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Abstract—New capabilities in wireless network security have
been enabled by deep learning, which leverages patterns in radio
frequency (RF) data to identify and authenticate devices. Open-
set detection is an area of deep learning that identifies samples
captured from new devices during deployment that were not part
of the training set. Past work in open-set detection has mostly
been applied to independent and identically distributed data such
as images. In contrast, RF signal data present a unique set of
challenges as the data forms a time series with non-linear time
dependencies among the samples. We introduce a novel open-
set detection approach based on the patterns of the hidden state
values within a Convolutional Neural Network Long Short-Term
Memory model. Our approach greatly improves the Area Under
the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired-
WiFi datasets, and hence, can be used successfully to monitor and
control unauthorized network access of wireless devices.

Index Terms—Device authentication; RF device fingerprinting;
open-set detection; deep learning.

I. INTRODUCTION

The proliferation of Internet Of Things (IoT) devices in sen-
sitive environments, such as military bases, government build-
ings, and private businesses, creates a need for detecting anoma-
lous devices that pose security threats. These devices can easily
bypass security measures as they can be concealed. Traditional
detection methods are ineffective at identifying unauthorized
wireless devices, especially with attacks like cloning and man-
in-the-middle [1].

RF fingerprinting is a recognized key method to enhance
security in IoT networks [2]. It extracts device-specific features
from RF signals to identify wireless transmitters, leveraging
unique hardware imperfections during transmitter manufactur-
ing. Feature extraction methods range from hand-crafted to deep
learning-based approaches that identify features from raw RF
signals. This paper proposes HiNoVa, a new machine learning-
based open-set detection method that identifies unauthorized
(also referred to as unknown or unseen) IoT devices and au-
thorized (also referred to as known or seen) devices. HiNoVa is
tested on datasets collected from devices using LoRa and
WiFi protocols. LoRa is a wireless communication technology
designed for IoT devices that operates in the sub-gigahertz
frequency range, enabling long-range, low-power, bi-directional
communication. LoRa’s advantages include longer range, better
penetration through obstacles, and low power consumption,
making it suitable for IoT applications that require a wide area
network coverage. However, LoRa has lower data rates than
WiFi, making it unsuitable for high-speed data transfer applica-
tions. The crowded sub-gigahertz frequency range can also lead

to interference from other devices. Each of the protocols, LoRa
and WiFi, has its practical use and is commonly adopted by
various transmitters, and hence, our proposed open-set detection
method is tested using both protocols.

A. Open-Set Detection and Device Authentication

Supervised machine learning algorithms typically operate under
closed-set recognition, meaning that they assume the classes
encountered during testing are identical to those seen during
training. This means that if a Neural Network (NN) is trained
to identify the two classes of cats and dogs, it fails to recognize
an unknown type of animal, such as a bird, as a distinct animal
and will instead misclassify it as either a cat or a dog. This lim-
itation is particularly problematic in real-world scenarios where
wireless device fingerprinting is used for security purposes. In
this security use case, the classes correspond to known devices
and it is crucial for the system to accurately detect unknown
devices (i.e. the open-set devices) to raise an alert. For this
type of problems, Open-set detection [3] can be used, where
the classifier needs to recognize that data samples do not belong
to any of the known devices seen during training, and raises
an alert when this happens. Our work introduces HiNoVa, a
novel open-set detection approach for authenticating wireless
devices using RF fingerprinting.

B. Related Work

One of the simplest approaches to open-set detection is to use
the predicted class probability as an indicator of the model’s
confidence that the data instance belongs to one of the known
devices [4]. In a NN, the predicted class probability is the
maximum class probability output by a softmax distribution.
If this value is low, it indicates that the instance is likely from
an unknown device.

Recent work [5], [6] shows that the maximum logit score
(which we refer to as MaxLogit) is a stronger baseline for
detecting open-set instances. Logits are the outputs of the last
linear layer of a deep neural network. In classification, these
logits are the inputs to the softmax layer, which normalizes the
logits to be a valid probability. Normalizing the logits removes
information about their raw magnitude, which is valuable for
detecting open-set instances [5]. The MaxLogit score is the
value of the largest logit, which is indicative of the uncertainty
of the classifier as to the device; an open-set instance should
have a lower maximum logit value.

Recent approaches to open-set detection focus on leveraging
internal node values and activation patterns of neurons inside



neural networks to detect open-set samples. For example,
ReAct [7] analyzes the internal activations of neural networks
and identifies highly distinctive signature patterns for open-set
distributions. Dietterich et al. [6] argue that detecting novel
objects in object recognition applications with an open set of
possible categories is a familiarity-based problem rather than a
novelty-based problem. Their familiarity hypothesis posits that
state-of-the-art methods based on the computed logits of visual
object classifiers succeed by detecting the absence of familiar
learned features rather than the presence of novelty.

Much of the literature for open-set detection applies to data
instances that are independent and identically distributed (i.i.d).
To our knowledge the only work for open-set detection on time
series is by Akar et al. [8], which clusters the time series
in each known class to identify a class-specific barycenter;
then, during deployment, new time series are identified by
how close they are to these barycenters, where the closeness is
determined by dynamic time warping (DTW) and also by cross-
correlation. Time series that are not close to the barycenters
of known devices are flagged as an unknown device. DTW
has a complexity of O(T 2), where T is the length of the two
time series to be aligned. The algorithm by Akar et al. uses
DTW in the inner loop of several operations and is extremely
computationally expensive.

A handful of papers have applied open-set detection to RF
fingerprinting. Gritsenko et al. [9] use the maximum probability
from the softmax layer and the ratio of slices predicted to
belong to each device to establish the confidence in the device
prediction. Hanna et al. [10] investigate a variety of methods
such as the maximum softmax probability and methods that
incorporate data from known unauthorized devices. Gaskin et
al. [11] propose Tweak, a lightweight calibration approach that
leverages metric learning to achieve high open-set accuracy
without the need for model re-training, making it more suit-
able for resource-constrained applications. In a recent work,
Karunaratne et al. [12] use generative deep learning models to
produce synthetic data from unauthorized devices, which are
used to augment the training set. Our approach differs from
these approaches by modeling the time series nature of the
data with a CNN+LSTM and performing open-set detection.
Another closely related area to open-set detection is anomaly
detection [13]. In anomaly detection, the goal is to identify
individual outliers that are rare with respect to the "normal” data
instances. Anomaly detection has some subtle differences with
open-set detection. First, in open-set detection, data instances
from the unknown class come from a semantically coherent
grouping that is different from the known classes. In contrast,
the anomalies found by anomaly detection need not form a
coherent grouping. Second, the anomalies in a typical anomaly
detection setting make up a small fraction of the data, with the
”normal” instances forming a large proportion of the data. In
open-set detection, the unknown classes can potentially contain
a large number of data instances. Despite these subtleties,
anomaly detection techniques can, in some cases, be applied to
open-set detection and vice versa; however, open-set detection

methods generally outperform anomaly detection methods for
detecting unknown devices [14].

C. Contributions

We introduce HiNoVa, a novel open-set detection method
for wireless communication protocols. HiNoVa leverages the
Hidden Node Values within a trained Long-Short-Term
Memory (LSTM) unit of a deep NN to generate a unique device
fingerprint for each known device. Then, new fingerprints
encountered during deployment can be compared against the
fingerprints of known devices, enabling the system to accurately
identify unknown devices. After undergoing training on a set of
known devices, the open-set detection process is highly efficient
and can be performed in real-time even on consumer-grade
devices. This makes HiNoVa an ideal solution for wireless
security applications, where the ability to quickly identify
unauthorized/unknown devices is of utmost importance.

The paper is structured as follows: Section II presents the
machine learning architecture used by our method. Section III
presents the details of the HiNoVa algorithm. Section IV
describes the LoRa, Wireless-WiFi, and Wired-WiFi datasets
used in our evaluation and Section V evaluates the performance
of HiNoVa using these datasets. The last section concludes the
paper.

II. THE NEURAL NETWORK ARCHITECTURE
In deep learning, a recurrent neural network (RNN) layer is
a layer type that allows for the processing of sequential data
such as a time series by maintaining a memory state that can
store information about the recent past. It consists of a single
time step of the RNN, which involves computing a hidden state
vector h¢ and an output vector y: at each time step t. The vector
h: depends not only on the input vector x: at time step t, but
also on the hidden state vector h¢; at the previous time step.
This dependence allows the network to maintain a memory of
past inputs and use this information to inform its current output.

One limitation of this RNN layer is that it can have difficulty
remembering long-term dependencies in the input sequence. To
overcome this difficulty, the long short-term memory (LSTM)
[15] layer was developed to handle long-term dependencies in
the input sequence more effectively.

A. Long-Short-Term Memory (LSTM) Layer

The LSTM layer consists of the following equations, where ©
represents an element-wise product:

it = o(Wixe + bi + Wrihe—1 + bni)

fe = oc(Wirxt + bir + Whrhe—1 + bry)
gt = tanh(Wigxt + big + Whght—1 + bng)
ot = 0(WioXt + bio + Whoht—1 + bho)
ct=ftOce1 +it O gt

h: = o+ ® tanh(cy) (1

Each term in the LSTM equations is described below:
- x¢ The input vector at time t.
- h¢—: The previous hidden state vector.



- iy fy, g, ox The input gate, forget gate, cell gate, and
output gate activation vectors, respectively.

- ¢t The memory cell content vector, containing old mem-
ory cell content and newly added cell content.

- Wi, Wir, Wig, Wio: The weight matrices for input gates,
forget gates, cell gates, and output gates for the input
vector.

- Whi, Wrr, Whg, Who: The weight matrices for the input
gates, forget gates, cell gates, and output gates for the
previous hidden state.

- bii, bir, big, bio: The bias vectors for the input gates, forget
gates, cell gates, and output gates for the input vector

- bni, bar, brg, bro: The bias vectors for the input gates,
forget gates, cell gates, and output gates for the previous
hidden state.

- hg The hidden state at time t.

The LSTM network has a cell state that can store information
for long periods of time, and three gates that control the flow of
information: input gate, forget gate, and output gate. The input
gate controls the input to the cell state, the forget gate controls
how much of the previous cell state is retained, and the output
gate controls the output from the cell state.

At each time step, the LSTM network takes an input xs, the
previous hidden state h¢—; and the previous cell state c¢-, and
uses these to compute the input gate i¢, forget gate fi, cell gate
gt, and output gate ox.

The cell state c¢ is updated based on the input gate i¢, forget
gate fr, and cell gate gr. The input gate controls how much new
information is added to the cell state and the forget gate controls
how much old information is retained. The cell gate controls
what new information is added to the cell state, by applying an
activation function (i.e. tanh) to the input and previous hidden
state.

Finally, the output gate o¢ controls how much of the current
cell state is output as the new hidden state h:. The new hidden
state is computed by applying the tanh function to the updated
cell state ¢t and then multiplying it by the output gate o« The
hidden state now contains both short and long-term memory,
making it the ideal choice for a unique latent description.

B. Convolutional Neural Network LSTMs (CNN+LSTMs)
Convolutional Neural Networks (CNNs) have been successful at
image recognition because of their locality bias, which assumes
that nearby pixels are useful in identifying an object. The key
component of a CNN responsible for this locality bias is the
convolutional layer, which convolves a set of filters to the input
data in order to extract local features. The filters are typically
small in size and slide over the input data in a sequential,
linear fashion. This results in a feature map that highlights
patterns in the input data and these patterns have the property
of translational invariance (i.e. moving a cat a few pixels over
still makes the cat present in the image).

A CNN can also be combined with an LSTM layer by piping
the output of the convolutional layer into the LSTM. We call
this hybrid a CNN+LSTM, which is well-suited for discovering
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Fig. 1: The proposed ML architecture of HiNoVa.

patterns in RF transmissions, which have cyclic patterns over
time that are predictive of the device.

II. METHODOLOGY
Figure 1 provides an overview of the entire HiNoVa algorithm
and illustrates how each component interacts with the others.
The top half shows how the training data is processed and the
bottom half represents the detection phase operating on test
data.

A. Pre-Processing

The data captured from IoT devices during testing is initially
processed and stored in the In-phase and Quadrature (IQ)
format. The 1Q components of an RF signal are crucial in
accurately reproducing the original signal and are represented
as complex numbers, with the real and imaginary values repre-
sented by I and Q, respectively. During testing, each IoT device
sends a 20-second message, which is captured by an USRP
receiver and saved in a complex number format.

To pre-process the data for analysis, the complex numbers
are converted back into their I and Q parts and then segmented
into non-overlapping time windows of 2048 samples which we
call a slice. A signal correlation function is then run on each
of the 2048 I and Q samples, each correlated with itself (I to I
and Q to Q) to produce the auto-correlation at lags 0 to 2047.
The resulting (2 X 4096) matrix emphasizes cyclostationary
features, which are a key part of RF fingerprinting. This new
slice contains a mirror image as a result of auto-correlation, so
the first half (2 X 2048) is used as the modified feature set (i.c.
slice) for training.

B. Training

The architecture for the CNN+LSTM is shown in Table I. We
train the model with the ADAM optimizer at a fixed learning
rate (0.0001) with a cross-entropy loss function. We will discuss
hyper-parameter tuning in Section V-A.

C. Detection

During the detection phase, the 1Q data is pre-processed in
the same way as in training. Each slice is passed through
the trained CNN+LSTM and the final transition in the LSTM
layer is extracted. The final transition was determined to be the
most suitable for analysis due to the fact that at this point, the



TABLE I
HiNoVa’s CNN+LSTM architecture. Notation:

Conv2d(channels in:channels out, kernel dims),
BNorm2D(num features), MaxPool2d(pool dims)

Layer

Conv2d (1:16, 2x256) = BNorm2d(16) => ReLU => Dropout(10%)
Conv2d (16:16, 2x256) = BNorm2d(16) = ReLU

Conv2d (16:32, 2x256) = BNorm2d(32) => ReLU => Dropout(10%)
Conv2d (32:32, 2x256) = BNorm2d(32) = ReLU = MaxPool2d(2x2)
LSTM(64) = Fully Connected => LogSoftmax
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Fig. 2: Two unique fingerprints using HiNoVa under the
Wireless-WiFi Dataset (described in Sec. IV).

LSTM has processed all prior information within the slice. As
a result, the internal nodes of the LSTM, specifically the forget
gate and cell state, now contain both the long-term and short-

term memory associated with the entire slice. This encoding
effectively represents the transmission of the device during this

specific time slice and is used to create a unique fingerprint.

D. Hidden State Value Fingerprinting

Algorithm 1 shows how HiNoVa uses the hidden state values
within a trained CNN+LSTM to produce a unique fingerprint
for each device in the training set. The first step involves
aggregating, for each known device, the hidden node values
from all the correctly classified slices during training. Then,
for each known device, a histogram with B bins is built that
describes the distribution of the hidden state values (i.e. h¢ in
(1)) for each hidden layer node in the LSTM. With M hidden
state nodes, this histogram will be a (M X B) matrix for each
device, which serves as the unique fingerprint for that device.
Examples of these fingerprints are shown in Fig. 2.

E. Open-set Fingerprint Correlation

A number of different approaches can be used to compare
test set device fingerprints to the fingerprints of the known
devices. For instance, we could compute the probability of a
test slice belonging to the histogram for that device, since the
histogram is a valid probability distribution. We experimented
with different approaches and found that correlations produced
the best results. The most common approach for measuring
correlation is Pearson’s correlation coefficient, which makes a

Algorithm 1 The Fingerprint Generation Algorithm

Require: H > Hidden node values from correctly classified
training slices
1: FP — zeroes(Kknown X M X B)
2: for K < 0 to (Kknown — 1) do > Over known devices
33 form<— 0Oto(M — 1) do B> Over hidden nodes
4: Him <~ H[k, m]
5: FP[k, m,:] — Histogram(H,m,B)
6 end for
7: end for
8: return FP

1) Kknown: the number of closed-set devices

2) M: the number of hidden nodes

3) B: the number of bins in the histogram

4) Histogram(V alues, B): Creates a histogram for
V alues with B bins

strong assumption that the relationship between two variables is
linear. To avoid this strict assumption, we investigated Kendall’s
T [16], which is a non-parametric measure of correlation that
quantifies the rank-order association between two variables.

To compute Kendall’s T, let fpi = (fp', ..., fpM*B) be the

M * B features (i.e. matrix values) for the ﬁngerprint for the

ith known device. Furthermore, let fp; = (Ip', ..., fpM*5)
J

be the M x B matrix values for the fingerprint of the jth

device seen in the test set. Kendall’s T measures the rank
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and fpi] < fp¥), otherwise they are said to be discordant.
Computing Kendall’s T (see (2)) requires the number of con-
cordant (P) and discordant pairs (Q), as well as the number of
tied pairs of feature indices only in fpi (T ) and only in fpj

).
P—-Q
T=p 2
(P+Q+T) - (P+Q+U)
We chose Kendall’s T because it produced significantly better
performance than a linear correlation.

Algorithm 2 illustrates the unknown device detection process.
Each test device has its slices converted to a test fingerprint,

which is an M X B histogram. The test fingerprint for the kth

test device was compared to all the known fingerprints, and its
maximal rank correlation coefticient T was computed. We use
k

(1 —7%) to indicate the degree to which the test device was not
correlated to a known device. If the value (1 — tT}) was above
a threshold, an open-set flag was raised.

IV. TESTBED AND DATASETS
In this work, we utilized three RF datasets: LoRa, Wireless-
WiFi, and Wired-WiFi which have been collected using a
testbed of 15 PyCom IoT devices as transmitters: 9 Fipy boards
and 6 Lopy4 boards on top of PySense sensor shields (pictured



Algorithm 2 The Open-Set Detector

Require: FP D> Fingerprint Tensor (Alg. 1)
Require: Hiest — Ktest X M X Stest

Require: FPtest — zeroes(Ktest X M X B)

Require: result — zeroes(Ktest)

1: for k < 0 to (Kest — 1) do

2: form —0toM —1do

3: FPrestk, m, :] — Histogram(Heesdk, m, :], B)
4: end for

5: end for

6: for k < 0 to (Ktest — 1) do

7: for1 — O to (Kknown - 1) do

8: Tkt = KT (flatten(FP[1]), flatten(FPtesdk]))
9: end for

0 TE= m(?x(rk,z)

11: result[k] = (1 — %)

12: end for

: return result

—_
(98]

1) Keest: the total number of test devices

2) M: the number of hidden nodes

3) Stest: the number of test slices per device

4) B: the number of bins in the histogram

5) Htest: the hidden state values for the test slices

6) FPrest : the test fingerprints

7) Kknown : the number of known devices

8) KT: Kendall Tau correlation function

9) flatten: function to flatten 2D matrix to 1D vector

10) tx: The rank correlation coefficient for device k

11) result: the per-device vector of unthresholded predictions
(higher is more indicative of an unknown device)

in Fig. 3 (left)). On the reception side, we used an Ettus USRP
(Universal Software Radio Peripheral) B210 with a VERT900
antenna for the data acquisition. For the LoRa dataset, we
captured the LoRa transmissions of a duration of 20s each,
in an indoor environment where the devices were located 5m
away from the receiver. Each Pycom device was connected to
a dedicated LoRa antenna and configured to transmit LoRa
transmissions at the 915MHz and 125KHz bandwidth. These
transmissions have been sampled by the USRP receiver at a
rate of 1IMSps. Refer to the Indoor LoRa dataset section in [2],
[17] for more details.

For the WiFi datasets, the same Pycom devices were pro-
grammed to transmit WiFi IEEE802.11B frames at a center
frequency of 2.412GHz and 20MHz bandwidth. These frames
have been sampled and digitally down-converted by the same
USRP receiver at a sample rate of 45MSps. Each WiFi capture
lasts for 2 minutes generating more than 5000 frames per device
where each frame consists of 25170 complex-valued samples.
While the transmitters were located 1m away from the receiver
and connected to the same antenna in the wireless WiFi dataset,
a 12inch SMA cable was used to connect them directly to the

Fig. 3: 10T Testbed consisting of 15 Pycom transmitting devices
(left) and a USRP B210 receiving device (right).

USRP receiver in the wired WiFi dataset as shown in Fig. 3
(right).

V. RESULTS AND DISCUSSION

For each of the three studied datasets, we set up 3 experiments
in which we randomly selected 10 devices to be the known
devices and 5 devices to be the unknown devices. We then
evaluate our approach using a variant of 5-fold cross-validation
designed to handle evaluation of open-set detection. We use a
dataset with an equal number of data samples (i.e. slices) from
each of the 15 devices. We divide each device’s data into 5
non-overlapping equally-sized partitions. Under the traditional
cross-validation process, in each fold of cross-validation, 4 of
the partitions for that device are used as the training set while
the remaining partition is used as the test set. The partitions
are reassigned to training and testing in the other folds, such
that each fold ends up using a different partition for testing,
with no overlap between test sets for each fold. Data from the
10 known devices follow this traditional 5-fold cross-validation
process. The main difference in our variant occurs with the test
partition in each fold. In open-set detection, the test set contains
both the test partition for the 10 known devices as well as the
test partition for the 5 unknown devices. We emphasize that in
each fold, the data from the 5 unknown devices are only seen
during testing and never seen during training.

Thus, to summarize the overall process, in each fold of
cross-validation, HiNoVa is trained on the training set. After
training, we generated 10 device fingerprints using the correctly
classified samples from the 4 partitions of the known device
training data. During the detection phase, HiNoVa takes each
test sample from the test partition and compares it to the 10
known device fingerprints to perform a binary prediction as to
whether or not the sample belongs to a known or unknown
device.

A. Algorithms and Performance Metrics

We compare HiNoVa against a number of other open-set
detection methods:

1) CNN model using MaxLogit: This baseline uses a CNN
augmented with the MaxLogit process for detecting open set
instances. As was pointed out in a recent work [5], MaxLogit,
though simple, is a strong open-set detector.



TABLE 1
Average Test AUPRC for HiNoVa vs. other algorithms on the (a) LoRa, (b) Wireless-WiFi and (c) Wired-WiFi datasets. The
graphs on top plot the results in the tables below. Statistical significance is indicated with * in the tables.
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2) CNN+LSTM model using MaxLogit: The previous base-
line interprets each observation in a slice as an i.i.d. data
instance. In reality, the observations in a slice have a sequential
relationship and using a CNN+LSTM instead of a CNN enables
the detector to model these sequential relationships. As before,
we use the MaxLogit approach for open-set detection.

3) OpenMax [18]: This baseline reweights the activation
vectors that go into the final Softmax layer to better separate
the known from unknown devices. The weighting function is
based on a Weibull distribution, which is used to model extreme
values and is used in OpenMax to model the right tail of the
activation distribution corresponding to the highest activation
values. OpenMax only reweights the activations for the top o
classes with the highest activation values.

4) Akar [8]: The work by Akar et al. [8] is a state-of-the-
art open-set detector specifically for time series. We refer to
this approach as Akar. The Akar method uses Dynamic Time
Warping (DTW) to compute the similarity between a test set
time series and the barycenters of known devices.

We use AUPRC (Area Under Precision-Recall Curve) as
the evaluation metric [19] since there is a significant class
imbalance as we have twice as much data from known devices
than from unknown devices during testing. AUPRC considers
the trade-off between precision and recall across a range of
detection thresholds and yields an overall threshold-independent
summary statistic of the detector’s performance.

To determine the hyper-parameter settings for our deep
learning models, we use post-hoc tuning on CNN+LSTM
MaxLogit. We use CNN+LSTM MaxLogit because parts of its
architecture are shared with CNN MaxLogit and CNN+LSTM
OpenMax. Post-hoc tuning refers to looking at the perfor-
mance of CNN+LSTM MaxLogit on the test set, which gives
CNN+LSTM MaxLogit an unfair advantage as it is allowed to
see the test set, but we will show that even with this advantage,

HiNoVa still significantly outperforms the MaxLogit models.
Specifically, we post-hoc tune the kernel size (2 X 256) and
dropout rate (10%) in the CNN layer to achieve high accuracy
in closed set classification using a grid search. Attaining good
closed set accuracy has recently been shown to produce good
open set detectors [S5]. We also post-hoc tune the number of
hidden nodes to achieve high AUPRC for the open-set predic-
tion task for CNN+LSTM MaxLogit. The resulting values of
these hyperparameters were applied to HiNoVa, which clearly
puts it at a disadvantage because these hyperparameters were
tuned for a completely different algorithm (i.e. CNN+LSTM
MaxLogit), but HiNoVa still performs well.
We evaluated HiNoVa with 25, 50, 75 and 100 bins and
found that it resulted in small differences in AUPRC (< 0.03).
We report results with 25 bins in our experiments.

B. Experimental Results

Our performance evaluation is done using three different RF
datasets: LoRa, Wireless-WiFi, and Wired-WiFi, as described in
Sec. IV. Tables Ila, IIb and IIc show the average AUPRC values
for the LoRa, Wireless-WiFi, and Wired-WiFi datasets re-
spectively. HiNoVa consistently outperformed the other meth-
ods, achieving statistically significant results (Wilcoxon Signed
Rank Test, a = 0.05) in all three experiments. CNN+LSTM
MaxLogit, CNN MaxLogit, and OpenMax lagged behind both
HiNoVa by a substantial gap in AUPRC, with no consistent
top performer in this second tier of algorithms. Due to the
extensive computational time of Akar, the algorithm did not
complete within 24 hrs, making it infeasible to be used for this
security use case.

Overall, the results suggest that HiNova is an effective
detector of unknown devices using LoRa, Wireless-WiFi and
Wired-Wifi protocols, outperforming other methods by a signif-
icant margin. The hidden state values correspond to a compact
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Fig. 4: Average test AUPRCs for the single hidden node detector vs. the pairwise hidden node detector.

representation of the autocorrelation lags in the IQ data within
a slice, and the distribution of this representation, as repre-
sented in the histogram used to derive the fingerprint, provides
an effective summary of the device-specific information that
HiNoVa is able to leverage. Finally, the MaxLogit approaches
and the OpenMax approach only rely on the logits of the
penultimate layer of the NN. These logits, which are used to
derive the output probabilities from the NN, lack the informa-
tion contained in the fingerprints and are thus less effective at
identifying unknown devices.

C. Pairwise vs Single Hidden Node Values

Since LSTMs use the hidden node value from the previous time
step (h¢t1) to compute the value of the current hidden node
(he), we explore building the RF fingerprint with the pair of
hidden node values at consecutive times (h¢-1, h) instead of
the hidden node value at a single time (h¢). Figure 4 compares
the performance of a single vs pairwise hidden node value
detector. Figure 4 shows that for HiNoVa, the results are mixed,
with a pairwise detector outperforming the single node detector
in about half of the experiments. These results indicate that
pairwise transitions can have predictive value in some cases,
but in other cases they are simply noise. Given the additional
computational cost of the pairwise node detector in both time
and memory, we recommend using the single node detector.

VI. CONCLUSION

HiNoVa is a novel open-set detection method based on the
activation patterns of the hidden states within a CNN+LSTM
model. This approach significantly improves the AUPRC on
LoRa, Wireless-WiFi, and Wired-WiFi datasets over other
open-set detection methods. Additionally, because of its struc-
ture, the proposed method can run on standard consumer hard-
ware with minimal setup data and training time. Future work
will investigate using attention-based deep learning models.
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