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Abstract
This paper presents a fast and robust numerical method for reconstructing
point-like sources in the time-harmonic Maxwell’s equations given Cauchy
data at a 昀椀xed frequency. This is an electromagnetic inverse source problem
with broad applications, such as antenna synthesis and design, medical ima-
ging, and pollution source tracing. We introduce new imaging functions and a
computational algorithm to determine the number of point sources, their loc-
ations, and associated moment vectors, even when these vectors have notably
different magnitudes. The number of sources and locations are estimated using
signi昀椀cant peaks of the imaging functions, and the moment vectors are com-
puted via explicitly simple formulas. The theoretical analysis and stability of
the imaging functions are investigated, where the main challenge lies in ana-
lyzing the behavior of the dot products between the columns of the imaginary
part of the Green’s tensor and the unknown moment vectors. Additionally, we
extend our method to reconstruct small-volume sources using an asymptotic
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expansion of their radiated electric 昀椀eld. We provide numerical examples in
three dimensions to demonstrate the performance of our method.

Keywords: inverse source problem, Maxwell’s equations, Cauchy data,
point sources, 昀椀xed frequency, sampling method

1. Introduction

Inverse source problems have a wide range of applications in scienti昀椀c areas. In antenna syn-
thesis and design, the problem involves determining the current distribution required to pro-
duce a desired radiation pattern [21]. In medical imaging, such as electroencephalography and
magnetoencephalography, they help to reconstruct the electrical activity of the brain based on
boundary measurements, thus enabling the diagnosis of internal abnormalities [14]. Inverse
source problems are also used to trace pollution sources in the environment [10]. These prob-
lems have garnered signi昀椀cant attention from researchers over the past thirty years. For extens-
ive results on the inverse source problems for the Helmholtz equation, see [11, 19, 23, 25–27,
32]. We are interested in the electromagnetic inverse source problem for the time-harmonic
Maxwell’s equations at a 昀椀xed frequency. We aim to provide an effective numerical method
for reconstructing the number of unknown point-like sources, along with their locations and
possibly their moment vectors, from measured boundary Cauchy data.

The presence of non-radiating sources introduces dif昀椀culty to time-harmonic inverse source
problems for wave equations, particularly Maxwell’s equations, potentially leading to nonu-
nique solutions [2, 7, 9, 16]. To address this challenge, an approach is to utilize multi-frequency
boundary measurements. We direct the reader to recent studies that provide signi昀椀cant math-
ematical insights into the uniqueness, stability, and numerical 昀椀ndings of inverse source prob-
lems using multi-frequency data [5, 6, 8, 18, 28–31]. For the case of a single frequency data, it
is necessary to impose additional constraints on the sources to obtain a unique solution to the
inverse source problem. It was proved in [2] that Cauchy data can uniquely determine multiple
point sources or surface currents at a 昀椀xed frequency.

Several numerical methods have been developed for reconstructing multiple electromag-
netic point sources with single-frequency data. From a boundary integral-based relation
between the Cauchy data and the unknown source term, the authors in [17] developed a strategy
to choose a certain ‘vector-valued weighting function’ in the boundary integral formula to
develop an identi昀椀cation method for the number of sources, locations, and moment vectors.
Nevertheless, the method poses a challenge in choosing the weighting function in its imple-
mentation. Moreover, based on a similar boundary integral-based relation, the authors in [1,
12] proposed a different way to choose the weighting function and studied an algebraic method
to identify sources. This algebraic method relies on the rank of a Hankel matrix to determine
the number of unknown sources. However, if the rank is not low, it is challenging to determine
this rank accurately because the values of the last singular values are small and quite close to
each other. We also refer to [13] for a two-step numerical method using a windowed Fourier
transform to determine the support of small sources from far-昀椀eld data, though this method
does not address the reconstruction of the moment vectors of these sources.

In this paper, we study a numerical method that also relies on a boundary integral-based
formula. By choosing a simple weighting function, we develop novel imaging functions and
a numerical algorithm that allow us to determine the unknown sources without having to deal
with the challenges faced by the methods in [1, 12, 17]. Furthermore, our approach is easy to
implement and avoids expensive iterative computations, resulting in a more ef昀椀cient perform-
ance when working with a larger number of sources. It also demonstrates robustness against
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noisy data without the need for additional regularization techniques. The method presented
here is a non-iterative or direct method. Similar methods have been used to reconstruct small
volume and extended scatterers via theMUSICAlgorithm and Factorization method [3, 4, 20].
These methods need multi-static data as the scattered 昀椀eld is induced by an incident 昀椀eld. This
work is motivated by our results in [15] for the Helmholtz equation. However, the analysis of
the new imaging functions is more challenging and requires an innovative approach due to the
complicated behavior of the imaginary part of the Green’s tensor, compared to the free-space
scalar Green’s function discussed in [15]. We analyze key properties of the Green’s tensor and
establish a theoretical justi昀椀cation for our imaging functions. Our functions are also 昀氀exible
as they enable imaging at arbitrary distances from the data boundary. Detecting sources with
signi昀椀cantly different magnitudes of moment vectors is another challenge, as weaker sources
are dominated by stronger ones, making it very dif昀椀cult to detect them. We introduce a fast
algorithm for identifying sources with (possibly complex) moment vectors of varying mag-
nitudes. Additionally, we de昀椀ne an alternative function for source reconstruction and compare
it with the proposed one.

The remainder of this paper is organized as follows. Section 2 is devoted to the identi-
昀椀cation of point sources. Section 3 concerns detecting point-like sources with small-volume
support. Numerical examples in 3D are presented in section 4 to validate our method. Finally,
a conclusion is given in section 5.

2. Identification of electromagnetic point sources

This section focuses on the inverse problem for point sources governed by time-harmonic
Maxwell’s equations. We consider a set of N ∈ N electromagnetic point sources, each charac-
terized by its location xj ∈ R

3 and a nonzero moment vector pj ∈ C
3 for j = 1,2, . . . ,N. These

point sources are represented by the Delta distributions δxj . Let k> 0 be the wavenumber.
Suppose that the sources are well-separated,

disti̸=j (xi,xj)≫ λ, (1)

where λ= 2π/k is the wavelength.
We assume that these point sources generate the radiated 昀椀eld E : R3 → C

3 satisfying the
following model

curlcurlE− k2E=−
N∑

j=1

δxjpj, in R
3, (2)

lim
|x|→∞

|x|
(
curlE×

x
|x|

− ikE
)
= 0, (3)

where the Silver-Müller radiation condition (3) is assumed to hold uniformly for all direc-
tions x/|x|. The forward problem of 昀椀nding E for known sources is well-posed (see [22]). We
proceed under this assumption to study the inverse problem.

Let us introduce the Green’s tensor G(x,y) for the problem (2) and (3)

G(x,y) = Φ(x,y) I3 +
1
k2
∇xdivx (Φ(x,y) I3) , (4)

where

Φ(x,y) =
eik|x−y|

4π|x− y|
,
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for any x ̸= y in R3. Here, I3 is the 3× 3 identity matrix. The operators∇ and div are applied
to the tensor as column-wise.

It is well-known that the unique electric 昀椀eld E can be represented as

E(x) =
N∑

j=1

G(x,xj)pj, for x ∈ R
3, x ̸= xj. (5)

Let Ω⊂ R
3 be a bounded and open domain with Lipschitz boundary ∂Ω. Assume that source

locations xj ∈ Ω for j = 1,2, . . . ,N and that the radiated 昀椀eld E is measured on ∂Ω. Denote
by ν the unit outward normal vector to ∂Ω. We are interested in solving the following inverse
problem.

Inverse problem. Given the Cauchy data E and curlE×ν measured on ∂Ω at a 昀椀xed
wavenumber k> 0, determine the total number of unknown point sources N, along with their
locations xj and moment vectors pj for j = 1,2, . . . ,N.

We now study a function that will serve as a base for our imaging functions to reconstruct
unknown sources. This function is motivated by the result in [15]. Let z ∈ R

3 be sampling
points and q ∈ R

3 be a 昀椀xed nonzero vector, we de昀椀ne

I(z,q) :=
ˆ

∂Ω

curl (ImG(x,z)q)×ν ·E(x)− curlE(x)×ν · ImG(x,z)qds(x) . (6)

The following lemma is very useful for the analysis of our numerical method.

Lemma 1. For any sampling point z ∈ R
3, the base function I(z,q) satis昀椀es

I(z,q) =
N∑

j=1

pj · ImG(xj,z)q.

Proof. Let y ∈ R
3 be a point in Ω. Then, for any vectors p ∈ C

3 and q ∈ R
3, using integration

by parts and the Divergence Theorem, we have

ˆ

∂Ω

curl (ImG(x,z)q)×ν ·G(x,y)pds(x) =
ˆ

Ω

−curlcurl (ImG(x,z)q) ·G(x,y)p

+ curl (ImG(x,z)q) · curl (G(x,y)p) dx

and

−

ˆ

∂Ω

curl (G(x,y)p)×ν · ImG(x,z)qds(x) =
ˆ

Ω

curlcurl (G(x,y)p) · ImG(x,z)q

− curl (G(x,y)p) · curl (ImG(x,z)q) dx.

Adding these expressions side by side and using the following Green’s tensor identities

curl xcurl x (G(x,y)p)− k2G(x,y)p= δ (x− y)p,

curl xcurl x (ImG(x,z)q)− k2ImG(x,z)q= 0,
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we obtain that
ˆ

∂Ω

curl (ImG(x,z)q)×ν ·G(x,y)p− curl (G(x,y)p)×ν · ImG(x,z)qds(x)

=

ˆ

Ω

curlcurl (G(x,y)p) · ImG(x,z)q−G(x,y)p · curlcurl (ImG(x,z)q) dx

=

ˆ

Ω

(
curlcurl (G(x,y)p)− k2G(x,y)p

)
· ImG(x,z)qdx

= p · ImG(y,z)q. (7)

Now substituting y= xj and p= pj into (7) for j = 1,2, . . . ,N, and by the representation of the
radiated 昀椀eld E(x) in (5), we derive

I(z,q) =
ˆ

∂Ω

curl (ImG(x,z)q)×ν ·
N∑

j=1

G(x,xj)pj

− curl




N∑

j=1

G(x,xj)pj


×ν · ImG(x,z)qds(x)

=
N∑

j=1

ˆ

∂Ω

curl (ImG(x,z)q)×ν ·G(x,xj)pj

− curl
(
G(x,xj)pj

)
×ν · ImG(x,z)qds(x)

=
N∑

j=1

pj · ImG(xj,z)q.

The next lemma is important to the analysis of the imaging functions.

Lemma 2. For any x= (x1,x2,x3)⊤,y= (y1,y2,y3)⊤ and q= (q1,q2,q3)⊤ in R3, we have

ImG(x,y)q= kj0 (k|w|)
q|w|2 − (q ·w)w

4π|w|2
+( j0 (k|w|)− cos(k|w|))

3(q ·w)w− q|w|2

4π k|w|4
,

(8)

where w= x− y= (w1,w2,w3)
⊤ and j0(x) = sin(x)/x. Furthermore,

lim
|w|→0

ImG(x,y)q=
k
6π

q := ImG(x,x)q.

Consequently, the matrix ImG(x,x) is invertible, and

[ImG(x,x)]−1
=

6π
k
I3.

Proof. We know that for w ̸= 0, taking the imaginary part of the Green’s tensor yields

ImG(x,y) = ImΦ(x,y) I3 +
1
k2
Im (∇xdivx (Φ(x,y) I3)) ,
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where

Φ(x,y) =
eik|w|

4π|w|
, ImΦ(x,y) =

k
4π

j0 (k|w|) ,

A direct calculation gives the formula in (8). We rewrite it as

ImG(x,y)q=
k
6π

qj0 (k|w|)−
k

12π
q
(
3( j0 (k|w|)− cos(k|w|))

k2|w|2
− j0 (k|w|)

)

+
kw(q ·w)
4π |w|2

(
3( j0 (k|w|)− cos(k|w|))

k2|w|2
− j0 (k|w|)

)
. (9)

Now, using Taylor expansion around w= 0 gives

j0 (k|w|) = 1−
k2|w|2

6
+
k4|w|4

120
+O

(
|w|6

)
,

3( j0 (k|w|)− cos(k|w|))
k2|w|2

− j0 (k|w|) =
k2|w|2

15
−
k4|w|4

210
+O

(
|w|6

)
.

Substituting these expansions into (9), we then get

ImG(x,y)q=
k
6π

q
(
1−

k2|w|2

6
+O

(
|w|4

))
−

k
12π

q
(
k2|w|2

15
+O

(
|w|4

))

+
3k3w(q ·w)

12π

(
1
15

+O
(
|w|2

))

=
k
6π

q−
k3

60π

(
2q|w|2 −w(q ·w)

)
+O

(
|w|4

)
. (10)

Thus,

lim
|w|→0

ImG(x,y)q=
k
6π

q := ImG(x,x)q.

Choosing q= ei where i = 1,2,3, e1 := (1,0,0)⊤,e2 := (0,1,0)⊤ and e3 := (0,0,1)⊤ gives
us columns of matrix ImG(x,x). That implies

ImG(x,x) =
k
6π

I3,

and its inverse matrix

[ImG(x,x)]−1
=

6π
k
I3.

Remark 3. We can see from (8) that for any nonzero vector p ∈ C
3, the function |p ·

ImG(x,y)q| decays as y moves away from x, with |p · ImG(x,y)q|=O
(
dist(x,y)−1

)
. By

substituting p= pj, x= xj and y= z, for j = 1,2, . . . ,N, into this dot product, and applying
lemma 1, alongside the triangular inequality, we obtain that

|I(z,q) |=O
(
dist(z,X)−1

)
,as dist(z,X)→∞,

where X := {xj : j = 1,2, . . . ,N} represents the set of source locations.
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In general, the function I(z,q) does not always have peaks at source locations due to the
complex behavior of p · ImG(x,z)q. For example, 昀椀gure 1(b) shows that |I(z,q)| with q=
(1,1,1)⊤ fails to correctly locate a point source. To improve this, for a 昀椀xed positive integer
s, we propose a novel imaging function

Ĩs (z) := |I(z,e1) |s+ |I(z,e2) |s+ |I(z,e3) |s. (11)

We later see (theorem 5) that s plays a crucial role in the resolution analysis of our imaging
functions.

The function I(z,ei) is de昀椀ned in (6) with the choice q= ei for i = 1,2,3. See 昀椀gure 1(c)
for an illustrative example.

To investigate the behavior of Ĩs(z), we refer to the expression obtained from lemma 1,

I(z,ei) =
N∑

j=1

pj · ImG(xj,z)ei, for i = 1,2,3. (12)

Hence, it is essential to study properties of p · ImG(x,z)ei for i = 1,2,3. We begin by con-
sidering the case of real moment vectors. We later extend the analysis to study the case of
complex moment vectors. We prove in lemma 4 that for any nonzero vector p ∈ R

3, at least
one of the terms

|p · ImG(x,z)e1|s, |p · ImG(x,z)e2|s, or |p · ImG(x,z)e3|s

achieves its maximum at z= x in a small neighborhood of x. Ideally, if all three terms are
maximal at z= x, their sum also attains maximum there in this neighborhood for any integer
s> 0, see 昀椀gure 2. Conversely, if one or two of the three terms reach a maximum at z= x in
a small neighborhood of x, for some integer s> 0, these maxima signi昀椀cantly dominate the
other term(s) that do not peak at x in this neighborhood. Refer to 昀椀gure 3 and theorem 5 for
more details. As a result, for any nonzero vector p ∈ R

3 and some integer s> 0,

|p · ImG(x,z)e1|s+ |p · ImG(x,z)e2|s+ |p · ImG(x,z)e3|s

attains a maximum at z= x in a small neighborhood of x. This motivates the formulation of
Ĩs(z) in (11).

Lemma 4. Let x ∈ R
3, and p= (p1,p2,p3)⊤ ∈ R

3 be nonzero. Then, for any integer s> 0, at
least one of the three functions |p · ImG(x,z)e1|s, |p · ImG(x,z)e2|s, |p · ImG(x,z)e3|s attains
its maximum at z= x in a small neighborhood of x.

Proof. First, we claim that the components of p satisfy at least one of the following conditions

8p21 − p22 − p23 > 0,

or 8p22 − p23 − p21 > 0,

or 8p23 − p21 − p22 > 0. (13)

Indeed, assume by contradiction that

8p21 − p22 − p23 ⩽ 0, 8p22 − p23 − p21 ⩽ 0, and 8p23 − p21 − p22 ⩽ 0.

7
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Figure 1. Reconstruction results for a point source on {z= 0.5}. True location at
(−0.5,0,0.5)⊤ is marked by green crosses. (a) For p= (−17,−7,−8)⊤, |I(z,q)|
peaks at (−0.495,0,0.495)⊤, relative error 1%. (b) For p= (17,−7− 8)⊤, |I(z,q)|
peaks at (−0.462,−0.10,0.375)⊤, relative error 24.267%. (c) For p= (17,−7− 8)⊤,
Ĩ1(z) peaks at (−0.495,0,0.495)⊤, relative error 1%. Here, z ∈ [−2,2]3, k= 20,q=
(1,1,1)⊤. Computed locations are rounded to three decimal digits.

Figure 2. For p= (17,−7,−8)⊤, all three terms |p · ImG(x,z)e1|2, |p · ImG(x,z)e2|2,
|p · ImG(x,z)e3|2 and their sum Ĩ2(z) attain their maximum at x= (−0.5,0,0.5)⊤ in a
small neighborhood of x.

Figure 3. For p= (2,9,−1)⊤, only one term |p · ImG(x,z)e2|2 attains its maximum at
x= (0,0,0)⊤ in a small neighborhood of x, but dominates the values of the other terms
that do not peak at x. As a result, their sum Ĩ2(z) still attains a maximum at x in this
neighborhood.
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Adding these inequalities, we get 6(p21 + p22 + p23)⩽ 0, which contradicts the fact that p ∈ R
3

is nonzero. Without loss of generality, assume 8p21 − p22 − p23 > 0, then p1 ̸= 0. Let w= x− z.
We derive from (10) that

p · ImG(x,z)q=
k
6π

p · q− k3

60π

(
2p · q|w|2 − (p ·w)(q ·w)

)
+O

(
|w|4

)
. (14)

Letting q= e1 in (14), we have

p · ImG(x,z)e1 = p1
k
6π

− k3

60π

(
2p1|w|2 − (p ·w)w1

)
+O

(
|w|4

)

= p1
k
6π

+O
(
|w|4

)

− k3

60π

(
p1

(
2w2

2 − 2
√
2w2

p2w1

2
√
2p1

+
p22w

2
1

8p21

)

+p1

(
2w2

3 − 2
√
2w3

p3w1

2
√
2p1

+
p23w

2
1

8p21

)
+ p1w

2
1
8p21 − p22 − p23

8p21

)

= p1
k
6π

− k3

60π
p1

(√
2w2 −

p2w1

2
√
2p1

)2

− k3

60π
p1

(√
2w3 −

p3w1

2
√
2p1

)2

− k3

60π
p1w

2
1
8p21 − p22 − p23

8p21
+O

(
|w|4

)
.

Together with 8p21 − p22 − p23 > 0, when |w| is small enough, we derive

0⩽ p · ImG(x,z)e1 ⩽ p1
k
6π

, if p1 > 0,

0⩾ p · ImG(x,z)e1 ⩾ p1
k
6π

, if p1 < 0.

That leads to

|p · ImG(x,z)e1|⩽ |p1|
k
6π

,

in a small neighborhood of x. Moreover, thanks to lemma 2, we have

|p · ImG(x,x)e1|= |p1|
k
6π

,

so |p · ImG(x,z)e1| attains its maximum at z= x when z is in a small neighborhood of x.
Consequently, the same result holds for |p · ImG(x,z)e1|s for any positive integer s.

Similarly, if the condition 8p22 − p23 − p21 > 0 or 8p23 − p21 − p22 > 0 is satis昀椀ed, |p ·
ImG(x,z)e2|s or |p · ImG(x,z)e3|s is maximal at x when z is in a small neighborhood of x,
respectively.

We recall from lemma 4 that the components of a nonzero vector p ∈ R
3 satisfy at least

one of the conditions in (13). This leads to the fact that the corresponding product term |p ·
ImG(x,z)ei|s attains a maximum at z= x in a small neighborhood of x for i ∈ {1,2,3}. The
key theorem below justi昀椀es the behavior of the imaging functions by analyzing the important
properties of these products.

9
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Theorem 5. Let x ∈ R
3, p= (p1,p2,p3)⊤ ∈ R

3 be nonzero, and s be an positive integer. If the
two conditions in (13) are satis昀椀ed, say 8p21 − p22 − p23 > 0 and 8p22 − p21 − p23 > 0, then in a
small neighborhood of x, |p · ImG(x,z)e1|s and |p · ImG(x,z)e2|s attain their maximum at
z= x, and

|p · ImG(x,z)e3|s ⩽
|p · ImG(x,x)e1|s+ |p · ImG(x,x)e2|s

2s/2+1
. (15)

Furthermore, if only one condition in (13) is satis昀椀ed, say 8p21 − p22 − p23 > 0, then in a small
neighborhood of x, |p · ImG(x,z)e1|s attains its maximum at z= x and

|p · ImG(x,z)e2|s+ |p · ImG(x,z)e3|s ⩽
2

7s/2
|p · ImG(x,x)e1|s. (16)

Consequently, in this neighborhood, the sum

|p · ImG(x,z)e1|s+ |p · ImG(x,z)e2|s+ |p · ImG(x,z)e3|s

achieves its maximum at z= x for all s⩾ s0, where s0 > 0 is suf昀椀ciently large.

Proof. First, we consider the case

8p21 − p22 − p23 > 0, 8p22 − p21 − p23 > 0 and 8p23 − p22 − p21 ⩽ 0.

According to the proof of lemma 4, |p · ImG(x,z)e1|s and |p · ImG(x,z)e2|s attain their max-
imum at z= x in a small neighborhood of x and

|p · ImG(x,x)ej|s =
( |pj|k

6π

)s

, for j = 1,2.

Again, we derive from (10) with q= e3 that

p · ImG(x,z)e3 = p3
k
6π

− k3

60π

(
2p3|w|2 − (p ·w)w3

)
+O

(
|w|4

)
. (17)

If p3 = 0, then |p · ImG(x,z)e3|=O(|w|2) as |w| → 0. Thus, when z is in a small neighbor-
hood of x, we clearly obtain the estimate (15).

Now, if p3 ̸= 0, we rewrite (17) as

p · ImG(x,z)e3 = p3
k
6π

− k3

60π
p3

(√
2w1 −

p1w3

2
√
2p3

)2

− k3

60π
p3

(√
2w2 −

p2w3

2
√
2p3

)2

− k3

60π
p3w

2
3
8p23 − p21 − p22

8p23
+O

(
|w|4

)
.

That yields, for suf昀椀ciently small |w|,

0⩽ p · ImG(x,z)e3 ⩽ p3
k
6π

− k3

60π
p3w

2
3
8p23 − p21 − p22

8p23
, if p3 > 0,

0⩾ p · ImG(x,z)e3 ⩾ p3
k
6π

− k3

60π
p3w

2
3
8p23 − p21 − p22

8p23
, if p3 < 0.

10



Inverse Problems 41 (2025) 015003 I Harris et al

Recall that 8p23 − p22 − p21 ⩽ 0. Denote a= p21 + p22 and f(t) = t k6π − t k
3w2

3
60π + 1

8t
ak3w2

3
60π with t ̸= 0,

then

0⩽ p · ImG(x,z)e3 ⩽ f(p3) , if 0< p3 ⩽

√
a
8
, (18)

0⩾ p · ImG(x,z)e3 ⩾ f(p3) , if −
√
a
8
⩽ p3 < 0. (19)

Moreover, when |w| is small enough,

f ′ (t) =
k
6π

(
1− k2

10
w2
3

(
1+

a
8t2

))
> 0.

Thus, f (t) is a strictly increasing function on (−∞,0) and (0,+∞) when z is in a small neigh-
borhood of x. That leads to

f(p3)⩽ f

(√
a
8

)
=

√
p21 + p22

8
k
6π

, if 0< p3 ⩽

√
a
8
, (20)

f(p3)⩾ f

(
−
√
a
8

)
=−

√
p21 + p22

8
k
6π

, if −
√
a
8
⩽ p3 < 0. (21)

Combine together the inequalities (18)–(21), we get

|p · ImG(x,z)e3|⩽
√
p21 + p22

8
k
6π

⩽
|p1|+ |p2|√

8

k
6π

=
|p · ImG(x,x)e1|+ |p · ImG(x,x)e2|√

8
,

in a small neighborhood of x. Then, using the fact that for any c,d⩾ 0 and integer s> 0,

(c+ d)s ⩽ 2s−1 (cs+ ds) ,

we obtain estimate (15).
Next, we consider the case

8p21 − p22 − p23 > 0, 8p22 − p21 − p23 ⩽ 0 and 8p23 − p21 − p22 ⩽ 0.

Again, by the proof of lemma 4, |p · ImG(x,z)e1|s attain its maximum at z= x in a small
neighborhood of x and

|p · ImG(x,x)e1|s =
( |p1|k

6π

)s

.

We also derive from (10) with q= e2 that

p · ImG(x,z)e2 = p2
k
6π

− k3

60π

(
2p2|w|2 − (p ·w)w2

)
+O

(
|w|4

)
.

If p2 = 0, then |p · ImG(x,z)e2|=O(|w|2) as |w| → 0. Thus, in a small neighborhood of x,
we clearly have |p · ImG(x,z)e2|s ⩽ 1

7s/2 |p · ImG(x,x)e1|s.

11
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Similarly, if p2 ̸= 0, for suf昀椀ciently small |w|, we obtain

0⩽ p · ImG(x,z)e2 ⩽ p2
k
6π

− k3

60π
p2w

2
2
8p22 − p21 − p23

8p22
, if p2 > 0,

0⩾ p · ImG(x,z)e2 ⩾ p2
k
6π

− k3

60π
p2w

2
2
8p22 − p21 − p23

8p22
, if p2 < 0.

Recall that 8p22 − p21 − p23 ⩽ 0. Let b= p21 + p23 and g(t) = t k6π − t k
3w2

2
60π + 1

8t
bk3w2

2
60π with t ̸= 0.

Again, we can show that g is strictly increasing on (−∞,0) and (0,+∞) when |w| is small
enough. Thus,

|p · ImG(x,z)e2|⩽
√
p21 + p23

8
k
6π

, (22)

within this neighborhood. Additionally, the inequalities p22 ⩽
p21+p

2
3

8 and p23 ⩽
p21+p

2
2

8 imply
that p23 ⩽

1
7p

2
1. Together with |p · ImG(x,x)e1|= |p1| k

6π , and for any integer s> 0, we derive
from (22)

|p · ImG(x,z)e2|s ⩽
1

7s/2
|p · ImG(x,x)e1|s, (23)

in a small neighborhood of x. Similarly, we obtain

|p · ImG(x,z)e3|s ⩽
1

7s/2
|p · ImG(x,x)e1|s

which, together with estimate (23), implies (16).

Remark 6. We rewrite the imaging function Ĩs(z) using lemma 1 as

Ĩs (z) =
3∑

i=1

∣∣∣∣∣∣

N∑

j=1

pj · ImG(xj,z)ei

∣∣∣∣∣∣

s

.

Under the well-separated sources assumption (1), we have ImG(xj,xi)≈ 0 for i ̸= j. If all
real moment vectors pj have comparable magnitudes, then in a small neighborhood of xj for
j = 1,2, ...,N,

Ĩs (z)≈
3∑

i=1

∣∣pj · ImG(xj,z)ei
∣∣s .

By applying theorem 5 with p= pj and x= xj, Ĩs(z) has a maximum at z= xj in this neighbor-

hood for some integer s> 0. In addition, from remark 3, we obtain that Ĩs(z) decays quickly
as z moves away from the sources up to the leading order

Ĩs (z) =O
(
dist(z,X)−s

)
, as dist(z,X)→∞,

where X= {xj : j = 1,2, . . . ,N}. Thus, Ĩs(z) is expected to have peaks at z= xj for compar-
able |pj|. We then determine N based on the number of peaks and xj by the locations of these

12
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peaks. Conversely, if some vectors pj signi昀椀cantly exceed others in magnitude, the value of
Ĩs(z) at these corresponding sources will dominate those of the other sources, resulting in sig-
ni昀椀cant peaks only at these locations. This poses a challenge to detecting sources with notably
smaller |pj|.

To address this, we present a numerical algorithm for fast and accurate identi昀椀cation of
sources with real moment vectors whose magnitudes are not comparable. The main idea is to
iteratively update the imaging functions, turning cases where sources differ notably in mag-
nitude to comparable ones. Here is a detailed explanation of the algorithm.

We assume without the loss of generality that |p1|⩾ |p2|⩾ ...⩾ |pN|. First, as mentioned
earlier, Ĩs(z) for some integer s> 0 has signi昀椀cant peaks at xj with |pj| dominating those of the
other sources and are comparable to each other for j = 1, ..., t1, where t1 ∈ {1,2, ...,N}. These
peaks allow us to identify these source locations. We then compute their moment vectors.
Again, under the assumption of well-separated sources (1), ImG(xj,xl)q≈ 0 for any j ̸= l. By
lemma 1 and the fact that |pj| dominates the magnitude of the other moment vectors, we can
estimate

I(xj,q)≈ pj · ImG(xj,xj)q for j = 1, ..., t1,

for a nonzero vector q ∈ R
3. Thanks to lemma 2, we can choose

q= [ImG(xj,xj)]
−1 ei =

6π
k
ei for i = 1,2,3.

With this choice, the ith component (pj)i of the moment vector pj can be computed as

(
pj
)
i
≈ I(xj,q) for j = 1, ..., t1and i = 1,2,3.

Here, I(xj,q) is computed by the de昀椀nition in (6) provided the Cauchy measurements, an
approximation of xj and q= 6π

k ei.
Next, we update the imaging function Ĩs(z) as follows

Ĩs,1 (z) :=
3∑

i=1

∣∣∣∣∣∣
I(z,ei)−

t1∑

j=1

pj · ImG(xj,z)ei

∣∣∣∣∣∣

s

:=
3∑

i=1

|I1 (z,ei)|s .

This way, we 昀椀lter out dominant terms identi昀椀ed explicitly in the previous step and obtain

Ĩs,1 (z) =
3∑

i=1

∣∣∣∣∣∣

N∑

j=t1+1

pj · ImG(xj,z)ei

∣∣∣∣∣∣

s

.

We see that this updated imaging function retains a structure similar to Ĩs(z) and therefore
exhibits similar behavior. Suppose that among the remaining sources, those at xj for j = t1 +
1, ...t2, where t2 ∈ {1,2, ...,N}, have |pj| that are notably larger than those of the other sources
and comparable among themselves. Then, the updated imaging function Ĩs,1(z) has peaks at

13
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these xj for some integer s> 0, providing estimations for these locations. Moreover, the ith
component (pj)i of pj can be computed as

(
pj
)
i
≈ I(xj,q)−

t1∑

l=1

pl · ImG(xj,xl)q= I1 (xj,q) for j = t1 + 1, ..., t2 and i = 1,2,3,

where q= 6π
k ei. Again, this is because of the domination of |pj| and the assumption of well-

separated sources (1). Here, I(xj,q) is computed by (6) based on the Cauchy measurements,
an approximation of xj and q= 6π

k ei.
We repeat this process to determine the other sources. The general formula of the updated

imaging function to determine sources at xj with |pj| dominating those of the remaining sources
and are comparable to each other for j = tn+ 1, ..., tn+1, where tn+1 ∈ {1,2, ...,N}, is given by

Ĩs,n (z) :=
3∑

i=1

∣∣∣∣∣∣
In−1 (z,ei)−

tn∑

j=tn−1+1

pj · ImG(xj,z)ei

∣∣∣∣∣∣

s

:=
3∑

i=1

|In (z,ei)|s .

=
3∑

i=1

∣∣∣∣∣∣

N∑

j=tn+1

pj · ImG(xj,z)ei

∣∣∣∣∣∣

s

for n ∈ N,n⩾ 1 and I0 := I.

The algorithm is summarized as follows.

Algorithm

• Step 1:
– Locate sources at xj for j = 1, ..., t1 using Ĩs(z) for some integer s> 0.
– Estimate the i-th component (pj)i of moment vector pj by I(xj,q) with q= 6π

k ei for i =
1,2,3 and j = 1, ..., t1.

• Step n:
– Update the imaging function

Ĩs,n (z) :=
3∑

i=1

∣∣∣∣∣∣
In−1 (z,ei)−

tn∑

j=tn−1+1

pj · ImG(xj,z)ei

∣∣∣∣∣∣

s

=
3∑

i=1

|In (z,ei) |s.

– Locate sources at xj using Ĩs,n(z) for some integer s> 0, and estimate (pj)i by In(xj,q)
with q= 6π

k ei for i = 1,2,3 and j = tn+ 1, ..., tn+1.
• Stop when the updated imaging function no longer exhibits signi昀椀cant peaks.

Computing Ĩs(z) at step 1 is simple and fast. The updates of Ĩs,n(z) in the next steps only need
to evaluate the terms pj · ImG(xj,z)q, which can also be done quickly.

Remark 7. In our numerical study, we observed that when the difference in the magnitude of
moment vectors between the strongest and weakest sources is about six times or greater, the
proposed algorithm may encounter a challenge that the updated imaging function at some step
may inherit a major error from the previous step. The primary source of error in this case arises
from a small neighborhood around a peak, which indicates the location of a source. In other
words, the subtraction technique used in the algorithm does not totally eliminate the small
neighborhood around a peak. While this error may not signi昀椀cantly impact the identi昀椀cation

14
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of relatively strong sources, it can pose a substantial challenge when attempting to identify
much weaker sources in subsequent steps.

One possible solution to address this issue is to ‘clean up’ the small neighborhoods (e.g.
by applying suitable cutoff functions) around the sources identi昀椀ed in the previous step before
proceeding to the next one in the algorithm. This clean-up process can help eliminate the
residual errors after each step and is a reasonable approach, given our assumption that the
sources are well-separated.

Next, we extend these results to reconstruct point sources with complex moment vectors.
We propose two new imaging functions as follows

Ĩres (z) := |Re I(z,e1) |s+ |Re I(z,e2) |s+ |Re I(z,e3) |s, (24)

Ĩims (z) := |Im I(z,e1)|s+ |Im I(z,e2)|s+ |Im(I(z,e3)|s. (25)

Note that taking the real and imaginary part of the identity in Lemma 1 yields

Re I(z,ei) =
N∑

j=1

Re
(
pj · ImG(xj,z)ei

)
=

N∑

j=1

Repj · ImG(xj,z)ei,

Im I(z,ei) =
N∑

j=1

Im
(
pj · ImG(xj,z)ei

)
=

N∑

j=1

Impj · ImG(xj,z)ei, for i = 1,2,3.

Since Repj and Impj are in R
3, they serve the same role as the real moment vectors pj in

the formula of Ĩs(z) from (11) and (12). Consequently, the analysis for Ĩs(z) can be similarly
applied to the two imaging functions de昀椀ned in (24) and (25). In other words, as in remark
6, Ĩres (z) exhibits signi昀椀cant peaks at z= xj for some integer s> 0 and j = 1,2, ...,N, when all
|Repj| are comparable. Similarly, Ĩims (z) displays signi昀椀cant peaks at z= xj for some integer
s> 0, when all |Impj| are comparable. Furthermore, performing the same algorithm that we

previously established for Ĩs(z), we can iteratively update the imaging function Ĩres (z) to 昀椀nd
xj and Repj. Similarly, Impj (and also xj) is computed using the algorithm for Ĩims (z).

The processes of determining (xj,Repj) and (xl, Impl) are done independently with differ-
ent descending orders of |Repj| and |Impl|. When a real and an imaginary part share a similar
computed location, we combine them to achieve a 昀椀nal reconstruction of the corresponding
moment vector. If a computed location only appears from the process of 昀椀nding either Repj
or Impj, the corresponding moment vector is then respectively determined as either Repj or
Impj.

This method is robust against the presence of noise in data. In practice, data is always
perturbed by noise. We assume that the noisy Cauchy measurements satisfy

∥E(x)−Eδ (x)∥L2(∂Ω) ⩽ δ1∥E(x)∥L2(∂Ω),

∥curlE(x)×ν − curlEδ (x)×ν∥L2(∂Ω) ⩽ δ2∥curlE(x)×ν∥L2(∂Ω),

for some constants δ1, δ2 > 0 presenting the level of noise.We can derive the following stability
estimates.

Theorem 8. Denote by Iδ(z,q) the function I(z,q) with the noisy Cauchy data. Then, for any
sampling point z ∈ R

3, a 昀椀xed integer s> 0, and a 昀椀xed nonzero vector q ∈ R
3,

∣∣|I(z,q)|s− |Iδ (z,q) |s
∣∣⩽ C1max(δ1, δ2), as max(δ1, δ2)→ 0,
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for some constant C1 > 0 independent of δ1, δ2 and z. As a result, let Ĩδs (z) be the noisy version
of Ĩs(z),

∣∣∣̃Is (z)− Ĩδs (z)
∣∣∣⩽ C2max(δ1, δ2), as max(δ1, δ2)→ 0,

for some constant C2 > 0 independent of δ1, δ2 and z. We also obtain similar stability estimates
for the imaging functions Ĩre,δs (z) and Ĩim,δs (z).

Proof. The proof can be done similarly as in [24], thus we omit it here.

To conclude this section, it is worth noting that the imaging functions developed from I(z,q)
de昀椀ned in (6) require no speci昀椀c restrictions on the sampling points z. This enables imaging
at an arbitrary distance from the measurement boundary, including areas close to it. When the
sampling points are distinct from those on themeasurement boundary, we discuss the following
base function Î(z,q), which can be employed similarly as I(z,q) for source reconstruction.

Remark 9. Assume that z is distinct from points on the boundary measurement x ∈ ∂Ω. We
introduce the function

Î(z,q) :=
i
2

ˆ

∂Ω

curl
(
G(x,z)q

)
×ν ·E(x)− curlE(x)×ν ·G(x,z)qds(x) . (26)

Similar to lemma 1, we also can prove that

Î(z,q) =
N∑

j=1

pj · ImG(xj,z)q, (27)

using the following identity of the Green’s tensor
ˆ

∂Ω

curl
(
G(x,z)q

)
×ν ·G(x,y)p− curl (G(x,y)p)×ν ·G(x,z)qds(x)

=−2ip · ImG(y,z)q,

for any y ∈ Ω, z ∈ R
3, and z /∈ ∂Ω to avoid singularity. By combining (27) with theorem 1, it

follows that Î(z,q) is expected to behave similarly to I(z,q). We then denote another imaging
function similar to (11) using the base Î(z,q) by

˜̂Is (z) = |̂I(z,e1) |s+ |̂I(z,e2) |s+ |̂I(z,e3) |s. (28)

Similarly, we can also extend the imaging functions in (24) and (25), and the numerical
algorithm for Î(z,q).

3. Identification of electromagnetic sources with small volumes

In this section, we extend our method to determine small-volume electromagnetic sources. We
consider sources having compact support within N ∈ N small-volume domains Dj, expressed
as

F=
N∑

j=1

pj1Dj ,

16
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where 1Dj is the indicator function on Dj and Dj = xj+ ϵBj ⊂ Ω. We assume that Dj ∩Di = ∅
for i ̸= j and that the parameter ϵ> 0 is small. The bounded domains Bj have Lipschitz
boundaries and contain the origin, with |Bj|=O(1). Denote D= ∪N

j=1Dj, then |D|=O(ϵ3).
Each xj ∈ R

3 is located in Dj, and is assumed to be within the measurement domain Ω with
disti̸=j(xi ,xj)≫ λ. Additionally, each Dj is characterized by a nonzero vector pj ∈ C

3.
Now, the electric 昀椀eld E that is generated by the source F satisfy

curlcurlE(x)− k2E(x) = F, in R3. (29)

As in the previous section, we assume that the electric 昀椀eld E is radiating, meaning that it sat-
is昀椀es the Silver-Müller radiation condition (3). Again, the radiation condition holds uniformly
with respect to x/|x|. It is well-known that the radiated 昀椀eld E is given by

E(x) =
ˆ

D
G(x,y)F(y)dy, (30)

where again G(x,y) is the Green’s tensor in (4).
Our goal is to solve the inverse problem of determining the number of unknown small-

volume sources N, points xj within Dj ⊂ Ω, and the directions of vectors pj for j = 1,2, ...,N.
This is based on the Cauchy data measurements of E(x) and curlE(x)×ν for all x ∈ ∂Ω,
which take the forms

E(x)
∣∣
∂Ω

=

ˆ

D
G(x,y)F(y) dy

∣∣
∂Ω

and curlE(x)
∣∣
∂Ω

= curl
ˆ

D
G(x,y)F(y) dy

∣∣
∂Ω

.

Recall that ∂Ω denotes the closed known measurement surface, with ν as the unit outward
normal vector. To proceed, we assume dist(∂Ω,D)> 0, which implies that the Green’s tensor
is a smooth function in the variable y ∈ D. Given this, we can perform a component-wise
Taylor expansion in Dj such that

G(x,y) =G(x,xj)+O (ϵ) . (31)

This is because y= xj+ ϵw for some w ∈ Bj. By incorporating (31) into the integral formulas
of E(x) and curlE(x) mentioned above, we obtain their representation as follows

E(x) =
N∑

j=1

ϵ3|Bj|G(x,xj)Avg(Fj)+O
(
ϵ4
)

(32)

and

curlE(x) =
N∑

j=1

ϵ3|Bj|curl(G(x,xj)Avg(Fj))+O
(
ϵ4
)
, (33)

for all x ∈ ∂Ω. Here, we let Avg(Fj) denote the average value of F on the subregion Dj.
Moreover,

Avg(Fj) =
1

|Dj|

ˆ

Dj

F(y)dy= pj for all j = 1,2, ...,N.
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Notice that in (32) and (33), we use the fact that |Dj|= ϵ3|Bj|. This means that the electromag-
netic data for the case of a source with small-volume support is up to the leading order and has
the same structure as the electromagnetic data given by 昀椀nite point sources.

Now, we recall the proposed base function I(z,q)

I(z,q) =
ˆ

∂Ω

curl (ImG(x,z)q)×ν ·E(x)− curlE(x)×ν · ImG(x,z)qds(x) ,

for any sampling point z ∈ R
3 and a 昀椀xed nonzero vector q ∈ R

3. By using to the asymptotic
expressions (32) and (33) and lemma 1, we rewrite the function as

I(z,q) =
N∑

j=1

ϵ3|Bj|
ˆ

∂Ω

curl (ImG(x,z)q)×ν ·G(x,xj)pj

− curl
(
G(x,xj)pj

)
×ν · ImG(x,z)qds(x)+O

(
ϵ4
)

=
N∑

j=1

ϵ3|Bj|pj · ImG(xj,z)q+O
(
ϵ4
)
.

Based on this, up to the leading order, I(z,q) is expected to behave similarly to the case of
point sources discussed in section 2, with each point source at xj having the moment vector
ϵ3|Bj|pj for j = 1,2, ...,N. Therefore, we can use the two new imaging functions Ĩres (z) and

Ĩims (z), along with their updated versions following the proposed algorithm in the previous
section, to determine points xj within the small-volume subregions. Recall that

Ĩres (z) = |Re I(z,e1)|s+ |Re I(z,e2)|s+ |Re I(z,e3)|s,
Ĩims (z) = |Im I(z,e1)|s+ |Im I(z,e2)|s+ |Im(I(z,e3)|s.

Since, again, these imaging functions peak as sampling point z approaches xj for some integer
s> 0 and decay quickly as the sampling point z moves away from the small-volume sources.
Speci昀椀cally, for z ∈ R

3,

Ĩres (z) = Ĩims (z) =O
(
dist(z,X)−s

)
, as dist(z,X)→∞,

where the set X= {xj : j = 1,2, . . . ,N}. Furthermore, following the numerical algorithm, we
can compute and normalize the terms ϵ3|Bj|pj to estimate the directions of vectors pj.

4. Numerical study

In this section, we present numerical examples to determine three-dimensional electromag-
netic sources using our proposed method. The simulation was done using the computing soft-
ware MATLAB. Throughout our examples, the sampling domain is the cube [−1.5,1.5]3,
which contains the unknown sources and is uniformly discretized into 200 sampling points
in each direction, resulting in a step size of approximately 0.015. In most of our examples, we
consider k= 20 and s= 4 in the imaging functions. Sections 4.3 and 4.4 include the numerical
examples for different values of k and s, respectively. The synthetic Cauchy data E(x) and
curlE(x)×ν are generated by numerical computation of E in (5) and

curlE(x) =
N∑

j=1

curl
(
Φ(x,y)pj

)
.
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In most examples, the Cauchy data are measured on a sphere of radius 25, which is approx-
imately 80 wavelengths, centered at the origin. The case of near 昀椀eld data is presented in
section 4.6. These data points are expressed in spherical coordinates using angles ϕ ∈ [0,π]
and θ ∈ [0,2π], each having 100 uniformly distributed values across their respective ranges.

To simulate noisy data, we introduce random noise to our synthetic data. More precisely, we
incorporate two complex-valued noise vectors N1,2 ∈ C

3 into the data vectors, each contain-
ing numbers a+ ib where a,b ∈ (−1,1) randomly generated from a uniform distribution. For
simplicity, we consider the same noise level δ = 10% for E and curlE×ν in most numerical
examples. The performance of the method for highly noisy data is presented in section 4.5.
The noisy data are given by

Eδ := E+ δ
N1

∥N1∥2
∥E∥2, curlEδ ×ν := curlE×ν + δ

N2

∥N2∥2
∥curlE×ν∥2,

where ∥ · ∥2 is the Euclidean norm. The isovalue used in the 3D isosurface plotting for all
examples is 0.2 (20% of the maximal value of the imaging functions that are normalized). All
estimated locations and moment vectors are rounded to three decimal digits.

4.1. Reconstruction results for point sources

We begin with an example involving three point sources that have moment vectors with com-
parable magnitudes. The proposed algorithm, which utilizes the imaging functions Ĩres (z) and
Ĩims (z), accurately and quickly determine the number of sources and source locations. Despite
the presence of 10% random noise in the data, the computed moment vectors achieve a relative
error of less than 10%, demonstrating the robustness of the method. The reconstruction results
are presented in 昀椀gure 4 and table 1.

Our next example considers the case of six point sources where some moment vectors can
have notably different magnitudes. As shown in table 2 and 昀椀gures 5–7, the two imaging
functions Ĩres (z) and Ĩ

im
s (z), along with their updated versions based on the proposed numerical

algorithm, ef昀椀ciently determine the number of sources and their locations with high accuracy.
The computed moment vectors further demonstrate the effectiveness and robustness of the
method, achieving a low relative error of less than 10% from the noisy Cauchy data.

4.2. Reconstruction for small-volume sources

In this part, we investigate our method to identify points within small-volume sources and
determine the directions of constant vectors characterizing the sources. We examine six elec-
tromagnetic ball sources with small radii, each having a possibly complex vector with mag-
nitudes that are not comparable. Despite the presence of 10% random noise in the measure-
ment data, the method quickly and accurately locates the centers of these source supports.
Furthermore, the estimated directions of the constant vectors exhibit a low relative error,
remaining below 10%. See further details of the results in table 3.

4.3. Reconstruction with different wavenumbers

In this part, we present numerical examples for reconstructing point sources with different
wavenumbers. The data includes 10% of random noise and the power s= 4 is maintained in the
imaging functions. We 昀椀rst consider three point sources with the same true locations and true
moment vectors as in table 1. Reconstruction results for k= 8 are shown in table 4 and 昀椀gure 8.
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Figure 4. Reconstruction results for the three point sources in table 1 for k= 20,s= 4.
Isosurface visualizations for the true locations in (a), for Ĩre4 (z) in (b), and for Ĩim4 (z) in
(c). Cross-sectional views restricted to 2D domains of Ĩre4 (z) in (d)–(e) and of Ĩim4 (z) in
(f), with the true locations marked with green crosses.

Table 1. Reconstruction results for three point sources where the moment vectors have
comparable magnitudes for k= 20,s= 4.

True location
(N= 3) Computed location

True moment
vector

Computed moment
vector

(−0.9,0,1) (−0.900,0.000,1.005)



−2.5
4
−3






−2.471
3.775
−3.046




(−1,0.75,−1) (−1.005,0.750,−1.005)



−1+ 3i
5+ 4i
3






−0.924+ 3.000i
4.901+ 3.988i
2.968+ 0.001i




(1.1,−0.3,−1) (1.095,−0.300,−1.005)




4.5i
−5

3− 2i






−0.009+ 4.504i
−4.922+ 0.031i
2.987− 1.992i




Comparing these with the results for k= 20 in table 1, the relative errors in the computed
locations range from 1.093%− 1.175% for k= 8, whereas they are slightly lower, ranging
from 0.372%− 0.466% for k= 20. Moreover, the relative errors in the computed moment
vectors for k= 20 range from 1.150%− 4.140%, while for k= 8, they increase to 3.811%−
8.921% but remain within a reasonable range under noisy data. For k= 30, the results slightly
improve compared to those for k= 20.
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Table 2. Reconstruction results for six point sources for which some moment vectors
have notably different magnitudes for k= 20,s= 4.

True location
(N= 6) Computed location

True moment
vector

Computed moment
vector

(−1.2,0,−1) (−1.200,0.000,−1.005)



80+ 11i
50+ 16i
−32i







79.776+ 10.977i
50.359+ 15.938i
−0.308− 31.462i




(0.6,−1,−1) (0.600,−1.005,−1.005)



12− 23i

35
3+ 60i






11.536− 22.805i
34.779− 0.709i
2.705+ 60.789i




(1,0.5,0) (0.990,0.495,0.000)




−6
7+ 40i
−18+ 5i







−5.923− 0.187i
6.998+ 39.645i
−18.781+ 5.360i




(−0.3,0,0) (−0.300,0.000,0.000)




−5i
12

9+ 14i






−0.049− 5.013i
12.209+ 0.093i
8.416+ 14.025i




(−1,0.8,1) (−1.005,0.795,1.005)



7− 26i
−2
8







7.049− 25.951i
−1.977+ 0.308i
8.015− 0.257i




(0,−1,1) (0.000,−1.005,1.005)



25
10
6






24.927
9.379
5.160




Figure 5. Reconstruction results for the six point sources in table 2 for k= 20,s= 4.
Isosurface visualizations for the true locations in (a), for Ĩre4 (z) and their updates in (b),
and for Ĩim4 (z) and their updates in (c).

Next, we determine six point sources with the same true locations and true moment vectors
as in table 2 at different wavenumbers. Reconstruction results for k= 12 are shown in table 5.
The computed locations for k= 8 and k= 12 are almost similar to those for k= 20 in table 2,
with low relative errors not exceeding 1%. The relative errors in computed moment vectors
range between 0.742%− 3.796% for k= 20, increasing to 2.221%− 9.641% for k= 12, and
further to 4.183%− 11.180% for k= 8. In addition, for k= 30, the errors in reconstruction
results are slightly lower than those for k= 20. These results indicate that larger wavenumbers
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Figure 6. Reconstruction results for the six point sources in table 2 for k= 20,s= 4.
Cross-sectional views restricted to 2D domains of Ĩre4 (z) and their updates, with the true
locations marked with green crosses.

Figure 7. Reconstruction results for the six point sources in table 2 for k= 20,s= 4.
Cross-sectional views restricted to 2D domains of Ĩim4 (z) and their updates, with the true
locations marked with green crosses.
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Table 3. Reconstruction results for six small-volume ball sources for k= 20,s= 4, each characterized
by a (possibly complex) constant vector.

True xj (N= 6) Computed xj Radius True pj Computed pj/|pj|

(1,0,1.2) (1.005,0.000,1.200) 0.11 85.170



0.317+ 0.234i

−0.821
−0.410i







0.313+ 0.239i
−0.819− 0.002i
−0.004− 0.416i




(−1,−0.6,1.2) (−1.005,−0.600,1.200) 0.12 57.524




0.574− 0.244i
−0.173+ 0.695i

0.312







0.577− 0.246i
−0.173+ 0.692i
0.310+ 0.006i




(−1,0,−1) (−1.005,0.000,−0.990) 0.11 26.571




0.565
−0.338
−0.753







0.568
−0.330
−0.753




(1,0.3,−1) (1.005,0.300,−1.005) 0.13 29.547




0.334i
−0.575i
0.745i







0.344i
−0.574i
0.744i




(1.1,−0.7,0) (1.095,−0.705,0.000) 0.1 25.593




0.508+ 0.351i
−0.468+ 0.586i

−0.234i







0.506+ 0.347i
−0.468+ 0.590i
0.0000− 0.234i




(0,0.5,0) (0.000,0.495,0.000) 0.11 19.712



−0.482+ 0.386i

−0.579i
0.531






−0.479+ 0.410i
0.000− 0.574i
0.522+ 0.0000i




Table 4. Reconstruction results for three point sources for k= 8,s= 4.

True location Computed location True moment Computed moment

(−0.9,0,1) (−0.915,0.000,1.005)



−2.5
4
−3






−2.404
3.543
−3.175




(−1,0.75,−1) (−0.990,0.735,−1.005)



−1+ 3i
5+ 4i
3






−0.817+ 3.340i
4.861+ 3.932i
2.838− 0.011i




(1.1,−0.3,−1) (1.095,−0.285,−1.005)




4.5i
−5

3− 2i







0.129+ 4.462i
−5.230− 0.036i
3.111− 1.996i




enhance the resolution of the imaging functions, thereby improving the accuracy of source
identi昀椀cation.

4.4. Reconstruction with different exponent values s

We provide numerical examples with different values of s in the imaging functions to determ-
ine three and six point sources. The data includes 10% of random noise and the wavenum-
ber is chosen at k= 20. Using the same base functions I(z,ei) with i = 1,2,3 as examples in
section 4.1, the computed locations and moment vectors for s= 2 and s= 6 are identical to
those for s= 4, with relative errors much less than 10%. Therefore, the reconstruction results
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Figure 8. Reconstruction results for the three point sources in table 4 for k= 8,s= 4.
Isosurface visualizations for the true locations in (a), for Ĩre4 (z) in (b), and for Ĩim4 (z)
in (c).

Table 5. Reconstruction results for six point sources for k= 12,s= 4.

True location
(N= 6) Computed location

True moment
vector

Computed moment
vector

(−1.2,0,−1) (−1.200,0.000,−1.005)



80+ 11i
50+ 16i
−32i






79.566+ 10.473i
48.102+ 15.847i
0.850− 32.516i




(0.6,−1,−1) (0.600,−0.990,−0.990)



12− 23i

35
3+ 60i






11.983− 22.953i
35.059− 0.650i
3.07+ 62.092i




(1,0.5,0) (0.990,0.495,0.000)




−6
7+ 40i
−18+ 5i







−5.614− 1.183i
5.716+ 39.283i
−18.209+ 5.457i




(−0.3,0,0) (−0.300,0.000,0.000)




−5i
12

9+ 14i






−0.532− 3.415i
12.206+ 0.393i
8.444+ 14.919i




(−1,0.8,1) (−1.005,0.795,0.990)



7− 26i
−2
8







6.244− 25.928i
−2.131+ 0.771i
8.027− 0.419i




(0,−1,1) (0.000,−1.005,1.005)



25
10
6






24.771
8.743
5.376




for s= 2 and s= 6 can be found in table 1 for three point sources and table 2 for six point
sources. Figures 9 and 10 display the reconstructions for three point sources for s= 2 and
s= 6, respectively. It is worth noting that reconstructing locations depends on s in the imaging
functions while reconstructing moment vectors does not. For s= 1, the relative errors in com-
puted locations for three sources reach up to 28%. These results demonstrate the accuracy and
robustness of our algorithm when s is large enough. Moreover, adjusting different s values in
our algorithm is easy and computationally cheap.
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Figure 9. Reconstruction results for the three point sources in table 1 for k= 20,s= 2.
Isosurface visualizations for the true locations in (a), for Ĩre2 (z) in (b), and for Ĩim2 (z)
in (c).

Figure 10. Reconstruction results for the three point sources in table 1 for k= 20,s= 6.
Isosurface visualizations for the true locations in (a), for Ĩre6 (z) in (b), and for Ĩim6 (z)
in (c).

4.5. Reconstruction with high noise levels

In this section, we demonstrate the stability of our method by testing its performance under
high levels of noise added to synthetic data. We consider the wavenumber k= 20 and the
exponent s= 4 in the imaging functions. Reconstruction results for three point sources with
30% and 50% noise in the data are presented in tables 6 and 7, respectively. The computed
source locations remain accurate across all noise levels, with relative errors below 0.466%.
While the computed moment vectors are slightly more affected by noise, their relative errors
remain within a reasonable range, increasing slightly from 1.125%− 4.140% for 10% noise
(see table 1), to 1.116%− 4.558% for 30% noise, and further to 1.129%− 4.639% for 50%
noise. These results demonstrate the robustness of the proposed method in identifying sources
despite high noise levels in the data.

4.6. Comparison between
˜̂
Is(z) and Ĩs(z) in imaging sources near the data boundary

We now evaluate the performance of the imaging function ˜̂Is(z) de昀椀ned via Î(z,q) in (28)
and compare it with the imaging function Ĩs(z) de昀椀ned via I(z,q) in (11) to reconstruct point
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Table 6. Reconstruction results for three point sources for k= 20,s= 4, and 30% ran-
dom noise was added to the data.

True location Computed location True moment Computed moment

(−0.9,0,1) (−0.900,0.000,1.005)



−2.5
4
−3






−2.428
3.774
−3.093




(−1,0.75,−1) (−1.005,0.750,−1.005)



−1+ 3i
5+ 4i
3






−0.923+ 3.006i
5.001+ 4.030i
2.992i − 0.024i




(1.1,−0.3,−1) (1.095,−0.300,−1.005)




4.5i
−5

3− 2i






−0.001+ 4.539i
−4.951+ 0.016i
2.974− 2.049i




Table 7. Reconstruction results for three point sources for k= 20,s= 4, and 50% ran-
dom noise was added to the data.

True location Computed location True moment Computed moment

(−0.9,0,1) (−0.900,0.000,1.005)



−2.5
4
−3






−2.458
3.753
−3.067




(−1,0.75,−1) (−1.005,0.750,−1.005)



−1+ 3i
5+ 4i
3






−0.910+ 2.987i
4.973+ 4.032i
3.001+ 0.012i




(1.1,−0.3,−1) (1.095,−0.300,−1.005)




4.5i
−5

3− 2i






−0.019+ 4.566i
−4.958+ 0.053i
3.03− 2.011i




Table 8. Comparison of the reconstruction results using ˜̂Is(z) and Ĩs(z) for identifying point sources
located near the data boundaryfor k= 20,s= 4.

True location (N= 4) True moment vector Computed location by ˜̂Is(z) Computed location by Ĩs(z)

(−1.3,−1.3,−1.3) (−1,−1,−1) (−1.425,−1.275,−1.275) (−1.305,−1.305,−1.305)
(1.4,1.4,1.4) (1,1,1) (1.470,1.230,1.275) (1.455,1.365,1.410)
(−1,−1,0) (−1,−1,−1) (−1.425,−1.275,1.275) (−1.005,−1.005,0.000)
(0.7,0.5,0) (1,1,1) (1.470,−1.230,1.275) (0.705,0.495,0.000)

sources with real moment vectors. We 昀椀rst consider the case when the Cauchy data are meas-
ured on a boundary close to the sampling domain. The radius of the measurement sphere ∂Ω
is set to 2.4, and the sampling cube for our simulations remains [−1.5,1.5]3. Our example
involves four point sources, with two located near the measurement boundary and the other

two further away. As shown in table 8, ˜̂Is(z) fails to locate accurately all four sources. This
may be due to the fact that sampling point z approaches the blow-up singularity of the Green’s
tensor in the formulation of Î(z,q) in (26) when imaging near the data boundary. However,
Ĩs(z) accurately determines source locations. Now, when the boundary data is not close to
the sampling domain, increasing the radius of the measurement sphere to at least 2.6 in this

example, allows ˜̂Is to provide accurate estimates, with results similar to those of Ĩs(z).

26



Inverse Problems 41 (2025) 015003 I Harris et al

5. Conclusion

We introduce a new numerical method for solving the inverse source problem associated
with Maxwell’s equations at a 昀椀xed frequency Cauchy data. We justify the imaging functions
and establish a computational algorithm to determine point sources with (possibly complex)
moment vectors that can have notably different magnitudes. Even in the presence of noise in
the data, our method accurately and ef昀椀ciently localizes electromagnetic point sources and
small-volume sources. It can also estimate the moment vectors of point sources and the dir-
ections of these vectors for small-volume sources with a low relative error, demonstrating the
robustness of our approach. The method allows imaging at arbitrary distances from the data
boundary, and it offers easy implementation and low computational costs. This makes it a
promising approach for addressing inverse source problems.
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