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Abstract—The discourse-level structure of a document can be
captured through learning the rhetorical functions of sentences in
that document. Existing supervised methods based on pre-trained
language models for classifying rhetorical functions of sentences
usually focus on utilizing rhetorical words but ignore the topics of
sentences. Since topic words can provide additional information
for enhancing the learning of the document structure, we present
a neural topic model that is integrated with a BERT-based
language model through a unified probabilistic generative process
for learning both the rhetorical structure and topic structure of
documents. For inference, we design a topic attention mechanism
to utilize the learned topic words from previous sentences to
improve the prediction of the current sentence’s rhetorical label.
The extensive experiments on four real-world datasets of different
domains show that the proposed model improves the detection
of rhetorical functions of sentences and is effective in document
modeling and extracting coherent topics.

Index Terms—document structure learning, pre-trained lan-
guage models, topic models, attention mechanism.

I. INTRODUCTION

Document structure learning aims to detect rhetorical roles,
functions, or intents of sentences in a document. For example,
in a scientific abstract, each sentence can be assigned to one of
rhetorical functions such as Background, Objective, Methods,
Results, Conclusions. Organizing sentences into their rhetor-
ical roles is important for document understanding [1], [2]
and can help improve downstream tasks such as document
segmentation [3], [4], argumentation mining [5], [6], and
summarization [7]-[9].

The automatic identification of rhetorical roles or intents
of sentences in a document can be modeled as a sequential
sentence classification problem where each sentence is as-
signed an intent label taking into account the context from
neighboring sentences [10], [11]. Existing methods typically
propose different hierarchical sentence encoders that derive
contextualized sentence representations based on each sen-
tence’s sequence of word embeddings and the sequence of
sentences [10]-[13]. These methods have shown that utilizing
contextualized representations of all words to jointly encode
sentences in a sequence can improve the intent label prediction
performance significantly.

Besides the sequence contextual information, topics of
words in the sentence may carry additional information to
improve the task. Words in a document can be divided into
two types which are intent words and topic words [14]. For
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example, as shown in Figure 1, the first sentence in the abstract
contains the intent words “purpose”, “determine”, “able”,
which clearly indicates the intent to describe “Objective” of
this sentence. While intent words can be good indications of
the sentence’s intent, topic words can also provide additional
information. Sentences that describe the same topic usually
have the same intent and the topics of previous sentences may
also contribute to the determination of the current sentence’s
intent. Therefore, analyzing the topic words of a sentence
and its surrounding sentences may help improve further the
prediction performance.

Existing supervised methods based on pre-trained language
models for classifying rhetorical functions of sentences usu-
ally focus on utilizing rhetorical words but ignore topics
of sentences. They do not explicitly recognize those two
word types and utilize topics of words in the sentence.
In contrast, although topic models such as LDA [15] can
extract topics, they do not model intents at sentence level
as well as the sequence nature of words and sentences in
the document. Therefore, their performance for predicting
sentence intents may be limited because they do not exploit
contextualized representations of words and sentences. While
jointly modeling intents and topics is possible as shown in
[14], that work does not employ the contextual information
of sentence representations learned through language models.
Therefore, it does not inherit the strengths of language models
in modeling sequence contextual information for predicting
intents of sentences.

To inherit the strengths of both language models and topic
models for document intent structure learning, we propose
a joint supervised approach that integrates a sentence se-
quence model and a neural topic model for learning both
the rhetorical structure and topic structure of documents.
Our proposed model, called INTENT, includes a BERT-based
language model that encodes all sentences in a sequence
[16], and these sentence representations are then transformed
to probability vectors through a feed-forward network for
predicting sentence intents. We integrate the sentence sequence
model with a neural topic model by coupling the generation of
sentence intents with the generation of words. In our proposed
generative process, the intent label of the current sentence will
depend on the BERT representations and topics of previous
sentences. After the current sentence’s intent label is drawn,



(S1) OBJECTIVE: purpose study determine whether (' g kg oral able adult
female feeding on humans
(S2) METHODS: Ten study subjects one containing containing
adult females
(S3) METHODS: Twenty four hours after study subjects received either g kg placebo

(S4) METHODS: Thirty hours after placebo consumed removed mortality determined double-

blinded manner

(S5) RESULTS: Eleven percent group compared placebo

(S6) RESULTS: Mortality time o' removal group

placebo group

(S7) RESULTS: Mortality days removal group placebo

(S8) RESULTS: Three percent adults group compared placebo group

(S9) RESULTS: Mortality adults day day placebo groups

(S10) RESULTS: statistically insignificant differences mortality rates between adults exposed
placebo .

(S11) CONCLUSIONS: high number died groups but /- data support hypothesis

(S12) CONCLUSIONS: study designed '« determine whether ' could prevent | transmission illness

Fig. 1: Intent and topic words (in blue and red respectively) of
gray words are either stop words or words with low frequency.

each word is generated depending on its word type (i.e., intent
or topic words), intent, and topic. We use a random binary
variable with a Bernoulli prior to model the type of words.
Finally, to utilize topic information of previous sentences, we
propose a topic attention model where it will learn how topic
representations of previous sentences will contribute to the
intent prediction of the current sentence. To the best of our
knowledge, our proposed model is the first to jointly integrate
a sentence sequence model and a neural topic model for
supervised learning of document structure. We summarize our
contributions as follows:

e We propose a neural probabilistic model, called IN-
TENT', that integrates a sentence sequence model with a
neural topic model for learning intent and topic structures
of documents.

While the sentence sequence model can capture depen-
dencies and coherence in the output label sequence, we
also propose a topic attention model that utilizes the
topics of previous sentences for improving the intent
prediction performance.

We conduct extensive experiments on four real-world
datasets of different domains. The results show that our
proposed model is effective in detecting rhetorical func-
tions of sentences, document modeling, and extracting
coherent topics.

II. INTENT: A SUPERVISED MODEL FOR DOCUMENT
STRUCTURE LEARNING

In this section, we present how the sentence sequence
model, the neural topic model, and the topic attention model
are integrated through a unified generative process. We also
derive the variational inference algorithm of the proposed
model INTENT.

A. Generative Model of INTENT

Given a corpus of D documents, D = {wi,...,wp},
where a document wy is a sequence of Ny sentences, wy =

! https://github.com/dangpnh2/INTENT
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a scientific abstract in PubMed20k detected by INTENT. The
They are removed in the preprocessing step.

(w1, waz, ..., wqnN,)- A sentence wqs is represented as a bag
of words over the vocabulary of size V. K is the number
of topics. Z is the number of intents. The goal of document
structure learning is to learn: 1) word distributions of intents,
B = {8 € RV}, ; 2) word distributions of topics,
Y = {Y € Rv}szl; 3) topic distributions of documents,
0 = {64 € RE}2 |; 4) and the intent label of each sentence
in the document. To infer all those parameters, we assume the
following process to generate a document and the intents of
all sentences in the document.

For each document d,

1) Draw topic distribution 64 ~ LN (0, I)
2) For each sentence wgs in document wy:

a) Obtain the representation hgys of wys through a BERT-
based language model and topic attention mechanism,
conditioned on previous sentences wgq(1.s—1}

b) Draw lgs ~ Multi(softmax(MLP(hgs)))

¢) For each word wgsm,:

i) Draw bgs, ~ Bernoulli(vy)
ii) if bggm = 1 (Wysm 1S an intent word):
A) Draw intent word wgsm ~ Multi(F;,,)
iii) if bgsm = 0 (wgysm 1S a topic word):
A) Draw topic kgsm ~ Multi(6y)
B) Draw topic word
Multi(softmax(V " Ty, )

In Step 1 of the generative process, LN (.) denotes the logistic-
normal distribution. It transforms a Gaussian random variable
to a variable on the topic simplex. The topic distribution 6 is
drawn from this distribution as follows:

Wdsm

xq ~N(0,1); 64 = softmax(zq) (1)
Each topic k is represented as a vector T}, € R¥ and its word
distribution 1)), is computed as: ¢, = softmax(V " T},) where
V is the word embedding matrix, V € R¥*V and E is the
embedding dimension. For each word wgs,, in sentence w,gqs



of document d, in Step 2(c)i., we draw its word type bgsm,:

basm ~ Bernoulli(~) 2)

If it is an intent word, wgs,, is drawn from Multi(5;,.)
where (3, is the word distribution of intent /4. If it is a topic
word, a topic kgsy, is drawn and wgsy, is then generated from
Multi(tg,.,, ), where ¥y, = softmax(VTTj,. ) which is
the word distribution of topic kgsy,:

Kasm ~ Mlﬂtl(ed) 3

Wsm ~ Multi(softmax(V' Ty, )) 4)

The parameters of intent and topic model including word
distributions of intents (3), word distributions of topics (1)),
and topic distributions of documents (@) can be learned by
variational autoencoding. In Section II-D, we present a neural
variational inference to infer those parameters.

B. Sentence Sequence Model for Generating Intents

In Steps 2(a) and 2(b) of the generative process, we intro-
duce a BERT-based sentence sequence model to generate the
intent label of each sentence in a document. For each sentence
wgs of document d, we draw for it an intent label [4:

las ~ Multi(softmax(MLP (hgs))) 5)
where hg4 is the representation of the current sentence which
will be transformed to a probability vector over intent labels
via a multi-layer feedforward network. As in the generative
process, intent label of a sentence is generated first in Step
2(b), then its words are generated depending on their word
types and topics (Step 2(c)). Therefore, h4 of the current sen-
tence needs to be determined based on the previous generated
sentences before its words can be generated.

To determine hys based on previous sentences, as in [11],
we append to the end of each sentence a BERT’s delimiter
token called [SEP] and insert the standard [CLS] token at the
beginning of the sentence sequence. Different from [11], as
shown in Figure 2, the sentence sequence up to sentence s — 1
separated by [SEP] is then fed into BERT to determine hgs
for predicting the intent label of the current sentence s. Let
Hggp, be the learned representation vector of the [SEP] token
associated with the sentence s. As a simple approach, we can
let hgs in Eq. S5be Hsgp, ,,1.e., the intent label of the current
sentence will be determined based on the representation of
the previous sentence. This is a reasonable choice because
sentences with the same intent are usually put next to each
other [14]. However, this approach does not explicitly utilize
the topic information in previous sentences for generating the
current sentence’s intent. In the next section, we introduce a
topic attention mechanism which allows the sentence sequence
model to attend to topics of previous relevant sentences.
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Fig. 2: Using BERT to learn the contextualized representations
of previous sentences to predict the intent label of the current
sentence. For each sentence s, Hgpp, is the learned contex-
tualized representation vector of the [SEP] token associated
with that sentence.

C. Topic Attention Model

Since the above sentence sequence model is integrated with
the neural topic model, we can utilize topic words to feed
additional information into BERT model to improve further
the prediction performance. More specifically, we propose a
topic attention model to enhance the performance of document
structure learning by enabling the model to attend to the most
relevant topic features from all previous sentences. For each
sentence s in document d, let Cys be the attention over topic
features of all previous sentences from 1 to s — 1:

s—1
Cas =Y aaTy, (6)
u=1
When generating sentence s, all previous sentences have
been generated. Therefore, we know the topic assignment
of each word in the previous sentences. Based on that, we
define Tj; to be the sum of embeddings of topics assigned to
words within sentence du, Tf. = > .. Tiyun- Since topic
assignment is soft, Ty,, ~ or the topic embedding of word
Wqym 1s calculated as a weighted sum of topic embeddings:

K

T = P 0(k|Wwaum, d) T %
k=1

where p(k|wqum,d) is the probability that topic & is assigned

to word wgym, in document d. p(k|waym,d) is computed as:

P(k[Waum, d) ~ p(Waum|k, d)p(k|d) ®)

For the attention mechanism, the attention score of sentence
du is given as:

agy = (TH)TU )

where U is the context vector that can be interpreted as a query
asking for the most informative sentence from the sentence
sequence [17]. U will be learned in the inference algorithm.
Based on that, the attention weight ag,, in Eq. 6 is:

exp(agy,)

Aqdu = 7 ., <
Zi/:ll exp(@du)

(10)
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Fig. 3: The overall inference architecture of INTENT.

We then concatenate Cys and Hggp, , to form the repre-
sentation of a sentence, hys, in Eq. 5:

hds

[Hsgp, . Cas] (11)

This approach defines our method INTENT where we integrate
a sentence sequence model and a neural topic model via the
topic attention model.

D. Variational Inference

We derive a neural variational inference algorithm to infer
the model parameters [18]. Given a document wy and its
sequence of sentence labels [4, by collapsing b, k, we have
the following ELBO:

L = Eyeq|wa,@) log p(wa, la|za, B, )

—Drr(q(zqlwa, ®)||p(za))] (12)

where,

log p(wa, la|x4, B, )

Nd Nd
= logp(laslhas) + Y > 10g p(wasm|las, 8,1, za)
s=1

s=1dsm

(13)

p(wdsmudsv ﬁv ¢7 xd) =
> p(wasmlk, $)p(k|za)p(b = 0) + p(wiem|B Las)p(b = 1)
k
(14)

We maximize the ELBO to learn model parameters. To
approximate the expectation in Eq. 12, g(z4|wg, ®) which is
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the variational approximation of the posterior will be param-
eterized by an inference network with ¢ be the variational
parameters. For the inference network, we use two linear
layers to transform the bag-of-words vector wy to variational
Gaussian parameters fi4, 02 and use the reparameterization
trick to sample ©4 = pg + oge, with € ~ N(0,1) [18].
04 is then computed as softmax(z4) (as illustrated in the
Topic Model Inference block in Figure 3 and lines 3, 4
in Algorithm 1). In the next step, for each sentence s in
document d, we compute the attention over topic features of all
previous sentences, Cys, using Eq. 6. The details are depicted
in the Topic Attention Model block in Figure 3 and line 6 in
Algorithm 1. The sentence sequence model block in Figure 3
summarizes how topic attention model is integrated with the
sentence sequence model for inference. More specifically, we
compute hqs = [Hsgp, ,,Cas] and then the log likelihood
as in Eq. 13 (lines 7-10 in Algorithm 1), where p(lgs|has)
is computed by using a softmax activation on the output of
the multi-layer feedforward network MLP (hy,). We optimize
the ELBO to learn parameters using Adam optimizer [19].
The overall architecture of the inference network is shown in
Figure 3 and the inference algorithm of our proposed model
is summarized in Algorithm 1.

III. EXPERIMENTS

A. Datasets and Baselines

We conduct extensive experiments to demonstrate the ef-
fectiveness of INTENT using four real-world datasets from
different domains:

e PubMed20k [20]: consists of 20000 abstracts for medical
and biological scientific papers. Each sentence is classi-



Algorithm 1 Inference algorithm of INTENT

Input: Training documents from D with sentence intent labels; K
topics; [ intents.

Output: Topic distributions of documents (6); word distributions of
topics (10); word distributions of intents (3).

1: for each epoch do

2 for each document w, do

3 Compute 14,05 from the inference network
4: Draw 04 ~ LN (g4, 03)

5: for each sentence wqs do

6: Compute the attention of topic features Cqs (Eq. 6)
7 Obtain Hsep,, , from sentence wgs—1
8: Compute hqs = [HSEPS_I,Cds]

9: end for
10: Compute p(waq, ld|zd, 3,1) by (Eq. 13)
11: end for
12: Compute the ELBO loss in (Eq. 12)
13: Update parameters using Adam optimizer [19]
14: end for

fied into one of five intent labels: Background, Objective,
Methods, Results, and Conclusions.

o« NICTA-PIBOSO [21]: consists of 1000 biomedical ab-
stracts with 6 intent labels: Background, Other, Interven-
tion, Study Design, Population, and Outcome.

o Chemical [22]: contains 965 chemical abstracts with
7 intent labels: Background, Objective, Related Work,
Method, Result, Conclusion, and Future Work.

o CSAbstract [23]: consists of 654 abstracts collected and
annotated from arXiv focusing on applied computer
science for social media. Each sentence is categorized
into one of five intent labels: Background, Objective,
Methods, Results, and Conclusions.

We compare our proposed model with several state-of-the-

art methods for supervised document structure learning:

o Supervised topic models:

- sEGMM-LDA [14]: A supervised topic model for
document structure learning. It adopts the generalized
Mallows model (GMM) prior to learn the rhetorical
order of sentences within a document.

sLDA [24]: It is a supervised topic model where each
input document is associated with a label. It does not
aim to extract intents of sentences.

sDTM [25]: It is a supervised neural topic model. By
integrating RNN and topical attention mechanism, it is
able to show improvement of document classification
tasks and document modeling.

« Sequential sentence classification models:

— HSLN [13]% It presents a hierarchical LSTM/CNN
+ CRF network for sequential sentence classification.
There are two variants of the HSLN model: HSLN-
CNN and HSLN-RNN.

— SciBERT [11]*: A BERT-based model for sequential
sentence classification task. It fine-tunes the pre-trained

Zhttps://github.com/jind 1 1/HSLN-Joint- Sentence-Classification
3 https://github.com/allenai/sequential _sentence_classification
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weights of a BERT-based model trained on scientific
texts and uses the representation vector of the [SEP]
token at the end of the sentence to predict the sentence
intent label.

SciBERT-HSLN, MULT [10]*: In this approach, they
use HSLN architecture for classification with pre-
trained word embeddings from SciBERT. MULT is
designed for multi-task learning, which can generally
improve performance and has a better generalization,
MULT uses the same architecture as SciBERT-HSLN,
however, it simultaneously trains samples in all tasks
and except for the output layers, all other layers are
shared across the tasks.

o INTENT?: our proposed model integrates a sentence
sequence model with a neural topic model for learn-
ing intent and topic structures of documents. In the
experiments, for the pre-trained BERT-based language
model, we use SciBERT and fine-tune it for the document
structure learning task.

We preprocess the data by removing all stop words and keep
the top 5000 most frequent words. For all datasets, we split
them into train/dev/test sets with the ratio of 60%/20%/20%
respectively. In our experiments, all testing results on the test
set are reported using the model having the best performance
(micro F1 score) on the dev set for sequential classification
task. For supervised topic models such as sLDA and sDTM,
we split all the sentences within a document and treat each sen-
tence as a single input document with its label. For all datasets,
we set the hidden size of all linear layers to 250, learning
rate of topic model is searched in {0.0005,0.001,0.005}
and the learning rate of SciBERT is le-5, the number of
batch size is searched in {16, 18,20, 22}. For the optimizer,
we use Adam optimizer with weight decay 0.001. For all
baselines, we choose the values of hyper-parameters based
on the suggestions in their papers. All experimental results
are obtained by running 100 epochs and averaged across 4
independent runs.

B. Sequential Sentence Classification

As stated above, identifying intents of sentences in a docu-
ment can be formulated as a sequential sentence classification
task. Effective methods for document structure learning are
expected to perform well in this task. In this section, we report
the micro F1 score by several supervised methods for predict-
ing sentence intent labels. In Figure 4, it becomes evident that
our proposed model INTENT significantly outperforms other
baselines in many cases according to the two-sided paired ¢-
test. INTENT has the highest micro F1 score across different
numbers of topics and datasets. Supervised topic models such
as SEGMM-LDA, sLDA, and sDTM have the lowest micro
F1 score because they do not model the sequential context
in sentence sequence. The significant gap between our model
and the supervised topic models also shows the benefits of

“https://github.com/TIBHannover/sequential-sentence-classification-extended
5 https://github.com/dangpnh2/INTENT
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Fig. 4: Micro F1 score of all methods for sequential sentence classification task with different number of topics K.

TABLE I: Micro F1 score of all methods for number of topics K = {10,50}. A (p < 0.005) and A (p < 0.05) are cases
where INTENT is significantly better than the baseline w.r.t. the two-sided paired t-test.

Category Model Chemical PubMed20k NICTA-PIBOSO CSAbstract
10 50 10 50 10 50 10 50
Supervised SLDA 561941214 63.04:0.424  50.93:0.634  66.29+0.504 524241254 54070424  48.61:1324  49.62+1.584
topic models sDTM 69.53£0.524  69.29+0.524  77.70:0.74%  78.34+0.004 59.91+0.59%  58.78+0.854  56.1242.174  57.81+1.204
SEGMM-LDA  76.85£0234  77.0320.174  77.94x0.12% 77310064  68.50:0.61%  67.96£0434  60.91+033%  61.54+0.714
HSLN_CNN 86300404  86.30:0.404 89.37+0.104 89.37+0.104 76.35:0.93A  76.35:0.93%  73.28+1.04%  73.28+1.04%
Sequential sentence HSLN_RNN  87.504026%  87.59+0.26A  91.87+0.08%4 91.87+0.084  80.55+0.404  80.55:0.404  74.72+0.69°  74.72+0.69%
classification models g o E T HSIN 858840234 858860234  910260.074  9102£0.074 783340545  7833:0.54h 712760564  7127£0.564
MULT 86.97+0.394  86.97+0.394  91.89:0.064  91.89+0.064  83.09+0.59  83.09:+0.59%  75.030.55%  75.030.55%
SciBERT 87.76+0.67>  87.76£0.67%  91.50+0.154  91.50£0.154  79.41+0.60A  79.41+0.604  72.73+1.98%  72.73+1.98%
Joint supervised INTENT 90.40£025  90.69:0.26  93.10:0.06  93.23:0.09  83.42:023  83.55:048  77.33:0.86  77.07:0.72

fine-tuning a pre-trained language model such as SciBERT for
modeling sentence sequence in document structure learning.

When comparing among the sequential sentence classifica-
tion methods, MULT is the best baseline in terms of micro
F1 score. This approach shows a significant performance
gap to its base model SciBERT-HSLN. This shows that all
these models benefit from fine-tuning pre-trained language
models for the sequential sentence classification task. Since
our model integrates topic modeling and intent prediction via
the topic attention model, it can surpass these strong baselines.
Table I shows the detailed micro F1 score of all methods for
different number of topics K = {10,50}. For all settings,
INTENT is the method that has the highest micro F1 score.
INTENT is significantly better than other baselines in most
cases according to the two-sided paired ¢-test.

C. Document Modeling

We show that while jointly extracting topics and predicting
intents, INTENT is still an effective supervised topic model
and can be generalized to model unseen documents. We rely
on the document modeling task which aims to measure the
generalization performance of topic models. Topic models that
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are good at document modeling would achieve high likelihood
on a held-out test set. We compute the perplexity of a held-out
test set to evaluate the models:

~ 2alogp(wa)
Zd My

where log p(w,) is the log likelihood, and My is the number of
tokens in the held-out test set [15]. Figure 5 shows the test per-
plexity by different topic models across different numbers of
topics K. In this Figure, INTENT consistently achieves lower
perplexity scores compared to the baseline methods across all
three datasets and numbers of topics. For example, on the
PubMed20k dataset, INTENT demonstrates significantly lower
perplexity values as the number of topics increases, indicating
its ability to model the underlying distribution of the data.
Specifically, while other models exhibit a rapid increase in
perplexity as the number of topics increases, INTENT main-
tains a more stable and lower perplexity curve, underscoring
its robustness and efficiency in handling complex text data.
These findings show that our models have good generalization
performance while also performing well in intent prediction.

perplexity(Dtest) = exp { } (15)



D. Topic Coherence

Topic coherence is widely used to evaluate the quality
of generated topics. We use Normalize Pointwise Mutual
Information (NPMI), a widely used metric for topic coherence
measurement. In our experiments, we estimate the pair score
by using a large external Wikipedia dataset. Figure 6 shows
the average NPMI score over all topics of each method. In this
figure, INTENT, sSEGMM-LDA are the methods that have the
highest score over all datasets, except for NICTA-PIBOSO,
INTENT outperforms other models in all number of topics.
While sDTM and sLDA show lower NPMI values, indicating
weaker topic coherence. In general, INTENT and sSEGMM-
LDA show a comparable results. The results show that our
proposed model can extract coherent topics. Some examples
of topic words extracted by INTENT are shown in Figure 8.

E. Example of Intent and Topic Words

In our model, each word in a document is either a topic
word or an intent word. To see how well our model separates
these two word types, we show some top word examples in
Figures 7,8, and Figure 9a. Intent words convey the underlying
purpose or objective of the sentence and guide the structure of
a document. Each intent word tends to appear in some specific
section within a document. In Figure 7, we visualize top intent
words generated by INTENT on PubMed20k dataset using
word clouds with weights as word probabilities. We can see
that these words aptly capture the intent labels. For instance,
in Figure 7a, the top intent words are “compare”, “evaluate”,
“determine”, “investigate”, and “aim” which indicate clearly
the “Objective” intent label. Figure 7e shows representative
words such as “randomized”, “trial”, “using”, “controlled” for
the “Method” intent label, and Figure 7c shows the top words
“effective”, “results”, “finding”, “suggest”, “improve” which
represent reasonably the “Conclusion” intent label.

Topic words, on the other hand, provide the subject matter
or the theme being discussed in a document. They are more
likely to be distributed across the documents in the corpus.
Other than intent words, these words convey or indicate the
domain of documents. Figure 8 shows the word clouds of ten
topics belonging to PubMed20k dataset. For example, “group”,
“control”, “treatment”, “effect”, and “patients” in Topic O rep-
resent clinical trials comparing control and treatment groups
of patients. Topic 2 is closely related to clinical trials that
compare drug treatments with placebos, indicated through
terms such as “placebo”, “dose”, “patients”, “response”, and
“mg”. Top words such as ‘“exercise”, “training”, “sleep”,
“physical”’, and “depression” in Topic 5 show the study on
physical activities, treatments to improve mental and physical
healh problems. The last topic focuses on “mortality”, “risk”,
“cardiac”, “blood”, and “pressure” which discuss the risk
factors and mortality rates associated with cardiac events like
heart failure and stroke.

We also highlight a sample document from PubMed20k
dataset in Figure 9a. As we can see, intent words and topic
words are well splitted. Blue words are intent words and
red words are topic words. The gray words are either stop
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words or words with low frequency which are removed in the
preprocessing step before training.

F. Topic Attention Example

Figure 9a shows an example abstract from PubMed20k
dataset whose corresponding attention map of all sentences
is presented in Figure 9b. The attention map shows how each
sentence (each row) attends to the topic embeddings of all
previous sentences. The attention weights are obtained from
Eq. 6. As we can see, sentence S2 puts full attention weight on
sentence S1 as S1 is the only sentence before S2. Sentences
S3, S4 depend on the topic embeddings of sentence S2 whose
topics are (2) and (7). This could be explained by the fact that
S3, S4 share similar topics with S2 and hence they tend to
have the same intent label. Although S5 shares similar topics
with S2, S5 and S2 do not necessarily have the same intent
label. This shows that the model also needs to rely on intent
words to predict intents correctly. As we can see, S5 contains
some intent words such as “eleven percent” and “compared”
which clearly indicates its “RESULTS” intent. For sentences
S6-S10, the model tends to attend to topics (1) and (2) in S5 to
explain the intents of S6-S10, which is reasonable because S6-
S10 also contain both topics (1) and (2) as in S5. This shows
that adjacent sentences with similar topics often have the same
intents. For S11-S12, a combination of topic words such as
“groups”, “data”, “study” and intent words such as “but”,
“support”, “hypothesis”, “could prevent” may help to predict
correctly their “CONCLUSIONS” intent label. Typically, a
mention of these words such as “support”, “hypothesis” in
sentences right after the “RESULTS” sentences likely implies
that the writer wants to conclude something about the current
investigated hypothesis. In this case, the considered hypothesis
in the example abstract is not supported by the data.

IV. RELATED WORK
A. Supervised Topic Models

Supervised topic models integrate labeled information into
the topic modeling process, enabling the incorporation of
domain-specific knowledge or supervision signals [24], [26],
[27]. They have been applied to a wide range of applications
such as document classification [28], [29], sentiment analysis
[30], [31], and regression [32] One of the most widely used
methods is SLDA which extends LDA by incorporating the
real value of the document label to guide the topic modeling
process [24]. By leveraging labeled data, supervised topic
models can learn topics that are more aligned with the specific
tasks or domains of interest. In [33] and [25], the authors
propose models to enhance the performance of document
classification task by utilizing the recurrent neural network and
the attention mechanism to capture the word order. None of
these methods model intents at sentence level as well as the
sequence order of sentences in the document for document
structure learning.

B. Sequential Sentence Classification

In recent years, deep learning approaches have shown
several advantages for text classification tasks, as they are
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able to learn meaningful representations for texts. HSLN [13]
proposes a hierarchical neural network followed by a CRF
layer. It employs bi-LSTM/CNN as a word/sentence encoder
to capture the sequential dependencies between words, and
sentences. The work in [34] introduces Neural Semi-Markov
Conditional Random Fields SCRFs to handle this problem
at span level (segment) instead of sentence level. More re-
cently, large language models (LLMs) such as GPT and
BERT have shown a significant improvement in understanding
context and capturing more relevant features by leveraging
vast amounts of text data, leading to significant improved
performance in various sentence classification tasks. The work
in [11] utilizes SciBERT [35] which is a BERT-based model
trained on roughly 1.14M scientific documents and performs
fine-tuning for the sequential sentence classification task. As
another approach, SciBERT-HSLN employs transfer learning
for sequential classification tasks within the scientific domain
including sequential transfer learning (INIT) and multi-task
learning (MULT) [10]. In INIT, they first train the model
on source data and then update the parameters using the
different target data. In contrast, MULT trains all the tasks
simultaneously and only the output layers are different for
all tasks while the remaining parameters are shared across
the tasks. Most of these methods focus on utilizing rhetorical
words but ignore topics of sentences.

C. Document Structure Learning

Learning document structure is crucial for many NLP tasks,
as it provides a deeper understanding of the relationships
between different parts of a document (could be at sentence or
segment level). Traditional models often treat documents as a
bag of words, ignoring the inherent structure that can provide
valuable context. Recent approaches have sought to overcome
this limitation by explicitly modeling the hierarchical structure
of documents. One such method involves using hierarchical
models that capture the relationships between sentences and
paragraphs, providing a deeper comprehension of document
composition. For example, the Hierarchical Attention Network
(HAN) introduced by [36] uses hierarchical attention mecha-
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nisms to focus on important words within sentences and im-
portant sentences within documents. This allows the model to
capture both the local (word-level) and global (sentence-level)
context. Tree-LSTM uses tree-structured neural networks to
represent the syntactic structure of text, which allows to learn
a more natural and effective representation of the hierarchical
structure of text [37].

Recently, the integration of rhetorical structure theory (RST)
has been explored to enhance document structure learning.
RST focuses on functional relationships between different
parts of a text, such as contrast, elaboration, and cause-effect.
Different approaches have been introduced, for instance, the
work in [38] develops a discourse parser that combines RST
with neural networks, achieving state-of-the-art performance
in discourse parsing. Another work in [39] incorporates graph
theory and RST for relation extraction at the document
level. [40] is another work that utilizes graph and attention
network for relation extraction problem. Lastly, a closely
related work to our model is SEGMM-LDA [14]. sSEGMM-
LDA incorporates RST into topic models and distinguishes
between topical and rhetorical words, which improves the
understanding of document coherent structure. Different from
INTENT, sEGMM-LDA does not model intents at sentence
level as well as the sequence nature of words and sentences
in the document, which makes it not perform well in the
sequential sentence classification task.

V. CONCLUSION

In this paper, we propose a model that integrates a sentence
sequence model with a neural topic model for supervised
learning of document structure which can be captured through
topics and intents of sentences in the document. We design a
topic attention mechanism that utilizes the topics of previous
sentences for improving the intent inference performance.
Extensive experiments on four real-world datasets show the
effectiveness of our proposed model. This validates the joint
modeling approach of topics and intents by integrating a
language model for sequence modeling with a topic model
for extracting topics via the topic attention mechanism.
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