A Simulation for Supply Chains Contract
Execution

Long Tran', Tran Cao Son', Dylan Flynn?, and Marcello Balduccini?

! New Mexico State University
2 Saint Joseph’s University

Abstract. Supply chains exhibit complex dynamics and intricate de-
pendencies among their components, whose understanding is crucial for
addressing the challenges highlighted by recent global disruptions. This
paper presents a novel multi-agent system designed to simulate sup-
ply chains, linking reasoning about dynamic domains and multi-agent
systems to reasoning about the high-level primitives of the NIST CPS
Framework. Our approach synthesizes existing research on supply chain
formalization and integrates these insights with multi-agent techniques,
employing a declarative approach to model interactions and dependen-
cies. The simulation framework models a set of autonomous agents within
a partially observable environment, and whose interactions are dictated
by contracts. The system dynamically reconciles agents’ actions, assess-
ing their feasibility and consequences. Based on the state of the domain,
the simulation framework also draws conclusions about the high-level no-
tions of requirements and concerns of the NIST CPS Framework, which
provide a uniform and domain-agnostic vocabulary for the understanding
of such complex systems as supply chains.

Keywords: Answer Set Programming, Dynamic Domains, Multi-Agent Sys-
tems, MAS Simulation, Contract Formalization, Supply Chains

1 Introduction

Recent global events have underscored the paramount importance of supply
chains’ resilience, significantly testing their robustness and responsiveness. Op-
timized historically for cost, efficiency, and speed, supply chains are inherently
brittle when facing sudden shifts in demand or supply interruptions. The inter-
dependencies within these complex networks pose significant challenges not only
in terms of logistics and operational management but also to simply understand
them and how they are impacted by disruptions.

Building on our previous work on formalizing supply chains and the under-
lying contracts [7], this paper introduces a simulation of the dynamics of supply
that relies on a view of the supply chain as a multi-agent system. Central to
our approach is the use of formal contracts, which define the obligations and
interactions between agents within the simulation environment.

2 L. Tran et al.

Our simulation integrates an additional knowledge layer based on the Na-
tional Institute of Standards and Technology’s Cyber-Physical Systems (NIST
CPS) Framework [6]. The CPS Framework makes it possible to link the low-
level view of contracts to the high-level aspects of stakeholders’ requirements
and concerns about the supply chain as a whole. By integrating a multi-agent
simulation with the structured approach of the NIST CPS Framework, we aim
to capture the nuanced interplay of contractual obligations, agent behaviors,
and their ramifications on the supply chain, providing insights into the potential
points of failure and enabling strategies to improve resilience.

The agents and the simulation environment are modeled using declarative
techniques through Answer Set Programming (ASP) [9]. This approach allows
for a clear specification of the logic governing agent behaviors and their contrac-
tual interactions. This paper presents not only the theoretical underpinnings of
our simulation model but also a practical use case that illustrates its potential.
Through these simulations, stakeholders can better understand the critical de-
pendencies within their supply chains, evaluate the robustness of contractual
arrangements, and explore strategies to enhance overall resilience.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the formalization of dynamic domains, of supply chain contracts, and
of our approach to reasoning about supply chains through the lens of the CPS
Framework. In Section 3, we describe the architecture of our multi-agent simula-
tion framework. Section 4 presents a case study built on real-world supply chain
information. We conclude the paper with a summary of our contributions.

2 Background

In this section, we review action language B, the CPS ontology and reasoner,
and the language for contract specification.

Action Language B. We use the action language B to model the effects of
actions on the state of the domain. B was chosen since it allows for the specifi-
cation of state constraints, which play an important role in our application. An
action domain in the action language B [8] is defined over two disjoint sets, a
set of actions A and a set of fluents F. A fluent literal is either a fluent f € F
or its negation —f. A fluent formula is a propositional formula constructed from
fluent literals. An action domain is a set of laws of the following form:

Ezecutability condition: executable a if ¢ (1)
Dynamic law: a causes ¢ if ¢ (2)
Static Causal Law: 1 if ¢ (3)

where 1 and ¢ are sets of fluent literals, representing their conjunctions,® and
a is an action. Intuitively, an executability condition of the form (1) states that

3 In general, ¥ and ¢ can be fluent formulas. For the purpose of this paper, it suffices
that conjunctions are considered.

A Simulation for Supply Chains Contract Execution 3

a can only be executed if ¢ holds. (2), referred to as a dynamic causal law,
states that 1 is caused to be true after the execution of a in any state of the
world where ¢ is true. (3) represents a static causal law, i.e., a relationship
between fluents. It conveys that whenever the fluent formula ¢ holds then so
is 1. Intuitively, an action domain specifies a transition system between states,
which are interpretations of the set of fluents and satisfy the static causal laws.
This transition system can be described by a transition function @ that maps
pairs of actions and states into sets of states. Given a state s and an action a,
®(a, s) is the set of possible states that can be reached after the execution of a
in s. Due to the lack of space, we omit the precise description of @ and refer the
readers to [§].

A trajectory over an action domain D is an alternate sequence of states and
actions a = spagpSi . ..an_15n, Where s;’s are states and a;’s are actions and
Si+1 € Pp(a,, s;) for every i = 0,...,n — 1. We say that n is the length of o and
so is the starting state of a.. Furthermore, o satisfies a fluent formula ¢ over the
set of fluents F, denoted by « = ¢, if s,, satisfies ¢.

CPS Ontology and Reasoner. An important challenge with supply chains is
that stakeholders of varying backgrounds may use different terminology when
discussing a supply chain and likely have different, possibly even conflicting,
goals. As a “common foundation”, in this paper we adopt the view of a supply
chain as a large, complex CPS and leverage the NIST CPS Framework as a
lens through which we can look at a supply chain. By design, the scope of the
CPS Framework is very broad so that it may be adopted by a broad range of
applications.

The CPS Framework provides the taxonomy and methodology for designing,
building, and assuring CPS that meet the expectations and concerns of system
stakeholders, including engineers, users, and the community that benefits from
the system’s functions. The concerns of the Framework are represented in a
forest, where branching corresponds to the decomposition of concerns. We refer
to each tree as a concern tree of the CPS Framework. The concerns at the
roots of this forest are called aspects. Associated with each concern is a set of
requirements that address the concern in question. For a concern to be satisfied,
all linked requirements must be satisfied. The dependencies among concerns
and between requirements and concerns can be formally represented by means
of an ontology. Leveraging the ontology, tasks related to reasoning about the
satisfaction of concerns can be reduced to: (a) identifying which requirements
are satisfied in the current state of the system and which ones are not, and (b)
propagating this information up the concern forest, ultimately determining the
satisfaction of the aspects. For details on this approach, we refer the interested
reader to [15]. For the purpose of this paper, it is sufficient to mention the
existence of algorithms for determining whether a requirement or concern =y is
satisfied given the ontology O and a state s (written O U s |=).

Contracts Between Agents. L., proposed in [7], is a language for representing
and reasoning about contracts. In this language, each contract has two parts. The
public part is shared between parties of the contract and includes the clauses that

4 L. Tran et al.

they agree. The private part is internal to each party and details the concerns
of the party which are related to the contract.

Given two agents A and B. Assume that D4 and Dpg are the action domain
of A and B, respectively, i.e., D, (z € {A, B}) encodes the set of fluents that
agent x is aware of and the actions which x can execute. We assume that A and
B use the same language in encoding the fluents, i.e., a property shared between
A and B will have the same representation in D4 and Dg. The public part of a
contract between A and B over D4 and Dpg consists of clauses of the form:

ref id: agent responsible for goal when time_expression (4)

where

— ref 4d is an identifier of the clause;

— agent € {A, B},

— goal is a fluent formula constructed over fluents appearing in D4 U Dpg; and

— time__expression is a formula representing a time constraint of one the fol-
lowing forms:

always | eventually | per _unit[n...m] | by unitn (5)

where unit can be any time unit such as day, week, etc., n and m are integers,
n < m, and [n...m] denotes the range [n,n+1,...,m].

Given the public part of a contract C' between A and B, the private part of
C for either agent A or B is represented by statements of the form

ref id: p (6)

where ref id is a reference identifier and p is a requirement. It is assumed that
the ontology O associates each requirement with one or more concerns (of the
agent) from the concern forest defined in the CPS Framework, or any customized
concern forest specific to the agent. Formally, a contract C between two agents A
and B constructed over two actions domains D4 and Dp is a triple (C, P4, Pg)
where

— C is a set of clauses of the form (4); and
— P4 (resp. Pp) is a set of statements of the form (6) for A (resp. B).

Here, (C, P4) or (C, Pg) is the contract under A or B’s perspective, respectively,
and it will be used by A or B to evaluate the progress of the contract. Observe
that A (resp., B) does not necessarily know about Pp (resp., Pa).

Given a contract C = (C, P4, Pp) between two agents A and B. The se-
mantics of L. is defined over pairs of trajectories over D4 and Dp of the form
(Ha, Hp). Without the loss of generality, we will assume that H4 and Hp have
the same length.

Given D4 and Dp, a joint state s over D4 and Dp (or, joint state, for short)
is an interpretation over the set of fluents in D4 U Dpg that is closed with respect
to the set of static causal laws in D4 U Dp. For a joint state s over Dy U Dp,

A Simulation for Supply Chains Contract Execution 5

by s4 (or sg) we denote the restriction of s over the fluents in D4 (or Dp),
respectively. Obviously, s4 (sp) is a state in D4 (Dp). The truth value of a
formula ¢ over the language of D4 U Dp in a joint state s is defined as usual.

In the following, we say that Ha = sj\a ... s jaft_ 52 over Da and Hp =

sBal ... sB_1aB s over Dp, are compatible if s UsP is a joint state for every
1=0,...,n.
The satisfaction of a clause is defined next. Given two compatible trajectories
_ A A A A A _ BB B B B ;
Hy = sgafy .. .s5_1a4,_185 in Dy and Hp = sgag ... S,_1a,_15, in Dp, a

clause
ref id: x responsible for ¢ when time_exp

is satisfied by (Ha, Hp), denoted by (Ha, Hg) |= ref _id, if

— (is true in every s; = sf‘ UsB fori =0,...,n when time_exp is always; or

— @ is truein s; = sf U sP for some i = 0,...,n when time_exp is eventual;
or

— pistruein s; = sAUsP for i = u,...,l when time expis per unit [u...l];
or

— pis true in s = s U sP when time_exp is by _unit k.

We say that ref id is violated by (Ha, Hp) if (Ha, Hp) = ref id. Building on
the above definition, the satisfaction of a contract is defined as follows.

Definition 1. Given two compatible trajectories Ha = si'ai ... s a2 si in
D and Hp = sFaf ... sB a2 |sB in Dp and a contract (C, Pa, Pg) between
A and B, we say that C is satisfied by (Ha, Hg) if every clause in C is satisfied

by (HAaHB)‘

Definition 1 allows for the reasoning about the satisfaction of the public part
of a contract. The satisfaction of the private part of a contract with respect an
ontology O is defined next.

Definition 2. Given two compatible trajectories Hy = siaf ...so a2 s in

D and Hp = sfalf ... sB a2 |sB in Dp and a contract (C, Pa, Pg) between
A and B. Let X € {A, B} and s(Px) = {reg | ref _id:reg € Px}. We say that
a concern ¢ of agent X is satisfied by (Ha, Hp) if OU s(Px) [c.

3 A Distributed Multi-Agent Simulator

The overall architecture of our system is given in Figure 1. Two main compo-
nents of the system are the environment simulator and the CPS server (cps).
These components are answer set programs and will be described in detail in the
following subsections. The environment simulator, henceforth referred as simply
the simulator, is responsible for maintaining the global state of the world and
executing the actions sent from the agents, which result in changes in the global
state of the world, and informing the agents about the changes that are local to
the agents. Each agent is responsible for the fulfillment of its parts within his
contracts, and thus, needs to take actions that are required for the satisfaction
of their contracts.

6 L. Tran et al.

Both the environment simulator and
the agent program utilize the code for
R ! reasoning about actions and change
and planning similar to the code de-
scribed in [12,17]. This code defines
the predicate hold/2 where hold(f,)

ENVIRONMENT
& CPS SERVER

; L

indicates that f is true at time step

Agent Agent t. The initial state is encoded with
a collection of atoms of the form

Fig. 1. System Architecture hold(f,0). Rules for checking the ex-

ecutability condition of action or cal-
culating the effects of an action at a time step ¢ are defined as usual. Atoms
encoding action occurrences for the simulator are of the form occurs(id,a,t)
which says that agent id executes action a at step t. The code for the simulator
is available on GitHub at github.com/ltran1612/Research_CPS_SupplyChain.

Communications. We used publish/subscribe architecture to facilitate the
communications between agents and the environment. We observe that there
is no direct communication between agents. However, this can be easily added.
This is an architecture where each entity sends and receives messages by topics
[16]. Communications are implemented using the MQTT protocol, a lightweight
publish /subscribe messaging protocol [19]. The components in this architecture
are [16]: one or more entities that communicate with each other; and a pub-
lish/subscribe broker, i.e. a middle-man server handling the communications
between the entities.

The implementation of this architecture in our system included an environ-
ment, agents (each with a unique ID), and a publish/subscribe broker (Figure 2).
The publish/subscribe broker is a Mosquitto MQTT broker. We used Python
to implement the agents and the environment with the “paho-mqtt” package for
MQTT communications. Communication between an agent and the environment
relies on two topics: “env/AgentID” for the agent to send information to the en-
vironment, and “for/AgentID” for the environment to send information to the
agent.

Environment Simulator. The environment simulator consists of two main
parts: the controller and the reasoning engine. The controller is responsible for
all the communication between the environment and the agents (e.g., receiving
actions that agents execute, informing agents about the changes in the local state
of agents). It also maintains the trajectories of the state of the environment. The
reasoning engine is a logic program that takes a state (of the environment) and a
set of actions and determines whether the actions can be executed, i.e., they are
a part of compatible trajectories. In this case, the reasoning engine computes the
state of the world. The environment simulator works with the global domain,
denoted by D..,,, which is the union of domains of all agents. The main portion
of the code of the reasoning engine is for computing the effects of a set of actions
on a state of the environment and is similar to the code for computing a plan
in [12,17]. The key difference is the code only refer to two type steps, 0 and 1,

https://github.com/ltran1612/Research_CPS_SupplyChain
github.com/ltran1612/Research_CPS_SupplyChain

A Simulation for Supply Chains Contract Execution 7

send information from subscribed topics—“ rsend information from subscribed topics
L

Publish/Subscriber
17 Broker

publish to topics

subscribe to topics publish to topics
* subscribe to topics 1
h &
Agent *J
Agent 1D 1{—— Environment

Fig. 2. The communication architecture of the system.

representing the current and the next time step. This portion of code is omitted
here for brevity. Some of the rules are detailed in Section 4.

Because agents can execute their actions in parallel, we need to check for
conflicts that may arise due to incompatible actions executed in parallel by
different agents. We say that a set of actions X in D.,, is incompatible in a
state s if one of the following conditions holds:

— X contains two actions a and b whose preconditions are ¢, and ¢y, respec-
tively, as specified by the laws (1), and s & @4 A ©p; Or

— X contains two actions a and b and there exists some fluent literal £ and two
dynamic laws of the form (2) such that a causes/if 1), and bcauses —¢if i)y
belong to Dy, and s | ¥, A p.

The conditions are captured by: (some rules are omitted to save space)

incompatible(A1,A,A2,B):- action(Al,A,_), action(A2,B,_), Al!=A2,
precondition(Al, A, S1), member(L1l, S1),
precondition(A2, B, S2), member(L2, S2),
conflict(L1l, L2).

:- occurs(Al, A, T), occurs(A2, B, T), A1!=A2,
incompatible(A1,A,A2,B).

where conflict(L,L’) is true when L and L’ are contradictory?,
incompatible(Al, A, A2, B) means that Al’s and A2’s actions are incompatible,
and the final constraint prevents incompatible actions from occurring.

Agent Program. Each agent program consists of the following components:
the action domain, the set of rules for reasoning about concerns of the agent,
the set of rules for reasoning about the agent’s actions as well as planning, and

4 The predicate conflict(L,L’) can be defined for domains with static causal laws. In
our case study, we need to deal with numeric fluents and thus will need some rules
preventing a fluent be assigned two different values at the same time by different
actions.

8 L. Tran et al.

a controller. The controller is responsible for the communication of the agent
with the environment. It registers the agent with the environment. In the first
iteration, the controller sends the domain of the agent to the environment. It will
then compute a plan to achieve the agent’s objectives. In each iteration, it sends
an action of the agent to the environment and waits for the information about the
local state from the environment. It will then decide whether it should generate
a new plan or continue with the execution of the old plan. The controller’s
pseudocode is given in Algorithm 1. The set of rules for reasoning about the
agent’s actions and planning is similar to the code for planning as described in
[12,17] and is omitted for brevity.

Algorithm 1 Overall Behavior of the Agent Program
Require: agent ID, action domain, set of contracts
registers ID with environment and wait for acknowledgement
sends the action domain to the environment and wait for acknowledgement
step =0
generate a plan p for the set of contracts
while true do
send p[step] (the step-th action of p) to environment
wait for response (locals — the local state) from the environment
if locals # | then > all actions were executed successfully
update the current state with locals
step = step + 1

else > some action cannot be executed
generate a new plan p for the agent
step =0 > resetting
end if

end while

Besides disallowing the execution of incompatible actions because some ac-
tions, the simulator can also disrupt the execution of a supply chain by randomly
disallowing the execution of some action. This forces the agents, whose actions
are not executed, to replan with the new local state.

4 Case Study: Supply Chain Simulation

As a case study, we leveraged a dataset developed by the Observatory of Eco-
nomic Complexity (OEC, https://oec.world/en), an organization that collects
and analyzes international trade data. The dataset contains data about inter-
national imports and exports, from which we extracted part of an automotive
supply chain.

The scenario involves 8 agents with 7 contracts containing a total of 21
clauses, 8 supply chain requirements, and 5 concerns. The agents and their con-
tracts are depicted in Figure 3. For example, the ‘Car Producer’, denoted by x,

https://oec.world/en

A Simulation for Supply Chains Contract Execution 9

Car Producer
(X)
K1 I K6
| k8 |
|
Speedy Auto Precision Sonic
Part (A) Engine (P) Electronics (E)
T K2 PT'
Supplier of Speedy Supplier of Soni
Auto Part (As) Meta Craft (M) Elootranics (E2)
K‘S
Supplier of
Meta Craft (Ms)

Fig. 3. The agents and their contracts (K1-K7) in OEC.

has contract K1 with the ‘Speed Auto Part’ (A), who in turn has contract K4
with the ‘Supplier of Speed Auto Part’ (As), etc. The contracts between A and
x and A and As specify three clauses that A is responsible for:

Cl: A responsible_for produced(vehicle_parts, 9K) when by_week 4
C2: A responsible_for delivered(vehicle_parts, 9K) when by_week 4
C12: A responsible_for payment(tool_parts, 30K) when by_week 4

C1 and C2 belong to K1 and C12 belongs to K4. C1, for example, says that A is

responsible for producing and delivering 9,000 vehicle parts to x by week 4.
The private parts of C1 and C2 (for agent A) maps these clauses to various

requirements, which in turn address concerns of the CPS ontology:

Cl: material-safe-for-production

Cl: product-sufficiently-durable

Cl: on-time-production

C2: on-time-delivery
addressedBy("cpsf:Material_Safe_For_Production", "C1i").
addressedBy("cpsf:Product_Sufficiently_Durable", "C1i").
addressedBy("cpsf:0n_Time_Production", "C1").
addressedBy("cpsf:0n_Time_Delivery", "C2").

C1 addresses there requirements: safe material for production, sufficient durable
product, and on time delivery. The requirements and concerns in this scenario
are depicted in Figure 4.

In this scenario, each agent can perform 4 types of actions: produce, deliver,
pay, and receive. Furthermore, each agent keeps track of:

1. The total amount of payments and items sent/delivered/received.

10 L. Tran et al.

Received_On_Schedule Pure_Material
/—{ Material_Safe_For_Production
: /

‘addresses

addresses addresses ~addresses
ﬁ addresses
@ -

addresses

addresses
On_Time_Payment
addresses

K_) Product_Sufficiently_Durable

addresses

" addresses [
On_Time_Production dtesiss
Meets_Fuel_Efficiency_Requirements
'On_Time_Delivery

Fig. 4. Requirements (squares) and related concerns (ovals) for the OEC supply chain.

2. The individual payments and amounts of items sent/delivered /received.
3. The available amounts of specific items.
4. The available amount of funds.

The corresponding domains are encoded using a template. For example, ac-
tion pay from A and related fluents are specified by rules including:

produce_item(speedy_auto_parts, vehicle_parts).
deliver_item(speedy_auto_parts, car_producer, vehicle_parts).
recv_item(speedy_auto_parts,
supplier_of_speedy_auto_parts, tool_parts, 3..5).
action(Agent, pay, (ToAgent, Reason, Amount)) :- number (Amount),
paying_reason(Agent, ToAgent, Reason).
causes (Agent, pay, Value, available_funds, decrease, ()):-
action(Agent, pay, Value).
executable (Agent, pay, Value, enough_funds) :- action(Agent, pay,
— Value).
satisfy_condition(Agent, enough_funds, greater, (pay, Value,
— available_funds)), action(Agent, pay, Value).

The first three lines specify the ‘fluents’ that are related to A such as
produce_item(speedy_auto_parts, vehicle_parts), etc.. The next four lines
define the action pay. When the action is executed, an amount (Amount) is
paid to an agent (ToAgent) and for a reason (Reason). This action can only
be executed when the agent has sufficient fund. executable(...) atoms rep-
resent this executability; an action pay with value Value (Value is (ToAgent,
Reason, Amount)) is only executable when the conditional fluent enough_funds
linked with the action is true. A satisfy_condition atom then describes that
enough_funds linked to action pay with value Value is true/satisfied when the

A Simulation for Supply Chains Contract Execution 11

conditional operation greater outputs true with the input including the ac-
tion’s name, value, and the fluent to check the amount of funds.

A sample run of the simulator with the OEC agents progresses as follows. At
first, the agents register with the environment and send their information (action
domains and initial state) to the environment. At each step ¢, the agents send to
the environment the actions they plan to execute. The environment computes the
next state, sending back to the agents their local states, and waits for another set
of actions. For example, at step 0, A has 0 vehicle_part and plans to take the
action that produces 9,000 parts. The global state of the environment records at
step 1 that A now has 9,000 vehicle_part, which is reflected in the local state
of A as well. At the end of each iteration, the system determines which clauses
are satisfied. For example, at step 0 no clauses are satisfied; at step 1, clause C'1
is satisfied; at step 2, clauses C'1 and C?2 are satisfied. In turn, the system uses
this information to infer which requirements and concerns are satisfied.

5 Related Work

Due to space considerations, only the most relevant research in this vast area is
discussed here. The ultimate goal of a supply chain is to transform raw materials
into products that will be distributed to end consumers or customers. Entities
within the network need to collaborate with each other and create wealth for
themselves as well as others. For this reason, supply chains have been a critical
part of the economy [1,13].

The focus on cost optimization and efficiency in supply chains has also tra-
ditionally not focused on intangibles such as reputation of relationships within
a supply chain [18]. Alternative models of supply chains have been proposed.
For example, it is proposed that the concept of actor-network theory be used
to formalize supply chains in [10]; this concept advocates the view that supply
chains are composed by agents whose actions change the state of affairs.

The use of multi-agent systems in supply chain management has been ex-
plored by various researchers (see, e.g., [5,14,11]). However, the integration of
formalized contracts and of the NIST CPS Framework within these systems
presents a unique angle of research. Our work extends these concepts by incor-
porating advanced contract formalization techniques, as also discussed in [7].

Further, the use of declarative programming techniques such as Answer Set
Programming (ASP) for creating our framework is inspired by the advancements
in logic programming that facilitate complex decision-making processes, as ex-
plored for example by [12]. The integration of the NIST CPS Framework aligns
with previous efforts [15] to apply structured, standardized approaches to the
evaluation of cyber-physical interactions in industrial settings.

Last but not least, the proposed system is also related to platforms that
support the simulation or programming of multi-agent systems such as NetLogo®,
Jason®, and DALI [3,2]. It is worth pointing out that we focus on the development

® http://ccl.northwestern.edu,/netlogo/
S jason-lang.github.io/

jason-lang.github.io/

12 L. Tran et al.

of a simulation platform, with supply chain as a target application. To the best
of our knowledge, NetLogo supports the simulation of reactive agents while and
Jason focuses on BDI” agents. For this types of agents, it is usually required
that the agent (or the agent program) knows what should be executed given a
state. In addition, planning and diagnosis are not a focus of these approaches.
In particular, the agent often does not have the ability to diagnose at all, or
this ability needs to be integrated within the agent program. Our agents use
traditional planning/diagnosis modules developed in ASP. For this reason, these
simulation environments are not suitable for our purpose.

DALI [3,2] is a superset of Prolog and requires Sicstus. While Prolog is known
for its support of declarative specifications, it has difficulty in applications where
cyclic dependencies are present. Reasoning about actions and changes, especially
with static causal laws, requires this feature. Furthermore, Prolog is not an easy
language to master for non-experts. On the other hand, our approach is focused
on languages that are higher level, have simpler semantics, and are closer to
natural language in order to make the languages more immediately usable by
users who are not familiar with logic programming. This is the case for both
the formalization of contracts and the representation of the dynamic domains.
For example, when it comes to the formalization of contracts, DALI does not
provide an explicit, dedicated formalization of responsibilities, deadlines, and
of the links to the concern tree. Similarly, for the representation of dynamic
domains, we build on action languages, which were specifically developed as a
higher-level alternative to direct representation via logic programming.

6 Conclusions

In this paper, we presented a novel multi-agent simulation framework designed
to address the complexities and challenges inherent in modern supply chains.
We demonstrate that standard ASP programs such as planning or diagnosing
modules can be integrated into a system for monitoring contract executions.
By integrating the NIST CPS Framework with advanced contract formalization
techniques, we have developed a robust system capable of simulating diverse
supply chain scenarios and assessing the impact of various types of disruptions.
Our evaluation on a realistic case study demonstrates that the framework not
only enhances the understanding of supply chain dynamics but also provides
actionable insights into improving resilience and reliability.

It is understandable that a system utilizing ASP technology will inherit all
of its problems (e.g., grounding, scalability). However, the prototype works fine
with the use cases and appears acceptable to the owner of the use cases. Iden-
tifying the limit of the current system in terms of the limit of the system (e.g.,
the complexity of the domains or contracts) is an interesting issue and is our
immediate future work.

" The Belief-Desire-Intention architecture includes reasoning about beliefs (updating
beliefs given an observed event), goals (deciding on what to achieve given the desires),
and plans (how to achieve the goal) [4].

A Simulation for Supply Chains Contract Execution 13

Acknowledgement. Portions of this publication and research effort are made possible

through the help and support of NIST via cooperative agreement TONANB21H167.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

K Alicke and B Iyer. Next generation supply chain: Supply chain 2020. McKinsey
& Company, 2013.

Stefania Costantini, Giovanni De Gasperis, Valentina Pitoni, and Agnese Salutari.
DALI: A multi agent system framework for the web, cognitive robotic and complex
event processing. In CILC, 26-28 September 2017, Naples, Italy, 2017.

Stefania Costantini and Arianna Tocchio. A logic programming language for multi-
agent systems. In LNAI, Springer Berlin Heidelberg, pages 1-13, 2002.

Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. BDI agent architectures: A
survey. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAT 2020, pages 4914-4921. ijcai.org,
2020.

Roberto Dominguez and Salvatore Cannella. Insights on Multi-Agent Systems
Applications for Supply Chain Management. Sustainability, 12(5), 2020.

Edward, Christopher Greer, David A. Wollman, and Martin J. Burns. Framework
for cyber-physical systems: volume 1, overview. 2017.

Dylan Flynn, Chasity Nadeau, Jeannine Shantz, Marcello Balduccini, Tran Cao
Son, and Edward Griffor. Formalizing and Reasoning about Supply Chain Con-
tracts between Agents. In 25th PADL, volume 13880, 2023.

M. Gelfond and V. Lifschitz. Action Languages. FElectronic Transactions on Arti-
ficial Intelligence, 3(6), 1998.

Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing, 9:365-385, 1991.

Kim Sundtoft Hald and Martin Spring. Actor—network theory: A novel approach
to supply chain management theory development. Journal of Supply Chain Man-
agement, 59(2):87-105, 2023.

Keonsoo Lee, Wonil Kim, and Minkoo Kim. Supply Chain Management using
Multi-agent System, pages 215-225. Springer Verlag, Berlin, 2004.

Vladimir Lifschitz. Answer set programming and plan generation. Artif. Intell.,
138:39-54, 2002.

LX Lu and JM Swaminathan. Supply Chain Management, pages 709-713. Elsevier,
2015.

Thierry Moyaux, Brahim Chaib-draa, and Sophie D’Amours. Supply Chain Man-
agement and Multiagent Systems: An Owverview, pages 1-27. Springer Verlag,
Berlin, 2006.

Thanh Hai Nguyen, Matthew Bundas, Tran Cao Son, Marcello Balduccini, Kath-
leen Campbell Garwood, and Edward R. Griffor. Specifying and reasoning about
CPS through the lens of the NIST CPS framework. TPLP, 2022.

B. Reselman. The pros and cons of the pub-sub architecture pattern. Red Hat,
2021.

Tran Cao Son, Enrico Pontelli, Marcello Balduccini, and Torsten Schaub. Answer
set planning: A survey. TPLP, page 1773, 2022.

SM Wagner, LS Coley, and E Lindemann. Effects of suppliers’ reputation on the
future of buyer—supplier relationships: The mediating roles of outcome fairness and
trust. Journal of Supply Chain Management, 47(2):29-48, 2011.

M. Yuan. Getting to know mqtt. IBM, 2021.

	A Simulation for Supply Chains Contract Execution

