2 Case Studies of Hardware Accelerator for AI
	14.2.3 Comparative Analysis of Different Hardware Solutions for AI

	14.3 AI Hardware Accelerator Architectures
	14.3.1 NeuFlow Architecture
	14.3.2 The DianNao Series
	14.3.3 The Neural Processing Unit (NPU)
	14.3.4 RENO Architecture
	14.3.5 Neurocube Architecture
	14.3.6 PRIME: ReRAM-Based Processing-in-Memory Architecture
	14.3.7 Tensor Processing Unit (TPU)
	14.3.8 Eyeriss v2 Architecture
	14.3.9 RLC Compressed Form Architecture (CompAct)

	14.4 Design Considerations and Optimization Technique
	14.4.1 Design Considerations
	14.4.2 Optimization Techniques
	14.4.2.1 Architectural Optimization Techniques
	14.4.2.2 Emerging Technologies
	14.4.2.3 Impact of Optimization Techniques

	14.5 Applications and Future
	14.5.1 Revolutionizing Industries
	14.5.2 The Future of Hardware Accelerator

	14.6 -10pt
	References

	15 Implementation of Associative Learning Using Cognitive-Inspired Robotic System
	15.1 Introduction
	15.2 Background
	15.2.1 Neuromorphic Computing
	15.2.2 Associative Learning

	15.3 Fear Conditioning with Cognitive-Inspired Robots
	15.3.1 Simulation and Preliminary Testing
	15.3.1.1 Experimental Validation
	15.3.1.2 Locally Competitive Algorithm

	15.4 Conclusion
	References

	16 Enabling Memory-Augmented Neural Networks for Efficient Edge Applications
	16.1 Introduction
	16.2 Background
	16.2.1 Challenges and Optimization Techniques of Deploying Neural Networks on Edge Devices
	16.2.2 Posit Number System
	16.2.3 Quantization, Posit, and MANNs

	16.3 Memory-Augmented Neural Networks
	16.3.1 MANN Structure
	16.3.2 KV-MANN Structure
	16.3.3 Comparative Analysis and Challenges of MANN

	16.4 MANN Model Pruning
	16.4.1 A2P-MANN Method

	16.5 Posit MANN
	16.6 A2P-MANN and Posit MANN Evaluations
	16.6.1 Models and Datasets of the Study
	16.6.2 A2P-MANN Evaluation
	16.6.3 Partial Posit MANN Evaluation
	16.6.4 Full Posit MANN Evaluation

	16.7 Conclusion
	References

	Index

