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Abstract—Deep learning based device fingerprinting has 
emerged as a key method of identifying and authenticating 
devices solely via their captured RF transmissions. Conventional 
approaches are not portable to different domains in that if a 
model is trained on data from one domain, it will not perform 
well on data from a different but related domain. Examples of 
such domains include the receiver hardware used for collecting 
the data, the day/time on which data was captured, and the 
protocol configuration of devices. This work proposes Tweak, a 

technique that, using metric learning and a calibration process, 
enables a model trained with data from one domain to perform 
well on data from another domain. This process is accomplished 
with only a small amount of training data from the target domain 
and without changing the weights of the model, which makes 
the technique computationally lightweight and thus suitable 
for resource-limited IoT networks. This work evaluates the 
effectiveness of Tweak vis-a-vis its ability to identify IoT devices 

using a testbed of real LoRa-enabled devices under various 
scenarios. The results of this evaluation show that Tweak is viable 

and especially useful for networks with limited computational 
resources and applications with time-sensitive missions. 

Index Terms—Device authentication, domain-agnostic portable 
device fingerprints, learning model calibration. 

I. INTRODUCTION 

Recent years have seen unprecedented growth in both the 

number and variety of IoT networks and applications [1]. Due 

to its ability for enabling long-range connectivity between IoT 

devices at low power, LoRa technology [2] has been widely 

adopted by hundreds of IoT application developers as the de 

facto wide-area wireless network access protocol. With such a 

rapid adoption of LoRa technology coupled with the massive 

numbers of emerging resource-constrained IoT devices, there 

is undoubtedly an urgent need for lightweight and scalable 

authentication mechanisms that can ensure automated and 

secure access to these LoRa-enabled IoT networks. 

Device authentication mechanisms that are based on RF 

(radio frequency) fingerprinting have recently been recognized 

as key methods with great potential for complementing con- 

ventional cryptographic approaches to increase the security 

protection of IoT networks against unauthorized access [3]. 

These fingerprinting methods essentially consist of extracting 

 
This work is supported in part by Intel/NSF MLWiNS Award No. 2003273. 

An IEEE-formatted version of this article is to appear in the 2022 IEEE 
Conference on Communications and Network Security (IEEE CNS 2022). 
Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works. 

device-specific features (aka fingerprints) from received RF 

signals—typically caused by inevitable transceiver hardware 

impairments incurred during manufacturing, and leveraging 

these features to uniquely identify and classify wireless trans- 

mitters [3], [4]. Various feature extraction approaches have 

been taken, including early hand-crafted approaches that re- 

quire RF signal domain knowledge and many trial-and-error 

attempts (e.g. [5]), and more recent approaches that leverage 

deep learning to extract features automatically from raw RF 

signals without requiring RF domain expertise (e.g. [3], [6]). 

A. Multi-Domain Portability Challenges 

Although recent deep learning approaches have shown promis- 

ing results, they fail to maintain good performance when the 

data used during training and that used during testing are 

collected under different domains. For example, when the 

model is trained on data collected at one receiver but tested 

on data collected at a different receiver, the device identifica- 

tion accuracy degrades substantially compared to when both 

training and testing are done on data collected using the same 

receiver. To demonstrate the impact of such challenges, we 

performed several experiments using data collected with an 

IoT testbed, consisting of 25 LoRa transmitters and 2 USRP 

B210 receivers, under three different deployment settings: 

indoors, outdoors and wired (detailed description of the testbed 

and experimental scenarios is given later in Sec. III). Our 

results depicted in Fig. 1a show the accuracy of the learning 

model when trained on data captured at one receiver (RX1), 

but tested on data captured at a different receiver (RX2), as 

well as at the same receiver (RX1). These results clearly show 

the substantial drop in accuracy due to the change in the 

receiver hardware. As depicted in Fig. 1b, similar trends are 

also observed when the model is trained on data captured on 

Day 1 but tested on data captured on a different day (while 

keeping the same receiver). The common trend in these figures 

is that the models only perform well when the testing domain 

(receiver/day) matches the training domain. 

The issues of domain portability we just illustrated have also 

been demonstrated in other works [6]–[8]. Since this problem 

is well established, developing approaches that can overcome 

such issues has become an active research area in recent years. 

B. Limitations of Related Work 

Past works attempting to address the wireless channel porta- 

bility problem [3], [8]–[10] are almost all based on using data 

augmentation and/or custom feature extraction as preprocsess- 
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(a) Enabling receiver hardware portability 

(a) Models trained on RX1 data (b) Models trained on Day 1 data 

Fig. 1: Accuracy of models tested on different domains. 

ing in order to extract RF fingerprints that are channel agnostic. 

The downside of these approaches is that the resulting model 

is not flexible and must be re-trained if it cannot perform well 

in a new condition. A notable exception to this is the work 

in [8], which proposed a system that can estimate the channel 

and adapt to it. 

Other approaches [11]–[13] attempt to ensure portability 

with regard to receiver hardware. However, these methods 

require some form of potentially computationally intensive 

training or optimization in order to transform input data so 

that it can be correctly classified. 

The authors of [4] make perhaps the most notable recent 

attempt at portability, and employ a method similar to the 

one described herein in the sense that both methods use 

metric learning and the triplet loss function. They address 

both channel portability and transmitter hardware portability 

(training and testing using two different sets of transmitters). 

Notably, this work is the only one, to the best of our knowl- 

edge, that performs its evaluation on open-set identification 

and classification [14], which allows inputs from unknown 

transmitters and attempts to reject these inputs. 

The costly alternatives available to practitioners while re- 

search on portability continues are as follows: (i) training a 

new deep learning model for each domain one wishes to test 

with, and (ii) training a single deep learning model with data 

from multiple domains in an attempt to produce a domain- 

agnostic model. These approaches are both costly in terms of 

the extra data required from additional target domains and the 

computation time needed to train the neural network models. 

C. Our Contributions: Tweak 

We propose Tweak, a lightweight device identification tech- 

nique that enables portability of the deep learning models 

across multiple different domains. Tweak leverages metric 

learning to achieve accurate identification and open-set accu- 

racy through model calibration instead of re-training, thus sig- 

nificantly reducing (i) the training time and (ii) the amount of 

needed data, making it more suitable for resource-constrained 

and real-time IoT applications. Tweak is evaluated using 

datasets collected from a testbed of 25 LoRa transmitters and 

2 USRP B210 SDR receivers. Specifically, Tweak enables: 

• Lightweight model portability through calibration that 

can be performed very quickly, without changing the 

model weights, and can be done using a relatively small 

amount of labeled data from the target domain. 

• Multi-domain model portability across multiple differ- 

ent domains, including receiver hardware, communication 

 

 

(b) Enabling wireless channel portability 

 

(c) Enabling protocol configuration portability 

Fig. 2: Tweak: Transferring of a trained model to a different 

domain: (a) hardware, (b) channel, and (c) configuration. 

 

Fig. 3: A high-level diagram of Tweak 

 

channel, and LoRa configuration, as shown in Fig. 2. 

• Open-set device identification by easily acting as an 

open-set classifier, as Tweak handles inputs from un- 

known devices. Most related approaches that attempt to 

address portability do not perform open-set testing. 

The remainder of this work is organized as follows: Sec. II 

presents Tweak. Sec. III and Sec. IV evaluate Tweak using 

RF data captured using a real testbed of IoT devices. 

II. Tweak: ENABLING DEEP LEARNING MODEL 

PORTABILITY FOR ROBUST DEVICE AUTHENTICATION 

Our goal is to provide a device authentication method by 

which an open-set deep learning model can be trained on 

data from one domain (collected at one receiver, through one 

wireless channel, or with IoT transmitters using one LoRa 

configuration) and then be calibrated to perform well on data 

from a different but related domain. In this way, Tweak 

aims to move toward the creation of deep learning models 

for RF fingerprint authentication that are portable in terms of 

hardware, wireless channel, and LoRa protocol configuration. 

Tweak achieves these portability goals through a calibration 

process that is: (i) not computationally intensive (and can be 

done on IoT hardware that is less powerful than the resources 

used for training the original model) and (ii) accomplished 

with a limited amount of labeled training data from the target 

domain (receiver, day, configuration). 

Fig. 3 summarizes Tweak. Prior to deployment, Tweak 

requires a training phase for the twin neural network and a 

calibration process using data from the target domain from 
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all devices. Note that the calibration process can be repeated 

with different data without altering the twin neural network. 

The following subsections provide more information including 

background material on the twin network architecture, details 

regarding how the neural network is trained as well as specifics 

of the calibration and decision-making algorithms. 

A. Deep Learning 

This section focuses the discussion on metric learning and twin 

neural networks; a comprehensive treatment on deep learning 

is outside the scope of this work and additional information 

can be found in [15]. Tweak uses twin neural networks as 

 

 
Fig. 4: General twin network architecture during training. 

 

  
open-set classifiers. While closed-set classifiers are designed (a) Zero loss (b) Positive loss 

to classify data with the assumption that they only encounter 

data instances from the classes observed during training, open- 

set classifiers can handle data from classes (i.e., devices) that 

are not seen during training [14]. We deal with data instances 

from these unseen classes by identifying them as not belonging 

to one of the known classes seen during training. While the 

open-set problem is more difficult, it is also more realistic and 

appropriate for device authentication when unknown devices 

are often encountered in deployment. 

1) Metric Learning and Twin Neural Networks 

The standard approach for building a deep neural network 

(DNN) classifier is to train the model using a cross entropy loss 

with one output node for each class. The values of these output 

nodes are then used to determine the degree to which an input 

instance is predicted to belong to a particular class. Under this 

standard supervised learning setting, it is non-trivial to adapt 

the network to different domains such as a different receiver, 

day or configuration. Sophisticated domain adaptation methods 

for deep learning (e.g. [16], [17]) have been developed, but 

these methods are typically computationally intensive and re- 

quire large amounts of data. In contrast, we want a lightweight 

domain adaptation process that can be quickly calibrated using 

a small number of labeled examples from the target domain. 

To overcome these issues, our work makes use of deep 

metric learning [18] in which a DNN produces an embedding 

Fig. 5: Example triplet loss values for one triplet. 

 

K-dimensional latent embedding space (K being the number 

of output nodes). The distance between the two outputs in 

the embedding space is computed as a measure of similarity 

and can be used to train the network with a loss function. In 

practice, a trained twin network can be considered as a single 

DNN that produces an output point in the embedding space, 

instead of twin networks that produce a distance (since the 

networks have identical weights). Hence, using a twin network 

does not impose additional memory costs. 

2) Training the Twin Neural Network 

Training a twin neural network requires a loss function that 

will cause data instances from different classes to be further 

apart in the output space and data instances from the same 

class to be closer together. A loss function that fits this 

criterion is the triplet loss function [23], which encourages 

reduced distances between ‘Anchor’ (A) and ‘Positive’ (P) 

examples, and increased distances between ‘Anchor’ (A) and 

‘Negative’ (N) examples. The mathematical expression for this 

loss function is provided in Equation (1) and a visual depiction 

is provided in Fig. 5, where α is a margin value (indicating 

that the distance between P and N has to be at least this much 

to matter), and f (·) is the neural network mapping function. 

of a data instance in a K-dimensional latent space. Within 

this embedding space, data instances that are similar (e.g. 

2 

Loss = max(lf (A) − f (P )l 
2 

− lf (A) − f (N )l + α, 0)  (1) 

from the same device) will be closer than those that are 

not similar (e.g. from different devices). Tweak uses a well 

known metric learning structure called a twin (or Siamese) 

neural network [19], [20]. These types of neural networks 

have been successfully used for applications where few ex- 

amples are available such as signature verification [19] and 

facial similarity calculations [21]. Additionally, it has been 

shown that twin networks trained on one image dataset (e.g. 

Omniglot) and evaluated on an entirely different image dataset 

(e.g. MNIST) are able to generalize and maintain some level 

of performance [22]. However, they have only been applied 

directly to the problem of device fingerprinting based on RF 

signals in one other work [4]. 

Fig. 4 depicts a twin neural network, consisting of a pair 

of convolutional neural networks (CNNs) constrained to have 

identical weights. Each CNN accepts a single input instance 

and produces an output that corresponds to coordinates in a 

Triplets of A, P, and N examples are provided to the network 

during training. We generate the triplets after examples from a 

mini-batch have already passed through the network but before 

the loss is calculated. Determining triplets after examples have 

passed through the network is advantageous because more 

difficult triplets can be strategically selected to help with 

training [23], where difficult triplets are those with high loss 

due to having A closer to N than to P . 

Tweak uses the triplet loss function to train the twin 

network as shown in Fig. 3. Once this model has been trained 

on labeled data from a chosen domain, inputs from different 

transmitters should be mapped to outputs that are farther apart, 

and inputs from the same transmitter should be mapped to 

outputs that are closer together. At this point, the model is 

typically only capable of making decisions given two inputs 

that it can compare in terms of their distance in the latent 

space. To enable the trained twin network to make decisions 
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Fig. 6: Calibration for a single device, after N examples from 

Device i have passed through the trained twin network. 

 

about a single input from a particular domain, a calibration 

process must be performed. 

B. Calibration and Decision Making Algorithms 
 

Algorithm 1 Calibration 
 

 

Centroids = [ ] 
Distances = [ ] 
Devices = {D1, D2, ..., DK} each Di = {xi1, xi2, ..., xiN } 

for all Di ∈ DeviceLs do 

re-training the network. Additionally, the parameter N rep- 

resents the number of examples from each device used for 

calibration purposes. Altering N allows adjusting the amount 

of computation required for calibration as well as the amount 

of labeled data required. The calibration process could also be 

repeated with data from multiple domains for the same devices 

in order to produce a model capable of making decisions about 

data from these multiple domains, thereby producing multiple 

Centroids and Distances for each device. 

 

Algorithm 2 Open-set Binary Decision 
 

 

InputDeviceExamples = {x1, x2, ..., xM } 

InputPoint = M f (xj)/M 
for all Di ∈ Devices do 

if dist(InputPoint, Centroids[i])  ≤  Distances[i] 
then 

Return: Decision = Admit 
end if 

end for 

Return: Decision = Reject 
 

 

 

Centroids[i] = N j=1 f (xij)/N Once calibrated, the network is then used as an open-set 

Distances[i] = 
LN lf (xij ) − Centroids[i]l/N 

end for 

Calibrated for Di ∈ Devices 
 

The calibration process is performed by providing the 

trained network with labeled examples from all desired de- 

vices. Note that these examples may come from the training 

data if calibrating for the same domain as the training data. 

Algorithm 1 describes the calibration process and Fig. 6 

illustrates it. We use the convention that boldface symbols refer 

to vectors and sets while non-boldface refer to scalars. For 

each device (class), we repeat the following process: given N 

examples from device i for calibration, xi1, xi2, ..., xiN , we 

first pass these examples through the trained neural network, 

f (·), to produce N corresponding outputs in the latent space. 

The first image in Fig. 6 shows the result of this step. Next, 

these N outputs are averaged to produce Centroids[i] (i.e. 

the centroid for device i), which is shown in the second image 

of Fig. 6. This centroid is the first piece of calibration data 

that will be stored for device i. 
Next, the distances between the centroid for device i and 

each of the N outputs that were used to generate the centroid 

are calculated. This is depicted in the third image of Fig. 6. 

These distances are averaged to produce Distances[i] (i.e. 

the average distance for device i), which is represented by 

a circle with this distance value as its radius in Fig. 6. This 

distance is the second piece of calibration data that will be 

stored for device i. After the above process is repeated for 

every device, calibration is complete and the Centroids and 

Distances for the devices can be used to make decisions 

regarding new inputs using the decision algorithm to be 

described later. 

This calibration process is designed to be lightweight as 

it only requires feeding data instances forward through the 

network and performing distance calculations, thus avoiding 

classifier (Algorithm 2) to classify an input data instance as 

belonging to a known or unknown device. The algorithm be- 

gins by collecting M examples, x1, x2, ..., xM , from an input 

device, passing these examples through the trained network, 

f (·), and averaging the M outputs to produce InputPoint. 

Since this operation is not typical in deep learning models, 

it deserves some explanation. In the RF domain, the input 

data represents fractions of a second of real-time RF com- 

munication. Thus, it is plausible to collect M input examples 

quickly in order for the model to process them for the open- 

set classifier. Doing so allows for the construction of a less 

noisy InputPoint that is more representative of a particular 

device and less susceptible to the effects of outlier examples. 

After InputPoint is computed, for each device i the 

algorithm calculates the distance between the InputPoint 

and Centroids[i] and compares this distance with 

Distances[i]. If this calculated distance is less than or equal 

to Distances[i], the algorithm decides that the input comes 

from a known device, and returns the ‘Admit’ decision (i.e., 

device is authenticated). If none of the calculated distances 

are less than or equal to Distances[i], then the algorithm 

decides the input came from an unknown device, and returns 

the ‘Reject’ decision (i.e., device is denied network access). 

III. EXPERIMENTAL SCENARIOS AND DATASETS 

This section describes the testbed used for collecting the 

RF datasets and the experimental setups used for evaluating 

Tweak under three different portability scenarios. 

A. Testbed 

In order to evaluate Tweak, real RF data was collected using 

a testbed of devices. This testbed contains 25 almost identical 

PyCom IoT devices used as transmitters: 23 Lopy4 boards and 

2 Fipy boards on top of 22 Pysense sensor shields, 2 Pytrack 

sensor shields, and 1 Pyscan sensor shield (pictured in Fig. 7c). 



Config. 
Spreading 

Factor 
BW 

Tx 
Power 

Coding 
Rate 

Bit Rate 

1 7 125kHz 20dBm 4/5 5470bps 
2 8 125kHz 20dBm 4/5 3125bps 
3 11 125kHz 20dBm 4/5 537bps 
4 12 125kHz 20dBm 4/5 293bps 

 

 

 

 

 

 

(b) USRP B210 SDRs (RX1 and RX2) 

TABLE II 

Different LoRa transmitter configurations. 
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(c) PyCom LoRa transmitters 

(a) Same Transmission (b) Different Transmission 

Fig. 7: (a) Twin network, (b) and (c) testbed hardware. 

 

Portability Env. 
Multi-RX 
Collection 

# 
TX 

# 
RX 

# 
Days 

# TX 
Config. 

Hardware Indoor Same Tx 25 2 1 1 
Hardware Outdoor Same Tx 25 2 1 1 
Hardware Wired Same Tx 25 2 1 1 
Hardware Indoor Diff. Tx 25 2 1 1 
Hardware Outdoor Diff. Tx 25 2 1 1 

Hardware Wired Diff. Tx 25 2 1 1 

Channel Outdoor N/A 25 1 5 1 

Config. Indoor N/A 25 1 1 4 

TABLE I 

Summary of the datasets used for evaluation. 

 

 

The testbed also uses 2 USRP B210 SDRs (Software Defined 

Radios) as receivers to collect data (pictured in Fig. 7b). 

All of the datasets collected using this testbed (outlined in 

the next section) use the following settings and processes un- 

less otherwise stated: the PyCom transmitters were configured 

to transmit using the LoRa protocol, with a center frequency of 

915 MHz, spreading factor of 7, and bandwidth of 125KHz. 

The USRP B210 receivers were configured to sample at a 

center frequency of 915 MHz, at a rate of 1M samples per 

second. Each transmission sends the same message, and lasts 

for 20s. This produces 20M complex-valued samples for each 

transmission received. This data was stored in raw-IQ format, 

using GNURadio to process the data. 

Regardless of the environment in which data was collected, 

the transmitters and receivers were always placed about 5m 

apart (with the exception of ‘Wired’ data, which is collected by 

connecting transmitters to receivers by physical wire). All data 

collected using this testbed will be made publicly available. 

B. Experimental Scenarios 

The collected LoRa RF datasets and the studied portability 

scenarios are summarized in Table I and described next. 

Hardware portability dataset scenario. Six different 

datasets were collected to evaluate the hardware portability 

Fig. 8: Methods of collecting RF data with two receivers. 
 

 

scenario. All of these datasets involve the same 2 receivers and 

25 transmitters, and each contains 2 recorded transmissions 

from each transmitter: one at each receiver. 

These six datasets differ in terms of the environment they 

were collected in as well as the ‘Multi-RX Collection’ method 

used. Datasets where the ‘Multi-RX Collection’ method is 

‘Diff. Tx’ were collected by capturing two different trans- 

missions from each device, one at each receiver as shown 

in Fig. 8b. Datasets where this method is ‘Same Tx’ were 

collected by capturing the same single transmission from each 

device at both receivers as shown in Fig. 8a. 

Channel portability dataset scenario. This dataset in- 

cludes 5 transmissions from each of the 25 transmitters, with 

each of the 5 transmissions collected on a different day. Our 

intent is to have this dataset represent transmissions under 5 

different wireless channel conditions. 

Protocol configuration portability dataset scenario. This 

dataset includes four transmissions from each of 25 transmit- 

ters, each of the four transmissions using a different config- 

uration. The configurations amount to using different LoRa 

spreading factors and are detailed in Table II. Note that all 

other datasets use only Config 1. 

IV. EXPERIMENTAL RESULTS 

We first describe the specific implementation of the twin 

network as well as the metrics to be used to evaluate Tweak. 

Then, we explain the results obtained by testing Tweak under 

the portability scenarios outlined in the previous section. 

A. Neural Network Implementation 

The network used for this work is inspired by one of the 

straightforward CNNs described in [7] and is depicted in 

Fig. 7a. Note that this represents one of the two identical 

halves of the twin network. The network was implemented 

using the Python ‘PyTorch’ library and uses a total of four 1- 

D convolutional layers, making use of 1-D max-pooling and 



batch normalization layers after each pair of convolutional 

layers. It also uses two fully-connected layers at its output, 

ending with 12 neurons. This produces a 12-dimensional 

output point for each input example. Leaky ReLU is used as 

the activation function throughout the network. 

The inputs to the network are presented in the form of 

complex IQ (In-phase, Quadrature) samples, a common format 

for representing RF signals. For this work, a sequence length 

of 128 complex samples was considered as one input example. 

Additionally, two different input channels were considered, 

one for I samples and one for Q samples. Thus, the final input 

shape for the network is 2x128. 

The triplet loss function is used to train the network with a 

margin value of 0.1, and the “difficult triplet selection” strategy 

described earlier is employed to select triplets for training. 

The optimizer chosen was Stochastic Gradient Descent (SGD) 

with Momentum set to 0.9. Batch size was set to 64, and the 

learning rate for each model was tuned over the range 1e-1 to 

1e-6. The networks were allowed to train for 100 epochs and 

the model was saved at the best performing epoch. 

For baseline comparison, a ‘vanilla’ network was defined 

using half of a twin network (Fig. 7a) and having 10 neurons 

in the final layer (where 10 is the number of transmitters 

used during testing). The same hyper-parameters described for 

the proposed network are used for training, but the ‘vanilla’ 

network uses cross-entropy loss instead of triplet-loss. 

B. Performance Evaluation Metrics 

To assess Tweak’s performance, three metrics are used: (i) the 

averaged Area Under the Receiver Operating Characteristic 

(Avg. AUROC); (ii) the averaged True Positive Rate (Avg. 

TPR); and (iii) the averaged False Positive Rate (Avg. FPR). 

These three metrics are further explained next. 

The TPR and FPR metrics are calculated using the exact 

decision making process defined in Algorithm 2 as, T PR = 
T P/(T P + FN ) and FPR = FP/(FP + T N ), where: 

• True Positive (TP) is the number of tested known devices 

that the model predicts as known (correctly) 

• False Negative (FN) is the number of tested known 

devices that the model predicts as unknown (incorrectly) 

• False Positive (FP) is the number of tested unknown 

devices that the model predicts as known (incorrectly) 

• True Negative (TN) is the number of tested unknown 

devices that the model predicts as unknown (correctly) 

These quantities are also shown visually in Fig. 9b. 

The AUROC metric allows for measuring the performance 

of a binary classifier (i.e., classifying an input/device as 

known or unknown) without having to specify a particular 

threshold. Instead, decision scores are collected and the TPR 

and FPR are calculated for all possible thresholds on these 

scores. The AUROC is then defined as the area under the 

ROC curve resulting from plotting FPR vs. TPR for all 

thresholds. Fig. 9a depicts an example of this curve. Note 

that the open-set evaluations using AUROC do not strictly 

follow Algorithm 2 defined earlier, since this algorithm uses 

specific thresholds (the Distances). Instead, for models 

 

  
(a) ROC curve. (b) Possible decision outcomes. 

Fig. 9: Visualization of performance metrics. 

 

 

using Tweak, the AUROC decision scores correspond to the 

minimum distance between InputPoint and a Centroid, 

and for the ‘vanilla’ models, the decision scores correspond 

to the maximum logit value for each example, which is 

commonly used in open set classification. 

The reported evaluation metrics (AUROC, TPR and FPR) 

are averaged over 5 trials since performance can depend on 

which unknown devices are used for testing. For each trial, an 

equal number of examples were drawn from 5 random known 

devices and 5 random unknown devices. 

C. Evaluation Results 

Tweak is evaluated in an open-set device authentication 

setting, which requires it to decide if inputs originated from 

a known (authorized) or unknown (unauthorized) device. All 

models evaluated in this section were trained and tested using 

data transmissions collected from the same 10 wireless IoT 

transmitters, with 75% of the data used for training and 

25% used for testing (each transmission contains 156,250 

examples of size 128x2). Test data from the other 15 IoT 

transmitters was used to represent the unknown/unauthorised 

devices. In all tests, the amount of calibration data used (N in 

Algorithm 1) was set to 10% of the size of the training data 

used to initially train the model (11,719 examples), and the 

number of input examples used to form the ‘input point’ (M 

in Algorithm 2) was set to 10. It is also worth noting here 

that on all AUROC results presented in this section, a dashed 

line is plotted at 0.5 to indicate the performance of a random 

classifier/authentication. 

Additionally, for comparison to Tweak, ‘vanilla’ models are 

also evaluated in this section. Note that the ‘vanilla’ models 

were only evaluated using the AUROC metric. 

1) Hardware Portability 

We begin by assessing Tweak’s ability in achieving hardware 

portability. For this, for each of the six studied hardware 

portability datasets listed in Table I, Tweak was trained on 

data collected at RX1. Then, Tweak is tested with data 

collected at both receivers, RX1 and RX2, while being: (i) 

calibrated with data collected at RX1, and (ii) calibrated with 

data collected at RX2 (receiver different from that used for 

collecting training data). 

Figs. 10a-10c show the results of these tests for the ‘Diff. 

Tx’ method, where data captured by RX1 and RX2 for 

each transmitter is done during two separate transmissions. 

Figs. 10d-10f show the same results but for the ‘Same Tx’ 

method, where data is collected at RX1 and RX2 by capturing 
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Fig. 10: Hardware Portability: Models trained on data collected at RX1. N = 10% and M = 10. 

 

the same transmission from each device. Note: models trained 

on RX2 data as opposed to RX1 data were also evaluated 

and showed similar results, and are omitted due to space 

limitations. 

The main trend present for the AUROC results is that 

in most cases, better AUROC is achieved when testing on 

the same receiver for which the model is calibrated. This 

can be seen in Fig. 10a, for instance, where the results 

when calibrating/testing on RX1 data and the results when 

calibrating/testing on RX2 data show higher AUROC when 

compared to the other tests. It is also notable that the ‘vanilla’ 

models perform far worse than Tweak in terms of AUROC 

when the models that use Tweak are calibrated and tested on 

the same receiver. This is indicative of the potential for Tweak 

to achieve hardware portability for device authentication. 

The TPR results shown in Figs. 10b and 10e provide 

even stronger evidence of the main trend that existed for the 

AUROC metric, where performance is high when the model is 

calibrated/tested on the same receiver. These results indicate 

that Tweak always achieves a high TPR, meaning it almost 

always correctly ‘admits’ examples from known devices. 

In the FPR results, the trend is less clear. Ideally, models 

calibrated for a particular receiver would achieve a low FPR 

when tested on data from that receiver, but this is not always 

the case. For example, in Figs. 10c and 10f, it can be seen that 

there are several cases where a model is calibrated for data 

from a receiver, but still achieves a higher FPR when tested on 

data from that receiver than when it is tested with data from a 

receiver for which it is not calibrated. For a particular example, 

notice the last two bars of the tests for models calibrated with 

RX2 data in Fig. 10c. These are both tests on RX2 data, 

so good performance would be expected, and thus low FPR. 

Instead these tests have the highest FPR of any test for models 

calibrated to RX2 in the figure. 

This seemingly counter-intuitive result can be explained by 

considering the meaning of FPR, and what exactly the model 

is attempting to do in the latent space during evaluation. Recall 

that when a model is calibrated using a particular set of data it 

forms a Centroid for each device in its latent output space. 

To achieve low FPR (which is desirable), the examples from 

unknown devices must form distinct ‘clusters’ in the latent 

space far enough away from the Centroids so that the model 

can distinguish known from unknown. 

In the case where the model is calibrated/tested on data from 

the same domain, the ‘clusters’ from both the known and un- 

known devices will likely be closer to the Centroids in the 

latent space than the case where the model is calibrated/tested 

with data from two different domains. This means that when 

testing on a different domain than calibration, the model will 

more easily be able to ‘reject’ examples from unknown devices 

(achieving a lower FPR), but will also have a more difficult 

time ‘admitting’ examples from known devices (also achieving 

a lower TPR). Thus, achieving a low FPR is generally more 

difficult when testing on the same domain as calibration. 

It is also worth noting that even when the FPR produced 

by calibrating and testing on data from the same receiver is 

not the highest FPR, the result is still not as low as would 

be desired. For example, observe Fig. 10c. Notice that the 

FPR for the model calibrated and tested on RX2 data from 

an ‘Indoor’ environment is among the lowest for all models 

calibrated with RX2 data, but that it is still in excess of 0.25. 

This is indicative of an issue with the Distances chosen 

during calibration and used for open-set decision making. It 

indicates that these Distances may be too large, producing 

a much higher TPR as well as a relatively high FPR. 

2) Channel Portability 

Tweak’s portability across different channels is evaluated 

using channel portability dataset scenarios listed in Table I. 

For this, Tweak was first trained on data collected on Day 

1, and then calibrated for each of the five days. Tweak was 

tested with data from all five days. The results are shown in 

Figs. 11a-11c. Note that this evaluation was also performed 

for a model trained on Day 2 data, and similar results were 

achieved, but omitted here due to space limitations. 

First considering the AUROC results in Fig. 11a, there are a 

couple of interesting trends that are worth mentioning. From 

observation of this figure it is evident that high AUROC is 

achieved when a model is calibrated with data collected on 

one day and tested using data from the same day. For instance, 

the model calibrated with Day 2 data performs very well 

when tested with Day 2 data. This trend exists regardless of 

the calibration day. The lowest Avg. AUROC achieved when 
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model occurring when it is tested with the same configuration 

as calibration (which is expected). One example of this can 

be seen in Fig. 12a, where the model calibrated with Config. 

1 data performs the best when tested with Config. 1 data, and 

the model calibrated with Config. 2 data performs the best 

when tested with Config. 2 data. This trend is in line with the 

expected trends that have been mentioned thus far. 

A unique trend present here can be seen by observing the 

performance of the models when calibrated and tested with 

Config. 3 data. In these cases, the performance of the model is 

not the best when testing on the same domain as calibration. In 

particular, testing with Config. 4 produces better performance 

than testing with Config. 3. This is not the case however, 

Fig. 11: Channel Portability: All models are trained on Day 

1 data. N = 10% and M = 10. 

 

 

models are calibrated/tested on data from the same day is 

∼0.79. This trend is indicative of the ability of Tweak to 

achieve wireless channel portability for device authentication. 

Another trend of note when looking at the AUROC results 

is that sometimes good performance is also achieved when 

testing using data from days other than the day used for 

calibration. For instance, in Fig. 11a, it can be seen that the 

model calibrated with Day 1 data also performs very well 

when tested with Day 2 data, and that the model calibrated 

with Day 4 data also performs very well when tested with 

Day 5 data. This trend is consistent, and is also present when 

the model is instead trained with data from Day 2. This could 

be indicative of some similarity between the wireless channel 

on these different days, but more work needs to be done to 

confirm this idea. 

Moving to observe the TPR results in Figs. 11b, it can 

be seen that the desired trend is present. That is, TPR is 

high when a model is calibrated and tested on data from the 

same day. This indicates that Tweak is excellent at correctly 

‘admitting’ examples that come from known devices. 

Turning to the FPR results, it can be seen that the trend 

present in the ‘hardware portability’ evaluation is again present 

here. That is, the FPR results are less than ideal, since 

calibrating and testing with data from the same day does not 

always produce the lowest FPR. This can be attributed to the 

idea explained in the ‘hardware portability’ evaluation section. 

3) Configuration Portability 

To evaluate the configuration portability of Tweak, the config- 

uration portability dataset in Table I was used to train two twin 

network models: one with only data using Config. 1 and one 

with only data using Config. 2. Each of these trained models 

was then calibrated for each of the four configurations. Finally, 

Tweak was tested with data from all four configurations. 

The results when training on data collected while the 

transmitters use Config. 1 are shown in Figs. 12a-12c and those 

when the transmitters use Config. 2 are shown in Figs. 12d- 

12f. First observing the AUROC results, it can be seen that 

regardless of the training configuration, calibrating the model 

using Config. 1 or 2 results in the highest performance of the 

when the model is trained with data from transmitters that use 

Config. 3 or Config. 4 (not pictured). In this case, the result is 

as expected, where calibrating and testing with Config. 3 data 

produces the best result of all tests for that calibration. This 

result could be attributed to the fact that generally Configs. 

1 and 2 are more similar to each other and less similar to 

Configs. 3 and 4 (see Table II). 

The TPR results for the models trained with either config- 

uration are consistent with the desired trend. That is, a very 

high TPR is achieved when the model is calibrated and tested 

using data from the same configuration. 

Similar to the other evaluations, the FPR results are less 

encouraging than those for AUROC and TPR. There are many 

instances where calibrating and testing using data from the 

same configuration results in the highest FPR among all of the 

tests for that calibration. This can be explained using the same 

line of thinking used in the ‘hardware portability’ evaluation. 

That is, achieving a low FPR is easier when calibration and 

testing are done with data from two different configurations. 

This conclusion is reinforced by the FPR results here, as 

generally the FPR is lower when testing on a configuration 

that is ‘more different’ from the one used for calibration. 

Finally, the last evaluation performed in this section lever- 

ages the notion that Tweak could be used to calibrate for more 

than one configuration by performing multiple consecutive 

calibrations. To this end, the twin network model trained 

using Config. 2 data was calibrated using data from multiple 

configurations and tested on data from all four configurations. 

The results of these tests are shown in Fig. 13. The results 

here are encouraging for AUROC and TPR, but contain the 

same issues mentioned above when it comes to FPR results. 

There is also a notable drop in AUROC when calibrating for 

multiple configurations when compared to calibrating for a 

single configuration. 

V. CONCLUSION 

This work proposes Tweak, a technique for creating a portable 

deep neural network for LoRa device authentication which 

can be calibrated quickly, using a small amount of labeled 

examples, to perform effectively on data from a domain 

other than the one it was originally trained with. It has been 

demonstrated through experimentation with a testbed of IoT 

devices that Tweak enables portability with respect to receiver 
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Fig. 12: Configuration Portability: Models trained on data using (a)-(c) Config. 1 and (d)-(f) Config. 2 and tested on data 

from transmitters using four different configurations. N = 10% and M = 10. 
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Fig. 13: Multi-Calibration Configuration Portability: Mod- 
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hardware, a change in the wireless channel due to the passage 

of time, or a change in the configuration of the transmitters. 
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