
Tweak: Towards Portable Deep Learning Models for

Domain-Agnostic LoRa Device Authentication

Jared Gaskin

Oregon State University

Corvallis, Oregon, USA

gaskinj@oregonstate.edu

Bechir Hamdaoui

Oregon State University

Corvallis, Oregon, USA

hamdaoui@oregonstate.edu

Weng-Keen Wong

Oregon State University

Corvallis, Oregon, USA

wongwe@oregonstate.edu

Abstract—Deep learning based device fingerprinting has
emerged as a key method of identifying and authenticating
devices solely via their captured RF transmissions. Conventional
approaches are not portable to different domains in that if a
model is trained on data from one domain, it will not perform
well on data from a different but related domain. Examples of
such domains include the receiver hardware used for collecting
the data, the day/time on which data was captured, and the
protocol configuration of devices. This work proposes Tweak, a

technique that, using metric learning and a calibration process,
enables a model trained with data from one domain to perform
well on data from another domain. This process is accomplished
with only a small amount of training data from the target domain
and without changing the weights of the model, which makes
the technique computationally lightweight and thus suitable
for resource-limited IoT networks. This work evaluates the
effectiveness of Tweak vis-a-vis its ability to identify IoT devices

using a testbed of real LoRa-enabled devices under various
scenarios. The results of this evaluation show that Tweak is viable

and especially useful for networks with limited computational
resources and applications with time-sensitive missions.

Index Terms—Device authentication, domain-agnostic portable
device fingerprints, learning model calibration.

I. INTRODUCTION

Recent years have seen unprecedented growth in both the

number and variety of IoT networks and applications [1]. Due

to its ability for enabling long-range connectivity between IoT

devices at low power, LoRa technology [2] has been widely

adopted by hundreds of IoT application developers as the de

facto wide-area wireless network access protocol. With such a

rapid adoption of LoRa technology coupled with the massive

numbers of emerging resource-constrained IoT devices, there

is undoubtedly an urgent need for lightweight and scalable

authentication mechanisms that can ensure automated and

secure access to these LoRa-enabled IoT networks.

Device authentication mechanisms that are based on RF

(radio frequency) fingerprinting have recently been recognized

as key methods with great potential for complementing con-

ventional cryptographic approaches to increase the security

protection of IoT networks against unauthorized access [3].

These fingerprinting methods essentially consist of extracting

This work is supported in part by Intel/NSF MLWiNS Award No. 2003273.

An IEEE-formatted version of this article is to appear in the 2022 IEEE
Conference on Communications and Network Security (IEEE CNS 2022).
Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

device-specific features (aka fingerprints) from received RF

signals—typically caused by inevitable transceiver hardware

impairments incurred during manufacturing, and leveraging

these features to uniquely identify and classify wireless trans-

mitters [3], [4]. Various feature extraction approaches have

been taken, including early hand-crafted approaches that re-

quire RF signal domain knowledge and many trial-and-error

attempts (e.g. [5]), and more recent approaches that leverage

deep learning to extract features automatically from raw RF

signals without requiring RF domain expertise (e.g. [3], [6]).

A. Multi-Domain Portability Challenges

Although recent deep learning approaches have shown promis-

ing results, they fail to maintain good performance when the

data used during training and that used during testing are

collected under different domains. For example, when the

model is trained on data collected at one receiver but tested

on data collected at a different receiver, the device identifica-

tion accuracy degrades substantially compared to when both

training and testing are done on data collected using the same

receiver. To demonstrate the impact of such challenges, we

performed several experiments using data collected with an

IoT testbed, consisting of 25 LoRa transmitters and 2 USRP

B210 receivers, under three different deployment settings:

indoors, outdoors and wired (detailed description of the testbed

and experimental scenarios is given later in Sec. III). Our

results depicted in Fig. 1a show the accuracy of the learning

model when trained on data captured at one receiver (RX1),

but tested on data captured at a different receiver (RX2), as

well as at the same receiver (RX1). These results clearly show

the substantial drop in accuracy due to the change in the

receiver hardware. As depicted in Fig. 1b, similar trends are

also observed when the model is trained on data captured on

Day 1 but tested on data captured on a different day (while

keeping the same receiver). The common trend in these figures

is that the models only perform well when the testing domain

(receiver/day) matches the training domain.

The issues of domain portability we just illustrated have also

been demonstrated in other works [6]–[8]. Since this problem

is well established, developing approaches that can overcome

such issues has become an active research area in recent years.

B. Limitations of Related Work

Past works attempting to address the wireless channel porta-

bility problem [3], [8]–[10] are almost all based on using data

augmentation and/or custom feature extraction as preprocsess-

ar
X

iv
:2

2
0
9

.0
0
7
8
6

v
1

[c

s.
C

R
]

2
 S

ep
 2

0
2
2

mailto:gaskinj@oregonstate.edu
mailto:hamdaoui@oregonstate.edu
mailto:wongwe@oregonstate.edu

1

0.5

0

RX1 RX2

Test Data

1

0.5

0

Day 1 Day 2 Day 3 Day 4

Test Data

(a) Enabling receiver hardware portability

(a) Models trained on RX1 data (b) Models trained on Day 1 data

Fig. 1: Accuracy of models tested on different domains.

ing in order to extract RF fingerprints that are channel agnostic.

The downside of these approaches is that the resulting model

is not flexible and must be re-trained if it cannot perform well

in a new condition. A notable exception to this is the work

in [8], which proposed a system that can estimate the channel

and adapt to it.

Other approaches [11]–[13] attempt to ensure portability

with regard to receiver hardware. However, these methods

require some form of potentially computationally intensive

training or optimization in order to transform input data so

that it can be correctly classified.

The authors of [4] make perhaps the most notable recent

attempt at portability, and employ a method similar to the

one described herein in the sense that both methods use

metric learning and the triplet loss function. They address

both channel portability and transmitter hardware portability

(training and testing using two different sets of transmitters).

Notably, this work is the only one, to the best of our knowl-

edge, that performs its evaluation on open-set identification

and classification [14], which allows inputs from unknown

transmitters and attempts to reject these inputs.

The costly alternatives available to practitioners while re-

search on portability continues are as follows: (i) training a

new deep learning model for each domain one wishes to test

with, and (ii) training a single deep learning model with data

from multiple domains in an attempt to produce a domain-

agnostic model. These approaches are both costly in terms of

the extra data required from additional target domains and the

computation time needed to train the neural network models.

C. Our Contributions: Tweak

We propose Tweak, a lightweight device identification tech-

nique that enables portability of the deep learning models

across multiple different domains. Tweak leverages metric

learning to achieve accurate identification and open-set accu-

racy through model calibration instead of re-training, thus sig-

nificantly reducing (i) the training time and (ii) the amount of

needed data, making it more suitable for resource-constrained

and real-time IoT applications. Tweak is evaluated using

datasets collected from a testbed of 25 LoRa transmitters and

2 USRP B210 SDR receivers. Specifically, Tweak enables:

• Lightweight model portability through calibration that

can be performed very quickly, without changing the

model weights, and can be done using a relatively small

amount of labeled data from the target domain.

• Multi-domain model portability across multiple differ-

ent domains, including receiver hardware, communication

(b) Enabling wireless channel portability

(c) Enabling protocol configuration portability

Fig. 2: Tweak: Transferring of a trained model to a different

domain: (a) hardware, (b) channel, and (c) configuration.

Fig. 3: A high-level diagram of Tweak

channel, and LoRa configuration, as shown in Fig. 2.

• Open-set device identification by easily acting as an

open-set classifier, as Tweak handles inputs from un-

known devices. Most related approaches that attempt to

address portability do not perform open-set testing.

The remainder of this work is organized as follows: Sec. II

presents Tweak. Sec. III and Sec. IV evaluate Tweak using

RF data captured using a real testbed of IoT devices.

II. Tweak: ENABLING DEEP LEARNING MODEL

PORTABILITY FOR ROBUST DEVICE AUTHENTICATION

Our goal is to provide a device authentication method by

which an open-set deep learning model can be trained on

data from one domain (collected at one receiver, through one

wireless channel, or with IoT transmitters using one LoRa

configuration) and then be calibrated to perform well on data

from a different but related domain. In this way, Tweak

aims to move toward the creation of deep learning models

for RF fingerprint authentication that are portable in terms of

hardware, wireless channel, and LoRa protocol configuration.

Tweak achieves these portability goals through a calibration

process that is: (i) not computationally intensive (and can be

done on IoT hardware that is less powerful than the resources

used for training the original model) and (ii) accomplished

with a limited amount of labeled training data from the target

domain (receiver, day, configuration).

Fig. 3 summarizes Tweak. Prior to deployment, Tweak

requires a training phase for the twin neural network and a

calibration process using data from the target domain from

Indoor

Outdoor

Wired

A
cc

u
ra

cy

A
cc

u
ra

c
y

all devices. Note that the calibration process can be repeated

with different data without altering the twin neural network.

The following subsections provide more information including

background material on the twin network architecture, details

regarding how the neural network is trained as well as specifics

of the calibration and decision-making algorithms.

A. Deep Learning

This section focuses the discussion on metric learning and twin

neural networks; a comprehensive treatment on deep learning

is outside the scope of this work and additional information

can be found in [15]. Tweak uses twin neural networks as

Fig. 4: General twin network architecture during training.

open-set classifiers. While closed-set classifiers are designed (a) Zero loss (b) Positive loss

to classify data with the assumption that they only encounter

data instances from the classes observed during training, open-

set classifiers can handle data from classes (i.e., devices) that

are not seen during training [14]. We deal with data instances

from these unseen classes by identifying them as not belonging

to one of the known classes seen during training. While the

open-set problem is more difficult, it is also more realistic and

appropriate for device authentication when unknown devices

are often encountered in deployment.

1) Metric Learning and Twin Neural Networks

The standard approach for building a deep neural network

(DNN) classifier is to train the model using a cross entropy loss

with one output node for each class. The values of these output

nodes are then used to determine the degree to which an input

instance is predicted to belong to a particular class. Under this

standard supervised learning setting, it is non-trivial to adapt

the network to different domains such as a different receiver,

day or configuration. Sophisticated domain adaptation methods

for deep learning (e.g. [16], [17]) have been developed, but

these methods are typically computationally intensive and re-

quire large amounts of data. In contrast, we want a lightweight

domain adaptation process that can be quickly calibrated using

a small number of labeled examples from the target domain.

To overcome these issues, our work makes use of deep

metric learning [18] in which a DNN produces an embedding

Fig. 5: Example triplet loss values for one triplet.

K-dimensional latent embedding space (K being the number

of output nodes). The distance between the two outputs in

the embedding space is computed as a measure of similarity

and can be used to train the network with a loss function. In

practice, a trained twin network can be considered as a single

DNN that produces an output point in the embedding space,

instead of twin networks that produce a distance (since the

networks have identical weights). Hence, using a twin network

does not impose additional memory costs.

2) Training the Twin Neural Network

Training a twin neural network requires a loss function that

will cause data instances from different classes to be further

apart in the output space and data instances from the same

class to be closer together. A loss function that fits this

criterion is the triplet loss function [23], which encourages

reduced distances between ‘Anchor’ (A) and ‘Positive’ (P)

examples, and increased distances between ‘Anchor’ (A) and

‘Negative’ (N) examples. The mathematical expression for this

loss function is provided in Equation (1) and a visual depiction

is provided in Fig. 5, where α is a margin value (indicating

that the distance between P and N has to be at least this much

to matter), and f (·) is the neural network mapping function.

of a data instance in a K-dimensional latent space. Within

this embedding space, data instances that are similar (e.g.

2

Loss = max(lf (A) − f (P)l
2

− lf (A) − f (N)l + α, 0) (1)

from the same device) will be closer than those that are

not similar (e.g. from different devices). Tweak uses a well

known metric learning structure called a twin (or Siamese)

neural network [19], [20]. These types of neural networks

have been successfully used for applications where few ex-

amples are available such as signature verification [19] and

facial similarity calculations [21]. Additionally, it has been

shown that twin networks trained on one image dataset (e.g.

Omniglot) and evaluated on an entirely different image dataset

(e.g. MNIST) are able to generalize and maintain some level

of performance [22]. However, they have only been applied

directly to the problem of device fingerprinting based on RF

signals in one other work [4].

Fig. 4 depicts a twin neural network, consisting of a pair

of convolutional neural networks (CNNs) constrained to have

identical weights. Each CNN accepts a single input instance

and produces an output that corresponds to coordinates in a

Triplets of A, P, and N examples are provided to the network

during training. We generate the triplets after examples from a

mini-batch have already passed through the network but before

the loss is calculated. Determining triplets after examples have

passed through the network is advantageous because more

difficult triplets can be strategically selected to help with

training [23], where difficult triplets are those with high loss

due to having A closer to N than to P .

Tweak uses the triplet loss function to train the twin

network as shown in Fig. 3. Once this model has been trained

on labeled data from a chosen domain, inputs from different

transmitters should be mapped to outputs that are farther apart,

and inputs from the same transmitter should be mapped to

outputs that are closer together. At this point, the model is

typically only capable of making decisions given two inputs

that it can compare in terms of their distance in the latent

space. To enable the trained twin network to make decisions

j=1

j=1

L

Fig. 6: Calibration for a single device, after N examples from

Device i have passed through the trained twin network.

about a single input from a particular domain, a calibration

process must be performed.

B. Calibration and Decision Making Algorithms

Algorithm 1 Calibration

Centroids = []
Distances = []
Devices = {D1, D2, ..., DK} each Di = {xi1, xi2, ..., xiN }

for all Di ∈ DeviceLs do

re-training the network. Additionally, the parameter N rep-

resents the number of examples from each device used for

calibration purposes. Altering N allows adjusting the amount

of computation required for calibration as well as the amount

of labeled data required. The calibration process could also be

repeated with data from multiple domains for the same devices

in order to produce a model capable of making decisions about

data from these multiple domains, thereby producing multiple

Centroids and Distances for each device.

Algorithm 2 Open-set Binary Decision

InputDeviceExamples = {x1, x2, ..., xM }

InputPoint = M f (xj)/M
for all Di ∈ Devices do

if dist(InputPoint, Centroids[i]) ≤ Distances[i]
then

Return: Decision = Admit
end if

end for

Return: Decision = Reject

Centroids[i] = N j=1 f (xij)/N Once calibrated, the network is then used as an open-set

Distances[i] =
LN lf (xij) − Centroids[i]l/N

end for

Calibrated for Di ∈ Devices

The calibration process is performed by providing the

trained network with labeled examples from all desired de-

vices. Note that these examples may come from the training

data if calibrating for the same domain as the training data.

Algorithm 1 describes the calibration process and Fig. 6

illustrates it. We use the convention that boldface symbols refer

to vectors and sets while non-boldface refer to scalars. For

each device (class), we repeat the following process: given N

examples from device i for calibration, xi1, xi2, ..., xiN , we

first pass these examples through the trained neural network,

f (·), to produce N corresponding outputs in the latent space.

The first image in Fig. 6 shows the result of this step. Next,

these N outputs are averaged to produce Centroids[i] (i.e.

the centroid for device i), which is shown in the second image

of Fig. 6. This centroid is the first piece of calibration data

that will be stored for device i.
Next, the distances between the centroid for device i and

each of the N outputs that were used to generate the centroid

are calculated. This is depicted in the third image of Fig. 6.

These distances are averaged to produce Distances[i] (i.e.

the average distance for device i), which is represented by

a circle with this distance value as its radius in Fig. 6. This

distance is the second piece of calibration data that will be

stored for device i. After the above process is repeated for

every device, calibration is complete and the Centroids and

Distances for the devices can be used to make decisions

regarding new inputs using the decision algorithm to be

described later.

This calibration process is designed to be lightweight as

it only requires feeding data instances forward through the

network and performing distance calculations, thus avoiding

classifier (Algorithm 2) to classify an input data instance as

belonging to a known or unknown device. The algorithm be-

gins by collecting M examples, x1, x2, ..., xM , from an input

device, passing these examples through the trained network,

f (·), and averaging the M outputs to produce InputPoint.

Since this operation is not typical in deep learning models,

it deserves some explanation. In the RF domain, the input

data represents fractions of a second of real-time RF com-

munication. Thus, it is plausible to collect M input examples

quickly in order for the model to process them for the open-

set classifier. Doing so allows for the construction of a less

noisy InputPoint that is more representative of a particular

device and less susceptible to the effects of outlier examples.

After InputPoint is computed, for each device i the

algorithm calculates the distance between the InputPoint

and Centroids[i] and compares this distance with

Distances[i]. If this calculated distance is less than or equal

to Distances[i], the algorithm decides that the input comes

from a known device, and returns the ‘Admit’ decision (i.e.,

device is authenticated). If none of the calculated distances

are less than or equal to Distances[i], then the algorithm

decides the input came from an unknown device, and returns

the ‘Reject’ decision (i.e., device is denied network access).

III. EXPERIMENTAL SCENARIOS AND DATASETS

This section describes the testbed used for collecting the

RF datasets and the experimental setups used for evaluating

Tweak under three different portability scenarios.

A. Testbed

In order to evaluate Tweak, real RF data was collected using

a testbed of devices. This testbed contains 25 almost identical

PyCom IoT devices used as transmitters: 23 Lopy4 boards and

2 Fipy boards on top of 22 Pysense sensor shields, 2 Pytrack

sensor shields, and 1 Pyscan sensor shield (pictured in Fig. 7c).

Config.
Spreading

Factor
BW

Tx
Power

Coding
Rate

Bit Rate

1 7 125kHz 20dBm 4/5 5470bps
2 8 125kHz 20dBm 4/5 3125bps
3 11 125kHz 20dBm 4/5 537bps
4 12 125kHz 20dBm 4/5 293bps

(b) USRP B210 SDRs (RX1 and RX2)

TABLE II

Different LoRa transmitter configurations.

(a)

(c) PyCom LoRa transmitters

(a) Same Transmission (b) Different Transmission

Fig. 7: (a) Twin network, (b) and (c) testbed hardware.

Portability Env.
Multi-RX
Collection

TX

RX

Days

TX
Config.

Hardware Indoor Same Tx 25 2 1 1
Hardware Outdoor Same Tx 25 2 1 1
Hardware Wired Same Tx 25 2 1 1
Hardware Indoor Diff. Tx 25 2 1 1
Hardware Outdoor Diff. Tx 25 2 1 1

Hardware Wired Diff. Tx 25 2 1 1

Channel Outdoor N/A 25 1 5 1

Config. Indoor N/A 25 1 1 4

TABLE I

Summary of the datasets used for evaluation.

The testbed also uses 2 USRP B210 SDRs (Software Defined

Radios) as receivers to collect data (pictured in Fig. 7b).

All of the datasets collected using this testbed (outlined in

the next section) use the following settings and processes un-

less otherwise stated: the PyCom transmitters were configured

to transmit using the LoRa protocol, with a center frequency of

915 MHz, spreading factor of 7, and bandwidth of 125KHz.

The USRP B210 receivers were configured to sample at a

center frequency of 915 MHz, at a rate of 1M samples per

second. Each transmission sends the same message, and lasts

for 20s. This produces 20M complex-valued samples for each

transmission received. This data was stored in raw-IQ format,

using GNURadio to process the data.

Regardless of the environment in which data was collected,

the transmitters and receivers were always placed about 5m

apart (with the exception of ‘Wired’ data, which is collected by

connecting transmitters to receivers by physical wire). All data

collected using this testbed will be made publicly available.

B. Experimental Scenarios

The collected LoRa RF datasets and the studied portability

scenarios are summarized in Table I and described next.

Hardware portability dataset scenario. Six different

datasets were collected to evaluate the hardware portability

Fig. 8: Methods of collecting RF data with two receivers.

scenario. All of these datasets involve the same 2 receivers and

25 transmitters, and each contains 2 recorded transmissions

from each transmitter: one at each receiver.

These six datasets differ in terms of the environment they

were collected in as well as the ‘Multi-RX Collection’ method

used. Datasets where the ‘Multi-RX Collection’ method is

‘Diff. Tx’ were collected by capturing two different trans-

missions from each device, one at each receiver as shown

in Fig. 8b. Datasets where this method is ‘Same Tx’ were

collected by capturing the same single transmission from each

device at both receivers as shown in Fig. 8a.

Channel portability dataset scenario. This dataset in-

cludes 5 transmissions from each of the 25 transmitters, with

each of the 5 transmissions collected on a different day. Our

intent is to have this dataset represent transmissions under 5

different wireless channel conditions.

Protocol configuration portability dataset scenario. This

dataset includes four transmissions from each of 25 transmit-

ters, each of the four transmissions using a different config-

uration. The configurations amount to using different LoRa

spreading factors and are detailed in Table II. Note that all

other datasets use only Config 1.

IV. EXPERIMENTAL RESULTS

We first describe the specific implementation of the twin

network as well as the metrics to be used to evaluate Tweak.

Then, we explain the results obtained by testing Tweak under

the portability scenarios outlined in the previous section.

A. Neural Network Implementation

The network used for this work is inspired by one of the

straightforward CNNs described in [7] and is depicted in

Fig. 7a. Note that this represents one of the two identical

halves of the twin network. The network was implemented

using the Python ‘PyTorch’ library and uses a total of four 1-

D convolutional layers, making use of 1-D max-pooling and

batch normalization layers after each pair of convolutional

layers. It also uses two fully-connected layers at its output,

ending with 12 neurons. This produces a 12-dimensional

output point for each input example. Leaky ReLU is used as

the activation function throughout the network.

The inputs to the network are presented in the form of

complex IQ (In-phase, Quadrature) samples, a common format

for representing RF signals. For this work, a sequence length

of 128 complex samples was considered as one input example.

Additionally, two different input channels were considered,

one for I samples and one for Q samples. Thus, the final input

shape for the network is 2x128.

The triplet loss function is used to train the network with a

margin value of 0.1, and the “difficult triplet selection” strategy

described earlier is employed to select triplets for training.

The optimizer chosen was Stochastic Gradient Descent (SGD)

with Momentum set to 0.9. Batch size was set to 64, and the

learning rate for each model was tuned over the range 1e-1 to

1e-6. The networks were allowed to train for 100 epochs and

the model was saved at the best performing epoch.

For baseline comparison, a ‘vanilla’ network was defined

using half of a twin network (Fig. 7a) and having 10 neurons

in the final layer (where 10 is the number of transmitters

used during testing). The same hyper-parameters described for

the proposed network are used for training, but the ‘vanilla’

network uses cross-entropy loss instead of triplet-loss.

B. Performance Evaluation Metrics

To assess Tweak’s performance, three metrics are used: (i) the

averaged Area Under the Receiver Operating Characteristic

(Avg. AUROC); (ii) the averaged True Positive Rate (Avg.

TPR); and (iii) the averaged False Positive Rate (Avg. FPR).

These three metrics are further explained next.

The TPR and FPR metrics are calculated using the exact

decision making process defined in Algorithm 2 as, T PR =
T P/(T P + FN) and FPR = FP/(FP + T N), where:

• True Positive (TP) is the number of tested known devices

that the model predicts as known (correctly)

• False Negative (FN) is the number of tested known

devices that the model predicts as unknown (incorrectly)

• False Positive (FP) is the number of tested unknown

devices that the model predicts as known (incorrectly)

• True Negative (TN) is the number of tested unknown

devices that the model predicts as unknown (correctly)

These quantities are also shown visually in Fig. 9b.

The AUROC metric allows for measuring the performance

of a binary classifier (i.e., classifying an input/device as

known or unknown) without having to specify a particular

threshold. Instead, decision scores are collected and the TPR

and FPR are calculated for all possible thresholds on these

scores. The AUROC is then defined as the area under the

ROC curve resulting from plotting FPR vs. TPR for all

thresholds. Fig. 9a depicts an example of this curve. Note

that the open-set evaluations using AUROC do not strictly

follow Algorithm 2 defined earlier, since this algorithm uses

specific thresholds (the Distances). Instead, for models

(a) ROC curve. (b) Possible decision outcomes.

Fig. 9: Visualization of performance metrics.

using Tweak, the AUROC decision scores correspond to the

minimum distance between InputPoint and a Centroid,

and for the ‘vanilla’ models, the decision scores correspond

to the maximum logit value for each example, which is

commonly used in open set classification.

The reported evaluation metrics (AUROC, TPR and FPR)

are averaged over 5 trials since performance can depend on

which unknown devices are used for testing. For each trial, an

equal number of examples were drawn from 5 random known

devices and 5 random unknown devices.

C. Evaluation Results

Tweak is evaluated in an open-set device authentication

setting, which requires it to decide if inputs originated from

a known (authorized) or unknown (unauthorized) device. All

models evaluated in this section were trained and tested using

data transmissions collected from the same 10 wireless IoT

transmitters, with 75% of the data used for training and

25% used for testing (each transmission contains 156,250

examples of size 128x2). Test data from the other 15 IoT

transmitters was used to represent the unknown/unauthorised

devices. In all tests, the amount of calibration data used (N in

Algorithm 1) was set to 10% of the size of the training data

used to initially train the model (11,719 examples), and the

number of input examples used to form the ‘input point’ (M

in Algorithm 2) was set to 10. It is also worth noting here

that on all AUROC results presented in this section, a dashed

line is plotted at 0.5 to indicate the performance of a random

classifier/authentication.

Additionally, for comparison to Tweak, ‘vanilla’ models are

also evaluated in this section. Note that the ‘vanilla’ models

were only evaluated using the AUROC metric.

1) Hardware Portability

We begin by assessing Tweak’s ability in achieving hardware

portability. For this, for each of the six studied hardware

portability datasets listed in Table I, Tweak was trained on

data collected at RX1. Then, Tweak is tested with data

collected at both receivers, RX1 and RX2, while being: (i)

calibrated with data collected at RX1, and (ii) calibrated with

data collected at RX2 (receiver different from that used for

collecting training data).

Figs. 10a-10c show the results of these tests for the ‘Diff.

Tx’ method, where data captured by RX1 and RX2 for

each transmitter is done during two separate transmissions.

Figs. 10d-10f show the same results but for the ‘Same Tx’

method, where data is collected at RX1 and RX2 by capturing

1

0.8

1

0.5

0

RX1 RX2

1

0.8

1

0.5

0

RX1 RX2

0.6

0.4

0.2

0

Vanilla RX1 RX2

Calibration Data

(a) AUROC - Different Tx

Calibration Data

(b) TPR - Diff. Tx

1

0.5

0
RX1 RX2

Calibration Data

(c) FPR - Diff. Tx

0.6

0.4

0.2

0

Vanilla RX1 RX2

Calibration Data

(d) AUROC - Same Tx

Calibration Data

(e) TPR - Same Tx

1

0.5

0
RX1 RX2

Calibration Data

(f) FPR - Same Tx

Fig. 10: Hardware Portability: Models trained on data collected at RX1. N = 10% and M = 10.

the same transmission from each device. Note: models trained

on RX2 data as opposed to RX1 data were also evaluated

and showed similar results, and are omitted due to space

limitations.

The main trend present for the AUROC results is that

in most cases, better AUROC is achieved when testing on

the same receiver for which the model is calibrated. This

can be seen in Fig. 10a, for instance, where the results

when calibrating/testing on RX1 data and the results when

calibrating/testing on RX2 data show higher AUROC when

compared to the other tests. It is also notable that the ‘vanilla’

models perform far worse than Tweak in terms of AUROC

when the models that use Tweak are calibrated and tested on

the same receiver. This is indicative of the potential for Tweak

to achieve hardware portability for device authentication.

The TPR results shown in Figs. 10b and 10e provide

even stronger evidence of the main trend that existed for the

AUROC metric, where performance is high when the model is

calibrated/tested on the same receiver. These results indicate

that Tweak always achieves a high TPR, meaning it almost

always correctly ‘admits’ examples from known devices.

In the FPR results, the trend is less clear. Ideally, models

calibrated for a particular receiver would achieve a low FPR

when tested on data from that receiver, but this is not always

the case. For example, in Figs. 10c and 10f, it can be seen that

there are several cases where a model is calibrated for data

from a receiver, but still achieves a higher FPR when tested on

data from that receiver than when it is tested with data from a

receiver for which it is not calibrated. For a particular example,

notice the last two bars of the tests for models calibrated with

RX2 data in Fig. 10c. These are both tests on RX2 data,

so good performance would be expected, and thus low FPR.

Instead these tests have the highest FPR of any test for models

calibrated to RX2 in the figure.

This seemingly counter-intuitive result can be explained by

considering the meaning of FPR, and what exactly the model

is attempting to do in the latent space during evaluation. Recall

that when a model is calibrated using a particular set of data it

forms a Centroid for each device in its latent output space.

To achieve low FPR (which is desirable), the examples from

unknown devices must form distinct ‘clusters’ in the latent

space far enough away from the Centroids so that the model

can distinguish known from unknown.

In the case where the model is calibrated/tested on data from

the same domain, the ‘clusters’ from both the known and un-

known devices will likely be closer to the Centroids in the

latent space than the case where the model is calibrated/tested

with data from two different domains. This means that when

testing on a different domain than calibration, the model will

more easily be able to ‘reject’ examples from unknown devices

(achieving a lower FPR), but will also have a more difficult

time ‘admitting’ examples from known devices (also achieving

a lower TPR). Thus, achieving a low FPR is generally more

difficult when testing on the same domain as calibration.

It is also worth noting that even when the FPR produced

by calibrating and testing on data from the same receiver is

not the highest FPR, the result is still not as low as would

be desired. For example, observe Fig. 10c. Notice that the

FPR for the model calibrated and tested on RX2 data from

an ‘Indoor’ environment is among the lowest for all models

calibrated with RX2 data, but that it is still in excess of 0.25.

This is indicative of an issue with the Distances chosen

during calibration and used for open-set decision making. It

indicates that these Distances may be too large, producing

a much higher TPR as well as a relatively high FPR.

2) Channel Portability

Tweak’s portability across different channels is evaluated

using channel portability dataset scenarios listed in Table I.

For this, Tweak was first trained on data collected on Day

1, and then calibrated for each of the five days. Tweak was

tested with data from all five days. The results are shown in

Figs. 11a-11c. Note that this evaluation was also performed

for a model trained on Day 2 data, and similar results were

achieved, but omitted here due to space limitations.

First considering the AUROC results in Fig. 11a, there are a

couple of interesting trends that are worth mentioning. From

observation of this figure it is evident that high AUROC is

achieved when a model is calibrated with data collected on

one day and tested using data from the same day. For instance,

the model calibrated with Day 2 data performs very well

when tested with Day 2 data. This trend exists regardless of

the calibration day. The lowest Avg. AUROC achieved when

Indoor/RX1

Outdoor/RX1

Wired/RX1

Indoor/RX2

Outdoor/RX2

Wired/RX2

Indoor/RX1

Outdoor/RX1

Wired/RX1

Indoor/RX2

Outdoor/RX2

Wired/RX2

A
v

g
.
A

U
R

O
C

A
v

g
.
F

P
R

A

v
g

.
T

P
R

A
v

g
.
A

U
R

O
C

A
v

g
.
F

P
R

A

v
g

.
T

P
R

1

0.8

0.6

0.4

0.2

0

Vanilla Day 1 Day 2 Day 3 Day 4 Day 5

Calibration Data

(a) AUROC

1

0.5

0

1

0.5

0

1 2 3 4 5

Calibration Day

(b) TPR

1 2 3 4 5

Calibration Day

(c) FPR

model occurring when it is tested with the same configuration

as calibration (which is expected). One example of this can

be seen in Fig. 12a, where the model calibrated with Config.

1 data performs the best when tested with Config. 1 data, and

the model calibrated with Config. 2 data performs the best

when tested with Config. 2 data. This trend is in line with the

expected trends that have been mentioned thus far.

A unique trend present here can be seen by observing the

performance of the models when calibrated and tested with

Config. 3 data. In these cases, the performance of the model is

not the best when testing on the same domain as calibration. In

particular, testing with Config. 4 produces better performance

than testing with Config. 3. This is not the case however,

Fig. 11: Channel Portability: All models are trained on Day

1 data. N = 10% and M = 10.

models are calibrated/tested on data from the same day is

∼0.79. This trend is indicative of the ability of Tweak to

achieve wireless channel portability for device authentication.

Another trend of note when looking at the AUROC results

is that sometimes good performance is also achieved when

testing using data from days other than the day used for

calibration. For instance, in Fig. 11a, it can be seen that the

model calibrated with Day 1 data also performs very well

when tested with Day 2 data, and that the model calibrated

with Day 4 data also performs very well when tested with

Day 5 data. This trend is consistent, and is also present when

the model is instead trained with data from Day 2. This could

be indicative of some similarity between the wireless channel

on these different days, but more work needs to be done to

confirm this idea.

Moving to observe the TPR results in Figs. 11b, it can

be seen that the desired trend is present. That is, TPR is

high when a model is calibrated and tested on data from the

same day. This indicates that Tweak is excellent at correctly

‘admitting’ examples that come from known devices.

Turning to the FPR results, it can be seen that the trend

present in the ‘hardware portability’ evaluation is again present

here. That is, the FPR results are less than ideal, since

calibrating and testing with data from the same day does not

always produce the lowest FPR. This can be attributed to the

idea explained in the ‘hardware portability’ evaluation section.

3) Configuration Portability

To evaluate the configuration portability of Tweak, the config-

uration portability dataset in Table I was used to train two twin

network models: one with only data using Config. 1 and one

with only data using Config. 2. Each of these trained models

was then calibrated for each of the four configurations. Finally,

Tweak was tested with data from all four configurations.

The results when training on data collected while the

transmitters use Config. 1 are shown in Figs. 12a-12c and those

when the transmitters use Config. 2 are shown in Figs. 12d-

12f. First observing the AUROC results, it can be seen that

regardless of the training configuration, calibrating the model

using Config. 1 or 2 results in the highest performance of the

when the model is trained with data from transmitters that use

Config. 3 or Config. 4 (not pictured). In this case, the result is

as expected, where calibrating and testing with Config. 3 data

produces the best result of all tests for that calibration. This

result could be attributed to the fact that generally Configs.

1 and 2 are more similar to each other and less similar to

Configs. 3 and 4 (see Table II).

The TPR results for the models trained with either config-

uration are consistent with the desired trend. That is, a very

high TPR is achieved when the model is calibrated and tested

using data from the same configuration.

Similar to the other evaluations, the FPR results are less

encouraging than those for AUROC and TPR. There are many

instances where calibrating and testing using data from the

same configuration results in the highest FPR among all of the

tests for that calibration. This can be explained using the same

line of thinking used in the ‘hardware portability’ evaluation.

That is, achieving a low FPR is easier when calibration and

testing are done with data from two different configurations.

This conclusion is reinforced by the FPR results here, as

generally the FPR is lower when testing on a configuration

that is ‘more different’ from the one used for calibration.

Finally, the last evaluation performed in this section lever-

ages the notion that Tweak could be used to calibrate for more

than one configuration by performing multiple consecutive

calibrations. To this end, the twin network model trained

using Config. 2 data was calibrated using data from multiple

configurations and tested on data from all four configurations.

The results of these tests are shown in Fig. 13. The results

here are encouraging for AUROC and TPR, but contain the

same issues mentioned above when it comes to FPR results.

There is also a notable drop in AUROC when calibrating for

multiple configurations when compared to calibrating for a

single configuration.

V. CONCLUSION

This work proposes Tweak, a technique for creating a portable

deep neural network for LoRa device authentication which

can be calibrated quickly, using a small amount of labeled

examples, to perform effectively on data from a domain

other than the one it was originally trained with. It has been

demonstrated through experimentation with a testbed of IoT

devices that Tweak enables portability with respect to receiver

Day 1 Day 2 Day 3 Day 4 Day 5

A
v

g
.

A
U

R
O

C

A
v

g
.

T
P

R

A
v

g
.

F
P

R

1

0.8

1

0.5

0

1 2 3 4

1

0.8

1

0.5

0

1 2 3 4

0.6

0.4

0.2

0

Vanilla 1 2 3 4

Calibration Data (Config.)

(a) AUROC - Config. 1

Calibration Config.

(b) TPR - Config. 1

1

0.5

0
1 2 3 4

Calibration Config.

(c) FPR - Config. 1

0.6

0.4

0.2

0

Vanilla 1 2 3 4

Calibration Data (Config.)

(d) AUROC - Config. 2

Calibration Config.

(e) TPR - Config. 2

1

0.5

0
1 2 3 4

Calibration Config.

(f) FPR - Config. 2

Fig. 12: Configuration Portability: Models trained on data using (a)-(c) Config. 1 and (d)-(f) Config. 2 and tested on data

from transmitters using four different configurations. N = 10% and M = 10.

1

0.8

0.6

0.4

0.2

0

Vanilla 1,2,3,4 1,2,3 1,2,4 1,3,4 2,3,4

Calibration Data (Configs.)

(a) AUROC

1

0.5

0

1

0.5

0

Calibration Configs.

(b) TPR

Calibration Configs.

(c) FPR

ing algorithms,” in Proceedings of the ACM International Symposium
on Mobile Ad Hoc Networking and Computing, 2019, pp. 51–60.

[9] A. Al-Shawabka, P. Pietraski, S. B. Pattar, F. Restuccia, and T. Melodia,
“DeepLoRa: Fingerprinting lora devices at scale through deep learning
and data augmentation,” in Proceedings of the International Symposium
on Theory, Algorithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing, 2021, pp. 251–260.

[10] S. Kokalj-Filipovic, L. Boegner, and R. D. Miller, “Practical training for
rf fingerprinting of commercial transmitters at the edge,” in 2021 IEEE
Globecom Workshops (GC Wkshps), 2021, pp. 1–6.

[11] K. Merchant and B. Nousain, “Toward receiver-agnostic rf fingerprint
verification,” in 2019 IEEE Globecom Workshops, 2019, pp. 1–6.

[12] G. Baldini, R. Giuliani, C. Gentile, and G. Steri, “Measures to address
the lack of portability of the rf fingerprints for radiometric identification,”
in IFIP Conf. on New Tech., Mobility and Security, 2018, pp. 1–5.

Fig. 13: Multi-Calibration Configuration Portability: Mod-

els trained on data using Config. 2 and calibrated with data

from multiple configurations. N = 10% and M = 10.

hardware, a change in the wireless channel due to the passage

of time, or a change in the configuration of the transmitters.

REFERENCES

[1] IoTAnalytics, “State of IoT 2022: Number of connected
IoT devices growing 18 to 14.4 billion globally,”
https://iot-analytics.com/number-connected-iot-devices/, 2022, [Online;
accessed 9-June-2022].

[2] LoRa Alliance, “https://lora-alliance.org,” [accessed 9-June-2022].

[3] S. Rajendran and Z. Sun, “Rf impairment model-based iot physical-layer
identification for enhanced domain generalization,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 1285–1299, 2022.

[4] G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards scalable
and channel-robust radio frequency fingerprint identification for lora,”
IEEE Tran. on Infor. Forensics and Security, vol. 17, pp. 774–787, 2022.

[5] Y. Li, X. Chen, Y. Lin, G. Srivastava, and S. Liu, “Wireless transmitter
identification based on device imperfections,” IEEE Access, vol. 8, pp.
59 305–59 314, 2020.

[6] A. Elmaghbub and B. Hamdaoui, “Lora device fingerprinting in the
wild: Disclosing rf data-driven fingerprint sensitivity to deployment
variability,” IEEE Access, vol. 9, pp. 142 893–142 909, 2021.

[7] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. Costa Rendon,

N. Soltani, J. Dy, S. Ioannidis, K. Chowdhury, and T. Melodia, “Ex-
posing the fingerprint: Dissecting the impact of the wireless channel on
radio fingerprinting,” in IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020, pp. 646–655.

[8] F. Restuccia, S. D’Oro, A. Al-Shawabka, M. Belgiovine, L. Angioloni,

S. Ioannidis, K. Chowdhury, and T. Melodia, “Deepradioid: Real-time
channel-resilient optimization of deep learning-based radio fingerprint-

[13] H.-H. Yang, T.-C. Wang, Y.-J. Yang, J.-Y. Wang, T. Y. Lin, S. Lai, and
H.-C. Liu, “Improvement of radio frequency fingerprint portability for
wi-fi adaptor identification,” in 2021 IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring), 2021, pp. 1–2.

[14] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2013.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[16] G. Wilson and D. J. Cook, “A Survey of Unsupervised Deep Domain
Adaptation,” ACM Transactions on Intelligent Systems and Technology,
vol. 11, no. 5, pp. 51:1–51:46, Jul. 2020.

[17] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, Oct. 2018.

[18] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Spectral,
probabilistic, and deep metric learning: Tutorial and survey,” jan 2022,
arXiv: 2201.09267. [Online]. Available: http://arxiv.org/abs/2201.09267

[19] J. Bromley, I. Guyon, Y. LeCun, E. Sa¨ckinger, and R. Shah, “Signature
verification using a ”siamese” time delay neural network,” in Advances
in Neural Information Processing Systems 6, 1994, pp. 737–744.

[20] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in IEEE Conf. on
Comp. Vision and Pattern Recognition, vol. 1, 2005, pp. 539–546.

[21] H. Wu, Z. Xu, J. Zhang, W. Yan, and X. Ma, “Face recognition based on
convolution siamese networks,” in Int’l Congress on Image and Signal
Processing, BioMedical Engineering and Informatics, 2017, pp. 1–5.

[22] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” in ICML workshop, vol. 2. Lille, 2015.

[23] D. Thapar, G. Jaswal, A. Nigam, and V. Kanhangad, “Pvsnet: Palm vein
authentication siamese network trained using triplet loss and adaptive
hard mining by learning enforced domain specific features,” in 2019
IEEE 5th International Conference on Identity, Security, and Behavior
Analysis (ISBA), 2019, pp. 1–8.

Config. 1 Config. 2 Config. 3 Config. 4 Config. 1 Config. 2 Config. 3 Config. 4

Config. 1 Config. 2 Config. 3 Config. 4

A
v

g
.
A

U
R

O
C

A
v
g

.
A

U
R

O
C

A
v

g
.
F

P
R

A

v
g

.
T

P
R

A
v
g

.
F

P
R

A

v
g

.
T

P
R

A
v
g

.
A

U
R

O
C

A
v
g

.
F

P
R

A

v
g

.
T

P
R

https://iot-analytics.com/number-connected-iot-devices/
http://www.deeplearningbook.org/
http://arxiv.org/abs/2201.09267

