
Efficient Dynamical Field-Theoretic Simulations for Multi-Component Systems

Efficient Dynamical Field-Theoretic Simulations for Multi-Component Systems

Timothy Quah,1 Christopher Balzer,2 Kris T. Delaney,2 and Glenn H. Fredrickson1, 2, 3

1)Department of Chemical Engineering, University of California, Santa Barbara,

California 93106, USA
2)Materials Research Laboratory, University of California, Santa Barbara,

California 93106, USA
3)Materials Department, University of California, Santa Barbara, California 93106,

USA

(*Electronic mail: ghf@ucsb.edu)

(Dated: 28 February 2025)

Understanding the phase behavior and dynamics of multi-component polymeric systems

is essential for designing materials used in applications ranging from biopharmaceuticals

to consumer products. While computational tools for understanding the equilibrium prop-

erties of such systems are relatively mature, simulation platforms for investigating non-

equilibrium behavior are comparatively less developed. Dynamic self-consistent field the-

ory (DSCFT) is a method that retains essential microscopic thermodynamics while en-

abling a continuum-level understanding of multi-component, multi-phase diffusive trans-

port. A challenge with DSCFT is its high computational complexity and cost, along with

the difficulty of incorporating thermal fluctuations. External potential dynamics (EPD) of-

fers a more efficient approach to studying inhomogeneous polymers out of equilibrium,

providing similar accuracy to DSCFT but with significantly lower computational cost. In

this work, we introduce an extension of EPD to enable efficient and stable simulations of

multi-species, multi-component polymer systems, while embedding thermodynamically

consistent noise. We validate this framework through simulations of a triblock copolymer

melt and spinodally decomposing binary and ternary polymer blends, demonstrating its

capability to capture key features of phase separation and domain growth. Furthermore,

we highlight the role of thermal fluctuations in early-stage coarsening. This study provides

new insights into the interplay between stochastic and deterministic effects in the dynamic

evolution of polymeric fluids with the EPD framework offering a robust and scalable ap-

proach for investigating the complex dynamics of multi-component polymeric materials.
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I. INTRODUCTION

Polymeric formulations are essential in a wide range of applications, such as elastomers, paints,

adhesives, personal care products, pharmaceuticals, and plastic products.1–5 A key challenge in

designing multi-component formulations is understanding miscibility, as even small chemical dif-

ferences between components can lead to structural heterogeneity.6 The length scale of the struc-

tural heterogeneity can significantly alter a range of material properties, including mechanical,7,8

rheological,9–11 transport,12–14 and optical or photonic properties.15–17 Another major challenge

in formulation development is the high dimensionality of the parameter space, which may include

composition, chemistry, and chain topology, among other factors.18 Due to material and time con-

straints, relying solely on experimental techniques to navigate the parameter space is unfeasible.

Therefore, theoretical and computational tools are indispensible for gaining insights and establish-

ing design principles in order to obtain formulations with tailored properties.19,20

Theoretical tools for predicting polymer formulation properties must capture continuum-level

phenomena while also retaining essential microscopic details, such as chain connectivity.21,22

Among such methods, molecularly derived polymer field theories are particularly effective for

probing the equilibrium properties of multicomponent polymer formulations.20,23 The most com-

mon treatment of polymer field theory is self-consistent field theory (SCFT), which has success-

fully elucidated the self-assembly behavior of a wide variety of polymeric systems.20,24–27 SCFT

is quantitatively predictive when thermal fluctuations are weak and well ordered equilibrium states

are achieved. However, when thermal fluctuations are strong or the system is near a critical

phase transition, field-theoretic simulations (FTS) become necessary, allowing for the study of

fluctuation-driven phenomena.23 In reality, materials often do not reach well ordered equilibrium

states within experimental time scales, making an understanding of the material’s processing his-

tory critical – an aspect that both SCFT and FTS do not attempt to address .28

Dynamic variants of equilibrium field theories have been developed to study kinetic pathways

toward equilibrium states. The most common among these is dynamic self-consistent field the-

ory (DSCFT).28–32 DSCFT utilizes a density-explicit field theory framework that retains both

mesoscopic density fields and auxiliary species fields. Density fields evolve according to Model

B conserved dynamics,33 while the auxiliary species fields are solved self-consistently on each

timestep.20,28 DSCFT has been effectively used to study the self-assembly behavior of block

copolymers in both solutions and melts29,30,34,35, during solvent evaporation36,37, in systems under
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shear38, and in systems where hydrodynamic interactions are significant39,40. However, DSCFT

suffers from significant computational cost as SCFT relaxation steps must be performed at each

time step to compute thermodynamic forces.

A significant, and often overlooked, challenge with DSCFT is the inclusion of thermal fluctu-

ations. While the theoretical framework can be extended to account for these corrections, numer-

ical simulations incorporating them are scarce.30,34,41 Stochastic DSCFT typically suffers from

numerical instability, arising from the failure to maintain positive solutions when integrating the

mesoscopic density fields. Previous FTS work with the density-explicit field theory showed that

preserving positive solutions requires numerical schemes with strong accuracy or the ability to

accurately track stochastic trajectories.42 However, constructing such strong order schemes for

correlated noise is non-trivial. In the density-explicit formalism, the failure to prevent negative

densities can be catastrophic, resulting in numerical pathologies including exploding trajectories,

overflow/underflow, and/or negative densities that persist throughout the simulation. In contrast,

the auxiliary field (AF) formalism, which relies solely on auxiliary fields with an exponential-

like relationship to mesoscopic density fields, allows for transient negative density values without

causing catastrophic numerical issues. Consequently, AF dynamical models are generally more

tolerant to fluctuations.43,44

Obtaining an AF dynamical model requires rewriting the dynamical equations using auxil-

iary fields, typically termed the external potential dynamics (EPD) method.45 Since EPD directly

evolves the auxiliary field, the method in principle does not require SCFT iteration loops to be

performed at each time step. As a consequence of the gain in computational efficiency, EPD has

been effectively applied to investigate the nonequilibrium behavior of polymers and block copoly-

mers in both solutions and melts34,43–49, under the influence of electric and magnetic fields50,51,

and in systems with hydrodynamic interactions52. However, EPD has not yet been generalized

beyond two species or components to the multi-species exchange model, which would enable its

application to broader classes of formulated polymer systems.53 Moreover, the literature on EPD

that includes thermal fluctuations is very limited, in spite of this being one of the main reasons for

pursuing EPD over DSCFT.43,44

In this work, we address both issues by developing an EPD method based on the multi-species

exchange model and examining the impact of incorporating thermal fluctuations in EPD. Sec. II

introduces the models and numerical schemes used, and Sec. III presents exemplary results from

three model systems: a triblock copolymer melt, a binary polymer blend, and a ternary polymer
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blend.

II. THEORETICAL AND NUMERICAL METHODS

This work aims to extend EPD to accommodate arbitrary numbers of species and components

by generalizing it to a multi-species exchange model. Since the dynamical models incorporate

molecularly derived thermodynamic forces, we first introduce the equilibrium basis for these

forces, generalized to include any number of species and components. We subsequently present

the dynamical models that we develop and investigate in detail.

A. Equilibrium Models

As a starting point, we outline the density-explicit auxiliary field framework used in both equi-

librium self-consistent field theory (SCFT) and dynamic self-consistent field theory (DSCFT). The

following field theory describes the thermodynamic behavior of multi-component polymeric for-

mulations within the canonical ensemble. Our formalism retains both mesoscopic density fields

φ j and auxiliary species fields ψ j, where j is an index that runs from 1 to the number of monomer

species S.20,42 The model embeds non-bonded interactions through Flory-Huggins χ parame-

ters and enforces the incompressibility constraint through a harmonic penalty, where ζ is the

Helfand compressibility parameter with ζ → ∞ corresponding to an incompressible system.53–55

In a canonical ensemble with fixed volume V , temperature T , and number of molecules np of each

polymer component (p ∈ (1,2, . . . ,P)), with P the number of components, the partition function

Zc({n},V,T ) is given by

Zc({n},V,T ) = Z0

S

∏
j,k=1

∫
Dψ j

∫
Dφk exp(−H[{φ},{ψ}]) (1)

H[{φ},{ψ}] = C

1
2

S

∑
j,k=1

χ jkN
∫

dr φ j(r)φk(r)+
1
2

ζ N
∫

dr

(
∑

j
φ j −1

)2

−i∑
j

∫
dr φ j(r)ψ j(r)−V̄

P

∑
p=1

φ̄p

αp
lnQp[{ψ}]

]
(2)

Here Z0 is the reference partition function of a non-interacting polymer mixture, and H is the effec-

tive Hamiltonian for the interacting system. Different monomer species interact via Flory-Huggins

interactions parameterized by the matrix χ jk, and the Helfand compressibility parameter ζ . Qp
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represents the single-chain partition function of chain component p, φ̄p is the average volume

fraction of that component, and αp = Np/N is the relative chain length of that component relative

to a reference chain length N. Spatial coordinates in the model have been non-dimensionalized

using a reference radius of gyration, Rg = b(N/6)1/2, with b a reference statistical segment length.

The fields φ j(r) represent dimensionless segment densities that are scaled by the total average

segment density ρ0. The species auxiliary fields ψ j(r) are scaled by a reference chain length N.

V̄ = V/R3
g is the dimensionless volume, and C = ρ0R3

gN−1 is a reference dimensionless chain

concentration. When thermal fluctuations are included, C is the relevant Ginzburg parameter that

regulates the strength of the fluctuations.

The single chain partition functions Qp[{ψ}] for continuous linear chains are evaluated by

Qp =
1
V

∫
dr qp(r,αp;{ψ}) (3)

where the propagators qp(r,s) are obtained by integrating the modified diffusion equation along

the contour position s

∂qp(r,s)
∂ s

=

[
b(s)2

b2 ∇
2 −ψp(r,s)

]
qp(r,s) (4)

where b(s) is the statistical segment length of a monomer at contour position s. The solution of

Eq. (4) is developed from an initial condition given by qp(r,0) = 1. The auxiliary field ψp(r,s) is

defined as ψ j(r) if the polymer segment at contour position s is of species type j.

An alternate representation of the same model can be obtained with the auxiliary-field frame-

work (AF). In this framework, the model given in Eq. (2) is transformed by analytical evaluation

of the φ j field integrals.53 To conduct these Gaussian integrals, an eigenvalue decomposition is

applied, changing the character of the species auxiliary fields to pressure-like and exchange-like

auxiliary fields. The resulting “multi-species exchange” representation of the partition function

has the form

Zc(n,V,T ) =
S

∏
j=1

∫
Dµ j exp(−H[{µ}]) (5)

H[{µ}] = C

[
−

S

∑
j=1

(ζ N)−1/2

2d j

∫
dr µ

2
j (r)

−
S

∑
j,k=1

Ok j

d j(ζ N)−1/2

∫
dr µ j(r)−V̄

P

∑
p=1

φ̄p

αp
lnQp[{ψ}]

]
(6)

where we have omitted the non-interacting reference prefactor Z0 and “normalizing denominator”

factors in Zc.23,53 The normal mode fields µ j(r) are linearly related to the species fields by an
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orthogonal transformation, with species-like fields given by ψ = O ·µ . Here, d j represents the jth

eigenvalue of the S×S interaction matrix (ζ N)−1/2χN+(ζ N)1/21, with 1 the S×S matrix with all

entries equal to 1, and O is an orthogonal matrix formed from a direct product of the eigenvectors.

A normal mode field µ j(r) is characterized as being “exchange-like” if its corresponding eigen-

value is negative (d j < 0) and “pressure-like” if d j > 0. The eigenmode with the largest positive

eigenvalue is termed the “pressure” mode and denoted µ+(r). All pressure-like modes have been

Wick-rotated by a factor of i =
√
−1 in the multi-species exchange representation of Eqns. (5) &

(6). This ensures that the saddle-point (mean-field) values of all fields are real.

With these two equilibrium model representations now outlined, we proceed to consider how

they can be embeded in a dynamics scheme to investigate nonequilibrium phenomena in multi-

component polymer systems.

B. Dynamic Models

In this work, we employ Model B dynamics to describe the time evolution of conserved density

fields.33 The governing equations preserve mass conservation, while connecting chemical poten-

tial gradients to diffusive fluxes, ensuring thermodynamic consistency. A stochastic noise term

is further included to represent random thermal forces. A key assumption in Model B is that

diffusive mass transport is dominant and convective transport, e.g. manifested as hydrodynamic

interactions, can be neglected.

The mesoscopic density fields, φk, evolve in time according to:

∂φk(r)
∂ t̄

=
S

∑
l=1

∇ ·
(

Mkl(r, t̄; [{φ}])∇δF [{φ}]
δφl(r, t̄)

)
+ηk(r, t̄) (7)

Mkl(r, t̄; [{φ}]) = φk(r, t̄)δkl (8)

where Mkl is the mobility matrix, and the mobility form follows the local-coupling approximation.29

Time has been nondimensionalized as t̄ = t/τ where τ = R2
gC/DRouse where DRouse is the Rouse

self-diffusion coefficient of the reference polymer of length N.

The thermal fluctuation term, ηk(r, t̄), obeys the fluctuation-dissipation theorem, with the fol-

lowing moments:

⟨ηk(r, t̄)⟩ = 0 (9)

⟨ηl(r, t̄)ηk(r′, t̄ ′)⟩ = −2∇ ·
[
Mkl(r, t̄; [{φ}])∇δ (r− r′)

]
δ (t̄ − t̄ ′) (10)
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In practice, this noise term is numerically implemented using a previously reported algorithm,

and further details regarding its construction and validation can be found in the Supplementary

Information.41

The functional derivative δF/δφl in Eq. (7) can be viewed as the local chemical potential of

segment species l and provides the thermodynamic driving force for multicomponent diffusion.

This quantity is defined by:

δF [{φ}]
δφ j(r, t)

=

〈
δH[{φ},{ψ}]

δφ j(r, t)

〉
{ψ}

(11)

where
〈

δH[{φ},{ψ}]
δφ j(r,t)

〉
{ψ}

denotes an equilibrium average over the auxiliary {ψ} fields with the {φ}
fields constrained to their instantaneous values. Although this average can be computed without

approximation by using complex-Langevin sampling, this would add very considerable compu-

tational cost, so it is typically approximated using the saddle-point/mean-field configuration for

{ψ}. This {ψ} saddle-point configuration must be computed at each time step as the constrained

{φ} variables are updated. Typically, the computation involves an iterative procedure that is ini-

tialized from the saddle-point fields at the previous time step. Overall, this approach, known as

dynamical self-consistent field theory (DSCFT), accurately preserves thermodynamic information

but is computationally more expensive per time step (by a factor of order 10) than a field update

in an equilibrium SCFT simulation.23

The approach we take in this work is to replace the mesoscopic density fields, {φ}, with the

exchange and pressure-like normal mode fields, {µ}, in the multicomponent diffusion equations

outlined above. This strategy is not new, but is a generalization of the external potential dynamics

(EPD) method.45 EPD relies on a chain rule to transform the equations of motion for the {φ} fields

to corresponding equations for the time dependent evolution of the normal mode fields {µ}. The

corresponding dynamical equation is:

∂ µ j(r, t̄)
∂ t̄

= ∑
k

∫
dr′

δ µ j(r, t̄)
δφk(r′, t̄)

∂φk(r′, t̄)
∂ t̄

(12)

The typical way that the Jacobian δ µ j/δφk is computed in ETD is to replace the mesoscopic

density field φk with a linearized (RPA) approximation of the “conventional” equilibrium density

field operator φ̃k(r; [{µ}]),43,45,47 which is both nonlocal and nonlinear in {µ}. However, a more

convenient “alternative” density field operator φ̃k,a(r; [{µ}]) that is both linear and local in {µ}
can be derived by a functional integration by parts.20,23 By following this path, as detailed in the

Supplementary Information, the inverse of the Jacobian can be expressed as
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δ φ̃k,a(r′; [{µ}])
δ µ j(r)

=
(ζ N)−1/2 Ok j

d j
δ (r− r′)≡ Nk jδ (r− r′) (13)

By combining these equations, the dynamic equation for µ becomes:

∂ µk(r, t̄)
∂ t̄

= γk

S

∑
l

∇ ·
(

Mkl(r, t̄; [{µ}])∇γl
δH[{µ}]
δ µl(r, t̄)

)
+ γkηk(r, t̄) (14)

Mkl(r, t̄; [{µ}]) = ∑
m

N−1
km φ̃m(r, t̄; [{µ}])(N−1)T

ml (15)

γk =

 1, dk < 0

i =
√
−1, dk > 0

(16)

where the thermal noise term ηk(r, t̄) follows the same statistics as previously described. The

factors of γk are a consequence of the Wick rotation of the pressure and pressure-like fields. We

have also chosen to approximate the mesoscopic density field by the conventional density operator

φ̃m in the mobility of Eq. (15), because it was found to produce more stable and physically realistic

dynamics than that produced by the alternative density operator φ̃m,a.

The multi-species dynamical scheme of Eq. (14) can in principle be applied as written. How-

ever, we have found that a slight modification greatly improves numerical stability. Specifically,

we isolate the pressure mode µ+ with the largest positive eigenvalue d+ from the other S − 1

modes, denoted {µ ′}. The latter are updated with diffusive stochastic dynamics according to

Eq. (14), but the pressure mode is deterministically relaxed at each time step to its partial saddle-

point (PSP) configuration.56 This approach forces the pressure field to respond instantaneously

to the remaining fields and ensures a dynamical trajectory that does not allow large deviations

from fluid incompressibility. Applying the PSP scheme involves approximating the integral over

the pressure-like field, µ+, using a saddle-point approximation. The saddle-point pressure field,

µ∗
+(r, t; [{µ ′}], is determined by solving the following equation:

0 =
δH[{µ}]
δ µ+(r, t)

∣∣∣∣
µ∗
+

(17)

at fixed/specified {µ ′}. Numerical solutions for this equation are obtained by an iterative proce-

dure similar to that used in the saddle-point evaluation of Eq. (11).
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C. Simulation Details

For all calculations involving EPD we employ an exponential time differencing (ETD) scheme.57,58

The PSP approximation requires finding the saddle point of the µ+ field for each configuration of

{µ ′}. We use the ETD scheme for a fictitious time relaxation and terminate the search when the

L2 norm of the force falls below a tolerance of 10−6.56 A second-order Strang operator splitting

algorithm is applied to solve Eq. (4) with a contour discretization of ∆s = 0.01.59,60 We choose

the lattice discretization ∆x to be equal to the statistical segment length b, corresponding to the

conventional lattice cutoff used to regularize FTS methods. Here, N = 100 represents the number

of numerical steps with step length ∆s = 1 along the chain contour.56,61 Here, N = 100 represents

the number of numerical steps along the chain contour. In all cases studied here, ζ N = 100. For

reference calculations using DSCFT, we employ previously published semi-implicit schemes for

time stepping the {φ} density fields and numerically computing the PSP auxiliary species fields

{ψ} at each time step.62–64 The force tolerance for the PSP evaluation in DSCFT is set to an L2

norm below 10−4. All other shared parameters between EPD and DSCFT are kept consistent. An

aggregate instantaneous structure factor is computed from

S(k, t) =
S

∑
i, j=1

Si j(k, t)−∑
i

Sii(k, t) (18)

with the component structure factors defined as

Si j(k, t) = ⟨φ̂i(k, t)φ̂ j(−k, t)⟩ (19)

where φ̂i(k, t) is the Fourier transform of the instantaneous density field (or density field operator).

Previous studies have shown that the variable transformation adopted in EPD can produce un-

physical dynamical trajectories for strongly inhomogeneous systems with sharp spatial gradients.

We have therefore restricted our EPD studies and DSCFT comparisons to coarsening simulations

initialized from weakly inhomogeneous initial conditions.34

III. RESULTS

To validate the multi-component external potential dynamics (EPD) scheme, we compare the

structural evolution during the formation of lamellae in an ABC triblock copolymer melt, start-

ing from a homogeneous state perturbed by weak spatial noise. The triblock composition is
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φA = φC = 0.33 and φB = 0.34, with interaction parameters χAB = χBC = 10.0 and χAC = 20.0. For

the parameter set considered here we expect lamellae with alternating layers of all three compo-

nents. In this case, thermal noise effects are neglected and based on the lamellar morphology, we

only consider spatial variation only in one dimension (1D). The simulation box size was set equal

to the lamellar domain period (determined through equilibrium SCFT calculations) and both the

EPD and reference DSCFT simulations share the same initial conditions. Figure 1(a) shows the
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FIG. 1: Time-dependent growth of the amplitude in volume fraction of component A in an ABC

triblock copolymer melt studied with both EPD and DSCFT simulations (1D). (a) Time evolution

of the maximum volume fraction, showing faster coarsening for EPD near t/τ ≈ 1, while both

methods converge at equilibrium. (b) Density profiles at t/τ ≈ 0.7 (red: A, blue: C, green: B),

where EPD shows advanced coarsening. (c) Final equilibrium state at t/τ ≈ 10, where both

methods produce similar results. The characteristic time τ is given by τ = R2
gC/DRouse.

time-dependent growth of the maximum density of component A, a measure of the extent of mi-

crophase separation. While both EPD and DSCFT simulations exhibit similar overall trends, their

trajectories differ quantitatively. EPD forms ordered domains sooner than DSCFT (t/τ ≈ 1), but

both methods approach the equilibrium configuration at later times. To better illustrate the dynam-

ics, we present two density profiles: one at t/τ ≈ 0.7, where the differences between the methods

are most pronounced, and one at t/τ ≈ 10. Figure 1(b) highlights the early-stage coarsening at

t/τ ≈ 0.7, where EPD shows significant departure from the homogeneous state, while DSCFT is

just beginning to coarsen. By t/τ ≈ 10, shown in Figure 1(c), both methods have converged to

similar equilibrium configurations. Although not quantitatively identical, the overall qualitative

behavior of both methods is the same.

In previous work on two-species systems, EPD demonstrated quantitative agreement with
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DSCFT methods that used non-local mobilities.34 In contrast, the EPD scheme in this work

coarsens similarly to a local mobility DSCFT approach. To understand the discrepancy, we re-

mind the reader that EPD is normally based on a non-local Jacobian that utilizes a weak-amplitude

expansion of the conventional density operator.45 Here we use a local Jacobian based on the alter-

native density operator. Neither approach is without approximation, and there is no well-accepted

methodology for constructing the Jacobian and modeling the mobility tensor. Fortunately, how-

ever, these differences in modeling approach do not seem to have significant impact on the quali-

tative dynamical behavior.

To continue our analysis, we next turn to a classic example: spinodal decomposition in a bi-

nary polymer blend.65–68 Here, the polymers are symmetric both in architecture (NA = NB = N)

and composition (φ̄A = φ̄B = 0.5), with an interaction parameter χAB = 4.0. Unlike the previous

example, we now account for thermal noise effects by including the final term in Eq. (14). Such

an approach will be referred to as stochastic EPD (S-EPD). For visual clarity, the DSCFT, EPD,

and S-EPD simulations are performed in a two-dimensional (2D) domain of size 125 Rg×125 Rg.

Figure 2 shows density distributions at different times during spinodal decomposition for DSCFT,

EPD, and S-EPD. EPD and DSCFT display qualitatively similar patterns, though the DSCFT do-

mains are generally smaller due to slower coarsening. The final row of the figure includes results

from S-EPD (C = 10.0), which incorporates thermal fluctuations. In the early stages (t/τ = 1),

S-EPD shows significant differences from the deterministic EPD and DSCFT simulations, with

small but well-defined phase-separated domains driven by thermal noise. At later stages, ther-

mal fluctuations contribute minimally, resulting in rougher S-EPD interfaces but similar average

domain sizes across simulation methods.

Analyzing the domain size provides a quantitative means to compare the structural evolution

and coarsening behavior of EPD, DSCFT, and S-EPD. A measure of the domain size, D(t), is

provided by the first moment of the Fourier wavevector by D(t) = 2π

⟨k(t)⟩ , where the instantaneous

structure factor S(k, t) is used to calculate ⟨k(t)⟩. This is expressed as ⟨k(t)⟩ =
∫

dk k S(k,t)∫
dk S(k,t) . This

definition accounts for the full spectrum of contributing wavevectors rather than relying solely on

the dominant mode, making it a robust measure of domain size. Such an approach is particularly

useful in stochastic simulations, where thermal fluctuations create significant roughness in S(k),

making it difficult to identify the dominant mode. Figure 3 displays averages with error bars

derived from five replicates for each method or chain concentration.

Figure 3 (top) illustrates the time evolution of domain coarsening. Both the EPD model and
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FIG. 2: Spinodal decomposition density patterns (A-species density) for a symmetric blend of A

and B polymers at various times for DSCFT, EPD, and S-EPD (C = 10.0) in a 2D simulation box

of size 125 Rg ×125 Rg. The EPD and DSCFT simulations show qualitatively similar patterns,

with DSCFT lagging slightly in coarsening. S-EPD demonstrates enhanced early-stage phase

separation due to thermal fluctuations accelerating the growth of unstable modes and leading to

rougher but similarly sized domains in later stages. Time (t) is rescaled in terms of τ , where τ is

defined as τ = R2
gC/DRouse.

the DSCFT model developed here exhibit domain growth that qualitatively follows the 1/3 power

law, as predicted by Ostwald ripening, which is confirmed by calculating the slope of the domain

size growth curve.69 However, quantitatively, DSCFT initially exhibits slower domain growth dy-

namics than EPD, resulting in slightly smaller domains. Figure 3 (bottom) presents the domain

size over time for various chain concentrations C, where decreasing C amplifies fluctuations. The

figure shows that fluctuations significantly impact early-stage domain growth (t/τ ∼ 1), while
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FIG. 3: Domain size evolution during spinodal decomposition of a binary symmetric polymer

blend. (Top) Time series of domain growth comparison of EPD and DSCFT. The power law

behavior (Oswald ripening) with exponent 1/3 is followed by both methods. (Bottom) Time

series of domain growth for the S-EPD method at different chain concentrations. Chain

concentration is seen to most affect the early time coarsening rate, with the long time rate

tracking deterministic power law behavior.

later-stage growth follows a more deterministic 1/3 power law behavior. Additionally, increasing

fluctuation strength tends to reduce domain size. These results suggest that as fluctuation strength

increases, domain growth slows due to thermal effects, yet all simulations ultimately adhere to the

1/3 power law characteristic of Ostwald ripening.

In Figure 2, the stochastic EPD domains at τ ∼ 1 appear more ordered compared to the de-

terministic simulations. This observation is supported by the plateau in domain growth seen in
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the deterministic simulations, as shown in Figure 3, in contrast to the smoother growth in the

stochastic simulations. To quantify this ordering, we define the order parameter Ω(t) = S(k∗,t)
1+S(k∗,t) ,

where k∗ is the principal wavevector. Figure 4(a) shows the time series of the order parameter Ω(t)

10−2 10−1 100

t/τ

0.0

0.2

0.4

0.6
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Ω
(t

)

C
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104
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C =∞

FIG. 4: The time dependence of the order parameter Ω(t) for various chain concentrations C in

spinodal decomposition of a binary symmetric blend. (top) Time evolution of the order

parameter, with fluctuations of increased strength inducing faster ordering at lower

concentrations. (bottom) Critical coarsening time t∗/τ as a function of chain concentration,

showing a crossover at approximately C ∼ 105.

across different concentrations. The deterministic simulations (C = ∞) provide an upper limit on

the ordering time, while decreasing C systematically shifts the ordering time earlier. All curves

were fit to a stretched exponential of the form f (t) = 1− exp
(
−(t/t∗)β

)
, where t∗ is the critical

coarsening time. Figure 4(b) shows the critical coarsening time t∗/τ as a function of chain con-
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centration C. In the log-linear plot, two distinct regimes are evident: one where fluctuations induce

earlier ordering, and another where fluctuations become sufficiently suppressed when approaching

the C = ∞ limit. The crossover occurs at a relatively high chain concentration, around C = 105,

indicating that all spinodal decomposition dynamics may be impacted by thermal fluctuations.

Next, we consider a ternary blend composed of architecturally symmetric chains with equal

Flory-Huggins interaction parameters. Ternary mixtures are known for exhibiting a much richer

phase behavior than two-component systems.70 Although spinodal decomposition in ternary sys-

tems can proceed in different ways, the domains ultimately coarsen following the Ostwald ripening

power-law of 1/3.71 Recent phase field simulation studies have identified four different phase sep-

aration pathways in ternary systems.72

Type I involves the simultaneous separation of all three components, forming a lattice-like

morphology with distinct domains of each component interspersed.72 Types II and III follow a

two-stage separation process: Type II results in a worm-like morphology as consecutive pairs

of components separate, while Type III produces a patchy droplet morphology where the third

component enriches at interfaces and eventually forms droplets. Type IV resembles binary phase

separation, where the minority component concentrates at the interfaces between the dominant

phases.

To demonstrate the capabilities of EPD, we sweep the isopleth φ̄A (where φ̄B = φ̄C =(1− φ̄A)/2)

using χABN = 10.0 (where χABN = χBCN = χACN) and report the resulting morphologies for

Types I, II, and III. We find that DSCFT is highly inefficient in this regime, as solving for the

saddle-point of the auxiliary fields at each time step requires more than 103 iterations. Therefore,

we do not provide reference DSCFT simulation results. The EPD and S-EPD simulations are

performed in a 2D domain with a box size of 125 Rg × 125 Rg. Figure 5 shows configurations

at two different coarsening times at three different compositions of φA: 0.33, 0.5, and 0.05. At

φ̄A = 0.33 we find Type I phase separation where a lattice morphology is formed with all three

components interspersed. At φ̄A = 0.5, a Type II morphology is observed comprising a worm-like

structure built from two of the components. Finally, at φ̄A = 0.05 we observe Type III structures,

where binary spinodal decomposition is initiated, followed by enrichment of the third species at

the interface.

We applied the prior domain size analysis to the coarsening data obtained at the three com-

positions to provide insight on the differences between the three types of phase separation and

to confirm the coarsening mechanism. Additional simulations were conducted at φ̄A = 0.33 to

15



Efficient Dynamical Field-Theoretic Simulations for Multi-Component Systems

φ̄
A

=
0.

05

t/τ = 6 t/τ = 80

φ̄
A

=
0.

50
φ̄
A

=
0.

33

FIG. 5: Phase separation in ternary blends along the isopleth φ̄A (where φ̄B = φ̄C = (1− φ̄A)/2)

for various compositions of φ̄A at t/τ = 6 and t/τ = 80. (Middle) Type I morphology

(φ̄A = 0.33), showing interspersed domains of all components. (Bottom) Type II morphology

(φ̄A = 0.50), with worm-like domains. (Top) Type III morphology (φA = 0.05), where binary

spinodal decomposition is followed by enrichment of the third component at the interface. The

2D simulation domain is of size 125 Rg ×125 Rg.

compare deterministic EPD simulations (C = ∞) with S-EPD conducted with a weak fluctuation

strength (C = 100). Figure 6 (top) shows the characteristic size of domains as a function of time in

EPD simulations of spinodally decomposing ternary blends. The three modes of phase separation

differ the most at early times. The case of φ̄A = 0.05 (Type III) appears to have similar phase

separation behavior as the binary-polymer case. Namely, before t/τ ≈ 1 there is limited coarsen-

ing behavior, while thereafter coarsening proceeds with power law scaling and an exponent close

to γ = 1/3. In contrast, both φ̄A = 0.33 (Type I) and φ̄A = 0.5 (Type II) systems exhibit domain

contraction at early stages followed by power law coarsening beyond t/τ ≈ 1 with the same 1/3

exponent. Curiously, the domain shrinkage behavior disappears when thermal fluctuations are
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FIG. 6: Domain size coarsening analysis based on EPD simulations of different ternary blend

compositions. (Top) Time series of domain sizes for φ̄A = 0.05, φ̄A = 0.33, and φ̄A = 0.50,

showing distinct early-stage coarsening behaviors. (Bottom) S-EPD simulations at φ̄A = 0.33

demonstrate accelerated early stages of coarsening when weak thermal fluctuations (C = 100) are

included.

included. Figure 6 (bottom) shows that S-EPD predicts smooth domain coarsening even before

t/τ < 1, indicating that fluctuations are essential to predicting early stage spinodal morphologies

in frustrated blend systems.

Finally, Figure 7 presents a 3D simulation snapshots for two cases in a cubic domain with side

length 32 Rg. The first case (Type II) has an average composition of φ̄A = 0.5, while the second

case (Type III) has φ̄A = 0.05. Each snapshot captures a single configuration from the simulation

trajectory at t/τ = 20.

17



Efficient Dynamical Field-Theoretic Simulations for Multi-Component Systems

FIG. 7: 3D simulation snapshots for Type II (φ̄A = 0.50) and Type III (φ̄A = 0.05) ternary phase

separations at t/τ = 20 demonstrating the scalability of the methods to high-dimensional

problems.

These results demonstrate that the EPD and S-EPD methods used here scale effectively to

high-dimensional problems and can be applied to investigate the phase separation and coarsening

behavior for a wide variety of complex polymer formulations.
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IV. CONCLUSION

This paper presents the first external potential dynamics scheme that is generalized to in-

clude multi-species and multi-components with full thermal fluctuations. We demonstrate that

the method produces qualitatively similar results to DSCFT, while being more computationally ef-

ficient and tolerant of thermal noise. In application to a binary polymer blend, the new stochastic

EPD framework (S-EPD) was used to investigate the impact of thermal noise strength (controlled

by the chain concentration C) on coarsening behavior in spinodal decomposition. While thermal

agitation does not disrupt the classical 1/3 power law scaling of domain size expected at intermedi-

ate to long times, it strongly impacts the initial rate of domain size growth. We also showcased the

ability of our new variant of EPD to study multi-component spinodal decomposition of a ternary

polymer blend in both 2D and 3D simulations.

The present development of multi-species, multi-component EPD and S-EPD schemes open up

interesting research opportunities that could immediately be pursued. For example, recent work

on modeling the non-solvent-induced phase separation (NIPS) process used to manufacture asym-

metric polymer membranes utilized stochastic phase field methods that are numerically unstable at

realistic thermal noise strengths. Promising results were obtained by drastically scaling down the

noise amplitude, but it is unclear how dynamical trajectories would change with thermodynami-

cally consistent noise whose amplitude is set by the fluctuation-dissipation relation.73,74 Another

interesting area of investigation is to explore the role of surfactants or copolymer additives on

the dynamics of non-equilibrium processes such as spinodal decomposition and nucleation and

growth.75,76 Such additives are known to dramatically slow phase separation and coarsening pro-

cesses, or at high enough concentration, to arrest or completely change the kinetic pathway to

the thermodynamically stable structure. This is an area ripe for investigation, but heretofore was

awaiting computationally efficient multi-species, multi-component tools with realistic thermody-

namic forces, diffusive dynamics, and thermal noise.

It is perhaps helpful to the reader to place our new S-EPD technique in a broader context. Apart

from the partial saddle point (PSP) approximation that is used to deterministically relax the pres-

sure mode, S-EPD can be viewed as a type of “field-theoretic simulation” (FTS) in that it embeds

fully fluctuating thermodynamics.20,23,77 Indeed, the variant of FTS practiced by the Matsen group

for studying fluctuation effects in AB copolymer systems at equilibrium invokes the same PSP ap-

proximation on the pressure mode to improve stability and eliminate a sign problem. While the
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fictitious real Langevin dynamics practiced by that group, L-FTS, or the complex Langevin dynam-

ics employed extensively by us, CL-FTS, are merely artifices to accumulate data on equilibrium

states, the present S-EPD reflects a departure in two important directions. Firstly, it generalizes

both approaches to address the non-equilibrium properties of polymer systems following mass-

conserving, thermally agitated, multi-species diffusion. Secondly, it represents an extension of

previous two-component EPD schemes to treat the non-equilibrium behavior of multi-species,

multi-component polymer systems with full-strength thermal fluctuations. Overall, we are hope-

ful that the framework presented here will enable a deeper understanding of the non-equilibrium

properties of broad classes of multi-component polymeric fluids.
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