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Abstract. In this paper, we propose H-EFP, a Portfolio-like multi-agent
epistemic planning solver that demonstrates scalability potential and
tangible performance improvements compared to state-of-the-art epis-
temic multi-agent planning systems. Ultimately, our goal is to broaden
the practical application of multi-agent epistemic reasoning in real-world
scenarios by reducing resource demands, potentially enabling its use in
modeling situations involving multiple entities sharing information, such
as autonomous driving.
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1 Introduction

Artificial intelligence (AI) research has increasingly focused on planning sys-
tems where multiple agents must interact based on shared and private knowl-
edge. Such multi-agent planning scenarios, particularly those involving epistemic
reasoning—i.e., reasoning about agents’ beliefs and knowledge—are becoming
critical for real-world applications such as autonomous driving, robotics, and
collaborative Al systems.

However, existing Multi-Agent Epistemic Planning (MEP) systems face sig-
nificant challenges in scalability due to the computational overhead associated
with reasoning about agents’ nested beliefs. The m.A* [2] action language is
commonly used for representing epistemic planning problems, but solving such
problems efficiently remains an open issue. This has led to the development of
diverse techniques to reduce the computational load, such as limitations on the
depth of nested beliefs [8], or the definition of heuristics [7]. Comprehensive in-
sights into issues and research directions related to epistemic planning have been
summarized in the report from a recent Dagstuhl’s meeting [1].

Our contribution, the H-EFP planner, builds on these ideas by exploiting di-
verse heuristics to show that significant gains in efficiency can be made through
the use of heuristics, allowing for the practical use of MEP in real-world appli-
cations where computational resources are constrained.



2 F. Fabiano et al.

2 Background

2.1 Multi-Agent Epistemic Planning

A multi-agent epistemic planning problem is defined as a tuple consisting of a
set of fluents (the properties of the world), agents, possible actions, an initial
state, and a goal state. Given this tuple we need to fina a solution, that is
a sequence of actions that transforms the initial state into a goal state, while
reasoning about the knowledge and beliefs of the agents involved. MEP extends
traditional planning by incorporating epistemic actions, such as communication
or observation, which can change what agents know or believe about the world.
These actions are formalized in the m.A* [2] action language, which allows for
reasoning about both ontic actions (those that change the state of the world)
and epistemic actions (those that change the state of knowledge).

The main challenge in MEP is the sheer size of both the epistemic states, or
e-states, and of the search space, the former which grows exponentially with the
number of agents and fluents and the latter that increases exponentially with
the number of actions.

2.2 Heuristics-Based Reasoning

As mentioned before, planning on multi-agent epistemic domains is a very resource-
demanding task. That is why, even if optimizing the knowledge structures is
essential, only focusing on such a task may never allow epistemic planners to
become tools suited for real-life scenarios. For this reason, we decided to investi-
gate alternative search strategies that may help in reducing the resources needed
to solve MEP problems. In particular we focused on developing a MEP solvers
that can exploit both the standard Breadth-First Search (BFS) and Best-First
Search. These two search approaches are well-known in the planning community
and, therefore, we will not provide any details on their implementation.

While BFS is an uninformed search—i.e., it traverses the space using only
information derived by the search-tree and not from the e-states themselves—
Best-First Search selects, at each step, the best state, that is the one that is,
supposedly, closest to the goal. The problem with this last approach lies in
finding a good function to calculate the score of each e-state and, therefore, in
understanding which e-state is the best one. These functions, known as heuris-
tics, have been deeply studied in the planning community and are, nowadays,
a standard concept [5,9]. That is why, in this work, we decided to focus on
formalizing some domain-independent heuristics for MEP.

3 H-EFP

As main contribution we present H-EFP, a comprehensive epistemic planner.
This planner is heavily inspired by the systems presented in [4,7]. While it
shares with them the ability to comprehensively reason on the full extent of
mA*, H-EFP heavily exploits a Planning Graph-like data structure (referred to
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as e-PG), tailored for MEP, to derive heuristics. Our definition of e-PG builds on
the version introduced by [7], but with significant modifications to the underlying
knowledge representation, enabling our data structure to overcome fundamental
issues in the original definition that prevented the resolution of certain problem
types (i.e., those with goals containing negated belief formulas). Due to space
constraints, a formal definition of the e-PG, along with its components, demon-
strations, and a graphical example illustrating its properties, can be found at
the following link: https://francescofabiano.github.io/resources// .

Let us now present the specific heuristics that allow H-EFP to evaluate the
various e-states during the planning process.

— SUB: The first, not dependent from e-PG, simply associates a higher evalu-
ation to e-states that satisfy more sub-goals. To improve this heuristic we
defined functions that “break” complex goals into a conjunction of simpler
ones.

— C_PG: This heuristics emulates the one presented in [7], inspired in turn by
the classical Planning Graph. e-PG is used to derive the “importance” of
each belief formula (its distance from the goal level) and then each e-state is
characterized by the sum of the derived belief formulae scores. In particular
C_PG reflects the hAdd heuristics in MEP; that is, for any belief formula 1,
its importance is calculated as the distance in terms of state levels from the
initial state that verifies ¥ to the state level that entails the goal. The lower
the distance, the more important the formula is. This captures the idea that
a formula entailed at a state level closer to the goal is more beneficial for
reaching the goal, as it is harder to activate than others. We then sum all
the formulae of interest that a state activates to evaluate it and we explore
the one with the smallest sum.

— L_PG: This heuristic calculates the score of an e-state by constructing a
Planning Graph from it (as initial state) and calculating the length—the
shorter the better—of the constructed e-PG. If an e-PG cannot reach the
goal from an e-state, then the e-state is discarded. This behavior is similar
to the one adopted by the heuristics hF'F' in classical planning.

— S_PG: This heuristics is simply an execution of C_PG on every e-state.

— e-A*: This heuristics exploits the fact that e-PG represents an admissible
“relaxation” of the planning process and its length < than the length of
the plan required to go from the starting e-state to the goal state (when
reachable). Therefore, we calculate L_PG (that uses the length of e-PG as a
heuristic value) from each e-state combining it with its depth to generate an
A*-like admissible heuristic.

While other heuristics can be derived from the information generated by e-PG,
we leave this investigation as a future work.

To fully take advantage of the introduced heuristics, H-EFP makes use of a
Portfolio-like resolution process. For this section, we will generalize the above
heuristics along with Breadth-First Search (BFS) into the set H. Let us note
that BFS is also included in this to guarantee complete resolution.
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Table 1. Performances on the Collaboration and Communication (CC) domain of the
various solving approaches of H-EFP and EFp.

‘ Collaboration and Communication with |AG| = 2, |F| = 16, and |A] = 40 ‘

I Time (seconds) Expanded Nodes Plan Length

BFS [L_PG[S_PG[C_PG] SUB [ e-A* |BFS[L_PG|S_PG|C_PG|SUB[e-A"| BFS[L_PG[S_PG|C_PG|SUB[e-A"
3][ 0.141 [0.254]0.253]0.329[0.084[0.473 ][ 6 [ 3 [ 8 [4 [4[ 3 [[3 [3[3[4[3] 3
4][0.649]0.322]0.306] TO [0.174]0.842[[ 29 | 4 [ 4 [ - J1I0[ 7 |4 [ 4 [ 4] -5 4
5| 6.493 |1.578/0.535| TO |0.244|8.138 || 275 | 18 | 5 - | 8] 53 5 8 5 - 5] 5
6((37.236] 2.79 [0.396] TO [0.313[27.672|[1611[ 23 [ 6 | - [15[151| 6 | 8 [ 6 | - | 7] 6
7| TO [5.425]2.14[ TO [0.443] TO || - [49 [ 28| - [22] - || - [12] 9 [ - [9] -

Table 2. Direct comparison of EFP and H-EFP on the Grapevine (Gr) domain.

i Grapevine with |AG| =4 ‘
Time (seconds)|| Plan Length

FIANE | —Eep [#H-Erp || EFp [H-Erp

2] 0.047 | 0.012 2 2

3] 0.352 | 0.017 3 3
1240|4| 2.253 | 0.018 4 4

5(/16.384| 0.072 5 6

6]/38.632| 0.08 6 6

2|/ 0.373 | 0.06 2 2

3| 4.274 | 0.093 3 3
16 160 |4|/43.672| 0.094 4 4

5[ TO | 0.236 - 5

6/ TO | 1.016 - 7

The planner’s remaining components closely resemble those outlined in the
works by [4,7]. For the sake of conciseness, we direct interested readers to these
sources for a comprehensive introduction.

4 Experimental Evaluation

Within this section, we conduct a comparative analysis between H-EFP, the pri-
mary contribution of this paper, and EFP 2.0 [4] (referred to as EFP for brevity),
which is, to the best of our knowledge, the current state-of-the-art comprehensive
epistemic planner. While other MEP solvers exist [3,8], we focus our comparison
on EFP to illustrate the potential of enhancing MEP planning with heuristics.
EFP shares the same underlying code with H-EFP, this highlights that all per-
formance improvements are directly due to heuristics-based reasoning. We leave
a complete investigation of H-EFP’s scalability for future work. All experiments
were executed on a machine equipped with a 3.00GHz Intel Core i9-13900K
processor and 128GB of memory.

The evaluation encompasses several domains recognized as standard bench-
marks in the MEP setting: Assembly Line (AL), Coin in the Box (CB), Collab-



Bridging Efficiency in MEP with Heuristics 5
EFP

Fig. 1. Plot of the solving times of EFP and H-EFP. The various solving times are
grouped for domains.
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oration and Communication (CC), Grapevine (Gr), and Selective Communica-
tion (SC). For brevity, detailed descriptions of these domains are omitted but
can be found in works such as [4,6] and a comprehensive overview of the exper-
imental results is available here: https://francescofabiano.github.io/resources// .

For the sake of readability, we use the following abbreviations: ‘TO’ represents
Time-Out (solving exceeding 120 seconds), |AG| signifies the number of agents
in the domain, |F| denotes the number of fluents, |A| indicates the number of
actions, and L highlights the optimal plan length.

Table 1 effectively demonstrates how the incorporation of heuristics increases
scalability in the solving process in terms of time and visited nodes, with minimal
effects on the plans’ quality. The table highlights that as plan length increases,
the BFS method experiences rapid growth in solving time and explored nodes,
eventually rendering it infeasible. Conversely, heuristic-based approaches exhibit
significantly lower increases in time requirement and explored nodes relatively
to plan length. Among the tested heuristics, SUB has the best performance, both
in this specific instance and across the other benchmarks. This stems from the
minimal overhead in constructing such heuristics. It is noteworthy that H-EFP,
leveraging a portfolio-solving approach, consistently selects the most efficient
approach in terms of solving times, underscoring its adaptability and perfor-
mance. This is highlighted in Table 2 that illustrates how H-EFP, thanks to all
its components, is able to greatly outperform EFP, especially when the problem
complexity increases.

Figure 1 offers a comprehensive overview of the comparison between the two
solvers. The visual representation distinctly demonstrates that H-EFP consis-
tently surpasses or, at the very least, equals the state-of-the-art performance
exhibited by EFP. This substantiates H-EFP as a superior approach in address-
ing multi-agent epistemic planning problems.

5 Conclusion

Multi-agent planners, where entities need to plan based on their awareness of
other agents’ knowledge and beliefs, often face computational inefficiencies. To
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mitigate this problem, we introduced a Portfolio-style epistemic solver, H-EFP,
that showcases promising scalability and substantial performance improvements
compared to the state-of-the-art.

While H-EFP is still in its early stages, future work will focus on optimization.
Currently, H-EFP’s Portfolio-style process keeps heuristic parameters fixed, but
expanding it to run all parameter combinations in parallel could reduce tuning
time. Additionally, we aim to develop new heuristics from e-PG and enhance e-
PG to capture more complex epistemic concepts. Lastly, we plan to explore Rein-
forcement Learning and Supervised Learning to derive domain-specific heuristics
for integration into the portfolio-solving approach.
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