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Abstract

This paper addresses the inverse scattering problem for Maxwell’s equations in three dimen-
sional anisotropic periodic media. We study a new imaging functional for the fast and robust
reconstruction of the shape of anisotropic periodic scatterers from boundary measurements of
the scattered field. The implementation of this imaging functional is simple and avoids the need
to solve an ill-posed problem. The resolution and stability analysis of the imaging functional
is investigated. Results from our numerical study indicate that this imaging functional is more
stable than that of the factorization method and more accurate than that of the orthogonality
sampling method in reconstructing periodic scatterers.

Keywords. electromagnetic inverse scattering, periodic media, sampling method, shape recon-
struction, photonic crystals
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1 Introduction

We consider three dimensional periodic media that are unboundedly periodic in say x1- and x2-
directions and bounded in x3-direction. These periodic media can model two-dimensional photonic
crystals that are popular in optics [8]. We are interested in the inverse problem of determining
the shape of these periodic media from boundary measurements of the scattered electromagnetic
fields generated by a number of incident fields. This inverse problem comes from the noninvasive
imaging of photonic crystals using electromagnetic waves. Noninvasive imaging of photonic crystals
is the process of visualizing and characterizing the structure and/or optical properties of photonic
crystals without damaging the crystals themselves. This imaging technique is very important for un-
derstanding the properties and performance of photonic crystals and is often used in manufacturing
to ensure the quality of photonic crystals.

In the past two decades, there has been a substantial body of work on numerical methods for
shape reconstruction of periodic media in inverse scattering. Results for Helmholtz-type equations
can be found in [1, 2, 6, 7, 9, 10, 12, 13, 18, 20, 23, 24, 27–29], among other references. However, the
number of results on numerical reconstructions for the inverse problem associated with full Maxwell’s
equations in three dimensions has been limited, as seen in [4, 16, 19, 22, 26]. This limitation is
evidently due to the technical complexity and high computational demands of Maxwell’s equations
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in three-dimensional periodic media. The methods primarily studied for the case of Maxwell’s
equations include the factorization method [19,22,26] and the near-field imaging method relying on
a transformed field expansion [4,5,16]. The latter method can offer subwavelength resolution, but it
requires the periodic scattering layer to be a smooth periodic function multiplied by a small surface
deformation parameter. While the factorization method is more flexible concerning the shape and
properties (e.g., anisotropic or chiral) of periodic media, it unfortunately lacks robustness against
noise in the data.

In this paper, we investigate a novel imaging functional for the reconstruction of anisotropic
periodic scatterers for Maxwell’s equations in three dimensions. This new imaging functional is not
only highly robust against noise in the data but also flexible when it comes to different shapes of
periodic scattering media. The implementation of the imaging functional is straightforward, com-
putationally efficient, and rapid since it involves evaluating a double sum, essentially encompassing
a finite number of propagating modes in the scattered field data. Moreover, the implementation
does not require solving any ill-posed problems. We prove that the imaging functional is associated
with a volume integral over the periodic scatterer in one unit cell, and this volume integral has a
kernel that strongly peaks when the sampling point is inside the periodic scatterer. The stability
of the imaging functional is also rigorously justified. The numerical study further reveals that the
proposed sampling method is more stable than the factorization method and more accurate than
the orthogonality sampling method in reconstructing periodic scattering media. This work can be
considered an extension of the results presented in [23], where the Helmholtz equation case was
investigated. Due to the technical complications arising from Maxwell’s equations in periodic me-
dia, this extension is nontrivial. The imaging functional for the Maxwell case is an infinite series,
unlike the finite sum in the scalar case. The extension demands a careful and detailed analysis of
a modal version of Green formulas for the quasiperiodic Green’s tensor of the direct problem and
the quasiperiodic scattered electric field via its volume integro-differential formulation. It is also
worth noting that while the orthogonality sampling method has been studied for inverse scattering
from bounded objects [11,14,15,17,25], its application to the inverse scattering problem for periodic
media is still unknown.

The rest of the paper is organized as follows. We formulate the inverse problem of interest in
Section 2. The new imaging functional and its resolution and stability analysis are discussed in
Section 3. A numerical study of the new imaging functional is presented in Section 4. Finally, a
conclusion summarizing the results we have obtained and some related future research is given in
Section 5.

2 Electromagnetic scattering from periodic media

We consider an anisotropic periodic medium in R
3 that is unboundedly 2π-periodic in x1- and x2-

directions and bounded in x3-direction. Let k > 0 be the wave number and ε be a 3 × 3 bounded
matrix-valued function which represents the permittivity of the medium. We assume that ε is 2π-
periodic in the x1- and x2-directions, and that in each period (m1π, (m1+2)π)×(m2π, (m2+2)π)×R

for anym1,m2 ∈ Z, it is equal to the identity matrix I3 outside a compact set. This periodic medium
is illuminated by an incident electric field Ein : R3 → C

3, which is generated by source function
J : R3 → C

3. Their interaction gives rise to a scattered electric field u that is also a function from
R
3 to C

3. The total field E = Ein + u is assumed to satisfy the Maxwell’s equations

curl curlE− k2ε(x)E = J, x ∈ R
3. (1)

2



Now for α = (α1, α2) ∈ R
2, a function f : R3 → C

3 is called α-quasiperiodic if

f(x1 +m12π, x2 +m22π, x3) = e2πi(α1m1+α2m2)f(x1, x2, x3) for all m1,m2 ∈ Z.

Fixing α = (α1, α2), we use N α-quasiperiodic incident electric fields to illuminate the periodic
medium. Denote these incident fields by Ein(·, l) for l = 1, . . . N . More specifically, Ein(·, l) satisfy

curl curlEin(·, l)− k2Ein(·, l) = J(·, l), l = 1, . . . N.

Following the usual approach we look for α-quasiperiodic scattered fields u(·, l). We can rewrite (1)
for u(·, l) as follows

curl curlu(·, l)− k2u(·, l) = k2(ε(x)− I3)(u(·, l) +Ein(·, l)). (2)

We complete the scattering problem with the Rayleigh radiation condition. To this end we first
introduce some notations. Let h > 0 be such that

h > sup{|x3| : x = (x1, x2, x3)
> ∈ supp(ε− I3)}

and let
Ω := (−π, π)2 × R, Ωh := (−π, π)2 × (−h, h), Γ±h := (−π, π)2 × {±h}.

In addition to (2), the scattered electric fields u(·, l) satisfy the Rayleigh radiation condition, i.e.,

u(x, l) =

{

∑

j∈Z2 u
+
j (l)e

i(α1,jx1+α2,jx2+βj(x3−h) if x3 > h,
∑

j∈Z2 u
−
j (l)e

i(α1,jx1+α2,jx2−βj(x3+h) if x3 < −h,
(3)

where
α1,j = α1 + j1, α2,j = α2 + j2, αj = (α1,j , α2,j , 0)

>

and

βj =

{
√

k2 − |αj |2, |αj | ≤ k,

i
√

|αj |2 − k2, |αj | > k,
(4)

for all j = (j1, j2) ∈ Z
2. The sequences of coefficients (u+

j (l))j and (u−
j (l))j are called the Rayleigh

sequences of u(·, l) and can be computed by

u±
j (l) =

1

4π2

∫

Γ±h

u(x, l)e−i(α1,jx1+α2,jx2)ds(x). (5)

Note that all but finitely many terms in (3) are exponentially decaying, which helps us easily deduce
pointwise absolute convergence of the series. The exponentially decaying terms in (3) are called
evanescent modes and the terms corresponding to real βj ’s are called propagating modes. Moreover,
we need βj to be nonzero for all j ∈ Z

2, in other words, k is not a Wood’s anomaly. The technical
reason behind this assumption is that the representation of the α-quasiperiodic Green’s function
we use in (6) is not well-defined at a Wood’s anomaly. For the study of the inverse problem in this
paper, we assume that the direct problem (2)-(3) is well-posed. We refer to [5, 21] for studies on
well-posedness of the direct problem (2)-(3).

Note that since the scattering medium is 2π-periodic in x1 and x2, finding its geometry in Ω is
sufficient. Denote by D the geometry of the medium in Ω, i.e.

D := supp(ε− I3) ∩ Ω.

We aim to solve the following inverse problem.

Inverse Problem. Given measurement of multiple scattered electric fields u(·, l) on Γ±h corre-
sponding to multiple incident fields Ein(·, l), l = 1, . . . , N , find D in Ωh.
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3 A new imaging functional

We will introduce a new imaging functional to solve the stated inverse problem and analyze its
behavior in this section. To this end, we first need the quasiperiodic Green’s tensor of the direct
problem. For x − y 6= (2πm1, 2πm2, 0), for all m1,m2 ∈ Z, the α-quasiperiodic Green’s tensor of
the direct problem is given by (see, e.g., [26])

G(x,y) := Φ(x,y)I3 +
1

k2
∇xdivx(Φ(x,y)I3),

where the divergence is taken columnwise and the gradient is taken componentwise. Φ(x,y) is the
α-quasiperiodic Green’s function of the scalar Helmholtz problem,

Φ(x,y) :=
i

8π2

∑

j∈Z2

1

βj
ei(α1,j(x1−y1)+α2,j(x2−y2)+βj |x3−y3|), (6)

with Rayleigh coefficients given by

r±j (y) =
i

8π2βj
e−iα1,jy1−iα2,jy2+iβj(h∓y3). (7)

Lemma 1. For z ∈ Ωh, the columns of G(·, z) satisfy the Rayleigh radiation condition (3). Let
Gmn(·, z) be the entry on the m-th row, n-th column of G(·, z). Then, the Rayleigh sequences
(g±mn)j(z) of Gmn(·, z) can be given as an expression in terms of r±j (z),

(g±mn)j(z) =

(

δmn −
γ±m,jγ

±
n,j

k2

)

r±j (z), j ∈ Z
2,

where δmn is the Kronecker delta and

γ±n,j :=

{

αn,j if n = 1, 2,
±βj if n = 3.

Proof. For x ∈ Ω with x3 > h and z ∈ Ωh,

Φ(x, z) =
∑

j∈Z2

r+j (z)e
i(α1,jx1+α2,jx2+βj(x3−h)),

thus,

G(x, z) = Φ(x,y)I3 +
1

k2
∇xdivx(Φ(x,y)I3)

=
∑

j∈Z2













1 0 0
0 1 0
0 0 1



+
1

k2









∂2

∂x2

1

∂2

∂x1∂x2

∂2

∂x1∂x3

∂2

∂x2∂x1

∂2

∂x2

2

∂2

∂x2∂x3

∂2

∂x3∂x1

∂2

∂x3∂x2

∂2

∂x2

3

















r+j (z)e
i(α1,jx1+α2,jx2+βj(x3−h))

=
∑

j∈Z2









1 0 0
0 1 0
0 0 1



− 1

k2





α2
1,j α1,jα2,j α1,jβj

α2,jα1,j α2
2,j α2,jβj

βjα1,j βjα2,j β2
j







 r+j (z)e
i(α1,jx1+α2,jx2+βj(x3−h))

=
∑

j∈Z2

[

δmn −
γ+m,jγ

+
n,j

k2

]

mn

r+j (z)e
i(α1,jx1+α2,jx2+βj(x3−h)).
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Similarly, we can show that, for x ∈ Ω such that x3 < −h,

G(x, z) =
∑

j∈Z2

[

δmn −
γ−m,jγ

−
n,j

k2

]

mn

r−j (z)e
i(α1,jx1+α2,jx2−βj(x3+h)).

This shows that, each entry Gmn(·, z) of G(·, z) admits a Rayleigh series representation for x3 > h
or x3 < −h. Therefore, the columns of G(·, z) satisfy the Rayleigh radiation condition and the
Rayleigh coefficients of Gmn(·, z) are given by

(g±mn)j(z) =

(

δmn −
γ±m,jγ

±
n,j

k2

)

r±j (z).

For j ∈ Z
2, we denote

g±
j (z) :=

[

(g±mn)j(z)
]

mn
, h±

j (z) :=





α1,j(g
±
31)j α1,j(g

±
32)j α1,j(g

±
33)j

α2,j(g
±
31)j α2,j(g

±
32)j α2,j(g

±
33)j

±βj(g
±
31)j ±βj(g

±
32)j ±βj(g

±
33)j



 (z).

Now with the data u(·, l) given on Γ±h for l = 1, . . . , N , we can compute the Rayleigh coefficients

u±
j (l) =

[

u±1,j(l) u±2,j(l) u±3,j(l)
]>

via (5). We define the imaging functional as

I(z) :=
N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j∈Z2





(

h+
j (z)− 2Re (βj) g

+
j (z)

)∗
u+
j (l) + u+3,j(l)g

+
j (z)

∗





α1,j

α2,j

βj





−
(

h−
j (z) + 2Re (βj) g

−
j (z)

)∗
u−
j (l)− u−3,j(l)g

−
j (z)

∗





α1,j

α2,j

−βj









∣

∣

∣

∣

∣

∣

p

,

where A∗ denotes the transpose conjugate of the matrix A. Here p > 0 is chosen to sharpen the
reconstruction of the imaging functional (e.g., p = 3 works well in the numerical simulations).

Remark 2. We note that the Rayleigh sequences (r±j (z))j in (7) are exponentially decaying as |j|
increases and βj is complex-valued. For m,n = 1, 2, 3, the sequences ((g±mn)j(z))j involve r±j (z)
multiplied by βj and α1,j or α2,j. Thus these sequences are quickly decaying as |j| increases and βj
is complex-valued. This property holds for all z ∈ Ωh. This leads to the fact that g±

j (z) and h±
j (z)

also have quickly decaying entries for complex-valued βj’s. Therefore, I(z) is well-defined and that
only a finite number of terms corresponding to real-valued βj’s may make significant contributions
to I(z) and the terms corresponding to complex-valued βj’s can be essentially ignored. This is
confirmed in the numerical study.

Define the Sobolev spaces Hα(curl ,Ωh) and Hα,loc(curl ,Ω) as

Hα(curl ,Ωh) :=
{

w ∈ [L2(Ωh)]
3 : curlw ∈ [L2(Ωh)]

3 and w = W|Ωh

for some α-quasiperiodic W ∈ [L2
loc(R

2)]3
}

,

Hα,loc(curl ,Ω) :=
{

w ∈ [L2
loc(Ω)]

3 : curlw ∈ [L2
loc(Ω)]

3 and w = W|Ω
for some α-quasiperiodic W ∈ [L2

loc(R
2)]3
}

.
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The unique weak solution u ∈ Hα,loc(curl ,Ω) of the direct problem (2)-(3) satisfies the Rayleigh
radiation condition (3) and

∫

Ω
curlu(x) · curlv(x)− k2u(x) · v(x) dx = k2

∫

D

(ε(x)− I3)(u(x) +Ein(x)) · v(x) dx, (8)

for all v ∈ Hα(curl ,Ωh) with compact support. It is known that u also satisfies the volume integro-
differential equation (see, e.g., [21])

u(x) = (k2 +∇xdivx)

∫

D

Φ(x,y)(ε(y)− I3)E(y) dy. (9)

The equivalence is understood in the sense that, if u ∈ Hα,loc(curl ,Ω) satisfies (3) and (8) then
u|Ωh

belongs to Hα(curl ,Ωh) and solves (9), and conversely, if u|Ωh
∈ Hα(curl ,Ωh) solves (9) then

it can be extended into a solution of (8) in Hα,loc(curl ,Ω) that also satisfies the radiation condition
(3).

We justify the resolution of the imaging functional in the following theorem.

Theorem 3. The imaging functional I(z) satisfies

I(z) =
N
∑

l=1

∣

∣

∣

∣

k2

2π2

∫

D

F(z,y) (ε(y)− I3)E(y, l) dy

∣

∣

∣

∣

p

, z ∈ Ωh,

where

F(x,y) = F (x,y)I3 +
1

k2
∇xdivx(F (x,y)I3),

with

F (x,y) =
k

4π
j0(k|x− y|) +

∑

(0,0) 6=j∈Z2

ke−i2πα·j

4π
j0

(

k
∣

∣

∣x− y + (2πj1, 2πj2, 0)
>
∣

∣

∣

)

(j0 is the spherical Bessel function of the first kind of order 0).

Remark 4. For a fixed y, we numerically observe that the series in F (x,y) makes a relatively small
perturbation to k

4π j0(k|x − y|) that strongly peaks as x is close to y and has much smaller values

otherwise. Thus, the behavior of |F (x,y)| is pretty similar to that of k
4π j0(k|x−y|) as it can be seen

in Figure 1. A two-dimensional version of F (x,y) was studied in [23] with similar behaviors. We
can thus expect F(x,y) to have a similar behavior. Figure 2 shows the values of |F(x, 0)q|2 when
k = 2π, α1 = α2 = 0 and for q = (0, 0, 1)> and q = (1, 1, 1)>. In both cases, |F(x, 0)q|2 behaves
as expected. We also note that similar behaviors of |F(x, 0)q|2 were observed for q = (1, 0, 0)> and
q = (0, 1, 0)>. Therefore, we expect from Theorem 3 that the imaging functional I(z) takes larger
values as z is inside D and that I(z) is much smaller for z is outside D. This is indeed confirmed
in the numerical study.

Proof. Let Gn be the n-th column of G, n = 1, 2, 3. For all xs,xt ∈ Ωh and x ∈ Ωh, we have

curl curlGn(x,xs)− k2Gn(x,xs) = δ(x− xs)en,

and dot-multiplying both sides by Gm(x,xt), m = 1, 2, 3 gives

curl curlGn(x,xs) ·Gm(x,xt)− k2Gn(x,xs) ·Gm(x,xt) = δ(x− xs)en ·Gm(x,xt).
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(a) | k
4π

j0(k|x|)| (b) |F (x, 0)|

(c) Top view of (a) (d) Top view of (b)

Figure 1:
∣

∣

k
4π j0(k|x|)

∣

∣ and |F (x, 0)|, k = 2π, α1 = α2 = 0.

Integrating by part over Ωh with respect to x we obtain

∫

Ωh

curlGn(x,xs) · curlGm(x,xt) dx− k2
∫

Ωh

Gn(x,xs) ·Gm(x,xt) dx

+

∫

∂Ωh

ν(x)× curlGn(x,xs) ·Gm(x,xt) ds(x) = Gnm(xs,xt). (10)

Similarly, Gm(x,xt), m = 1, 2, 3 satisfies

curl curlGm(x,xt)− k2Gm(x,xt) = δ(x− xt)em,

and dot-multiplying both sides with Gn(x,xs), n = 1, 2, 3 gives

curl curlGm(x,xt) ·Gn(x,xs)− k2Gm(x,xt) ·Gn(x,xs) = δ(x− xt)em ·Gn(x,xs).

Integrating by part over Ωh with respect to x leads to

∫

Ωh

curlGm(x,xt) · curlGn(x,xs) dx− k2
∫

Ωh

Gm(x,xt) ·Gn(x,xs) dx

+

∫

∂Ωh

ν(x)× curlGm(x,xt) ·Gn(x,xs) ds(x) = Gmn(xt,xs). (11)
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(a) q = (0, 0, 1)> (b) q = (1, 1, 1)>

(c) Top view of (a) (d) Top view of (b)

Figure 2: |F(x, 0)q|2 for different vectors q, k = 2π, α1 = α2 = 0.

Subtracting (10) from (11) we obtain

∫

∂Ωh

ν(x)× curlGm(x,xt) ·Gn(x,xs)− ν(x)× curlGn(x,xs) ·Gm(x,xt) ds(x)

= Gmn(xt,xs)−Gnm(xs,xt),

or in matrix form
∫

∂Ωh

(ν(x)× curlG(x,xt))
∗
G(x,xs)−G(x,xt)

∗ν(x)× curlG(x,xs) ds(x)

= G(xt,xs)−G
∗(xs,xt), (12)

where curl and × are taken columnwise. Since G is α-quasiperiodic, the integral on the left-hand
side can be taken on just Γ+h ∪ Γ−h. Recall from Lemma 1 that the columns of G(·,y) satisfy the
Rayleigh radiation condition. Letting

φ±
j (x) := ei(α1,jx1+α2,jx2±βj(x3∓h)),
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we compute

∫

Γ±h

(ν(x)× curlG(x,xt))
∗
G(x,xs)−G(x,xt)

∗ν(x)× curlG(x,xs) ds(x)

=

∫

Γ±h









0
0
±1



×
∑

j∈Z2

curl
[

g±
j (xt)φ

±
j (x)

]





∗
∑

j∈Z2

g±
j (xs)φ

±
j (x) ds(x)

−
∫

Γ±h





∑

j∈Z2

g±
j (xt)φ

±
j (x)





∗ 



0
0
±1



×
∑

j∈Z2

curl
[

g±
j (xs)φ

±
j (x)

]

ds(x).

For any matrix A (independent of x), we obtain from a direct calculation that

curl
[

Aφ±
j (x)

]

= i





a31α1,j ∓ a21βj a32α1,j ∓ a22βj a33α1,j ∓ a23βj
±a11βj − a31α1,j ±a12βj − a32α1,j ±a13βj − a33α1,j

a21α1,j − a11α2,j a22α1,j − a12α2,j a23α1,j − a13α2,j



φ±
j (x)

=



i





α1,j

α2,j

±βj



×A



φ±
j (x).

Hence,

∫

Γ±h

(ν(x)× curlG(x,xt))
∗
G(x,xs)−G(x,xt)

∗ν(x)× curlG(x,xs) ds(x)

=

∫

Γ±h

∑

j∈Z2









0
0
±1



×



i





α1,j

α2,j

±βj



× g±
j (xt)









∗

φ±
j (x)

∑

j∈Z2

g±
j (xs)φ

±
j (x) ds(x)

−
∫

Γ±h

∑

j∈Z2

g±
j (xt)

∗φ±
j (x)

∑

j∈Z2









0
0
±1



×



i





α1,j

α2,j

±βj



× g±
j (xs)







φ±
j (x) ds(x).

Note that the Rayleigh series in the integrand converge absolutely almost everywhere Γ±h, thus
they are bounded above by constants on the bounded set Γ±h. By dominated convergence theorem,

∫

Γ±h

(ν(x)× curlG(x,xt))
∗
G(x,xs)−G(x,xt)

∗ν(x)× curlG(x,xs) ds(x)

=
∑

j∈Z2

∑

j′∈Z2









0
0
±1



×



i





α1,j

α2,j

±βj



× g±
j (xt)









∗

g±
j′(xs)

∫

Γ±h

φ±
j′(x)φ

±
j (x) ds(x)

−
∑

j∈Z2

∑

j′∈Z2

g±
j (xt)

∗









0
0
±1



×



i





α1,j′

α2,j′

±βj′



× g±
j′(xs)









∫

Γ±h

φ±
j′(x)φ

±
j (x) ds(x).

Note that using
∫

Γ±h

φ±
j′(x)φ

±
j (x) ds(x) =

{

4π2 if j = j′,
0 if j 6= j′,

9



we have
∫

Γ±h

(ν(x)× curlG(x,xt))
∗
G(x,xs)−G(x,xt)

∗ν(x)× curlG(x,xs) ds(x)

= 4π2
∑

j∈Z2













0
0
±1



×



i





α1,j

α2,j

±βj



× g±
j (xt)









∗

g±
j (xs)

−g±
j (xt)

∗









0
0
±1



×



i





α1,j

α2,j

±βj



× g±
j (xs)













= −i4π2
∑

j∈Z2

((

±h±
j (xt)− βjg

±
j (xt)

)∗
g±
j (xs) + g±

j (xt)
∗
(

±h±
j (xs)− βjg

±
j (xs)

))

= −i4π2
∑

j∈Z2

((

±h±
j (xt)− 2Re (βj) g

±
j (xt)

)∗
g±
j (xs)± g±

j (xt)
∗h±

j (xs)
)

.

Therefore we obtain that
∫

∂Ωh

(ν(x)× curlG(x,xt))
∗
G(x,xs)−G(x,xt)

∗ν(x)× curlG(x,xs)ds(x)

= −i4π2
∑

j∈Z2

((

h+
j (xt)− 2Re (βj) g

+
j (xt)

)∗
g+
j (xs) + g+

j (xt)
∗h+

j (xs)

−
(

h−
j (xt) + 2Re (βj) g

−
j (xt)

)∗
g−
j (xs)− g−

j (xt)
∗h−

j (xs)
)

. (13)

Now recall that the scattered field u(x, l) satisfies

u(x, l) = (k2 +∇xdivx)

∫

D

Φ(x,y)(ε(y)− I3)E(y, l) dy.

Thus by (5),

u±
j (l) =

1

4π2

∫

Γ±h

∫

D

(k2 +∇xdivx) (Φ(x,y)(ε(y)− I3)E(y, l)) dy e−i(α1,jx1+α2,jx2±βj(x3∓h))ds(x).

For x ∈ Γ±h and y ∈ D, the integrand is bounded on the bounded sets Γ±h ×D, thus, by Fubini’s
theorem,

u±
j (l) = k2

∫

D

1

4π2

∫

Γ±h

G(x,y)e−i(α1,jx1+α2,jx2±βj(x3∓h))ds(x) (ε(y)− I3)E(y, l) dy

= k2
∫

D

g±
j (y)(ε(y)− I3)E(y, l) dy, (14)

10



and so




α1,j

α2,j

±βj



u±3,j(l) = k2





α1,j

α2,j

±βj





∫

D

[

(g±31)j (g±32)j (g±33)j
]

(y)(ε(y)− I3)E(y, l) dy

= k2
∫

D





α1,j(g
±
31)j α1,j(g

±
32)j α1,j(g

±
33)j

α2,j(g
±
31)j α2,j(g

±
32)j α2,j(g

±
33)j

±βj(g
±
31)j ±βj(g

±
32)j ±βj(g

±
33)j



 (ε(y)− I3)E(y, l) dy

= k2
∫

D

h±
j (y)(ε(y)− I3)E(y, l) dy. (15)

Now recall that, for z ∈ Ωh,

I(z) =
N
∑

l=1

∣

∣

∣

∣

∣

∣

∑

j∈Z2





(

h+
j (z)− 2Re (βj) g

+
j (z)

)∗
u+
j (l) + u+3,j(l)g

+
j (z)

∗





α1,j

α2,j

βj





−
(

h−
j (z) + 2Re (βj) g

−
j (z)

)∗
u−
j (l)− u−3,j(l)g

−
j (z)

∗





α1,j

α2,j

−βj









∣

∣

∣

∣

∣

∣

p

.

Plugging the formula of u±
j (l) and [α1,j α2,j ± βj ]

>u±3,j(l) in (14) and (15) into I(z) and using
identities (12) and (13), we obtain that

I(z) =
N
∑

l=1

∣

∣

∣

∣

k2

2π2

∫

D

1

2i
(G(z,y)−G

∗(y, z)) (ε(y)− I3)E(y, l) dy

∣

∣

∣

∣

p

.

Now letting

F (x,y) :=
1

2i

(

Φ(x,y)− Φ(y,x)
)

,

a direct calculation leads to

F(x,y) :=
1

2i
(G(x,y)−G

∗(y,x)) = F (x,y)I3 +
1

k2
∇div(F (x,y)I3).

The proof follows from using the following expression of the scalar α-quasiperiodic Green’s function
Φ(x,y), see e.g. [3],

Φ(x,y) =
∑

j∈Z2

e−i2πα·j eik
√

(x1−y1+2j1π)2+(x2−y2+2j2π)2+(x3−y3)2

4π
√

(x1 − y1 + 2j1π)2 + (x2 − y2 + 2j2π)2 + (x3 − y3)2
,

for x,y ∈ Ωh such that x3 6= y3.

Denote by | · |F and | · |2 the Frobenius norm of a matrix and the 2-norm of a vector, respectively.
In the next theorem we analyze the stability of the imaging functional.

Theorem 5. For δ > 0, let uδ be the noisy data such that
∥

∥

∥u
δ(·, l)− u(·, l)

∥

∥

∥

L2(Γh∪Γ−h)
≤ δ, ∀l = 1, 2, . . . , N,

and let Iδ be the imaging functional computed from this noisy data. Then, there exists a constant
C > 0 independent of z and δ such that, for all z ∈ Ωh,

|Iδ(z)− I(z)| ≤ Cδ, as δ → 0.
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Proof. Note that, for all j ∈ Z
2 and l = 1, . . . , N ,

∣

∣

∣u
±
δ,j(l)− u±

j (l)
∣

∣

∣

2
≤ 1

4π2

∫

Γ±h

∣

∣

∣u
δ(x, l)− u(x, l)

∣

∣

∣ ds(x).

Thus, by Cauchy-Schwarz inequality,
∣

∣

∣
u±
δ,j(l)− u±

j (l)
∣

∣

∣

2
≤
∥

∥

∥
uδ(·, l)− u(·, l)

∥

∥

∥

L2(Γ±h)
≤ δ.

Fix z ∈ Ωh and δ > 0. For l = 1, 2, . . . , N , let

Al :=

∣

∣

∣

∣

∣

∣

∑

j∈Z2





(

h+
j (z)− 2Re (βj) g

+
j (z)

)∗
u+
δ,j(l) + u+δ,3,j(l)g

+
j (z)

∗





α1,j

α2,j

βj





−
(

h−
j (z) + 2Re (βj) g

−
j (z)

)∗
u−
δ,j(l)− u−δ,3,j(l)g

−
j (z)

∗





α1,j

α2,j

−βj









∣

∣

∣

∣

∣

∣

,

and

Bl :=

∣

∣

∣

∣

∣

∣

∑

j∈Z2





(

h+
j (z)− 2Re (βj) g

+
j (z)

)∗
u+
j (l) + u+3,j(l)g

+
j (z)

∗





α1,j

α2,j

βj





−
(

h−
j (z) + 2Re (βj) g

−
j (z)

)∗
u−
j (l)− u−3,j(l)g

−
j (z)

∗





α1,j

α2,j

−βj









∣

∣

∣

∣

∣

∣

,

it is then clear that

Iδ(z) =
N
∑

l=1

Ap
l and I(z) =

N
∑

l=1

Bp
l .

Using the Cauchy-Schwarz inequality and the triangle inequality, we estimate

|Al −Bl| ≤
∑

j∈Z2

∣

∣

∣
u+
δ,j(l)− u+

j (l)
∣

∣

∣

2





∣

∣

∣
h+
j (z)

∣

∣

∣

F
+ 2Re (βj)

∣

∣

∣
g+
j (z)

∣

∣

∣

F
+

∣

∣

∣

∣

∣

∣

g+
j (z)

∗





α1,j

α2,j

βj





∣

∣

∣

∣

∣

∣

2





+
∑

j∈Z2

∣

∣

∣
u−
δ,j(l)− u−

j (l)
∣

∣

∣

2





∣

∣

∣
h−
j (z)

∣

∣

∣

F
+ 2Re (βj)

∣

∣

∣
g−
j (z)

∣

∣

∣

F
+

∣

∣

∣

∣

∣

∣

g−
j (z)

∗





α1,j

α2,j

−βj





∣

∣

∣

∣

∣

∣

2





≤ C1δ,

where

C1 := sup
z∈Ωh

∑

j∈Z2

(∣

∣

∣
h+
j (z)

∣

∣

∣

F
+
∣

∣

∣
h−
j (z)

∣

∣

∣

F
+ (2Re (βj) + k)

(∣

∣

∣
g+
j (z)

∣

∣

∣

F
+
∣

∣

∣
g−
j (z)

∣

∣

∣

F

))

.

Note that C1 < ∞ since the sequences
(

sup
z∈Ωh

∣

∣

∣h
±
j (z)

∣

∣

∣

F

)

j
and

(

sup
z∈Ωh

∣

∣

∣g
±
j (z)

∣

∣

∣

F

)

j
quickly decay

as mentioned in Remark 2. C1 is also independent of z and δ. Using a similar argument, we can
show that, for all l = 1, 2, . . . , N ,

Bl ≤ C1‖u(·, l)‖L2(Γh∪Γ−h). (16)
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Next,

∣

∣Ap
l −Bp

l

∣

∣ ≤ |Al −Bl|
p−1
∑

m=0

Am
l Bp−1−m

l

≤ |Al −Bl|
p−1
∑

m=0

(|Al −Bl|+Bl)
mBp−1−m

l .

For two nonnegative numbers a, b and m = 0, . . . , p− 1,

(a+ b)m ≤ (2max{a, b})m = 2mmax{am, bm} ≤ 2m(am + bm),

hence,

∣

∣Ap
l −Bp

l

∣

∣ ≤ |Al −Bl|
p−1
∑

m=0

2m(|Al −Bl|m +Bm
l )Bp−1−m

l

≤ C1δ

p−1
∑

m=0

2m(Cm
1 δm +Bm

l )Bp−1−m
l .

Thus, when δ < 1,

∣

∣Ap
l −Bp

l

∣

∣ ≤ C1δ

p−1
∑

m=0

2m(Cm
1 +Bm

l )Bp−1−m
l .

Using the estimate (16), we get

∣

∣Ap
l −Bp

l

∣

∣ ≤ Cp
1δ

p−1
∑

m=0

2m
(

1 + ‖u(·, l)‖mL2(Γh∪Γ−h)

)

‖u(·, l)‖p−1−m

L2(Γh∪Γ−h)
= C2δ,

where C2 > 0 is independent of z and δ. Therefore, as δ → 0,

|Iδ(z)− I(z)| ≤
N
∑

l=1

∣

∣Ap
l −Bp

l

∣

∣ ≤ Cδ,

where C = NC2 is independent of z and δ, which completes the proof.

We have provided justifications for the resolution and stability of the new imaging functional.
In the next part, we will discuss its numerical performance.

4 Numerical study

In this section, we show numerical results for the imaging functional in the following situations.

• Different numbers of evanescent modes are used.

• Noise with different levels is added to the data.

• Different numbers of incident sources are used.
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• The receivers used to measure the scattered fields are placed at different distances from the
medium.

• Different values of α1 and α2 are used.

• The factorization method and orthogonality sampling method are used in comparison.

In the numerical simulation, we use the wave number k = 2π. The exponent of the imaging
functional is p = 3. To simplify the calculation, we choose J(·, l) =

∑

j∈Z2(0, 0, 1)>δyl+2πj that
means the incident fields are the third column of the Green’s tensor, more specifically, they are
emitted from point sources and have the form

Einc(x, l) = − i

8π2k2

∑

j∈Z2





sgn(yl3 − x3)α1,j

sgn(yl3 − x3)α2,j

k2/βj + βj



 ei(α1,j(y
l
1
−x1)+α2,j(y

l
2
−x2)+βj |y

l
3
−x3|), x ∈ Ωh (17)

where yl = (yl1, y
l
2, y

l
3) are the sources’ locations and sgn is the sign function. The sources are placed

evenly on two planes (−π, π)2 × {±2.5}. Regarding the points of measurement, 3200 receivers are
placed evenly on two planes (−π, π)2×{±h}. To generate synthetic data for the inverse problem, we
solve the volume integro-differential equation (9) using a spectral Galerkin method studied in [21].
We compute the scattered fields at the points of measurements, then add artificial noise with noise
level δ > 0. To be specific, let U be the matrix containing the values of the scattered fields. We
create a noise matrix N of the same size as U. The entries of N are complex numbers whose real
and imaginary parts are uniformly distributed random numbers on [−1, 1]. The noisy version of U
is then

Uδ := U+ δ|U|F
N

|N|F
.

After adding the noise, we compute the Rayleigh coefficients using (5). In all of the numerical
examples, the isovalue for the 3D reconstructions is 60% of the maximum value of the imaging
functional I(z). This isovalue is chosen to get the best 3D representation for the reconstructions
across all examples, and is done by trial-and-error. Finally, the other parameters will vary among
tests. However, unless specifically mentioned, their values are as follows.

• Number of evanescent modes used: 0.

• Noise level: 20%.

• Number of incident sources: 800.

• h = 1.

• α1 = α2 = 0.

We demonstrate the numerical performance of the imaging functional for the following types of
periodic media.

1. Ring. This medium consists of a short hollow cylinder which resembles a ring in each period.
The inner circle has radius 1 while the outer circle has radius 1.5. The height of the cylinder
is 0.2. The permittivity ε(x) is given by

ε(x) =

{

diag(1.3, 1.5, 1.4) if x ∈ D,
I3 if x /∈ D.
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2. Sphere. This medium consists of four aligned spheres in each period. The radius of each
sphere is 0.4, and the permittivity is similar to that of the ring case.

3. Cube. This medium consists of one cube in each period. The dimensions of each cube are
(−1, 1)2 × (−0.3, 0.3), and the permittivity is similar to that of the ring case.

4. Perforated Sheet. This medium is a sheet that contains one circular hole in each period.
The radius of each hole is 1 and the thickness of the sheet is 0.6. The permittivity ε(x) is
given by

ε(x) =

{

diag(1.03, 1.05, 1.04) if x ∈ D,
I3 if x /∈ D.

4.1 Reconstruction with different numbers of evanescent modes (Figure 3)

We have discussed the contribution of propagating and evanescent modes to the imaging functional
in Remark 2. Recall that propagating modes correspond to real-valued βj ’s and are finite, whereas
evanescent modes correspond to complex-valued βj ’s and are infinite. However, we observe that
only propagating modes contribute significantly to the reconstruction, and different numbers of
evanescent modes yield similar results. Figure 3 shows a comparison between two reconstructions
of the ring, one using 903 evanescent modes and one using no evanescent modes. The results are
very similar. We also tested with 203 evanescent modes and the result was also similar. Using only
propagating modes helps reduce computational cost and avoid any instability involving evanescent
modes.

4.2 Reconstruction with highly noisy data (Figure 4-5)

We have shown that the imaging functional is theoretically stable against noise in the data. Numer-
ically, the imaging functional is not only stable but can also handle high levels of noise. In Figure 4,
we show the reconstructions of the ring at noise levels δ = 40% and δ = 60%. It can be seen that
the method gives very similar results. We also compare the reconstruction with that of the fac-
torization method. We regularize the factorization method by using singular value decomposition
and truncating the singular values of the data matrix. In Figure 5, we show the reconstructions
with two different random noise matrices N1 and N2, both at noise level δ = 20%. The truncation
value is chosen as σ = 10−2. All singular values that are smaller than σ are omitted from the
reconstruction. We have tested with other truncation values as well but this one gives the best
result. The factorization method cannot give as a good result as our method, and it is not stable
in the sense that two different noise matrices at the same level can still lead to noticeably different
reconstructions.

4.3 Reconstruction with different numbers of incident sources (Figure 6)

Generally, more incident sources means more data, and thus, means better reconstructions. How-
ever, as the number of incident sources increases, the reconstruction from the imaging functional
will stop changing at some point. Figure 6 shows the reconstructions with 200 and 450 incident
sources. The latter gives a better result, and the result will not change even if we increase the
number of incident sources to above 450.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Reconstruction with different numbers of evanescent modes. First column (a, d, g): True
geometry in 3D and 2D views. Second column (b, e, h): reconstruction with 903 evanescent modes.
Third column (c, f, i): reconstruction with no evanescent modes.

4.4 Reconstruction with different distances between the medium and the re-
ceivers (Figure 7)

Recall that the receivers are evenly distributed on two planes: Γ+h and Γ−h, which lie above and
below the medium, respectively. Figure 7 compares the reconstructions for h = 1 and h = 2.5. The
two reconstructions are extremely similar. This test demonstrates that the method remains largely
unaffected by the distance between the medium and the receivers, as long as the measurements fall
within the near-field regime.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Reconstruction with highly noisy data. First column (a, d, g): True geometry in 3D
and 2D views. Second column (b, e, h): reconstruction with 40% noise. Third column (c, f, i):
reconstruction with 60% noise.

4.5 Reconstruction with different values of α1 and α2 (Figure 8)

The case α1 = α2 = 0 is the most ideal case for the imaging functional, as the kernel tensor F behaves
very well according to Remark 4. Other values of α1 and α2 may slightly affect this behavior and
thus affect the performance of the imaging functional. In Figure 8, we show the reconstructions of
the ring in two cases, α1 = 0, α2 = π

√
2 and α1 = α2 = π. It can be seen that these reconstructions

are slightly different from the case α1 = α2 = 0.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Reconstruction using the factorization method for the ring with two random noise matrices
N1 and N2, both at 20% noise. First column (a, d, g): True geometry in 3D and 2D views. Second
column (b, e, h): reconstruction with noise matrix N1. Third column (c, f, i): reconstruction with
noise matrix N2.

4.6 Comparison with the orthogonality sampling method (Figures 9-12)

The orthogonality sampling method (OSM) is a well-known sampling method that has been studied
extensively for the case of bounded scattering objects. In this subsection, we conduct multiple
comparisons between our proposed method and the OSM. The imaging functional of the OSM is
given by

IOSM(z) :=
N
∑

l=1

∣

∣

∣

∣

∣

∫

Γh∪Γ−h

u(x, l) · qG(z,x) ds(x)

∣

∣

∣

∣

∣

p

,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Reconstruction with different numbers of incident sources. First column (a, d, g): True
geometry in 3D and 2D views. Second column (b, e, h): reconstruction with 200 incident sources.
Third column (c, f, i): reconstruction with 450 incident sources.

where the polarization q = (1, 1, 1)> and the exponent p = 3. From Figures 9-11, we can see that
the new sampling method method can provide better reconstructions than the OSM. The OSM is
able to provide reasonable reconstructions in the x1 and x2 directions but not the in the x3 direction.

5 Conclusion

We propose a sampling method with a new imaging functional for reconstructing the geometry of
periodic media from electromagnetic scattering data. Its most remarkable advantage, compared to
alternative approaches addressing this problem, lies in its speed, simplicity of implementation, and
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Figure 7: Reconstruction with different distances between the medium and the receivers. First
column (a, d, g): True geometry in 3D and 2D views. Second column (b, e, h): reconstruction with
h = 1. Third column (c, f, i): reconstruction with h = 2.5.

robustness against high levels of noise in the data.
The resolution analysis of the imaging functional relies on an integral representation and the

Rayleigh expansion of quasi-periodic electromagnetic fields. The imaging functional is proved to be
associated with an integral operator whose the kernel function has a strong peak when the sampling
point lies within the unknown domain and has a much smaller value as the point moves away from
this region. However, this analysis remains incomplete. We have also established the method’s
stability: as the noise level tends to zero, the difference between imaging functional values with
and without noise converges to zero. Future research will focus on providing a complete theoretical
justification for this method. Additionally, we aim to extend our investigation to elastic inverse
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Figure 8: Reconstruction with different values of α1 and α2. First column (a, d, g): True geometry
in 3D and 2D views. Second column (b, e, h): reconstruction with α1 = 0 and α2 = π

√
2. Third

column (c, f, i): reconstruction with α1 = α2 = π.

scattering.
Numerically, our method demonstrates excellent performance across various periodic media and

parameter sets. Specifically, it remains largely unaffected by the number of evanescent modes
used, noise levels in the data, and distances between the medium and the receivers. As expected,
the reconstruction stabilizes as the number of incident sources increases. Different values of α1

and α2 may slightly affect reconstructions. Furthermore, we conducted a comparative study with
the factorization and orthogonality sampling methods. Notably, our method’s regularization-free
nature, relying solely on propagating modes, contributes to its superior stability compared to the
factorization method. In all test cases, our reconstruction quality surpasses that of the orthogonality
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Figure 9: Comparison with the orthogonality sampling method for the ring. First column (a, d, g):
True geometry in 3D and 2D views. Second column (b, e, h): reconstruction with the new sampling
method. Third column (c, f, i): reconstruction with the orthogonality sampling method.

sampling method. This detailed numerical study of the method shows its great potential in solving
the inverse problem of interest.
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