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Abstract—New capabilities in wireless network security have 
been enabled by deep learning, which leverages patterns in radio 
frequency (RF) data to identify and authenticate devices. Open- 
set detection is an area of deep learning that identifies samples 
captured from new devices during deployment that were not part 
of the training set. Past work in open-set detection has mostly 
been applied to independent and identically distributed data such 
as images. In contrast, RF signal data present a unique set of 
challenges as the data forms a time series with non-linear time 
dependencies among the samples. We introduce a novel open- 
set detection approach based on the patterns of the hidden state 
values within a Convolutional Neural Network Long Short-Term 
Memory model. Our approach greatly improves the Area Under 
the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired- 
WiFi datasets, and hence, can be used successfully to monitor and 
control unauthorized network access of wireless devices. 

Index Terms—Device authentication; RF device fingerprinting; 
open-set detection; deep learning. 

I. INTRODUCTION 

The proliferation of Internet Of Things (IoT) devices in sen- 

sitive environments, such as military bases, government build- 

ings, and private businesses, creates a need for detecting anoma- 

lous devices that pose security threats. These devices can easily 

bypass security measures as they can be concealed. Traditional 

detection methods are ineffective at identifying unauthorized 

wireless devices, especially with attacks like cloning and man- 

in-the-middle [1]. 

RF fingerprinting is a recognized key method to enhance 

security in IoT networks [2]. It extracts device-specific features 

from RF signals to identify wireless transmitters, leveraging 

unique hardware imperfections during transmitter manufactur- 

ing. Feature extraction methods range from hand-crafted to deep 

learning-based approaches that identify features from raw RF 

signals. This paper proposes HiNoVa, a new machine learning- 

based open-set detection method that identifies unauthorized 

(also referred to as unknown or unseen) IoT devices and au- 

thorized (also referred to as known or seen) devices. HiNoVa is 

tested on datasets collected from devices using LoRa and 

WiFi protocols. LoRa is a wireless communication technology 

designed for IoT devices that operates in the sub-gigahertz 

frequency range, enabling long-range, low-power, bi-directional 

communication. LoRa’s advantages include longer range, better 

penetration through obstacles, and low power consumption, 

making it suitable for IoT applications that require a wide area 

network coverage. However, LoRa has lower data rates than 

WiFi, making it unsuitable for high-speed data transfer applica- 

tions. The crowded sub-gigahertz frequency range can also lead 

to interference from other devices. Each of the protocols, LoRa 

and WiFi, has its practical use and is commonly adopted by 

various transmitters, and hence, our proposed open-set detection 

method is tested using both protocols. 

A. Open-Set Detection and Device Authentication 

Supervised machine learning algorithms typically operate under 

closed-set recognition, meaning that they assume the classes 

encountered during testing are identical to those seen during 

training. This means that if a Neural Network (NN) is trained 

to identify the two classes of cats and dogs, it fails to recognize 

an unknown type of animal, such as a bird, as a distinct animal 

and will instead misclassify it as either a cat or a dog. This lim- 

itation is particularly problematic in real-world scenarios where 

wireless device fingerprinting is used for security purposes. In 

this security use case, the classes correspond to known devices 

and it is crucial for the system to accurately detect unknown 

devices (i.e. the open-set devices) to raise an alert. For this 

type of problems, Open-set detection [3] can be used, where 

the classifier needs to recognize that data samples do not belong 

to any of the known devices seen during training, and raises 

an alert when this happens. Our work introduces HiNoVa, a 

novel open-set detection approach for authenticating wireless 

devices using RF fingerprinting. 

B. Related Work 

One of the simplest approaches to open-set detection is to use 

the predicted class probability as an indicator of the model’s 

confidence that the data instance belongs to one of the known 

devices [4]. In a NN, the predicted class probability is the 

maximum class probability output by a softmax distribution. 

If this value is low, it indicates that the instance is likely from 

an unknown device. 

Recent work [5], [6] shows that the maximum logit score 

(which we refer to as MaxLogit) is a stronger baseline for 

detecting open-set instances. Logits are the outputs of the last 

linear layer of a deep neural network. In classification, these 

logits are the inputs to the softmax layer, which normalizes the 

logits to be a valid probability. Normalizing the logits removes 

information about their raw magnitude, which is valuable for 

detecting open-set instances [5]. The MaxLogit score is the 

value of the largest logit, which is indicative of the uncertainty 

of the classifier as to the device; an open-set instance should 

have a lower maximum logit value. 

Recent approaches to open-set detection focus on leveraging 

internal node values and activation patterns of neurons inside 



neural networks to detect open-set samples. For example, 

ReAct [7] analyzes the internal activations of neural networks 

and identifies highly distinctive signature patterns for open-set 

distributions. Dietterich et al. [6] argue that detecting novel 

objects in object recognition applications with an open set of 

possible categories is a familiarity-based problem rather than a 

novelty-based problem. Their familiarity hypothesis posits that 

state-of-the-art methods based on the computed logits of visual 

object classifiers succeed by detecting the absence of familiar 

learned features rather than the presence of novelty. 

Much of the literature for open-set detection applies to data 

instances that are independent and identically distributed (i.i.d). 

To our knowledge the only work for open-set detection on time 

series is by Akar et al. [8], which clusters the time series 

in each known class to identify a class-specific barycenter; 

then, during deployment, new time series are identified by 

how close they are to these barycenters, where the closeness is 

determined by dynamic time warping (DTW) and also by cross- 

correlation. Time series that are not close to the barycenters 

of known devices are flagged as an unknown device. DTW 

has a complexity of O(T 2), where T is the length of the two 

time series to be aligned. The algorithm by Akar et al. uses 

DTW in the inner loop of several operations and is extremely 

computationally expensive. 

A handful of papers have applied open-set detection to RF 

fingerprinting. Gritsenko et al. [9] use the maximum probability 

from the softmax layer and the ratio of slices predicted to 

belong to each device to establish the confidence in the device 

prediction. Hanna et al. [10] investigate a variety of methods 

such as the maximum softmax probability and methods that 

incorporate data from known unauthorized devices. Gaskin et 

al. [11] propose Tweak, a lightweight calibration approach that 

leverages metric learning to achieve high open-set accuracy 

without the need for model re-training, making it more suit- 

able for resource-constrained applications. In a recent work, 

Karunaratne et al. [12] use generative deep learning models to 

produce synthetic data from unauthorized devices, which are 

used to augment the training set. Our approach differs from 

these approaches by modeling the time series nature of the 

data with a CNN+LSTM and performing open-set detection. 

Another closely related area to open-set detection is anomaly 

detection [13]. In anomaly detection, the goal is to identify 

individual outliers that are rare with respect to the ”normal” data 

instances. Anomaly detection has some subtle differences with 

open-set detection. First, in open-set detection, data instances 

from the unknown class come from a semantically coherent 

grouping that is different from the known classes. In contrast, 

the anomalies found by anomaly detection need not form a 

coherent grouping. Second, the anomalies in a typical anomaly 

detection setting make up a small fraction of the data, with the 

”normal” instances forming a large proportion of the data. In 

open-set detection, the unknown classes can potentially contain 

a large number of data instances. Despite these subtleties, 

anomaly detection techniques can, in some cases, be applied to 

open-set detection and vice versa; however, open-set detection 

methods generally outperform anomaly detection methods for 

detecting unknown devices [14]. 

C. Contributions 

We introduce HiNoVa, a novel open-set detection method 

for wireless communication protocols. HiNoVa leverages the 

Hidden Node Values within a trained Long-Short-Term 

Memory (LSTM) unit of a deep NN to generate a unique device 

fingerprint for each known device. Then, new fingerprints 

encountered during deployment can be compared against the 

fingerprints of known devices, enabling the system to accurately 

identify unknown devices. After undergoing training on a set of 

known devices, the open-set detection process is highly efficient 

and can be performed in real-time even on consumer-grade 

devices. This makes HiNoVa an ideal solution for wireless 

security applications, where the ability to quickly identify 

unauthorized/unknown devices is of utmost importance. 

The paper is structured as follows: Section II presents the 

machine learning architecture used by our method. Section III 

presents the details of the HiNoVa algorithm. Section IV 

describes the LoRa, Wireless-WiFi, and Wired-WiFi datasets 

used in our evaluation and Section V evaluates the performance 

of HiNoVa using these datasets. The last section concludes the 

paper. 

II. THE NEURAL NETWORK ARCHITECTURE 

In deep learning, a recurrent neural network (RNN) layer is 

a layer type that allows for the processing of sequential data 

such as a time series by maintaining a memory state that can 

store information about the recent past. It consists of a single 

time step of the RNN, which involves computing a hidden state 

vector ht and an output vector yt at each time step t. The vector 

ht depends not only on the input vector xt at time step t, but 

also on the hidden state vector ht−1 at the previous time step. 

This dependence allows the network to maintain a memory of 

past inputs and use this information to inform its current output. 

One limitation of this RNN layer is that it can have difficulty 

remembering long-term dependencies in the input sequence. To 

overcome this difficulty, the long short-term memory (LSTM) 

[15] layer was developed to handle long-term dependencies in 

the input sequence more effectively. 

A. Long-Short-Term Memory (LSTM) Layer 

The LSTM layer consists of the following equations, where ⊙ 
represents an element-wise product: 

it = σ(Wiixt + bii + Whiht−1 + bhi) 

ft = σ(Wif xt + bif + Whf ht−1 + bhf ) 

gt = tanh(Wigxt + big + Whght−1 + bhg) 

ot = σ(Wioxt + bio + Whoht−1 + bho) 

ct = ft ⊙ ct−1 + it ⊙ gt 

ht = ot ⊙ tanh(ct) (1) 

Each term in the LSTM equations is described below: 

• xt: The input vector at time t. 

• ht−1: The previous hidden state vector. 



• it, ft, gt, ot: The input gate, forget gate, cell gate, and 
output gate activation vectors, respectively. 

• ct: The memory cell content vector, containing old mem- 
ory cell content and newly added cell content. 

• Wii, Wif , Wig, Wio: The weight matrices for input gates, 

forget gates, cell gates, and output gates for the input 

vector. 

• Whi, Whf , Whg, Who: The weight matrices for the input 

gates, forget gates, cell gates, and output gates for the 

previous hidden state. 

• bii, bif , big, bio: The bias vectors for the input gates, forget 
gates, cell gates, and output gates for the input vector 

• bhi, bhf , bhg, bho: The bias vectors for the input gates, 

forget gates, cell gates, and output gates for the previous 

hidden state. 

• ht: The hidden state at time t. 

The LSTM network has a cell state that can store information 

for long periods of time, and three gates that control the flow of 

information: input gate, forget gate, and output gate. The input 

gate controls the input to the cell state, the forget gate controls 

how much of the previous cell state is retained, and the output 

gate controls the output from the cell state. 

At each time step, the LSTM network takes an input xt, the 

previous hidden state ht−1 and the previous cell state ct−1, and 

uses these to compute the input gate it, forget gate ft, cell gate 
gt, and output gate ot. 

The cell state ct is updated based on the input gate it, forget 

gate ft, and cell gate gt. The input gate controls how much new 

information is added to the cell state and the forget gate controls 

how much old information is retained. The cell gate controls 

what new information is added to the cell state, by applying an 

activation function (i.e. tanh) to the input and previous hidden 

state. 

Finally, the output gate ot controls how much of the current 

cell state is output as the new hidden state ht. The new hidden 

state is computed by applying the tanh function to the updated 

cell state ct and then multiplying it by the output gate ot. The 

hidden state now contains both short and long-term memory, 

making it the ideal choice for a unique latent description. 

B. Convolutional Neural Network LSTMs (CNN+LSTMs) 

Convolutional Neural Networks (CNNs) have been successful at 

image recognition because of their locality bias, which assumes 

that nearby pixels are useful in identifying an object. The key 

component of a CNN responsible for this locality bias is the 

convolutional layer, which convolves a set of filters to the input 

data in order to extract local features. The filters are typically 

small in size and slide over the input data in a sequential, 

linear fashion. This results in a feature map that highlights 

patterns in the input data and these patterns have the property 

of translational invariance (i.e. moving a cat a few pixels over 

still makes the cat present in the image). 

A CNN can also be combined with an LSTM layer by piping 

the output of the convolutional layer into the LSTM. We call 

this hybrid a CNN+LSTM, which is well-suited for discovering 

 

 

Fig. 1: The proposed ML architecture of HiNoVa. 

 

patterns in RF transmissions, which have cyclic patterns over 

time that are predictive of the device. 

III. METHODOLOGY 

Figure 1 provides an overview of the entire HiNoVa algorithm 

and illustrates how each component interacts with the others. 

The top half shows how the training data is processed and the 

bottom half represents the detection phase operating on test 

data. 

A. Pre-Processing 

The data captured from IoT devices during testing is initially 

processed and stored in the In-phase and Quadrature (IQ) 

format. The IQ components of an RF signal are crucial in 

accurately reproducing the original signal and are represented 

as complex numbers, with the real and imaginary values repre- 

sented by I and Q, respectively. During testing, each IoT device 

sends a 20-second message, which is captured by an USRP 

receiver and saved in a complex number format. 

To pre-process the data for analysis, the complex numbers 

are converted back into their I and Q parts and then segmented 

into non-overlapping time windows of 2048 samples which we 

call a slice. A signal correlation function is then run on each 

of the 2048 I and Q samples, each correlated with itself (I to I 

and Q to Q) to produce the auto-correlation at lags 0 to 2047. 

The resulting (2 × 4096) matrix emphasizes cyclostationary 

features, which are a key part of RF fingerprinting. This new 
slice contains a mirror image as a result of auto-correlation, so 

the first half (2 × 2048) is used as the modified feature set (i.e. 

slice) for training. 

B. Training 

The architecture for the CNN+LSTM is shown in Table I. We 

train the model with the ADAM optimizer at a fixed learning 

rate (0.0001) with a cross-entropy loss function. We will discuss 

hyper-parameter tuning in Section V-A. 

C. Detection 

During the detection phase, the IQ data is pre-processed in 

the same way as in training. Each slice is passed through 

the trained CNN+LSTM and the final transition in the LSTM 

layer is extracted. The final transition was determined to be the 

most suitable for analysis due to the fact that at this point, the 
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TABLE I 

HiNoVa’s CNN+LSTM architecture. Notation: 

Conv2d(channels in:channels out, kernel dims), 

BNorm2D(num features), MaxPool2d(pool dims) 
 

Layer 

Conv2d (1:16, 2x256) ➔ BNorm2d(16) ➔ ReLU ➔ Dropout(10%) 

Conv2d (16:16, 2x256) ➔ BNorm2d(16) ➔ ReLU 

Conv2d (16:32, 2x256) ➔ BNorm2d(32) ➔ ReLU ➔ Dropout(10%) 

Conv2d (32:32, 2x256) ➔ BNorm2d(32) ➔ ReLU ➔ MaxPool2d(2x2) 

LSTM(64) ➔ Fully Connected ➔ LogSoftmax 

 

  
(a) Device 5 Fingerprint (b) Device 6 Fingerprint 

Fig. 2: Two unique fingerprints using HiNoVa under the 

Wireless-WiFi Dataset (described in Sec. IV). 

 
 

Algorithm 1 The Fingerprint Generation Algorithm  

Require: H ▷ Hidden node values from correctly classified 

training slices 

1: FP ← zeroes(Kknown × M × B ) 
2: for k ← 0 to (Kknown − 1) do  ▷ Over known devices 

3:  for m ← 0 to (M − 1) do ▷ Over hidden nodes 

4: Hk,m ← H[k, m] 

5: FP [k, m, :] ← Histogram(Hk,m,B) 
6:   end for 

7: end for 

8: return FP 
 

1) Kknown: the number of closed-set devices 

2) M: the number of hidden nodes 

3) B: the number of bins in the histogram 

4) Histogram(V alues, B): Creates a histogram for 

V alues with B bins 
 

 

 

strong assumption that the relationship between two variables is 

linear. To avoid this strict assumption, we investigated Kendall’s 

τ [16], which is a non-parametric measure of correlation that 

quantifies the rank-order association between two variables. 

To compute Kendall’s τ , let fpi = (fp1, . . . , fpM∗B) be the 

M ∗ B features (i.e. matrix values) for the fingerprint for the 
ith known device. Furthermore, let fpj = (fp1, . . . , fpM∗B) 

j j 

 
LSTM has processed all prior information within the slice. As 

a result, the internal nodes of the LSTM, specifically the forget 

be the M ∗ B matrix values for the fingerprint of the jth 

device seen in the test set. Kendall’s τ measures the rank 
correlation in terms of the ranks of the magnitudes of the fea- 
tures (fp1, . . . , fpM∗B) and (fp1, . . . , fpM∗B). Specifically, 

gate and cell state, now contain both the long-term and short- i i j j 

term memory associated with the entire slice. This encoding two feature indices i1 and i2 are said to be concordant if 
fpi1 > fpi2 and fpi1 > fpi2 (or equivalently if fpi1 < fpi2 

effectively represents the transmission of the device during this i i j j i i 

specific time slice and is used to create a unique fingerprint. 

D. Hidden State Value Fingerprinting 

Algorithm 1 shows how HiNoVa uses the hidden state values 

within a trained CNN+LSTM to produce a unique fingerprint 

for each device in the training set. The first step involves 

aggregating, for each known device, the hidden node values 

from all the correctly classified slices during training. Then, 

for each known device, a histogram with B bins is built that 

describes the distribution of the hidden state values (i.e. ht in 

(1)) for each hidden layer node in the LSTM. With M hidden 

state nodes, this histogram will be a (M × B) matrix for each 

device, which serves as the unique fingerprint for that device. 
Examples of these fingerprints are shown in Fig. 2. 

and fpi1 < fpi2), otherwise they are said to be discordant. 

Computing Kendall’s τ (see (2)) requires the number of con- 

cordant (P) and discordant pairs (Q), as well as the number of 

tied pairs of feature indices only in fpi (T ) and only in fpj 
(U). 

P − Q 
τ = p

(P + Q + T ) · (P + Q + U) 
(2) 

We chose Kendall’s τ because it produced significantly better 

performance than a linear correlation. 

Algorithm 2 illustrates the unknown device detection process. 
Each test device has its slices converted to a test fingerprint, 

which is an M × B histogram. The test fingerprint for the kth 

test device was compared to all the known fingerprints, and its 
maximal rank correlation coefficient τ∗ was computed. We use 

E. Open-set Fingerprint Correlation 
A number of different approaches can be used to compare (1 −τ∗) 

k 

to indicate the degree to which the test device was not 

test set device fingerprints to the fingerprints of the known 

devices. For instance, we could compute the probability of a 

test slice belonging to the histogram for that device, since the 

histogram is a valid probability distribution. We experimented 

with different approaches and found that correlations produced 

the best results. The most common approach for measuring 

correlation is Pearson’s correlation coefficient, which makes a 

correlated to a known device. If the value (1 − τ∗) was above 

a threshold, an open-set flag was raised. 

IV. TESTBED AND DATASETS 

In this work, we utilized three RF datasets: LoRa, Wireless- 

WiFi, and Wired-WiFi which have been collected using a 

testbed of 15 PyCom IoT devices as transmitters: 9 Fipy boards 

and 6 Lopy4 boards on top of PySense sensor shields (pictured 
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Algorithm 2 The Open-Set Detector 

Require: FP ▷ Fingerprint Tensor (Alg. 1) 

Require: Htest ← Ktest × M × Stest 

 
 
 
 
 
 

 

7: for l ← 0 to (Kknown − 1) do 

8: τk,l = KT (flatten(FP[l]), flatten(FPtest[k])) 
9: end for 

10: τ∗ = max (τk,l) 

Fig. 3: IoT Testbed consisting of 15 Pycom transmitting devices 

(left) and a USRP B210 receiving device (right). 

k l USRP receiver in the wired WiFi dataset as shown in Fig. 3 

11: result [k ] = (1 − τ∗) 
12: end for 

13: return result 

(right). 
 

 

V. RESULTS AND DISCUSSION 

   For each of the three studied datasets, we set up 3 experiments 

1) Ktest: the total number of test devices 

2) M: the number of hidden nodes 

3) Stest: the number of test slices per device 

4) B: the number of bins in the histogram 

5) Htest: the hidden state values for the test slices 

6) FPtest : the test fingerprints 

7) Kknown : the number of known devices 

8) KT: Kendall Tau correlation function 

9) flatten: function to flatten 2D matrix to 1D vector 

10) τk: The rank correlation coefficient for device k 
11) result: the per-device vector of unthresholded predictions 

(higher is more indicative of an unknown device) 

in which we randomly selected 10 devices to be the known 

devices and 5 devices to be the unknown devices. We then 

evaluate our approach using a variant of 5-fold cross-validation 

designed to handle evaluation of open-set detection. We use a 

dataset with an equal number of data samples (i.e. slices) from 

each of the 15 devices. We divide each device’s data into 5 

non-overlapping equally-sized partitions. Under the traditional 

cross-validation process, in each fold of cross-validation, 4 of 

the partitions for that device are used as the training set while 

the remaining partition is used as the test set. The partitions 

are reassigned to training and testing in the other folds, such 

that each fold ends up using a different partition for testing, 

   with no overlap between test sets for each fold. Data from the 
10 known devices follow this traditional 5-fold cross-validation 

process. The main difference in our variant occurs with the test 

in Fig. 3 (left)). On the reception side, we used an Ettus USRP 

(Universal Software Radio Peripheral) B210 with a VERT900 
antenna for the data acquisition. For the LoRa dataset, we 

captured the LoRa transmissions of a duration of 20s each, 

in an indoor environment where the devices were located 5m 

away from the receiver. Each Pycom device was connected to 

a dedicated LoRa antenna and configured to transmit LoRa 

transmissions at the 915MHz and 125KHz bandwidth. These 

transmissions have been sampled by the USRP receiver at a 

rate of 1MSps. Refer to the Indoor LoRa dataset section in [2], 

[17] for more details. 

For the WiFi datasets, the same Pycom devices were pro- 

grammed to transmit WiFi IEEE802.11B frames at a center 

frequency of 2.412GHz and 20MHz bandwidth. These frames 

have been sampled and digitally down-converted by the same 

USRP receiver at a sample rate of 45MSps. Each WiFi capture 

lasts for 2 minutes generating more than 5000 frames per device 

where each frame consists of 25170 complex-valued samples. 

While the transmitters were located 1m away from the receiver 

and connected to the same antenna in the wireless WiFi dataset, 

a 12inch SMA cable was used to connect them directly to the 

partition in each fold. In open-set detection, the test set contains 

both the test partition for the 10 known devices as well as the 

test partition for the 5 unknown devices. We emphasize that in 

each fold, the data from the 5 unknown devices are only seen 

during testing and never seen during training. 

Thus, to summarize the overall process, in each fold of 

cross-validation, HiNoVa is trained on the training set. After 

training, we generated 10 device fingerprints using the correctly 

classified samples from the 4 partitions of the known device 

training data. During the detection phase, HiNoVa takes each 

test sample from the test partition and compares it to the 10 

known device fingerprints to perform a binary prediction as to 

whether or not the sample belongs to a known or unknown 

device. 

A. Algorithms and Performance Metrics 

We compare HiNoVa against a number of other open-set 

detection methods: 

1) CNN model using MaxLogit: This baseline uses a CNN 

augmented with the MaxLogit process for detecting open set 

instances. As was pointed out in a recent work [5], MaxLogit, 

though simple, is a strong open-set detector. 

         

Wireless Wired 

 

 

 

 

Require: FPtest ← zeroes(Ktest × M × B) 
Require: result ← zeroes(Ktest) 

 2   7   12  

1: for k ← 0 to (Ktest − 1) do 

2: for m ← 0 to M − 1 do 

 3   8   13  

3: FPtest[k, m, :] ← Histogram(Htest[k, m, :], B)  4   9   14  

4: end for 

5: end for 

 

 

 5  

 

 10  

 

 

 15  

6: for k ← 0 to (Ktest − 1) do    

 



TABLE II 

Average Test AUPRC for HiNoVa vs. other algorithms on the (a) LoRa, (b) Wireless-WiFi and (c) Wired-WiFi datasets. The 

graphs on top plot the results in the tables below. Statistical significance is indicated with * in the tables. 

 

 

   
(a) LoRa (b) Wireless-WiFi (c) Wired-WiFi 

 

2) CNN+LSTM model using MaxLogit: The previous base- 

line interprets each observation in a slice as an i.i.d. data 

instance. In reality, the observations in a slice have a sequential 

relationship and using a CNN+LSTM instead of a CNN enables 

the detector to model these sequential relationships. As before, 

we use the MaxLogit approach for open-set detection. 

3) OpenMax [18]: This baseline reweights the activation 

vectors that go into the final Softmax layer to better separate 

the known from unknown devices. The weighting function is 

based on a Weibull distribution, which is used to model extreme 

values and is used in OpenMax to model the right tail of the 

activation distribution corresponding to the highest activation 

values. OpenMax only reweights the activations for the top α 
classes with the highest activation values. 

4) Akar [8]: The work by Akar et al. [8] is a state-of-the- 

art open-set detector specifically for time series. We refer to 

this approach as Akar. The Akar method uses Dynamic Time 

Warping (DTW) to compute the similarity between a test set 

time series and the barycenters of known devices. 

We use AUPRC (Area Under Precision-Recall Curve) as 

the evaluation metric [19] since there is a significant class 

imbalance as we have twice as much data from known devices 

than from unknown devices during testing. AUPRC considers 

the trade-off between precision and recall across a range of 

detection thresholds and yields an overall threshold-independent 

summary statistic of the detector’s performance. 

To determine the hyper-parameter settings for our deep 

learning models, we use post-hoc tuning on CNN+LSTM 

MaxLogit. We use CNN+LSTM MaxLogit because parts of its 

architecture are shared with CNN MaxLogit and CNN+LSTM 

OpenMax. Post-hoc tuning refers to looking at the perfor- 

mance of CNN+LSTM MaxLogit on the test set, which gives 

CNN+LSTM MaxLogit an unfair advantage as it is allowed to 

see the test set, but we will show that even with this advantage, 

HiNoVa still significantly outperforms the MaxLogit models. 

Specifically, we post-hoc tune the kernel size (2 × 256) and 

dropout rate (10%) in the CNN layer to achieve high accuracy 

in closed set classification using a grid search. Attaining good 

closed set accuracy has recently been shown to produce good 

open set detectors [5]. We also post-hoc tune the number of 

hidden nodes to achieve high AUPRC for the open-set predic- 

tion task for CNN+LSTM MaxLogit. The resulting values of 

these hyperparameters were applied to HiNoVa, which clearly 

puts it at a disadvantage because these hyperparameters were 

tuned for a completely different algorithm (i.e. CNN+LSTM 

MaxLogit), but HiNoVa still performs well. 

We evaluated HiNoVa with 25, 50, 75 and 100 bins and 

found that it resulted in small differences in AUPRC (< 0.03). 
We report results with 25 bins in our experiments. 

B. Experimental Results 

Our performance evaluation is done using three different RF 

datasets: LoRa, Wireless-WiFi, and Wired-WiFi, as described in 

Sec. IV. Tables IIa, IIb and IIc show the average AUPRC values 

for the LoRa, Wireless-WiFi, and Wired-WiFi datasets re- 

spectively. HiNoVa consistently outperformed the other meth- 

ods, achieving statistically significant results (Wilcoxon Signed 

Rank Test, α = 0.05) in all three experiments. CNN+LSTM 

MaxLogit, CNN MaxLogit, and OpenMax lagged behind both 

HiNoVa by a substantial gap in AUPRC, with no consistent 

top performer in this second tier of algorithms. Due to the 

extensive computational time of Akar, the algorithm did not 

complete within 24 hrs, making it infeasible to be used for this 

security use case. 

Overall, the results suggest that HiNoVa is an effective 

detector of unknown devices using LoRa, Wireless-WiFi and 

Wired-Wifi protocols, outperforming other methods by a signif- 

icant margin. The hidden state values correspond to a compact 

 Exp. 1 Exp. 2 Exp. 3 

HiNoVa 0.80* 0.94* 0.95* 

CNN+LSTM/ 

MaxLogit 

0.35 0.42 0.32 

CNN/MaxLogit 0.36 0.34 0.39 

CNN+LSTM/ 

OpenMax 

0.36 0.38 0.29 

 

 Exp. 1 Exp. 2 Exp. 3 

HiNoVa 1.00* 0.98* 1.00* 

CNN+LSTM/ 

MaxLogit 

0.73 0.52 0.65 

CNN/MaxLogit 0.68 0.48 0.60 

CNN+LSTM/ 

OpenMax 

0.63 0.45 0.63 

 

 Exp. 1 Exp. 2 Exp. 3 

HiNoVa 1.00* 0.87* 0.89* 

CNN+LSTM/ 

MaxLogit 

0.59 0.43 0.45 

CNN/MaxLogit 0.63 0.43 0.47 

CNN+LSTM/ 

OpenMax 

0.56 0.44 0.36 

 



   

(a) LoRa dataset (b) Wireless-WiFi dataset (c) Wired-WiFi dataset 

Fig. 4: Average test AUPRCs for the single hidden node detector vs. the pairwise hidden node detector. 

 

representation of the autocorrelation lags in the IQ data within 

a slice, and the distribution of this representation, as repre- 

sented in the histogram used to derive the fingerprint, provides 

an effective summary of the device-specific information that 

HiNoVa is able to leverage. Finally, the MaxLogit approaches 

and the OpenMax approach only rely on the logits of the 

penultimate layer of the NN. These logits, which are used to 

derive the output probabilities from the NN, lack the informa- 

tion contained in the fingerprints and are thus less effective at 

identifying unknown devices. 

C. Pairwise vs Single Hidden Node Values 
Since LSTMs use the hidden node value from the previous time 

Disclosing rf data-driven fingerprint sensitivity to deployment variability,” 
IEEE Access, vol. 9, pp. 142 893–142 909, 2021. 

[3] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, 
“Toward open set recognition,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2013. 

[4] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified 
and out-of-distribution examples in neural networks,” in 5th International 
Conference on Learning Representations, ICLR 2017, 2017. 

[5] S. Vaze, K. Han, A. Vedaldi, and A. Zisserman, “Open-set recognition: 
A good closed-set classifier is all you need,” in International Conference 
on Learning Representations, 2022. 

[6] T. G. Dietterich and A. Guyer, “The familiarity hypothesis: Explaining 
the behavior of deep open set methods,” Pattern Recognition, vol. 132, 
p. 108931, Dec. 2022. 

[7] Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with rec- 
tified activations,” Advances in Neural Information Processing Systems, 

step (h 
 
t−1 ) to compute the value of the current hidden node 

vol. 34, pp. 144–157, 2021. 
[8] T. Akar, T. Werner, V. K. Yalavarthi, and L. Schmidt-Thieme, “Open 

(ht), we explore building the RF fingerprint with the pair of 

hidden node values at consecutive times (ht−1, ht) instead of 

the hidden node value at a single time (ht). Figure 4 compares 
the performance of a single vs pairwise hidden node value 

detector. Figure 4 shows that for HiNoVa, the results are mixed, 

with a pairwise detector outperforming the single node detector 

in about half of the experiments. These results indicate that 

pairwise transitions can have predictive value in some cases, 

but in other cases they are simply noise. Given the additional 

computational cost of the pairwise node detector in both time 

and memory, we recommend using the single node detector. 

VI. CONCLUSION 

HiNoVa is a novel open-set detection method based on the 

activation patterns of the hidden states within a CNN+LSTM 

model. This approach significantly improves the AUPRC on 

LoRa, Wireless-WiFi, and Wired-WiFi datasets over other 

open-set detection methods. Additionally, because of its struc- 

ture, the proposed method can run on standard consumer hard- 

ware with minimal setup data and training time. Future work 

will investigate using attention-based deep learning models. 
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