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Abstract—A dictionary learning (DL)-based method for mul-
tisubject functional magnetic resonance imaging (fMRI) data
analysis is proposed. The method can incorporate group attributes
to find the neural activation maps that are common across groups
as well as those that are explanatory of the group differences. The
key contribution is to significantly improve the map estimation
performance by mitigating undesirable local optima obtained
from a supervised DL formulation for fMRI data analysis. We
introduce two novel ideas, namely, developing a variant of Fisher’s
discriminant cost, which is imposed on the non-discriminative
features, and optimally permuting the dictionary and the sparse
factor such that the solution is not trapped to unwanted local
optima. Preliminary tests on synthetic and real data sets verify
the effectiveness of the proposed approach.

I. INTRODUCTION

Leveraging the relationship between neuronal activity and
brain hemodynamics, functional magnetic resonance imaging
(fMRI) enables non-invasive monitoring of brain functional
activity [1]. Methods for analyzing fMRI data can be cate-
gorized into hypothesis-driven methods, such as the general
linear model (GLM) [2], and data-driven methods, such as
the ones based on independent component analysis (ICA) and
dictionary learning (DL). The latter methods rely on minimal
prior assumptions such as statistical independence and sparsity
to extract component neural activations [3], [4]. Recently, deep
learning-based methods are also being investigated [5], [6].

As large-scale fMRI studies involving hundreds of subjects
or more become prevalent, there is a growing demand for
robust data-driven methods for multisubject fMRI data anal-
ysis. The DL algorithms were tailored to capture group- and
subject-specific features in multisubject fMRI data [7], [8].
However, they often did not directly incorporate informative
group attributes such as the diagnosis, gender, and handed-
ness, into the analysis. Therefore, a supervised DL approach
was developed using Fisher’s discriminative cost to extract
the neural activations that can explain the group attributes
in [9]. This was achieved by splitting the dictionary (and
the corresponding sparse factor) into two subdictionaries that
capture the features common across groups and those that
are discriminative of the differences. However, due to the
DL formulation’s nonconvexity and the resulting difficulty in
obtaining global optima, the algorithm often yielded features
that did not have the designated properties. For example, many
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of the activation maps obtained in the common subdictionary
turned out to be highly discriminative.

To mitigate this issue, we propose a simple yet effective
modification of Fisher’s cost for the features in the common
subdictionary, which encourages traits that are opposite to
those imposed by the conventional Fisher’s cost. Furthermore,
capitalizing on the decomposability of the cost function, per-
mutations are performed on the sparse component maps and
the corresponding weight vectors (dictionary atoms) across the
common/discriminative subfactors. The optimal permutation
is efficiently found by solving a linear assignment problem.
Our preliminary experimental results show that the improved
DL method can effectively avoid undesirable local optima
and obtain neural activation maps with higher quality and
explainability.

The rest of the paper is organized as follows. The supervised
DL method for fMRI data analysis is briefed in Sec. II. The
proposed improvements are delineated in Sec. III, and the
algorithm is derived in Sec. IV. The proposed method is
evaluated in Sec. V. The conclusion is provided in Sec. VI.

II. FMRI DATA ANALYSIS USING SUPERVISED DL

First, the supervised DL formulation for fMRI data analysis
is summarized [9]. Let X P RMˆV be a collection of
fMRI data volumes from M subjects. We aim at obtaining K
component spatial activation maps Z P RKˆV that are sparse
and the corresponding weight matrix (dictionary) D P RMˆK

such that X « DZ. To leverage the subject group labels
and estimate the component maps that are characteristic of
the differences between groups (as well as the maps that are
common), the spatial maps Z is split into Z :“ rZ

J
, rZJ

s
J

(J denotes transposition), where rZ P RĂKˆV contains rK

discriminative maps and Z P RKˆV contains K common ones,
with K` rK “ K. Likewise, D is partitioned as D :“ rD, rDs,
where the rows of rD P RMˆĂK are the discriminative features
for individual subjects and the rows of D P RMˆK are the
common ones.

The group labels can be incorporated through Fisher’s dis-
criminant cost [10]. Suppose that Y “ ry1, . . . ,yN s collects
the features used to classify N data samples into C classes.
Denote the set of indices of samples that belong to class c as
Nc, which has cardinality Nc. Then, the so-called within-class



scatter matrix Sw and the between-class scatter matrix Sb are
defined as

SwpYq :“
ÿC

c“1

ÿ

nPNc
pyn ´mcqpyn ´mcq

J (1)

SbpYq :“
ÿC

c“1
Ncpmc ´mqpmc ´mq

J (2)

respectively, where mc :“ 1
Nc

ř

nPNc
yn is the feature mean

for class c and m :“ 1
N

řN
n“1 yn is the overall feature mean.

Fisher’s discriminant criteria aims at minimizing the scatter
within each class and maximizing the distance between scatters
from different classes. One choice of the cost function for this
purpose is

fpYq :“ trtSwpYqu ´ trtSbpYqu ` }Y}
2
F (3)

where the last term with Frobenius norm ensures the convexity
of the cost with respect to (w.r.t.) Y. In fact, upon defining
H1 P RNˆN with the pi, jq-entry equal to 1{Nc if i, j P Nc

and 0 otherwise, and H2 P RNˆN with all entries equal
to 1{N , it can be shown that fpYq “ trtY rHYJ

u with
rH :“ 2I ´ 2H1 ` H2 and all the eigenvalues of rH are
nonnegative [11].

Since the rows of the subdictionary rD carry the features for
discriminating subject groups, the Fisher’s cost is employed on
rD only as fp rDJ

q. Thus, the supervised DL problem for fMRI
data analysis is formulated as

min
DPD,Z

1

2
}X´DZ}2F ` λ1}Z}1 `

λ2

2
fp rDJ

q (4)

where D P D :“ trd1, . . . ,dKs : }dk}2 ď 1, k “ 1, . . . ,Ku

is imposed due to the scaling ambiguity of bi-factorization,
and λ1 and λ2 are nonnegative regularization parameters. An
efficient block coordinate descent (BCD) algorithm can be
derived based on the convexity of the problem when one of
tD,Zu is fixed, which leads to a local optimum of (4) [9].
However, since the problem is nonconvex in pD,Zq jointly,
globally optimal solutions are hard to obtain. Even when solved
with multiple initial points, the formulation often leads to
undesirable solutions, such as the ones with discriminative
features and maps ending up in D and Z, respectively, or non-
discriminative (common) features and maps in rD and rZ. When
this happens, the explainability and the quality of the estimated
maps are diminished.

III. PROPOSED FORMULATION

To mitigate this issue, a few improvements are made to the
supervised DL algorithm. First, a variant of Fisher’s cost is
applied to the common features to explicitly encourage the
commonness of features across classes. Secondly, the maps in
Z and the corresponding weights in D are permuted during
optimization to prevent being trapped in undesirable local
optima.

A. Proposed Variant of Fisher’s Cost

Instead of singly relying on the Fisher’s cost imposed on
rD alone for ensuring both the common and the discriminative
maps/features to show up in the correct subfactors, an addi-
tional Fisher-like cost is imposed on the common dictionary
D as well. The idea is to encourage all features in D to be
similar, which can be achieved by imposing a prior in the

opposite direction of the conventional Fisher’s cost, namely, by
maximizing the scatter within each class and minimizing the
same across different classes. Thus, a reasonable cost function
is

gpYq :“ trtSbpYqu ´ trtSwpYqu ` 2}Y}
2
F (5)

where the last term again ensures the convexity of g w.r.t.
Y, which is important to derive a convergent BCD algorithm.
That is, it can be again shown that gpYq “ trtY sHYJ

u,
with sH :“ 2H1 ´ H2 ` I, and that all the eigenvalues
of sH are nonnegative. Thus, with regularization parameters
tλi ě 0u3i“1, the proposed DL formulation is given as

min
DPD,Z

1

2
}X´DZ}2F`λ1}Z}1`

λ2

2
fp rDJ

q`
λ3

2
gp sDJ

q.

(6)

B. Finding Optimal Permutation

To further aid in avoiding undesirable local optima, where
the estimated features in D may turn out to be discriminative
and those in rD non-discriminative (and the same way with
the corresponding maps in Z and rZ), here it is proposed to
proactively permute the columns of D and the rows of Z
to minimize the objective cost in (6) during the optimization
process. Such permutations do not alter the values of the
reconstruction term 1

2
}X´DZ}2F or the sparsity prior λ1}Z}1

in (6), but only affect the terms involving f and g.
It is noted first that one can decompose fpYq and gpYq

as fpYq “
ř

k fkpYq and gpYq “
ř

k gkpYq, respectively,
where

fkpYq :“
ÿC

c“1

“

ÿ

nPNc
pykn ´mc,kq

2

´Ncpmc,k ´mkq
2
‰

`
ÿN

n“1
y2
kn (7)

gkpYq :“
ÿC

c“1

“

Ncpmc,k ´mkq
2

´
ÿ

nPNc
pykn ´mc,kq

2
‰

` 2
ÿN

n“1
y2
kn (8)

where ykn is the pk, nq-entry of Y, and mc,k and mk are the
k-th entries of mc and m, respectively. Due to the decompos-
ability, given D and Z, the optimal permutation can be found
by solving over permutations π : t1, . . . ,Ku Ñ t1, . . . ,Ku

min
π

K
ÿ

k“1

ωpk, πpkqq (9)

where

ωpk, πpkqq :“

#

λ3gπpkqpD
J
q if 1 ď πpkq ď K

λ2fπpkqpD
J
q if K ` 1 ď πpkq ď K.

(10)

In the cost function of (9), the costs for the individual atoms
are summed, where each atom can be assessed with either
the modified or the original Fisher’s cost, depending on which
subdictionary the permutation puts the atom into. Problem (9)
is a linear assignment problem (LAP), which can be solved
efficiently [12]. Once the optimal π˚ is obtained, the k-th
column of D is moved to the π˚

pkq-th column of Dπ˚ and
the k-th row of Z to the π˚

pkq-th row of Zπ˚ . The permuted



Input: X,Dp0q,Zp0q, λ, µ
Output: Dp8q, Zp8q

1: Initialize Dp0q and Zp0q randomly. Set ℓ “ 0.
2: While not converged
3: Set i “ 0, tp0q “ 1, Zpℓ,iq “ Zpℓq, Wpℓ,iq “ Zpℓq,

and Lpℓq “ λmax

`

pDpℓqqJDpℓq
˘

/* Update Z */
4: While not converged
5: Gpℓ,iq Ð ´pDpℓqqJpX´DpℓqZpℓ,iqq

6: Zpℓ,i`1q Ð Sλ{LpW
pℓ,iq ´Gpℓ,iq{Lpℓqq

7: tpi`1q Ð p1`
a

1` 4ptpiqq2q{2

8: Wpℓ,i`1q Ð Zpℓ,i`1q ` tpiq´1

tpi`1q pZ
pℓ,i`1q ´ Zpℓ,iqq

9: i Ð i` 1
10: End While
11: Set s “ 0, Zpℓ`1q “ Zpℓ,iq, and Dpℓ,sq “ Dpℓq

/* Update D */
12: Set A “ Zpℓ`1qpZpℓ`1qqJ and B “ XpZpℓ`1qqJ

13: While not converged
14: For k “ 1, 2, . . . , sK

15: uk Ð rakkI` λ3
sHs´1

˜

bk ´
K
ř

k1“1,k1‰k

akk1d
pℓ,sq
k1

¸

16: d
pℓ,s`1q
k Ð 1

maxt}uk}2,1u
uk

17: Set the k-th column of Dpℓ,sq to d
pℓ,s`1q
k

18: End For
19: For k “ sK ` 1, . . . ,K

20: uk Ð rakkI` λ2
rHs´1

˜

bk ´
K
ř

k1“1,k1‰k

akk1d
pℓ,sq
k1

¸

21: d
pℓ,s`1q
k Ð 1

maxt}uk}2,1u
uk

22: Set the k-th column of Dpℓ,sq to d
pℓ,s`1q
k

23: End For
24: s Ð s` 1
25: End While
26: Set Dpℓ`1q “ Dpℓ,sq

/* Find the optimal permutation */
27: Compute π˚ via (9).
28: Permute Dpl`1q and Zpl`1q according to π˚

29: ℓ Ð ℓ` 1
30: End While
31: Dp8q Ð Dpℓq and Zp8q Ð Zpℓq

TABLE I: Algorithm for solving (6).

Dπ˚ and Zπ˚ yield the cost function value that is no larger
than that of D and Z. The BCD-based DL algorithm is then re-
run using the permuted factors as the initial point. This process
can be repeated until the cost function no longer decreases.

IV. ALGORITHM DERIVATION

Though (6) is nonconvex jointly w.r.t. the optimization
variables, when any two of Z, sD, and rD are fixed, the problem
is convex w.r.t. the remaining one. Thus, we can find a locally
optimal solution through iterative updates. Specifically, when
D is fixed, the formulation reduces to the least absolute
shrinkage and selection operator (LASSO) problem for Z. On
the other hand, when Z and either of sD, or rD are fixed, the
formulation is a convex quadratic optimization problem. We
employ the BCD method, which alternates among Z, sD, and
rD, and provably converges to a locally optimal solution.

Firstly, when D is fixed, the update of Z can be done by

Zpℓ`1q :“ argmin
Z

1

2
}X´DpℓqZ}2F ` λ1}Z}1 (11)

where ℓ is the iteration index. The fast iterative shrinkage-
thresholding algorithm (FISTA) [13] can be applied to solve
this problem. The FISTA linearly approximates the differ-
entiable part of the objective, i.e. gpZ;Dpℓq

q :“ 1
2
}X ´

DpℓqZ}2F , and iteratively solves a proximal problem. The
detail of the solution is given in lines 4-10 in TABLE I,
where ´pDpℓq

q
J
pX ´ DpℓqZq is the gradient of g w.r.t.

Dpℓq, and Lpℓq
“ λmax

´

pDpℓq
q
JDpℓq

¯

is the largest eigen-

value of pDpℓq
q
JDpℓq. The operator SβpAq performs element-

wise soft-thresholding on the entire A, i.e. rSβpAqsij “

signpaijqmaxt0, |aij | ´ βu
When Z is fixed at Zpℓ`1q, the update for D is done via

Dpℓ`1q :“ arg min
DPD

1

2
}X´DZpℓ`1q

}
2
F

`
λ2

2
tr
!

rDJ
rH rD

)

`
λ3

2
tr
!

sDJ
sH sD

)

(12)

The data fidelity term in (12) can be replaced by
1
2
trtADJDu ´ trtBDJ

u with A :“ Zpℓ`1q
pZpℓ`1q

q
J and

B :“ XpZpℓ`1q
q
J. Thus, (12) can be rewritten as

Dpℓ`1q
“ arg min

DPD

1

2
trtADJDu ´ trtBDJ

u

`
λ2

2
trt rH rD rDJ

u `
λ3

2
tr
!

sDJ
sH sD

)

(13)

We can again apply the BCD method to solve (13) by regarding
each atom of D as a block variable, which can be updated
sequentially [14]. Specifically, at the iteration s` 1, to update
the k-th atom, fix other atoms to the values at the iteration
s, i.e. d

pℓq

k1 “ d
pℓ,sq

k1 for k1
“ 1, . . . , k ´ 1, k ` 1, . . . ,K.

Since D consists of two sub-dictionaries sD and rD, the update
of atoms can be done differently depending on whether they
belong to sD or rD. The common dictionary atoms tdku for
k “ 1, 2, . . . , sK are updated via

uk “ pakkI` λ3
sHq

´1

«

bk ´
ÿ

k1‰k

akk1d
pℓ,sq

k1

ff

(14)

d
pℓ,s`1q
k “

1

maxt}uk}2, 1u
uk. (15)

Likewise, the discriminative dictionary atoms tdku for k “
sK ` 1, . . . ,K are updated by

uk “ pakkI` λ2
rHq

´1

«

bk ´
ÿ

k1‰k

akk1d
pℓ,sq

k1

ff

(16)

d
pℓ,s`1q
k “

1

maxt}uk}2, 1u
uk. (17)

The overall updates of the dictionary is given in lines 13-23 in
TABLE I. After Zpℓ`1q and Dpℓ`1q are updated, the optimal
permutation π˚ will be computed via (9). Then, the columns of
Dpℓ`1q and the rows of Zpℓ`1q are rearranged via π˚. Finally,
the converged Dp8q and Zp8q are output as the solution to (6).

V. NUMERICAL TESTS

A. Test with Synthetic Data

The proposed method was first tested on a synthetic data set
with rK “ K “ 10 and V “ 10, 000. The sparse factor was
generated from a Bernoulli (p “ 0.5)-Gaussian distribution.
The dictionary for M “ 271 subjects was generated from
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Fig. 1: Performance on the synthetic data set. (a) Compar-
ison of classification accuracies. (b) Correlation coefficients
between true and estimated maps.

Step 0.5 0.7 0.9 1.1 1.3 1.5
Proposed 90% 100% 100% 100% 100% 100%

Supervised DL 50% 60% 70% 70% 70% 80%

TABLE II: Percentage of correctly determined map types.

N p0, 1q. A step of height h was added to the entries of
121 subjects in the columns associated with discriminative
maps to simulate two groups. The synthetic data set was then
obtained as the product of the dictionary and the sparse factor
plus Gaussian noise. We performed a grid search for tλiu

3
i“1

by splitting the data into training and validation sets and
choosing the parameters with the best classification accuracy
on the validation set. Then, (6) was solved with 75 different
initializations and the most stable run was found [9].

Fig. 1(a) shows the prediction accuracy of the group labels
from the estimated rD as a function of the step heights, for
the proposed and the benchmark methods. For comparison,
the results from the supervised DL in (4), fast ICA [15],
and sparse representation classification (SRC) [16] methods
are also depicted. The kernel support vector machines (SVMs)
were trained for fast ICA, and the K-nearest neighbor (KNN)
classifiers were used for the supervised DL and our method,
which yielded the best performances in the respective cases.
It can be seen from the figure that our proposed method
outperforms the other methods.

Fig. 1(b) depicts the correlation coefficients between the true
and the estimated component maps for the data set with the step
height of 1.5. It can be observed that all the component maps
are faithfully estimated although there are sign and permutation
ambiguities. Notably, it can be seen that all the true common
maps are estimated as common (k “ 1, . . . , K), and all the
true discriminative maps are estimated as discriminative (k “

K ` 1, . . . ,K). Table II lists the percentage of the maps with
correctly identified types. It can be seen that except for the
smallest step height of 0.5, the map types are all correctly
determined by the proposed method, while the supervised DL
method produces type mismatches.

B. Test with Real Data

We tested the proposed algorithm on the real fMRI data from
the MIND Clinical Imaging Consortium (MCIC). The data set
involved 150 healthy control subjects and 121 subjects with
schizophrenia performing the auditory oddball (AOD) task [9].
After parameter tuning via cross-validation, our method yielded
a classification accuracy of 70.1% (with K = 20, rK = 18,

0 5 10 15 20 25 30 35

Component Index

0

1

2

3

4

5

6

7

8

9

Common

Discriminative

p = 0.05

0 5 10 15 20 25 30 35

Component Index

0

1

2

3

4

5

6

7

8

Common

Discriminative

p=0.05

(a) Proposed method (b) Supervised DL

Fig. 2: Comparison of p-values.

Fig. 3: Visualization of selected maps and their p-values from
two-sample t-tests. The maps from the proposed method (in
the 1st and the 3rd rows) are paired with the highly correlated
maps (2nd and 4th) from supervised DL. The warm colors
in the maps indicate higher activation in the controls and the
cold colors in the patients. They are samples of maps correctly
identified of their types by the proposed method but not by
supervised DL. Specifically, the p-values in blue are significant
(p-values less than 0.05) although the maps are estimated as
non-discriminative in Z. Likewise, the p-values in green are
larger than 0.05 although they are estimated as discriminative
in rZ.

λ1 “ 0.0027, λ2 “ 0.175, and λ3 “ 0.34), higher than 68%
of the supervised DL algorithm (with K = 12 and rK = 26)
and 66% of the ICA-based method [17]. It should be noted
that only the discriminative features are used for classification
and our method beats supervised DL with fewer discriminative
features.

Fig. 2 shows the p-values of the two-sample t-tests per-
formed using columns of D. It is observed that the p-
values of the common maps (in blue) are all larger than 0.05
(´ log10 p ď 1.3) for the proposed method, while this is not
the case for the supervised DL, even though the common
map order of the former (K “ 20) is larger than that of
the latter (K “ 12). It can also be seen that the fraction
of the discriminative maps with the p-values larger than 0.05



is much smaller for the proposed method compared to the
supervised DL. The geometric mean (and the geometric median
exp(med{log pi})) of the p-values of the common and discrim-
inative maps from the proposed method are 0.43 (0.53) and
1.5e-3 (7.5e-3), respectively, while the same for the supervised
DL are 0.091 (0.11) and 0.017 (0.07), respectively. Thus the
proposed method can obtain the maps of the desired types more
effectively.

Next, a subset of the spatial activation maps estimated from
the proposed algorithm is shown in Fig. 3. For comparison,
they are paired with the maps from the supervised DL al-
gorithm that are highly correlated. The map pairs in Fig. 3
are examples of the supervised DL algorithm producing maps
whose p-values do not match the designated map types, while
the proposed method could estimate maps with correct map
types. For example, map rz9 from the proposed algorithm (or z6
from supervised DL) shows a part of the thalamus region where
some recent studies found connections to schizophrenia [18],
[19]. Also, it can be seen that the supervised DL algorithm
estimated it as a common map, but the p-value is smaller
than 0.05. On the other hand, our method estimated it as a
discriminative map, and the p-value is indeed much smaller
than 0.05. Another example is the map rz17 from the proposed
method (or z18 from the supervised DL), which is the default
mode network (DMN) region, known to be associated with
schizophrenia [20]. Although both methods estimate the map
as discriminative, only the map from our algorithm is found to
be discriminative according to the p-value.1

VI. CONCULSION

A DL-based fMRI data analysis algorithm has been pro-
posed, which could estimate the component neural activation
maps that are common across subject groups as well as
those that are discriminative of group differences. An existing
supervised DL algorithm for fMRI data analysis often yielded
maps that do not fall into the correct map category due to the
local optima present in the nonconvex formulation. A modified
version of Fisher’s discriminant cost was employed to mitigate
this issue on the common map weights. Furthermore, the com-
ponent maps were permuted during the optimization exploiting
the decomposability of the cost function to prevent the algo-
rithm from being stuck in undesirable local optima. Numerical
tests with synthetic and real data sets showed that the proposed
method yields significantly improved performance compared to
existing methods in terms of classification accuracy, correctness
of map types, and interpretability of estimated maps.
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