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Abstract—Deep learning based device fingerprinting has
emerged as a key method of identifying and authenticating
devices solely via their captured RF transmissions. Conventional
approaches are not portable to different domains in that if a
model is trained on data from one domain, it will not perform
well on data from a different but related domain. Examples of
such domains include the receiver hardware used for collecting
the data, the day/time on which data was captured, and the
protocol configuration of devices. This work proposes Tweak, a
technique that, using metric learning and a calibration process,
enables a model trained with data from one domain to perform
well on data from another domain. This process is accomplished
with only a small amount of training data from the target domain
and without changing the weights of the model, which makes
the technique computationally lightweight and thus suitable
for resource-limited IoT networks. This work evaluates the
effectiveness of Tweak vis-a-vis its ability to identify IoT devices
using a testbed of real LoRa-enabled devices under various
scenarios. The results of this evaluation show that Tweak is viable
and especially useful for networks with limited computational
resources and applications with time-sensitive missions.

Index Terms—Device authentication, domain-agnostic portable
device fingerprints, learning model calibration.

I. INTRODUCTION

Recent years have seen unprecedented growth in both the
number and variety of IoT networks and applications [1]. Due
to its ability for enabling long-range connectivity between IoT
devices at low power, LoRa technology [2] has been widely
adopted by hundreds of IoT application developers as the de
facto wide-area wireless network access protocol. With such a
rapid adoption of LoRa technology coupled with the massive
numbers of emerging resource-constrained IoT devices, there
is undoubtedly an urgent need for lightweight and scalable
authentication mechanisms that can ensure automated and
secure access to these LoRa-enabled IoT networks.

Device authentication mechanisms that are based on RF
(radio frequency) fingerprinting have recently been recognized
as key methods with great potential for complementing con-
ventional cryptographic approaches to increase the security
protection of IoT networks against unauthorized access [3].
These fingerprinting methods essentially consist of extracting
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device-specific features (aka fingerprints) from received RF
signals—typically caused by inevitable transceiver hardware
impairments incurred during manufacturing, and leveraging
these features to uniquely identify and classify wireless trans-
mitters [3], [4]. Various feature extraction approaches have
been taken, including early hand-crafted approaches that re-
quire RF signal domain knowledge and many trial-and-error
attempts (e.g. [5]), and more recent approaches that leverage
deep learning to extract features automatically from raw RF
signals without requiring RF domain expertise (e.g. [3], [6]).

A. Multi-Domain Portability Challenges

Although recent deep learning approaches have shown promis-
ing results, they fail to maintain good performance when the
data used during training and that used during testing are
collected under different domains. For example, when the
model is trained on data collected at one receiver but tested
on data collected at a different receiver, the device identifica-
tion accuracy degrades substantially compared to when both
training and testing are done on data collected using the same
receiver. To demonstrate the impact of such challenges, we
performed several experiments using data collected with an
IoT testbed, consisting of 25 LoRa transmitters and 2 USRP
B210 receivers, under three different deployment settings:
indoors, outdoors and wired (detailed description of the testbed
and experimental scenarios is given later in Sec. III). Our
results depicted in Fig. 1a show the accuracy of the learning
model when trained on data captured at one receiver (RX1),
but tested on data captured at a different receiver (RX2), as
well as at the same receiver (RX1). These results clearly show
the substantial drop in accuracy due to the change in the
receiver hardware. As depicted in Fig. 1b, similar trends are
also observed when the model is trained on data captured on
Day 1 but tested on data captured on a different day (while
keeping the same receiver). The common trend in these figures
is that the models only perform well when the testing domain
(receiver/day) matches the training domain.

The issues of domain portability we just illustrated have also
been demonstrated in other works [6]-[8]. Since this problem
is well established, developing approaches that can overcome
such issues has become an active research area in recent years.

B. Limitations of Related Work

Past works attempting to address the wireless channel porta-
bility problem [3], [8]-[10] are almost all based on using data
augmentation and/or custom feature extraction as preprocsess-
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Fig. 1: Accuracy of models tested on different domains.

ing in order to extract RF fingerprints that are channel agnostic.
The downside of these approaches is that the resulting model
is not flexible and must be re-trained if it cannot perform well
in a new condition. A notable exception to this is the work
in [8], which proposed a system that can estimate the channel
and adapt to it.

Other approaches [11]-[13] attempt to ensure portability
with regard to receiver hardware. However, these methods
require some form of potentially computationally intensive
training or optimization in order to transform input data so
that it can be correctly classified.

The authors of [4] make perhaps the most notable recent
attempt at portability, and employ a method similar to the
one described herein in the sense that both methods use
metric learning and the triplet loss function. They address
both channel portability and transmitter hardware portability
(training and testing using two different sets of transmitters).
Notably, this work is the only one, to the best of our knowl-
edge, that performs its evaluation on open-set identification
and classification [14], which allows inputs from unknown
transmitters and attempts to reject these inputs.

The costly alternatives available to practitioners while re-
search on portability continues are as follows: (i) training a
new deep learning model for each domain one wishes to test
with, and (ii) training a single deep learning model with data
from multiple domains in an attempt to produce a domain-
agnostic model. These approaches are both costly in terms of
the extra data required from additional target domains and the
computation time needed to train the neural network models.

C. Our Contributions: Tweak

We propose Tweak, a lightweight device identification tech-
nique that enables portability of the deep learning models
across multiple different domains. Tweak leverages metric
learning to achieve accurate identification and open-set accu-
racy through model calibration instead of re-training, thus sig-
nificantly reducing (i) the training time and (ii) the amount of
needed data, making it more suitable for resource-constrained
and real-time IoT applications. Tweak is evaluated using
datasets collected from a testbed of 25 LoRa transmitters and
2 USRP B210 SDR receivers. Specifically, Tweak enables:

- Lightweight model portability through calibration that
can be performed very quickly, without changing the
model weights, and can be done using a relatively small
amount of labeled data from the target domain.

- Multi-domain model portability across multiple differ-
ent domains, including receiver hardware, communication
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Fig. 3: A high-level diagram of Tweak

channel, and LoRa configuration, as shown in Fig. 2.

- Open-set device identification by easily acting as an
open-set classifier, as Tweak handles inputs from un-
known devices. Most related approaches that attempt to
address portability do not perform open-set testing.

The remainder of this work is organized as follows: Sec. II

presents Tweak. Sec. III and Sec. IV evaluate Tweak using
RF data captured using a real testbed of IoT devices.

II. Tweak: ENABLING DEEP LEARNING MODEL
PORTABILITY FOR ROBUST DEVICE AUTHENTICATION
Our goal is to provide a device authentication method by
which an open-set deep learning model can be trained on
data from one domain (collected at one receiver, through one
wireless channel, or with IoT transmitters using one LoRa
configuration) and then be calibrated to perform well on data
from a different but related domain. In this way, Tweak
aims to move toward the creation of deep learning models
for RF fingerprint authentication that are portable in terms of
hardware, wireless channel, and LoRa protocol configuration.
Tweak achieves these portability goals through a calibration
process that is: (i) not computationally intensive (and can be
done on IoT hardware that is less powerful than the resources
used for training the original model) and (ii) accomplished
with a limited amount of labeled training data from the target
domain (receiver, day, configuration).
Fig. 3 summarizes Tweak. Prior to deployment, Tweak
requires a training phase for the twin neural network and a
calibration process using data from the target domain from



all devices. Note that the calibration process can be repeated
with different data without altering the twin neural network.
The following subsections provide more information including
background material on the twin network architecture, details
regarding how the neural network is trained as well as specifics
of the calibration and decision-making algorithms.

A. Deep Learning
This section focuses the discussion on metric learning and twin
neural networks; a comprehensive treatment on deep learning
is outside the scope of this work and additional information
can be found in [15]. Tweak uses twin neural networks as
open-set classifiers. While closed-set classifiers are designed
to classify data with the assumption that they only encounter
data instances from the classes observed during training, open-
set classifiers can handle data from classes (i.e., devices) that
are not seen during training [14]. We deal with data instances
from these unseen classes by identifying them as not belonging
to one of the known classes seen during training. While the
open-set problem is more difficult, it is also more realistic and
appropriate for device authentication when unknown devices
are often encountered in deployment.
1) Metric Learning and Twin Neural Networks
The standard approach for building a deep neural network
(DNN) classifier is to train the model using a cross entropy loss
with one output node for each class. The values of these output
nodes are then used to determine the degree to which an input
instance is predicted to belong to a particular class. Under this
standard supervised learning setting, it is non-trivial to adapt
the network to different domains such as a different receiver,
day or configuration. Sophisticated domain adaptation methods
for deep learning (e.g. [16], [17]) have been developed, but
these methods are typically computationally intensive and re-
quire large amounts of data. In contrast, we want a lightweight
domain adaptation process that can be quickly calibrated using

a small number of labeled examples from the target domain.

To overcome these issues, our work makes use of deep
metric learning [18] in which a DNN produces an embedding
of a data instance in a K-dimensional latent space. Within
this embedding space, data instances that are similar (e.g.
from the same device) will be closer than those that are
not similar (e.g. from different devices). Tweak uses a well
known metric learning structure called a twin (or Siamese)
neural network [19], [20]. These types of neural networks
have been successfully used for applications where few ex-
amples are available such as signature verification [19] and
facial similarity calculations [21]. Additionally, it has been
shown that twin networks trained on one image dataset (e.g.
Omniglot) and evaluated on an entirely different image dataset
(e.g. MNIST) are able to generalize and maintain some level
of performance [22]. However, they have only been applied
directly to the problem of device fingerprinting based on RF
signals in one other work [4].

Fig. 4 depicts a twin neural network, consisting of a pair
of convolutional neural networks (CNNs) constrained to have
identical weights. Each CNN accepts a single input instance
and produces an output that corresponds to coordinates in a
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K-dimensional latent embedding space (K being the number
of output nodes). The distance between the two outputs in
the embedding space is computed as a measure of similarity
and can be used to train the network with a loss function. In
practice, a trained twin network can be considered as a single
DNN that produces an output point in the embedding space,
instead of twin networks that produce a distance (since the
networks have identical weights). Hence, using a twin network
does not impose additional memory costs.

2) Training the Twin Neural Network

Training a twin neural network requires a loss function that
will cause data instances from different classes to be further
apart in the output space and data instances from the same
class to be closer together. A loss function that fits this
criterion is the triplet loss function [23], which encourages
reduced distances between ‘Anchor’ (A) and ‘Positive’ (P)
examples, and increased distances between ‘Anchor’ (A) and
‘Negative’ (N) examples. The mathematical expression for this
loss function is provided in Equation (1) and a visual depiction
is provided in Fig. 5, where a is a margin value (indicating
that the distance between P and N has to be at least this much
to matter), and f{-) is the neural network mapping function.

Loss = max(If{A) - fAAP)l - 1f{A) - AN +a,0) (1)

Triplets of A, P, and N examples are provided to the network
during training. We generate the triplets after examples from a
mini-batch have already passed through the network but before
the loss is calculated. Determining triplets after examples have
passed through the network is advantageous because more
difficult triplets can be strategically selected to help with
training [23], where difficult triplets are those with high loss
due to having A closer to N thanto P.

Tweak uses the triplet loss function to train the twin
network as shown in Fig. 3. Once this model has been trained
on labeled data from a chosen domain, inputs from different
transmitters should be mapped to outputs that are farther apart,
and inputs from the same transmitter should be mapped to
outputs that are closer together. At this point, the model is
typically only capable of making decisions given two inputs
that it can compare in terms of their distance in the latent
space. To enable the trained twin network to make decisions
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about a single input from a particular domain, a calibration
process must be performed.

B. Calibration and Decision Making Algorithms

Algorithm 1 Calibration

Centroids = [ ]
Distances = [ ]
Devices = {D1, Do, ..

., Dk} each Dj = {xi1, Xi2, ..., XiN}
for all Dy € Devicqs do
Centroids[i] = M, flxg)/ N
Distances[i] = ].’il 1f(xj) — Centroids[il/N
end for
Calibrated for Di € Devices

The calibration process is performed by providing the
trained network with labeled examples from all desired de-
vices. Note that these examples may come from the training
data if calibrating for the same domain as the training data.
Algorithm 1 describes the calibration process and Fig. 6
illustrates it. We use the convention that boldface symbols refer
to vectors and sets while non-boldface refer to scalars. For
each device (class), we repeat the following process: given IV
examples from device i for calibration, xG1, XG=2, ..., XGN , We
first pass these examples through the trained neural network,
f (4), to produce N corresponding outputs in the latent space.
The first image in Fig. 6 shows the result of this step. Next,
these N outputs are averaged to produce Centroids|i] (i.e.
the centroid for device i), which is shown in the second image
of Fig. 6. This centroid is the first piece of calibration data
that will be stored for device i

Next, the distances between the centroid for device i and
each of the N outputs that were used to generate the centroid
are calculated. This is depicted in the third image of Fig. 6.
These distances are averaged to produce Distances|i] (i.e.
the average distance for device i), which is represented by
a circle with this distance value as its radius in Fig. 6. This
distance is the second piece of calibration data that will be
stored for device i After the above process is repeated for
every device, calibration is complete and the Centroids and
Distances for the devices can be used to make decisions
regarding new inputs using the decision algorithm to be
described later.

This calibration process is designed to be lightweight as
it only requires feeding data instances forward through the
network and performing distance calculations, thus avoiding

re-training the network. Additionally, the parameter N rep-
resents the number of examples from each device used for
calibration purposes. Altering N allows adjusting the amount
of computation required for calibration as well as the amount
of labeled data required. The calibration process could also be
repeated with data from multiple domains for the same devices
in order to produce a model capable of making decisions about
data from these multiple domains, thereby producing multiple
Centroids and Distances for each device.

Algorithm 2 Open-set Binary Decision

InputDeviceE)Elmples = {x1, X2, ..., Xm}
InputPoint = 11, flx))/ M
for all D; € Devices do
if dist(InputPoint, Centroids[i]) < Distances[i
then
Return: Decision = Admit
end if
end for

Return: Decision = Reject

Once calibrated, the network is then used as an open-set

classifier (Algorithm 2) to classify an input data instance as
belonging to a known or unknown device. The algorithm be-
gins by collecting M examples, X1, X2, ..., XM, from an input
device, passing these examples through the trained network,
f(+), and averaging the M outputs to produce InputPoint.
Since this operation is not typical in deep learning models,
it deserves some explanation. In the RF domain, the input
data represents fractions of a second of real-time RF com-
munication. Thus, it is plausible to collect M input examples
quickly in order for the model to process them for the open-
set classifier. Doing so allows for the construction of a less
noisy InputPoint that is more representative of a particular
device and less susceptible to the effects of outlier examples.
After InputPoint is computed, for each device i the
algorithm calculates the distance between the InputPoint
and Centroids[i] and compares this distance with
Distancesli]. If this calculated distance is less than or equal
to Distancesli], the algorithm decides that the input comes
from a known device, and returns the ‘Admit’ decision (i.e.,
device is authenticated). If none of the calculated distances
are less than or equal to Distances[i], then the algorithm
decides the input came from an unknown device, and returns
the ‘Reject’ decision (i.e., device is denied network access).

III. EXPERIMENTAL SCENARIOS AND DATASETS
This section describes the testbed used for collecting the
RF datasets and the experimental setups used for evaluating
Tweak under three different portability scenarios.

A. Testbed

In order to evaluate Tweak, real RF data was collected using
a testbed of devices. This testbed contains 25 almost identical
PyCom IoT devices used as transmitters: 23 Lopy4 boards and
2 Fipy boards on top of 22 Pysense sensor shields, 2 Pytrack
sensor shields, and 1 Pyscan sensor shield (pictured in Fig. 7c).
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.. Multi-RX # # # # TX

Portability Env. Collection | TX | RX | Days | Config.
Hardware Indoor Same Tx 25 2 1 1
Hardware Outdoor Same Tx 25 2 1 1
Hardware Wired Same Tx 25 2 1 1
Hardware Indoor Diff. Tx 25 2 1 1
Hardware Outdoor Diff. Tx 25 2 1 1
Hardware Wired Diff. Tx 25 2 1 1
Channel Outdoor N/A 25 1 5 1
Config. Indoor N/A 25 1 1 4

TABLE I

Summary of the datasets used for evaluation.

The testbed also uses 2 USRP B210 SDRs (Software Defined
Radios) as receivers to collect data (pictured in Fig. 7b).

All of the datasets collected using this testbed (outlined in
the next section) use the following settings and processes un-
less otherwise stated: the PyCom transmitters were configured
to transmit using the LoRa protocol, with a center frequency of
915 MHz, spreading factor of 7, and bandwidth of 125KHz.
The USRP B210 receivers were configured to sample at a
center frequency of 915 MHz, at a rate of 1M samples per
second. Each transmission sends the same message, and lasts
for 20s. This produces 20M complex-valued samples for each
transmission received. This data was stored in raw-1Q format,
using GNURadio to process the data.

Regardless of the environment in which data was collected,
the transmitters and receivers were always placed about Sm
apart (with the exception of “Wired’ data, which is collected by
connecting transmitters to receivers by physical wire). All data
collected using this testbed will be made publicly available.

B. Experimental Scenarios

The collected LoRa RF datasets and the studied portability

scenarios are summarized in Table I and described next.
Hardware portability dataset scenario. Six different

datasets were collected to evaluate the hardware portability

Spreading Tx Coding .
Config. Factor BW Power Rate Bit Rate
1 7 125kHz | 20dBm 4/5 5470bps
2 8 125kHz | 20dBm 4/5 3125bps
3 11 125kHz | 20dBm 4/5 537bps
4 12 125kHz | 20dBm 4/5 293bps
TABLE II
Different LoRa transmitter configurations.
Each TX transmits twice, once for
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Fig. 8: Methods of collecting RF data with two receivers.

scenario. All of these datasets involve the same 2 receivers and
25 transmitters, and each contains 2 recorded transmissions
from each transmitter: one at each receiver.

These six datasets differ in terms of the environment they
were collected in as well as the ‘Multi-RX Collection’ method
used. Datasets where the ‘Multi-RX Collection” method is
‘Diff. Tx” were collected by capturing two different trans-
missions from each device, one at each receiver as shown
in Fig. 8b. Datasets where this method is ‘Same Tx’ were
collected by capturing the same single transmission from each
device at both receivers as shown in Fig. 8a.

Channel portability dataset scenario. This dataset in-
cludes 5 transmissions from each of the 25 transmitters, with
each of the 5 transmissions collected on a different day. Our
intent is to have this dataset represent transmissions under 5
different wireless channel conditions.

Protocol configuration portability dataset scenario. This
dataset includes four transmissions from each of 25 transmit-
ters, each of the four transmissions using a different config-
uration. The configurations amount to using different LoRa
spreading factors and are detailed in Table II. Note that all
other datasets use only Config 1.

IV. EXPERIMENTAL RESULTS
We first describe the specific implementation of the twin
network as well as the metrics to be used to evaluate Tweak.
Then, we explain the results obtained by testing Tweak under
the portability scenarios outlined in the previous section.

A. Neural Network Implementation

The network used for this work is inspired by one of the
straightforward CNNs described in [7] and is depicted in
Fig. 7a. Note that this represents one of the two identical
halves of the twin network. The network was implemented
using the Python ‘PyTorch’ library and uses a total of four 1-
D convolutional layers, making use of 1-D max-pooling and



batch normalization layers after each pair of convolutional
layers. It also uses two fully-connected layers at its output,
ending with 12 neurons. This produces a 12-dimensional
output point for each input example. Leaky ReLU is used as
the activation function throughout the network.

The inputs to the network are presented in the form of
complex 1Q (In-phase, Quadrature) samples, a common format
for representing RF signals. For this work, a sequence length
of 128 complex samples was considered as one input example.
Additionally, two different input channels were considered,
one for I samples and one for Q samples. Thus, the final input
shape for the network is 2x128.

The triplet loss function is used to train the network with a
margin value of 0.1, and the “difficult triplet selection” strategy
described earlier is employed to select triplets for training.
The optimizer chosen was Stochastic Gradient Descent (SGD)
with Momentum set to 0.9. Batch size was set to 64, and the
learning rate for each model was tuned over the range le-1 to
le-6. The networks were allowed to train for 100 epochs and
the model was saved at the best performing epoch.

For baseline comparison, a ‘vanilla’ network was defined
using half of a twin network (Fig. 7a) and having 10 neurons
in the final layer (where 10 is the number of transmitters
used during testing). The same hyper-parameters described for
the proposed network are used for training, but the ‘vanilla’
network uses cross-entropy loss instead of triplet-loss.

B. Performance Evaluation Metrics
To assess Tweak’s performance, three metrics are used: (i) the
averaged Area Under the Receiver Operating Characteristic
(Avg. AUROC); (ii) the averaged True Positive Rate (Avg.
TPR); and (iii) the averaged False Positive Rate (Avg. FPR).
These three metrics are further explained next.

The TPR and FPR metrics are calculated using the exact
decision making process defined in Algorithm 2 as, T PR =
TP/(TP+ FN) and FPR = FP/(FP + TN), where:

- True Positive (TP) is the number of tested known devices
that the model predicts as known (correctly)

- False Negative (FN) is the number of tested known
devices that the model predicts as unknown (incorrectly)

- False Positive (FP) is the number of tested unknown
devices that the model predicts as known (incorrectly)

- True Negative (TN) is the number of tested unknown
devices that the model predicts as unknown (correctly)

These quantities are also shown visually in Fig. 9b.

The AUROC metric allows for measuring the performance
of a binary classifier (i.e., classifying an input/device as
known or unknown) without having to specify a particular
threshold. Instead, decision scores are collected and the TPR
and FPR are calculated for all possible thresholds on these
scores. The AUROC is then defined as the area under the
ROC curve resulting from plotting FPR vs. TPR for all
thresholds. Fig. 9a depicts an example of this curve. Note
that the open-set evaluations using AUROC do not strictly
follow Algorithm 2 defined earlier, since this algorithm uses
specific thresholds (the Distances). Instead, for models

S Decision: Decision:
Admitted Rejected
Actual:
Known TP FN
Actual:
FPR 1 Unknown FP N

(a) ROC curve. (b) Possible decision outcomes.

Fig. 9: Visualization of performance metrics.

using Tweak, the AUROC decision scores correspond to the
minimum distance between InputPoint and a Centroid,
and for the ‘vanilla’ models, the decision scores correspond
to the maximum logit value for each example, which is
commonly used in open set classification.

The reported evaluation metrics (AUROC, TPR and FPR)
are averaged over 5 trials since performance can depend on
which unknown devices are used for testing. For each trial, an
equal number of examples were drawn from 5 random known
devices and 5 random unknown devices.

C. Evaluation Results

Tweak is evaluated in an open-set device authentication
setting, which requires it to decide if inputs originated from
a known (authorized) or unknown (unauthorized) device. All
models evaluated in this section were trained and tested using
data transmissions collected from the same 10 wireless IoT
transmitters, with 75% of the data used for training and
25% used for testing (each transmission contains 156,250
examples of size 128x2). Test data from the other 15 IoT
transmitters was used to represent the unknown/unauthorised
devices. In all tests, the amount of calibration data used (IV in
Algorithm 1) was set to 10% of the size of the training data
used to initially train the model (11,719 examples), and the
number of input examples used to form the ‘input point’ (M
in Algorithm 2) was set to 10. It is also worth noting here
that on all AUROC results presented in this section, a dashed
line is plotted at 0.5 to indicate the performance of a random
classifier/authentication.

Additionally, for comparison to Tweak, ‘vanilla’ models are
also evaluated in this section. Note that the ‘vanilla’ models
were only evaluated using the AUROC metric.

1) Hardware Portability

We begin by assessing Tweak’s ability in achieving hardware
portability. For this, for each of the six studied hardware
portability datasets listed in Table I, Tweak was trained on
data collected at RX1. Then, Tweak is tested with data
collected at both receivers, RX1 and RX2, while being: (i)
calibrated with data collected at RX1, and (ii) calibrated with
data collected at RX2 (receiver different from that used for
collecting training data).

Figs. 10a-10c show the results of these tests for the ‘Diff.
Tx’ method, where data captured by RX1 and RX2 for
each transmitter is done during two separate transmissions.
Figs. 10d-10f show the same results but for the ‘Same Tx’
method, where data is collected at RX1 and RX2 by capturing
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Fig. 10: Hardware Portability: Models trained on data collected at RX1. N = 10% and M = 10.

the same transmission from each device. Note: models trained
on RX2 data as opposed to RX1 data were also evaluated
and showed similar results, and are omitted due to space
limitations.

The main trend present for the AUROC results is that
in most cases, better AUROC is achieved when testing on
the same receiver for which the model is calibrated. This
can be seen in Fig. 10a, for instance, where the results
when calibrating/testing on RX1 data and the results when
calibrating/testing on RX2 data show higher AUROC when
compared to the other tests. It is also notable that the ‘vanilla’
models perform far worse than Tweak in terms of AUROC
when the models that use Tweak are calibrated and tested on
the same receiver. This is indicative of the potential for Tweak
to achieve hardware portability for device authentication.

The TPR results shown in Figs. 10b and 10e provide
even stronger evidence of the main trend that existed for the
AUROC metric, where performance is high when the model is
calibrated/tested on the same receiver. These results indicate
that Tweak always achieves a high TPR, meaning it almost
always correctly ‘admits’ examples from known devices.

In the FPR results, the trend is less clear. Ideally, models
calibrated for a particular receiver would achieve a low FPR
when tested on data from that receiver, but this is not always
the case. For example, in Figs. 10c and 10f, it can be seen that
there are several cases where a model is calibrated for data
from a receiver, but still achieves a higher FPR when tested on
data from that receiver than when it is tested with data from a
receiver for which it is not calibrated. For a particular example,
notice the last two bars of the tests for models calibrated with
RX2 data in Fig. 10c. These are both tests on RX2 data,
so good performance would be expected, and thus low FPR.
Instead these tests have the highest FPR of any test for models
calibrated to RX2 in the figure.

This seemingly counter-intuitive result can be explained by
considering the meaning of FPR, and what exactly the model
is attempting to do in the latent space during evaluation. Recall
that when a model is calibrated using a particular set of data it
forms a Centroid for each device in its latent output space.
To achieve low FPR (which is desirable), the examples from
unknown devices must form distinct ‘clusters’ in the latent

space far enough away from the Centroids so that the model
can distinguish known from unknown.

In the case where the model is calibrated/tested on data from
the same domain, the ‘clusters’ from both the known and un-
known devices will likely be closer to the Centroids in the
latent space than the case where the model is calibrated/tested
with data from two different domains. This means that when
testing on a different domain than calibration, the model will
more easily be able to ‘reject’ examples from unknown devices
(achieving a lower FPR), but will also have a more difficult
time ‘admitting’ examples from known devices (also achieving
a lower TPR). Thus, achieving a low FPR is generally more
difficult when testing on the same domain as calibration.

It is also worth noting that even when the FPR produced
by calibrating and testing on data from the same receiver is
not the highest FPR, the result is still not as low as would
be desired. For example, observe Fig. 10c. Notice that the
FPR for the model calibrated and tested on RX2 data from
an ‘Indoor’ environment is among the lowest for all models
calibrated with RX2 data, but that it is still in excess of 0.25.
This is indicative of an issue with the Distances chosen
during calibration and used for open-set decision making. It
indicates that these Distances may be too large, producing
a much higher TPR as well as a relatively high FPR.

2) Channel Portability

Tweak’s portability across different channels is evaluated
using channel portability dataset scenarios listed in Table I
For this, Tweak was first trained on data collected on Day
1, and then calibrated for each of the five days. Tweak was
tested with data from all five days. The results are shown in
Figs. 11a-11c. Note that this evaluation was also performed
for a model trained on Day 2 data, and similar results were
achieved, but omitted here due to space limitations.

First considering the AUROC results in Fig. 11a, there are a
couple of interesting trends that are worth mentioning. From
observation of this figure it is evident that high AUROC is
achieved when a model is calibrated with data collected on
one day and tested using data from the same day. For instance,
the model calibrated with Day 2 data performs very well
when tested with Day 2 data. This trend exists regardless of
the calibration day. The lowest Avg. AUROC achieved when
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Fig. 11: Channel Portability: All models are trained on Day
1 data. N =10% and M = 10.

models are calibrated/tested on data from the same day is
~0.79. This trend is indicative of the ability of Tweak to
achieve wireless channel portability for device authentication.

Another trend of note when looking at the AUROC results
is that sometimes good performance is also achieved when
testing using data from days other than the day used for
calibration. For instance, in Fig. 11a, it can be seen that the
model calibrated with Day 1 data also performs very well
when tested with Day 2 data, and that the model calibrated
with Day 4 data also performs very well when tested with
Day 5 data. This trend is consistent, and is also present when
the model is instead trained with data from Day 2. This could
be indicative of some similarity between the wireless channel
on these different days, but more work needs to be done to
confirm this idea.

Moving to observe the TPR results in Figs. 11b, it can
be seen that the desired trend is present. That is, TPR is
high when a model is calibrated and tested on data from the
same day. This indicates that Tweak is excellent at correctly
‘admitting’ examples that come from known devices.

Turning to the FPR results, it can be seen that the trend
present in the ‘hardware portability’ evaluation is again present
here. That is, the FPR results are less than ideal, since
calibrating and testing with data from the same day does not
always produce the lowest FPR. This can be attributed to the
idea explained in the ‘hardware portability” evaluation section.
3) Configuration Portability
To evaluate the configuration portability of Tweak, the config-
uration portability dataset in Table I was used to train two twin
network models: one with only data using Config. 1 and one
with only data using Config. 2. Each of these trained models
was then calibrated for each of the four configurations. Finally,
Tweak was tested with data from all four configurations.

The results when training on data collected while the
transmitters use Config. 1 are shown in Figs. 12a-12c and those
when the transmitters use Config. 2 are shown in Figs. 12d-
12f. First observing the AUROC results, it can be seen that
regardless of the training configuration, calibrating the model
using Config. 1 or 2 results in the highest performance of the

model occurring when it is tested with the same configuration
as calibration (which is expected). One example of this can
be seen in Fig. 12a, where the model calibrated with Config.
1 data performs the best when tested with Config. 1 data, and
the model calibrated with Config. 2 data performs the best
when tested with Config. 2 data. This trend is in line with the
expected trends that have been mentioned thus far.

A unique trend present here can be seen by observing the
performance of the models when calibrated and tested with
Config. 3 data. In these cases, the performance of the model is
not the best when testing on the same domain as calibration. In
particular, testing with Config. 4 produces better performance
than testing with Config. 3. This is not the case however,
when the model is trained with data from transmitters that use
Config. 3 or Config. 4 (not pictured). In this case, the result is
as expected, where calibrating and testing with Config. 3 data
produces the best result of all tests for that calibration. This
result could be attributed to the fact that generally Configs.
1 and 2 are more similar to each other and less similar to
Configs. 3 and 4 (see Table II).

The TPR results for the models trained with either config-
uration are consistent with the desired trend. That is, a very
high TPR is achieved when the model is calibrated and tested
using data from the same configuration.

Similar to the other evaluations, the FPR results are less
encouraging than those for AUROC and TPR. There are many
instances where calibrating and testing using data from the
same configuration results in the highest FPR among all of the
tests for that calibration. This can be explained using the same
line of thinking used in the ‘hardware portability’ evaluation.
That is, achieving a low FPR is easier when calibration and
testing are done with data from two different configurations.
This conclusion is reinforced by the FPR results here, as
generally the FPR is lower when testing on a configuration
that is ‘more different’ from the one used for calibration.

Finally, the last evaluation performed in this section lever-
ages the notion that Tweak could be used to calibrate for more
than one configuration by performing multiple consecutive
calibrations. To this end, the twin network model trained
using Config. 2 data was calibrated using data from multiple
configurations and tested on data from all four configurations.
The results of these tests are shown in Fig. 13. The results
here are encouraging for AUROC and TPR, but contain the
same issues mentioned above when it comes to FPR results.
There is also a notable drop in AUROC when calibrating for
multiple configurations when compared to calibrating for a
single configuration.

V. CONCLUSION

This work proposes Tweak, a technique for creating a portable
deep neural network for LoRa device authentication which
can be calibrated quickly, using a small amount of labeled
examples, to perform effectively on data from a domain
other than the one it was originally trained with. It has been
demonstrated through experimentation with a testbed of IoT
devices that Tweak enables portability with respect to receiver
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hardware, a change in the wireless channel due to the passage
of time, or a change in the configuration of the transmitters.
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