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Abstract

Deep neural networks (DNNs) have achieved remarkable success in various cogni-
tive tasks through training on extensive labeled datasets. However, the heavy reliance
on these datasets poses challenges for DNNs in scenarios with energy constraints in
particular scenarios, such as on the moon. On the contrary, animals exhibit a self-
learning capability by interacting with their surroundings and memorizing concurrent
events without annotated data—a process known as associative learning. A classic
example of associative learning is when a rat memorizes desired and undesired stimuli
while exploring a T-maze. The successful implementation of associative learning aims to
replicate the self-learning mechanisms observed in animals, addressing challenges in
data-constrained environments. While current implementations of associative learning
are predominantly small scale and offline, this work pioneers associative learning in a
robot equipped with a neuromorphic chip, specifically for online learning in a T-maze.
The system successfully replicates classic associative learning observed in rodents, using
neuromorphic robots as substitutes for rodents. The neuromorphic robot autonomously
learns the cause-and-effect relationship between audio and visual stimuli.

Keywords: associative learning, Hebbian learning, neuromorphic computing,
neuromorphic robot, neuromorphic chip

1. Introduction

Deep neural networks (DNNs) have demonstrated remarkable success across var-
ious cognitive tasks [1], primarily attributed to their training on extensive datasets.
DNNs refine their accuracy during training by comparing predictions against labeled
data and adjusting their weights through backpropagation algorithms. Generally,
larger datasets and more intricate neural networks yield superior accuracy [1, 2],
leading to a continual push for larger datasets and more complex architectures [1–5].
However, the increasing size of DNNs and dependence on labeled datasets bring
significant challenges, including high power consumption, data scarcity, and limited
flexibility in autonomous operations. These challenges render DNNs less ideal for
applications with stringent size, weight, and power (SWaP) constraints [1, 2], such as
planetary rovers that demand high adaptability and autonomy with minimal human
oversight in energy-limited and communication-restricted environments [2].
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To mitigate these issues, we aim to enhance the autonomous capabilities of intelli-
gent robots by mimicking animal associative learning through neuromorphic systems.
These systems provide a more energy-efficient approach to artificial intelligence by
replicating brain functions. Associative learning, a prevalent self-learning mechanism
in animals, allows them to adapt to their environment by remembering concurrent
events through interaction [6–8]. A quintessential example of this learning process is
seen in rodents navigating a T-maze, where they learn to associate specific stimuli
with positive or negative outcomes through repeated exposures. For instance, one arm
of the maze might lead to a reward like food, while the other might offer no reward or
a mild aversive stimulus. This associative learning process can similarly empower
robots to link information and experiences, enabling them to autonomously navigate
and adapt in dynamic environments, such as those encountered on Mars.

Several studies have investigated associative learning [7, 9–15] but often face
limitations such as small-scale neural networks, a preference for simulations over real-
world experiments, and a lack of real-world robotic deployment for testing [11–15].
To address these limitations, we have taken a novel approach. We developed a large-
scale associative learning system using a neuromorphic chip (the Xylo chip) and
deployed it on a mobile robot for online learning through real-world interactions. This
successful implementation of associative learning in a real-world robotic deployment
reassures the practicality of our research. The robot, mimicking rodents in a T-maze,
learns by associating audio and visual signals as conditional and unconditional stimuli.

Our research marks a significant advancement in artificial intelligence and robotics.
By implementing classical T-maze associative learning on a mobile robot in real-world
settings, we have not only enhanced our understanding of associative learning but also
paved the way for developing more efficient and adaptable robots. The integration of
the Xylo chip withmobile robots has notably improved their signal processing speed and
energy efficiency, making them more viable for practical applications. This work
inspires us to imagine a future where robots can navigate and adapt in dynamic envi-
ronments, such as those encountered on Mars, with minimal human intervention. The
improved signal processing speed and energy efficiency of robots integrated with the
Xylo chip should make us all feel optimistic about the future of robotics.

In our experiments, the red color input is an unconditional and aversive stimulus,
while audio signals function as conditional and neutral stimuli. The neuromorphic
robot learns to avoid the arm presenting the red color in the T-maze, with distinct
neural assemblies processing the color and auditory signals.

This chapter’s contributions are as follows:

1.Replicating the classical rodent associative learning paradigm in a T-maze in real
time, both in simulations and experimental settings.

2. Implementing a neural assembly designed as a decision-making component and
applying it to the associative learning paradigm in the T-maze.

2. Background of rodents’ associative learning in T-maze

The T-maze paradigm is a pivotal tool in the study of associative learning in rodents,
particularly rats, which holds significant importance. It offers profound insights into
spatial navigation and memory processes. The experimental setup, featuring a T-shaped
maze with distinct arms and a decision point, presents a unique challenge to the rats,
compelling them to navigate and make choices based on spatial cues.
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Initially, rats display exploratory behavior, moving through the maze without a
specific preference for either arm. As the experiments progress, their behavior
changes markedly. Through repeated trials, the rats begin to form associations
between particular stimuli or cues in the arms and the outcomes of their choices. This
learning process becomes evident as the rats consistently favor one arm, driven by the
expectation of a positive reward, such as food.

The adaptability of rats in T-maze experiments is a testament to the dynamic
nature of associative learning. These rodents demonstrate remarkable cognitive flexi-
bility, adjusting their arm choices in response to changing spatial cues or new stimuli.
For instance, when the location of the reward is altered, rats undergo a learning phase
to realign their choices with the new reward location, showcasing their ability to adapt
to new contingencies.

The neural mechanisms driving associative learning in the T-maze are intricate and
complex, involving a web of interactions within the rat’s brain. Key brain regions
involved in memory, spatial navigation, and reward processing play crucial roles. The
T-maze paradigm serves as an invaluable tool for delving into the fundamental prin-
ciples of cognitive processes and behavior in mammals, casting light on the underlying
neural circuitry and its adaptability.

3. Associative learning with neuromorphic robots

Our associative learning system, with its two distinct signal pathways for
processing auditory and visual inputs, as illustrated in Figure 1, has the potential to
revolutionize the field. This configuration empowers the neuromorphic robot to han-
dle auditory and visual stimuli simultaneously, thereby greatly improving its learning
efficiency.

The auditory pathway is a key component of our system, which captures and
decodes sound cues and enables the robot to interpret and learn from auditory signals
in its environment. Meanwhile, the visual pathway processes visual data and allows
the robot to identify and respond to visual stimuli essential for associative learning.
Integrating these pathways enriches the robot’s cognitive abilities, facilitating a deeper
understanding of the cause-and-effect relationships between auditory and visual
inputs.

3.1 Audio and visual perception using a neuromorphic system

Figure 2(a) depicts the architecture of the audio perception neural network.
Auditory data is imported into 16 channels via a microphone, aligning with the
capabilities of the Xylo chip, as shown in Figure 2(b). For this study, we focused on a

Figure 1.
Overall associative learning implementation.
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Figure 2.
(a) Audio perception neural network architecture. (b) Preprocessing module of Xylo neuromorphic chip. (c)
XyloA2TestBoard for audio command detector model deployment.

subset of commands, specifically “left” and “right”. The auditory data was
reorganized by transforming events into frames. Figure 2(c) illustrates the Xylo
neuromorphic chip processing audio perception.

The network architecture consists of an input layer with 16 channels, processed
through a hidden layer containing 20 neurons. The final output layer produces 3 units.
The simulations operate with a timestep of 10 milliseconds.

The input data was structured into tensors to seamlessly integrate with our model,
enabling the generation of visual representations for the “left” and “right” audio
commands. Figures 3 and 4 illustrate the spiking signals for the “left” and “right”
commands processed by the Xylo neuromorphic chips. The spiking neural networks
(SNNs) underwent training for 17,500 epochs. Utilizing the Adam optimizer with a
learning rate 1e-5, the model achieved a 92.

3.2 Power usage of Xylo neuromorphic chip

During the deployment of our trained SNNs on the Xylo neuromorphic chip,
power consumption emerged as a crucial metric for assessing the system’s efficiency
in processing “left” and “right” audio commands. Table 1 shows that the Logic
component is the highest power consumer, drawing 1844.26 mW. The IO circuitry
and the analog front-end (AFE) IO components consume 213.94 and 230.98 mW,
respectively. Importantly, the Logic AFE component has high efficiency and
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Figure 3.
Spike events for a left audio command.

Figure 4.
Spike events for a down-sampled right audio command data.
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Component Power consumption (mW)

IO circuitry 213.94

Logic AFE 17.96

IO AFE 230.98

Logic 1844.26

Table 1.
Power consumption of Xylo neuromorphic chip.

consumption of only 17.96 mW, which provides reassurance about the chip’s perfor-
mance. These metrics underscore the feasibility and operational efficiency of
implementing the associative learning system on the Xylo neuromorphic chip.

4. Simulations and experiments for associative learning in a T-maze using
neuromorphic robot

In our system, detecting the red color is an unconditioned stimulus, while the
audio command is a conditioned stimulus. When the robot detects the red color
ahead, it stops and reverses direction, mimicking a rat’s fear response. Figure 5 depicts
the experimental setup with our neuromorphic robot, and Figure 6 illustrates the T-
maze simulation and experimental scenarios. We developed specialized neuron
models that convert audio commands and color data into spike signals to enable the
robot to replicate a fear-conditioned response. Additionally, specific motion neurons
are designed to control the robot’s movements. These neurons are adaptations of the
classic leaky integrate-and-fire (LIF) neurons, defined by the following equation:

Cm
dVm

dt
= Cm

τRC
EL − Vm( ) +  A× Iapp, (1)

Figure 5.
Experimental setup of a mobile robot and Xylo neuromorphic chip.
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Figure 6.
Replicating Associative Learning in a T-Maze: Simulation and Experimental Exploration with a Neuromorphic
Robot. (a) Gazebo simulation depicting the T-maze for robot navigation. (b) Detection of red color (US) input at
position B. (c) The robot will learn to stop and turn to the arm with no red color presented. (d) The actual
experimental setup of T-maze. (e) Detection of red color (US) input at position B in actual T-maze. (f) The robot
will learn to stop and turn to the arm with no red color presented.

Neuron parameters τRC τref Vreset V(  ) Vth V(  ) Gain (A)

Color neuron 0.02 0.002 0.5 1.0 1.5

Command neuron 0.03 0.02 −0.5 0.9 1

Movement neuron 0.04 0.002 0.1 0.8 1

Table 2.
LIF neuron parameters.

Where A denotes the input signal gain, is the membrane RC time constant,
defines the membrane capacitance, and is the membrane potential leak potential
(Table 2).

Table 2 lists the parameter values of the LIF neurons, which have been computed
and refined to ensure they produce the desired experimental results. The gain and bias
of the color-detecting neuron were determined empirically, ensuring it fires when
detecting red stimuli but remains inactive for other colors.

The command neuron and LIF neurons calculate their gains and bias experimen-
tally. The command neuron fires only when the aggregate output from the audio
feature neurons is sufficiently high. The movement neuron fires whenever it receives
continuous input spikes from the command or color neurons. The firing activations of
these neurons are shown in Figures 7–10, respectively.

The XyloMonitor deployment tool facilitated real-time robot navigation via audio
commands. This tool processes live audio inputs specifically in the “left” and “right”
directions and predicts the robot’s intended direction. The XyloMonitor is configured
to capture and process audio commands, with a brief waiting period mandated for the
analog front-end (AFE) autocalibration, ensuring optimal and consistent audio data
acquisition.
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Figure 7.
Command neuron firing activity. (a) Membrane potential of command neuron (b) spiking activity of command
neuron.

Figure 8.
Color neuron firing activity. (a) Membrane potential of color neuron (b) spiking activity of color neuron.

Figure 9.
Output membrane potentials and neuromorphic Xylo chip synaptic currents.
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Figure 10.
Movement neuron firing activity. (a)Membrane potential of movement neuron (b) spiking activity of movement neuron.

Hebbian learning is utilized to adjust synaptic weights based on the principle that
simultaneous activation of pre- and postsynaptic neurons strengthens their connec-
tion. The equation governing synaptic weight changes describes this adjustment. To
manage variations in command delivery, such as differing volumes or distances from
the microphone, the sensitivity of the audio capture system is increased using
XyloMonitor, ensuring clear and accurate command recognition.

The Xylo neuromorphic chip processes incoming audio signals within a 250-milli-
second time frame. The neuron’s membrane potential, which indicates the received
audio signal, determines the intended direction. If the membrane potential suggests
“left,” the robot turns left; if it suggests “right,” the robot turns right. After
processing, the determined direction is conveyed to the robot, directing its
movement.

Figure 9 presents the membrane potential of audio neurons and the resulting
synaptic currents on the Xylo neuromorphic chip in response to left and right audio
commands.

Upon receiving a “left” or “right” command prediction from the Xylo
neuromorphic chip, an additional neural network is deployed to control the robot’s
movement in the specified direction. This network includes ten LIF neurons
specifically designed to ensure the robot steers accurately left or right.

The LIF neuron model is characterized by two key parameters: the membrane time
constant and the refractory period. The refractory period is minimized to allow for
rapid neuron firing following an output spike, enhancing the responsiveness of the
robot’s movements. Synaptic weights of the neurons are shown in Table 3.

The network receives a constant input, which generates a specific firing pattern
when processed through the neurons with assigned synaptic weights. This pattern
results in a mean firing probability, crucial for determining the robot’s movement
direction within the decision-making process. If the firing probability surpasses a
threshold of 0.5, the neuromorphic robot turns left; if it falls below this threshold,
then it turns right.

Specific synaptic weights and neuron properties are fixed to ensure the
neuromorphic robot consistently turns left with a mean firing probability of 0.9. The
following figure illustrates the firing probability of LIF neurons over time for the left
turn. Neuron property are shown in Table 4.
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Neuron index Synaptic weights from input to neurons Synaptic weights from neurons to output

1 45.0 9.0

2 −27.0 −18.0

3 72.0 27.0

4 −9.0 −36.0

5 63.0 45.0

6 −54.0 54.0

7 18.0 −63.0

8 81.0 72.0

9 −63.0 −81.0

10 9.0 9.0

Table 3.
Synaptic weights of the neurons for a left turn.

Parameter Value

Membrane time constant 0.02

Refractory period 0.001

Seed 42

Table 4.
Neuron property for left turn.

Specific synaptic weights and neuron properties are established to guarantee
that the neuromorphic robot consistently turns right with a mean firing probability of
0.2. Table 5 illustrates the firing probability of LIF neurons over time for the right
turn.

Neuron index Synaptic weights from input to neurons Synaptic weights from neurons to output

1 2.9 0.9

2 −0.5 −0.4

3 3.7 0.8

4 −0.3 −0.6

5 3.0 0.7

6 −0.6 0.8

7 0.8 −0.9

8 3.8 0.7

9 −0.7 −1.1

10 2.8 0.6

Table 5.
Synaptic weights of right-turning neurons.
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Figure 11.
Results of our associative learning.

The system’s performance hinges on the pre- and postsynaptic neurons’ learning
and firing rates. In our experiment, the learning rate is set at 1e-4. Figure 11 show-
cases the outcomes of our associative learning process.

Initially, the movement and audio command neurons (CS) possess low synaptic
weights, preventing the movement neuron from responding to “left” and “right”
auditory commands, resulting in no turns within the T-maze. Over time, associative
learning updates the synaptic weights between the movement and audio command
neurons. As a result, the movement neuron fires when the color-detection neuron
detects red (US) through the camera. The activation of both command detection and
movement neurons in response to combined color and audio stimuli strengthens the
synaptic weights in the conditional signal pathway. Figure 11 shows that the simulta-
neous application of red color and audio command stimuli enhances synaptic weights,
though initially limited overlap leads to only moderate increases.

Insufficient overlap during the initial phase means that audio commands alone
cannot trigger the movement neuron, as illustrated in Figure 11. However, with a
more extended overlap period in the subsequent phase, there is a more significant
increase in synaptic weights. Consequently, even without the red color input, the
movement neuron will respond to auditory stimuli (“left” or “right” commands),
demonstrating successful associative learning.

We replicated rat’s associative learning experiments using a T-maze to evaluate
and validate our associative learning system. Figure 6 depicts both the simulation and
experimental setups of our T-maze. In these setups, the red color functions as an
unconditioned stimulus, while the audio commands act as conditioned stimuli.

Initially, the robot starts moving forward from the starting chamber, designated as
position A and proceeds to the turning point, marked as position B. Upon reaching
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position B, the robot receives a “left” or “right” command and turns 90 degrees accord-
ingly, moving into the corresponding arm of the T-maze, as shown in Figure 6(a).

In our simulation, the red color is assigned as an aversive stimulus. The robot
responds to this unpleasant stimulus by turning away from the red color and heading
toward the arm without the red color.

During associative learning, the robot initially moves from position A to B,
encountering simultaneous turning commands and red color stimuli. The color-
detection neuron fires in response to red, prompting the robot to choose the arm
without the red color, as depicted in Figure 6(b). During this phase, synaptic weights
between the audio signal and movement neurons increase due to the concurrent audio
and color spikes.

After 2–3 trials, the neuromorphic robot strengthens the synaptic connections
related to the red color and audio commands, effectively memorizing the association.
Consequently, even without the red color, the robot will move toward the “safe” arm
it memorized—the arm without the red stimulus. Figure 6(c) shows that when the
robot reaches position B, it stops, reverses 180 degrees to the right, and proceeds into
the arm it has learned to identify as “safe”. The real-world T-maze experiments mirror
this associative learning process, as Figure 6(d–f) illustrates.

Δw = η xy− βwy2
( )

, (2)

Where η is the learning rate, x is the firing rate of the presynaptic neuron, y is the
firing rate of the postsynaptic neuron, β is a constant that determines the strength of
the normalization, and w is the current synaptic weight.

Parameter Value

Membrane time constant 0.02

Refractory period 0.002

Seed 42

Table 6.
Neuron property for right turn.

Neuron Task Learning methods Validation

[12] 6 N/A N/A Simulation

[13] 3 N/A N/A Simulation

[14] 5 N/A N/A Simulation

[11] 3 N/A N/A Simulation

[16] 3 N/A N/A Simulation

[17] 3 N/A N/A Simulation

[9] 20 N/A Pretraining Simulation

[18, 19] 1419 Fear conditioning No pretraining Experiment

This work 259 Spatial learning and memory Self-learning Simulation & Experiment

Table 7.
Synaptic weights of right-turning neurons.
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The term serves as a mechanism to prevent weights from growing without bounds.
It functions as a subtractive normalization, adjusting the scale of weight changes based
on the weight’s size and the postsynaptic activity. This approach helps maintain
stability and control in learning, ensuring synaptic weights do not undergo
uncontrolled growth. Table 6 shows the results of the associative memory learning
result. Then we make the comparison of scale and association capability with other
works in Table 7.

5. Conclusion

This study presents the implementation of rodent-like associative learning in a T-
maze using neuromorphic robots. By integrating the Xylo neuromorphic chip into a
mobile robot, our system replicates the classic T-maze experiments observed in
rodents. The robot learns to associate the red color (unconditioned stimulus) with
audio commands (conditioned stimulus) through Hebbian learning and LIF neurons.
Our findings demonstrate real-time associative learning, highlighting potential
applications for autonomous robots operating in energy-constrained and adaptive
environments.
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