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Abstract

We propose a simple modification procedure that helps to compare
the levels and powers for conservative multiplier bootstrap tests. It is
especially useful for simulation studies where empirical levels are zero. We
provide a theoretical justification and illustrate the use of the procedure
in a recent class of multiplier bootstrap tests for quantile regression and
in a recent class of high-dimensional tests for MANOVA.
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1 Introduction

Bootstrap was introduced by Efron (1979). Since then, it has been widely
applied in many settings where the explicit limit distribution is either unknown
or intractable.

Multiplier bootstrap tests have received a renewed attention in the literature
with the works of Chernozhukov et al. (2012, 2014, 2017) and several applica-
tions to testing in the high-dimensional setting when the dimension grows ex-
ponentially with the sample size; see for example Chen (2018), Chen and Zhou
(2020), and Chakraborty and Sakhanenko (2023).

In practice on simulated and real datasets, these tests often suffer from be-
ing too conservative (their levels are below the nominal level) and their power
tends to be on the lower side when the dimension is very large compared to the
sample size. For example, as studied in Pan and Zhou (2021) the multiplier boot-
strap tests for quantile regression based on both exponential and Rademacher
weights had very low levels and rather mediocre power under dense alternative
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across all considered distributions. As another motivating example, we consider
the multiplier test for MANOVA, which was recently proposed and studied in
Chakraborty and Sakhanenko (2023). This test was very conservative and had
moderate power under some distributions such as t.

Statisticians customarily perform simulation studies in which each setup
is repeated independently M times, while each m-th run consists of using a

random sample (X
(m)
1 , . . . , X

(m)
n ) from the setup to obtain a test statistic value

T
(m)
n and to construct a series of bootstrapped versions of the test statistic

T
(m)
n,e that also incorporate many independent samples (say 10K) of multipliers

(e
(k,m)
1 , . . . , e

(k,m)
n ), k = 1, . . . , 10K, which in turn produce the quantiles Q

(m)
n

that are used for the test. Then the proportion of values T
(m)
n that are, say

larger, than Q
(m)
n gives an empirical size or empirical power of the test according

to the underlying hypothesis. When an empirical size is consistently smaller
than the nominal size α a test is called conservative. Statisticians prefer tests
that have empirical sizes close to the nominal and powers that are close to 1.

In this work we explore what happens if one would take all Q
(m)
n ,m =

1, . . . ,M, quantiles and create a super-quantile, say Q∗
n, and then use it to

estimate the empirical size and the empirical power of the test from the same

datasets (X
(m)
1 , . . . , X

(m)
n ),m = 1, . . . ,M . Since the data are becoming more

abundant and it is becoming cheap to obtain repeated measurements in real-life
experiments, this is still a widely encountered situation.

In Section 2 we show theoretically that using selected Q∗
n for conservative

multiplier bootstrap tests improves the empirical size and empirical power. We
also illustrate our theoretical findings with a simulation study in Section 3. We
draw conclusions and raise new questions in Section 4.

2 Theoretical underpinnings

2.1 Test on an average

Let us start with a toy scenario. Let (X1, . . . , Xn) be i.i.d. random vari-
ables with unknown mean µ and variance σ2 > 0. For ease of presentation,
consider a classical problem of testing for a specific mean H0 : µ = µ0 and
consider a one-sided alternative HA : µ > µ0. The test statistic is the em-
pirical mean Tn = n−1

∑n
i=1 Xi. Consider a multiplier bootstrap for the lim-

iting distribution of Tn. To this end, define Tn,e = n−1
∑n

i=1 ei(Xi − Tn),
where (e1, . . . , en) is a random sample of multipliers from the standard nor-
mal distribution independent of (X1, . . . , Xn). The conditional distribution

of Tn,e given (X1, . . . , Xn) is normal with mean zero and variance (n−1)
n

S2

n ,
where S2 = (n − 1)−1

∑n
i=1(Xi − Tn)

2. Introduce the 100(1 − α)-th quantile

Qn(α) of the conditional distribution. Naturally, Qn(α) =
√

n−1
n

S√
n
zα, where

P (Z > zα) = α for a standard normal variable Z. In practice, we use Q̂n(α),
which is the empirical quantile of an empirical bootstrap distribution based on
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the large number, say 10K, of repetitions of the multiplier samples.
Let Z = Tn−µ

S/
√
n
. Its distribution is asymptotically close to the Student t with

n − 1 degrees of freedom, and it has the standard normal limiting distribution
under the usual moment assumptions. Therefore, the size of the test is

P (Tn > µ0 +Qn(α)|µ = µ0) = P

(
Z >

√
n− 1

n
zα

)
and the power is as follows for some ∆ ̸= 0

P (Tn > µ0 +Qn(α)|µ = µ0 +∆) = P

(
Z > −

√
n∆

S
+

√
n− 1

n
zα

)
.

Now considerM independent random samples (X
(m)
1 , . . . , X

(m)
n ),m = 1, . . . ,M

from the same distribution. For each sample, obtain T
(m)
n and Q

(m)
n (α). Con-

sider empirical p-values defined as follows

1

M

M∑
k=1

I(T (k)
n > Q(m)

n (α)) = p(m).

Perform the classical Benjamini and Hochberg’s procedure (1995) to control
the false discovery rate (FDR) at the level α. That is order the p-values, say
p1 ≤ · · · ≤ pM and then find the largest i for which pi ≤ i

M α. Since the
empirical cumulative distribution function is non-decreasing, it is equivalent to
finding the largest i for which

M∑
k=1

I(T (k)
n > Q̃(M−i+1)

n ) ≤ iα,

where Q̃
(1)
n ≤ · · · ≤ Q̃

(M)
n are the ordered quantiles. Then we define the super-

quantile Q∗
n(α) as Q̃

(i)
n for the best i from the FDR procedure. If the FDR

procedure fails to find such index i then take Q̃
(1)
n , which is the smallest of all

quantiles Q
(m)
n (α),m = 1, . . . ,M .

Consider a test that rejects H0 if T
(m)
n > Q∗

n(α). Then the size of this test
is

P

(
Z >

√
n− 1

n

S∗

S(m)
zα|(X(m)

1 , . . . , X(m)
n )

)
,

while the power of this test is

P

(
Z > −

√
n∆

S(m)
+

√
n− 1

n

S∗

S(m)
zα|(X(m)

1 , . . . , X(m)
n )

)
.

Obviously, to improve the size one would like to choose Q∗
n(α) and therefore

the corresponding S∗ such that
√

n−1
n

S∗

S(m) is close to 1. However, if one would
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like to improve the power, one would like the smallest
√

n−1
n

S∗

S(m) , which would

come from the smallest Q
(m)
n . This balance is achieved by the combination of

FDR procedure and taking the smallest of quantiles Q
(m)
n (α).

On the event {S∗ ̸= S(m)} denote b := S(m) − S∗, then the improved size is

α̂n = P

(
Z >

√
n− 1

n

S(m) − b

S(m)
zα|(X(m)

1 , . . . , X(m)
n )

)
= P (Z >

√
n− 1

n
zα)

+
M − 1

M
P

(
Z ∈

[√
n− 1

n
zα −

√
n− 1

n

b

S(m)
zα,

√
n− 1

n
zα

]
|(X(m)

1 , . . . , X(m)
n )

)
,

where the first term is the size of the original test, say αn. Similarly, the power
of the new test, say p̂n is equal to the power of the original test pn plus the
following

M − 1

M
P

(
Z ∈

[
−

√
n∆

S(m)
−

√
n− 1

n

b

S(m)
zα,−

√
n∆

S(m)
+

√
n− 1

n
zα

]
|(X(m)

1 , . . . , X(m)
n )

)
Consider the asymptotical behavior of α̂n and p̂n when b → 0+ in probability.
Using calculus, we derive

α̂n = αn +
M − 1

M

√
n− 1

n

b

S(m)
zα/fn−1(

√
n− 1

n
zα)(1 + o(1))

p̂n = pn +
M − 1

M

√
n− 1

n

b

S(m)
zαfn−1(−

√
n∆

S(m)
+

√
n− 1

n
zα),

where

fn−1(u) =
Γ(n/2)

Γ((n− 1)/2)
√

π(n− 1)
(1 + u2/(n− 1))−n/2, u ∈ R.

Using Taylor series for the function (1 + u2/(n− 1))−n/2 and Stirling’s approx-
imation Γ(m) ≈

√
2πmm+0.5e−m we obtain as n → ∞

α̂n = α+
M − 1

M

√
1

2π

b

σ
zαe

−0.5z2
α(1 + o(1))

and

p̂n = pn +
M − 1

M

√
1

2π

b

σ
z2α

√
n∆

S(m)
(1 + o(1)).

Note that the power improvement for a conservative test would be
√
n∆

S(m)
zαe

0.5z2
α(α̂n − αn),

where ∆ is getting close to 0 for local alternatives. The gain in power could be
useful and substantive.
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2.2 General setting

Now consider a more general setting with a generic null hypothesis H0. Let
(X1, . . . , Xn) be i.i.d. random vectors in Rd. Let a test statistic be defined as

Tn = max
θ∈Θ

n∑
i=1

Φ(Xi; θ)

and let its bootstrapped version be defined as

T e
n = max

θ∈Θ

n∑
i=1

eiΦ(Xi; θ),

where θ ∈ Θ represents a set of tuning parameters such as the index j =
1, . . . , d; e1, . . . , en are i.i.d. multipliers independent of (X1, . . . , Xn) from a
known distribution with mean 0 and variance 1, such as standard normal. Then
a multiplier bootstrap test rejects H0 at the significance level α ∈ (0, 1) if

Tn ≥ Qn(α) := inf{u ∈ R : Pe(T
e
n ≤ u) ≥ 1− α}.

These tests are especially useful for symmetry testing and various hypothesis
about the shape of the distribution when a parametric bootstrap does not work.
See Kosorok (2008).

Now considerM independent random samples (X
(m)
1 , . . . , X

(m)
n ),m = 1, . . . ,M

from the same distribution. For each sample, obtain T
(m)
n and Q

(m)
n (α). Define

the super-quantile Q∗
n(α) according to the following procedure.

1. Compute empirical p-values defined as follows

1

M

M∑
k=1

I(T (k)
n > Q(m)

n ) = p(m).

2. Order the p-values, say p1 ≤ · · · ≤ pM .

3. Find the largest i for which pi ≤ i
M α. If such 1 ≤ i ≤ M exists, take the

corresponding quantile as Q∗
n(α), else Q∗

n(α) := minm=1,...,M Q
(m)
n (α).

Now consider a test that rejects H0 if Tn ≥ Q∗
n(α). By the construction as

n → ∞ and M → ∞ we have

P (Tn ≥ Q∗
n(α)) ≥ P (Tn ≥ Q(m)

n (α)).

Asymptotically, the FDR procedure would fail to find index i and the super-

quantile would be the smallest of the quantiles Q
(m)
n (α). For a moderately large

M one might wonder how would the FDR procedure play out. Note that the
event p1 ≤ α is equivalent to asking for a binomial random variable B with
parameters (M,α) to satisfy B ≤ α, which is equivalent to event {B = 0}.
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Thus, this would happen in simulations with probability (1 − α)M , which is
rather small. Similarly, this situation would continue for p2, p3, . . . , p[1/α], where
[u] stands for the largest integer that is smaller than u. Then the next event
p[1/α]+1 ≤ ([1/α] + 1)α is equivalent to {B = 0, 1}, which would happen in
simulations with probability (1 − α)M + M(1 − α)M−1α, which is still rather
small. And so on, until we reach the last event pM ≤ Mα, which is equivalent
to {B ≤ Mα}. Using a normal approximation to the binomial distribution,
this event has a probability of about 0.5. However, these binomial calculations
are done separately, so we ignore that the conditions in step 3 of the FDR
procedure are nested. So, it is quite unlikely that the FDR procedure here

would give something different than minm=1,...,M Q
(m)
n (α) unless the original

test is conservative and actually attains the level α0 << α. Then in all those
probabilities we would replace α with α0 while still checking step 3 with pi ≤ iα.
Then for medium size M and very small α0 these probabilities are not close to 0

and FDR procedure would yield a quantile different from minm=1,...,M Q
(m)
n (α),

which is what we will observe in the simulation study next.

3 Simulation study

To illustrate the proposed improvement for multiplier bootstrap tests, we con-
sider two examples that recently appeared in the literature.

3.1 Multiplier bootstrap for a quantile regression

Consider the problem of testing the null hypothesis H0 : β∗
j = 0, j = 1, . . . , d

for the regression model Yi = ⟨xi, β
∗⟩+ σ(xi)εi, i = 1, . . . , n, where xi ∈ Rd, i =

1, . . . , n, and εi ∈ R, i = 1, . . . , n, are independent. The later random variables
are centered.

Pan and Zhou (2021) introduced and studied multiplier bootstrap tests based
on Rademacher weights and exponential weights. They used the loss function

Ln(β) :=
1

n

n∑
i=1

(Yi − ⟨xi, β
∗⟩)[0.5− I(Yi − ⟨xi, β

∗⟩ < 0)]

to construct the test statistic as

Tn = Ln(0)− min
β∈Rd

Ln(β).

For i.i.d. random weights wi, i = 1, . . . , n, the bootstrapped loss function

Lb
n(β) :=

1

n

n∑
i=1

wi(Yi − ⟨xi, β
∗⟩)[0.5− I(Yi − ⟨xi, β

∗⟩ < 0)]

was then used to construct the bootstrapped test statistic

T b
n = Lb

n(β̂)− Lb
n(β̂

b), β̂ = argminβ∈RdLn(β), β̂
b = argminβ∈RdLb

n(β).
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Then their test rejected H0 at the significance level α ∈ (0, 1) if

Tn > inf{r ∈ R : P (T b
n > r|(Yi, xi), i = 1, . . . , n) ≤ α}.

We took their setup for the simulation study and considered a homoscedastic
model

Yi = ⟨xi, β
∗⟩+ εi, i = 1, . . . , n,

and a heteroscedastic model

Yi = ⟨xi, β
∗⟩+ 2 expxi1

1 + exp{xi1}
εi, i = 1, . . . , n,

with errors εi coming from the t distribution with 2 degrees of freedom or
one of 2 normal mixtures. The normal mixture of type I was defined as εi =
az1 + (1 − a)z2, where a is a Bernoulli random variable with probability 0.5
independent of 2 independent random normal variables z1 ∼ N(−1, 1) and
z2 ∼ N(1, 1). The normal mixture of type II was based on a Bernoulli random
variable a with probability 0.9 independent of 2 independent random normal
variables z1 ∼ N(0, 1) and z2 ∼ N(0, 52).

Pan and Zhou (2021) also used 3 different random designs for xi ∼ N(0,Σ),
which we also consider. The independent design used Σ = Id, while weakly cor-
related design generated the off-diagonal components of the covariance matrix
σjk = 0.5|j−k|(σjjσkk)

1/2 from the diagonal components σjj ∼ U(0.5, 1), which
were distributed independently. The equally correlated design generated off di-
agonal components as σjk = 0.5(σjjσkk)

1/2 from the same sample of diagonal
components that were independent and uniformly distributed on [0.5, 1].

Just as Pan and Zhou (2021) we use two sets of bootstrap weights: expo-
nential ones produce the test mb-exp and Rademacher ones produce the test
mb-Rad. The names were introduced in Pan and Zhou (2021).

We used n = 200, d = 15, 1K bootstrap samples and repeated each scenario
M = 300 times to obtain empirical levels and empirical powers for the mb-
exp and mb-Rad tests in Pan and Zhou (2021). Two alternatives were used:
sparse HA with β∗

1 = 0.5 while the rest of βs are zero and dense HA with
β∗
j = 0.1, j = 1, . . . , 10 while the rest of βs are zero.
We then applied our procedure to those M bootstrapped samples of the test

statistics and the bootstrapped quantiles T
(m)
n , Q

(m)
n ,m = 1, . . . ,M, to obtain

improved levels and powers. The results are reported in Table 1.
The levels and the powers are consistently above those obtained via multi-

plier tests by Pan and Zhou (2021). In some cases the power improvement is
as dramatic as going from .21 to .813 (homoscedastic model with errors from
normal mixture of type II under independent normal design for sparse alterna-
tive). In other cases the improvement makes the test worthwhile as in the case
of dense alternative under a model with errors from a normal mixture of type
II.
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3.2 Multiplier bootstrap tests for high-dimensional data
for MANOVA

Consider the classical problem of testing the hypotheses

H0 : µ1 = · · · = µK vs HA : otherwise,

where there areK independent groups of random vectors Vk,i ∈ Rp, i = 1, . . . , n, k =
1, . . . ,K, drawn from K populations with unknown means µ1, . . . , µK ∈ Rp.

For the i-th vector in the k-th group Vk,i, its components are denoted by
[Vk,i]q, q = 1, . . . , p. For ultra-high dimension p Chakraborty and Sakhanenko
(2023) proposed a multiplier bootstrap approach. Their test statistic was given
by

Tn = max
l=1,...,L

max
j=1,...,d

n−1/2
n∑

i=1

K∑
k=1

p∑
q=1

A
(l)
j(q+(k−1)p)[Vk,i]q,

where the matrices A(l), l = 1, . . . , L, satisfied some sparsity and null hypothesis
conditions.

Chakraborty and Sakhanenko (2023) then proposed the bootstrapped test
statistics as follows

T e
n = max

l=1,...,L
max

j=1,...,d
n−1/2

n∑
i=1

K∑
k=1

p∑
q=1

A
(l)
j(q+(k−1)p)ei[Vk,i − V̄k]q,

where the vector (e1, . . . , en) of iid N(0, 1) random variables is independent of
all Vk,i. Then their test rejected H0 at the significance level α ∈ (0, 1) if

Tn > Qα := inf{u ∈ R : P (T e
n ≤ u|Vk,i, i = 1, . . . , n, k = 1, . . . ,K) ≥ 1− α.

We consider the same setup as what they used in the simulation study.
K = 4 and Vt,i = µt+ΓZt,i, t = 1, 2, 3, 4; i = 1, . . . , nt, where Zt,i were generated
from one of 3 models. The case of underlying t4 distribution of Vk,i was quite
challenging in their simulation study. Let us apply the proposed improvement
scheme to this case and to their test example reported in their Table 1 for their

test T
(2)
n , which is based on 5-diagonal matrices A(l).

The sample sizes were n1 = (25, 30, 40, 50), n2 = (50, 60, 80, 100), and n3 =
(100, 120, 160, 200), while for the the dimension of the data we picked p = 500
and p = 1000. They considered covariance matrix (1 − ρ)Ip + ρJp, where Ip
stands for the identity p × p matrix and Jp denotes p × p matrix of ones. The
parameter ρ took values 0.1, 0.5, 0.9. They also considered the covariance of
the form 0.6|i−j|, i, j,= 1, . . . , p, denoted by ρ =NA. We report the levels and
powers in Table 2.

Based on the Table 2 the super-quantile test has levels that are closer to
the nominal and much better powers than the original test. The best gains in
level happen where the original test had levels close to 0 such as ρ = NA and
ρ = 0.1 cases, corresponding to a non-linear covariance structure and almost a
spherical covariance structure, respectively. The gains in level and power are
somewhat moderate for the case of ρ = 0.9 when the covariance matrix is close
to a singular matrix Jp.
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Table 2: Comparative performance for original test and super-quantile test, the
numbers for the later are given in brackets. The nominal test level is 0.05.
p ρ n1 size n1 power n2 size n2 power n3 size n3 power

500 .1 .007(.049) .122(.413) .016(.046) .271(.507) .025(.048) .254(.402)
.5 .027(.047) .122(.308) .029(.053) .191(.338) .029(.050) .164(.251)
.9 .037(.062) .163(.338) .054(.054) .005(.335) .043(.054) .161(.233)
NA .001(.047) .005(.059) .012(.028) .018(.403) .002(.026) .190(.315)

1000 .1 .004(.031) .082(.342) .006(.048) .165(.384) .024(.054) .290(.488)
.5 .020(.051) .097(.252) .024(.048) .113(.255) .034(.051) .155(.268)
.9 .041(.073) .155(.307) .042(.065) .146(.258) .042(.056) .154(.233)
NA .003(.009) .031(.220) .008(.045) .088(.278) .010(.047) .165(.324)

3.3 Comparison of the (n,M) study with the (n′,M ′) study
while nM = n′M ′

In this section we would check using Example 1 setup what happens if we split
the data differently. Indeed, overall we use nM data points for the study when
we compute a super-quantile. What if we would use less repetitions M ′ < M
and larger samples n′ > n while keeping nM = n′M ′? Maybe the original test
would do great with n′ and would beat the proposed test based on a super-
quantile. This question is at the heart of the most obvious criticism of the
proposed approach.

To investigate this question we consider nM = 300n split onto M ′ = 100
and n′ = 3n. The results are summarized in Table 3. The levels are too close
to call, since M ′ = 100 with α = 0.01. The powers of the super-quantile test
are significantly higher for the dense alternative for all the cases except equally
correlated design where they are almost the same. The powers of the super-
quantile test are significantly higher for sparse alternative when errors come from
a balanced normal mixture (type I) and the design is independent or equally
correlated (with a homogeneous model). When errors are from unbalanced
normal mixture (type II) or t distribution, the powers of the super-quantile
test are significantly higher under sparse alternative for all the scenarios except
independent design for heterogeneous model. In all the other cases (13 out of
36), both tests have similar powers.

Using the same amount of total data (nM) the super-quantile test is a valu-
able option to employ and would get to a correct rejection more often than a
typical bootstrap multiplier test. So in real applications, one might consider
splitting the dataset with n,M = 1 into a few M ′ > 1 smaller samples with
n′M ′ = n and running super-quantile test. This could be quite attractive for
large n datasets. Finally, there is no cost of generating multiplier random sam-
ples compared to costs collecting real data.
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4 Summary and discussion

We propose a procedure that modifies levels and powers of conservative multi-
plier bootstrap tests. The procedure harnesses bootstrap quantiles from several
independent random samples from the same setting to create a super- quantile
by using FDR control and minimization. It works naturally in simulation stud-
ies. There this procedure can be employed for a more meaningful comparison
of conservative tests. One can compare improved levels against improved levels
and improved powers against improved powers as opposed to looking at zero
empirical levels for both tests.

In one extreme, it would require M rather than 1 random sample for any
real application, which is not a severe constraint given the abundance of data
in the current era of data science. Alternatively, one can split the original data
but generate more random samples of multipliers to perform the modification
and obtain meaningful empirical levels for conservative tests.
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