PHYSICAL REVIEW RESEARCH 6, 043273 (2024)

Supersymmetry on the lattice: Geometry, topology, and flat bands

Krishanu Roychowdhury ®,-? Jan Attig,* Simon Trebst,’ and Michael J. Lawler ®*3
YTheory Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
2Max-Planck-Institut fiir Physik komplexer Systeme, Néthnitzer Strasse 38, 01187 Dresden, Germany

3 Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
*Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
3Department of Physics, Binghamton University, Binghamton, New York 13902, USA

® (Received 28 September 2024; accepted 25 November 2024; published 13 December 2024)

In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of
freedom, bosons, and fermions defined by local rules. Here we apply it to find connections between bosonic and
fermionic lattice models in the realm of condensed-matter physics and uncover a novel fivefold way topology
it demands in these systems. At the single-particle level, our connections pair a bosonic and fermionic lattice
model, either describing the hopping of number-conserving particles or local couplings between fermion parity-
conserving particles. The pair are isospectral except for zero modes, such as flat bands, quadratic band touchings,
and nexus points, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying
framework to formulate these SUSY connections in terms of general lattice graph correspondences. Notably, in
this framework, the supercharge operator that generates SUSY is Hermitian and can itself be interpreted as a
hopping Hamiltonian on a bipartite lattice, a feature that enables the discovery of materials or model lattices
hosting the SUSY partners. To illustrate the power of SUSY, we present 16 use cases of SUSY, that span topics
including frustrated magnets, Kitaev spin liquids, and topological superconductors, the majority of which turn

out to provide insights into the discovery and design of flat bands and topological materials.
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I. INTRODUCTION

Supersymmetry (SUSY) has set foot into condensed-
matter physics in several isolated areas, beginning with
disorder [1], then in the study of strongly interacting theories
[2-6], and recently with the advent of topological mechan-
ics [7-16]. Some of this work parallels high-energy physics,
which also aims for insights into strongly interacting field
theories [17-19], and to produce fermionic theories from
bosonic ones. There, together with a certain level of natural-
ness, SUSY has gained prominence by going beyond being
a mere trick to providing a leading theory of physics beyond
the standard model [20]. No analogous vision in condensed
matter exists, but topological mechanics suggests one: SUSY
enables us to add locality to the classification of condensed
matter by (conventional) symmetry and topology [21] and
thereby produces simple rules underlying their design.

Topological mechanics arose from recognizing that the
dynamical equations governing balls-and-springs models ad-
mit a Dirac-like “square rooting” connection to fermionic
systems [7]. The common practice of Maxwell counting in
these mechanical systems, the difference between the number
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of degrees of freedom and the number of constraints, then
turns out [7,22] to be a determination of the Witten index [23]
pointing to an underlying SUSY connection [15]. Practition-
ers immediately adopted this discovery, working out many
linear theories with free fermion partners [8—13,15,24-30],
complete with topological invariants protecting zero modes
in bosonic systems. They get around the absence of topo-
logically protected zero modes in free bosonic systems [31]
by using local constraints. Topology is then the preserva-
tion of zero modes provided the number of constraints does
not change. Adding more constraints removes zero modes.
They have even shown that this topology protects the zero
modes at the nonlinear level [32]. So we now have mechan-
ical systems with topological zero modes protected by local
constraints.

Practitioners of topological mechanics also envision most
of their examples as engineered metamaterials, but local-
ity is a property of physical systems that arises naturally.
Frustrated magnets offer a striking example, where residual
entropy arises in underconstrained systems. This has been
seminally established by Maxwell constraint counting in ge-
ometrically frustrated systems such as the classical kagome
or pyrochlore antiferromagnets [33,34]. While such residual
degeneracies in frustrated magnets are commonly referred
to as accidental, as there is no apparent symmetry protec-
tion, the similarity to concepts in topological mechanics has
led some of us to explore their stability in the presence of
distortions or disorder [35]. What was found is that the ro-
bustness of accidental degeneracies can intimately be linked
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to the preservation of locality; certain types of distortions
and disorder do not lift the frustration if the number of local
constraints is unaltered. Thus in real kagome antiferromag-
nets like Cs,ZrCusFj, or Cs;CeCusF,, it is the exponential
falloff of exchange constants away from nearest neighbors
that seems to produce topologically protected low-energy
modes [35]. Stepping back one might be tempted to think of
the formation of these accidental degeneracies in frustrated
magnets, in analogy to topological mechanics, as the conse-
quence of a hidden SUSY—a perspective that we explore in
this paper.

If we view topological mechanics as a vision for “sym-
metry + topology + locality,” what we know so far is that
the classification of locally constrained systems is also much
richer than the classification without locality. The classes in
the tenfold way of electronic band theory [21,36] obey a
periodicity in the dimension of the system: If a topological
invariant exists in dimension d, it either exists in dimension
d + 8 for some classes or d + 2 for others [37-40]. These in-
variants are either Z or Z, valued. Such a classification can be
extended to finite frequency topological modes of bosonic sys-
tems [16,26,41,42] but not to zero-frequency bosonic modes.
Classifying the rigidity matrices in topological mechanics has
also led to a table of invariants, but these depend on both
spatial dimension d and the Maxwell counting index v. While
only a threefold way was discovered, [41,43], the periodicity
and the invariants of the tenfold way are observed for v = 0
but not for other values of v. No periodicity arises in the
v # 0 regime, and it includes new invariants such as Z, x Z,
Za, L5, Zing, and Zo4 x Z3. This broader classification can
be understood by realizing the existence of an underlying
SUSY where the rigidity matrices act as supercharges—as we
explain in this paper. So, including locality in the structure
of topological phases appears to open the door to the dis-
covery and control of new unexpected low-energy modes in
condensed matter.

In this paper, we develop a unifying SUSY framework that
uses locality as the principal ingredient to bridge concepts
from topological mechanics to frustrated magnetism to band
theory. This framework evolves around a mapping between
lattice models of free fermions and bosons—the most ele-
mentary description of condensed-matter systems (Sec. II).
The mapping is based on a general graph construction that
provides both a visual and algebraic understanding of the
underlying SUSY connection. It allows us to explore the
relationship between SUSY, topology, and locality for many
examples, which include, (i) fundamental connections be-
tween some of the most widely studied lattice geometries such
as the kagome and honeycomb lattices (discussed in the next
section) or the pyrochlore and diamond lattices (Sec. III), (ii)
the construction of mechanical analogs of Kitaev spin lig-
uids (Sec. IV), or (iii) a correspondence between degenerate
coplanar spin spiral states and Fermi surfaces (Sec. IIIB).
On a conceptual level, we also find the framework allows
for a fivefold way classification of topological invariants for
noninteracting bosonic systems via their fermionic SUSY
partners (Secs. IIE and IV A) and through these invariants,
points a way to discovery, control, and design of unexpected
low-energy modes, nexus points, and flat bands in solid-state
physics.
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FIG. 1. SUSY lattice model correspondence. Shown are three
lattice geometries, the honeycomb (left, blue), honeycomb-X (mid-
dle, black), and kagome (right, red) lattices and their respective
tight-binding band structures in the lower row. The honeycomb and
kagome spectra are isospectral up to an additional flat band in the
kagome model. The band structure of the honeycomb-X model (mid-
dle panel) can be related to the other two via squaring (or, vice versa,
taking a square root). As such, the three spectra can be connected
via the matrix correspondence (2), where one identifies the honey-
comb and kagome lattices as supersymmetric (SUSY) partners and
the honeycomb-X lattice with the supercharge. For the topological
classification according to Table II, we find, noting that the Witten
index here is v = 1, that the nexus point in the supercharge spectrum
has a nontrivial topological invariant given by m; = +1, see also the
illustration in Fig. 25 of the Appendix.

II. SUPERSYMMETRIC LATTICE MODELS

We can begin our way towards SUSY by discussing a basic
property of block matrices. By squaring a Hermitian matrix of

the form
R
H= (RT ) (1)

with a generic matrix R of arbitrary dimensions, one obtains
a block-diagonal matrix with two diagonal blocks

> (RR?
= (M ) @

in which the two blocks RRT and R'R are isospectral except
for zero modes which result from a potential dimension mis-
match between the kernel of R and R if R is not a square
matrix. It will be this simple matrix relation upon which we
build our supersymmetric lattice construction in the following.

To do so, let us consider the instructive example visualized
in Fig. 1, which makes a connection between the familiar
honeycomb lattice (on the left, blue) and the kagome lattice
(on the right, red). If one calculates the band structures of their
respective tight-binding Hamiltonians, e.g., by diagonalizing
their nearest-neighbor hopping or graph adjacency matrices,
one ends up with the two spectra plotted in the left and right
panels of the lower row. These spectra are identical—up to a
flat band in the kagome band structure. That is, we find an
isospectrality akin to what we have seen for the matrix corre-
spondence (2), which leads us to identify the two blocks RR"
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and R'R in (2) with the tight-binding Hamiltonians of the two
lattices at hand. The additional flat band, or zero mode, in
the kagome spectrum, can then be traced back to the differ-
ence in the dimensions of the two blocks, which is simply the
difference in the number of sites (three) in the kagome lattice
unit cell versus the two sites of the honeycomb lattice unit
cell. That is, we could infer the entire spectrum of the kagome
tight-binding model from the one of the honeycomb lattice
without any actual calculation.

From a more abstract point of view, which we lay out in
the following, the matrix correspondence (2) allows one to
identify a SUSY theory with a pair of Hamiltonians which
are mandated to be isospectral and where the additional zero
modes arise from a nontrivial Witten index [23]. In this
sense, we have just connected the honeycomb and kagome
lattices as supersymmetric partners. One could, for instance,
adorn the honeycomb lattice with noninteracting fermions—
the textbook example of the graphene band structure with its
Dirac cone, while placing noninteracting bosonic modes on
the kagome lattice—as one routinely considers in the context
of studying the frustrated Heisenberg antiferromagnet on this
lattice [44—47], thereby pointing towards a SUSY connection
between the two seemingly different worlds of Dirac semimet-
als and ground-state manifolds of frustrated magnets.

In the following, we provide a more systematic under-
standing of the matrix correspondence (2) in terms of SUSY.
When this SUSY matrix correspondence is applied to pairs of
fermionic and bosonic lattice models, this perspective natu-
rally leads one to discuss the consequences of band-structure
topology on the fermionic side (routinely considered, e.g., for
electronic spectra) for the bosonic counterpart. On the level
of the associated Bloch wave functions, we show that this
allows one to define, for bosonic systems, a supersymmetric
extension of the conventional Berry connection and curvature
(or more generally, the quantum metric). Once this formal
framework is established, we recast the matrix squaring of
(2) and its underlying SUSY relation of lattice models in the
general terms of graph theory. This ultimately enables us to
make statements on the nature of SUSY that are strikingly
pictorial in that they are simple graph substitution rules.

Our SUSY framework allows us to explicate other pre-
scriptions in the literature of squaring and square-rooting
fermionic band structures [41,48—54]. One important result is
that the generator of the SUSY itself can be interpreted as
a square-root Hamiltonian derived from the adjacency ma-
trices of certain types of lattice graphs (and as such has a
graph representation itself), while the supersymmetric partner
Hamiltonians are the squared systems. In our introductory
example, it is the honeycomb-X lattice' in the middle of Fig. 1
that corresponds to this SUSY generator. Its spectrum exhibits
not only a flat band in the middle of its particle-hole sym-
metric spectrum (inherited from square-rooting the flat-band
kagome spectrum) but also a Dirac cone right at this particle-
hole symmetric point (which it inherits from the quadratic
band minima of the lowest dispersive bands in the honeycomb

'"The honeycomb-X lattice is also referred to as decorated honey-
comb or heavy-hexagon lattice in some communities.

or kagome band structures). It is for the observation of such
remarkable features, that such square-root band structures
have attracted interest in the construction of lattice models
for “square-root semimetals” [51] or “square-root topological
insulators” [41,48-50,52].

A. Supersymmetry

To set the stage, let us provide a more formal introduction

to how SUSY can be used to connect elementary fermionic
and bosonic degrees of freedom as well as noninteracting sys-
tems of many such degrees of freedom. With an eye towards
the topological classification of such noninteracting systems,
we then discuss how certain antiunitary symmetries, partic-
ularly relevant to the classification of free-fermion systems,
transform under SUSY. This allows us to inspect topolog-
ical invariants and their generalizations in supersymmetric
settings.
Let us consider a system consisting of both complex fermionic
and bosonic degrees of freedom. The central object that en-
ables a supersymmetric identification between such fermions
and bosons is a fermion-odd supercharge operator

O =c¢'Rb, 3)

where ¢’ denotes a fermionic creation operator, b a bosonic
annihilation operator, and Q satisfies Q> = 0. With this su-
percharge operator at hand, one can now generate a SUSY
Hamiltonian via

Hsusy = {Q, Q') = c'RRTc + b'R'Rb

e ) o

From this, the two matrices, RR" and R'R, which constitute
the two diagonal blocks of H? in (2), can be readily identified
as a free fermionic and a free bosonic Hamiltonian matrix,
respectively.

For a square matrix R, Hr and Hp are entirely isospectral
(including potential zero modes if any). For a rectangular
matrix R, however, there will always be a mismatch in the
number of zero eigenvalues which we can characterize by the
index

v = dim (kernel [R]) — dim (kernel [R'])
= col [R] — row [R], 5)

called the Maxwell-Calladine index in topological mechanics
[7]. In the many-body problem, it is the one-body sector of the
Witten index [23] Tr(—1)F = Tre™*'¢, and so is a topological
invariant of a free SUSY theory.”? So long as v # 0, this
implies SUSY can exist in the ground state. When v = 0, no

2Sutherland might have been the first to identify the mismatch of
sublattice sites in a bipartite graph with such an index [55] (with
Shastry being credited for pointing out its relation to the Atiya-Singer
index theorem [56]) and later, Lieb associated it with the nullity of
the corresponding hopping matrix [57]. Due to a mapping between
chiral Hamiltonians and supercharges, this Shastry-Sutherland-Lieb
index is the single-particle Witten index v of a corresponding nonin-
teracting SUSY problem (see Fig. 29).
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zero modes can exist on either side. Furthermore, the situation
for v # 0 is a definitive indication of flat bands to appear
in the band structure of either Hyr (v < 0) and Hp (v > 0).
For example, the Witten index is v = 1 for the honeycomb-
kagome correspondence highlighted in the introduction which
therefore has to give rise to a flat band in the kagome band
structure as discussed before.

B. Lattice graphs

In more abstract terms, one can identify the hopping ma-
trices of Eq. (4) with a (weighted) adjacency matrix of an
underlying graph structure. For some lattice graph with ver-
tices {v;} an adjacency matrix is defined as

|1 v; connected to v;
Aij = {O otherwise. ©

The weighted adjacency matrix extends this definition by
including a weight w;; for every nonzero element of A;;.

1. Squaring graphs

What happens when we square an adjacency matrix A? To
find out, let us compute the elements of the squared matrix

AV =Y AyjAj. )
j

which we can readily interpret as elements of another adja-
cency matrix, but with a different set of connections. Where
A connected vertices v; and v; with weight A;;, A? chains
two of those connections together to connect next-nearest
neighboring vertices v; and vi. So on a pictorial level, squaring
an adjacency matrix is equivalent to singling out next-nearest
neighbors of the original graph in a new graph.

These statements can be further refined if A describes the
adjacency of a bipartite graph. In this case, the matrix itself
can be brought into a two-block structure upon sorting the
vertices {v;} of the original bipartite graph into two distinct
sets {v]} and {v!'}, encompassing vertices from subgraphs
I and II, respectively. The bipartite-ness of the graph then
dictates that these two blocks are in fact off-diagonal blocks
since vertices in one set (subgraph) are then connected only
to vertices in the other set (subgraph) but not to those in their
own set (subgraph). The adjacency matrix of a bipartite graph
thus takes the form

_ Ar_n
A= <AH—I ) ’ ®)

where Aj_yj; and Ay are the off-diagonal blocks that describe
the connections between subgraphs I and II and vice versa.
Upon squaring, taking two steps in the graph at a time, the
next-nearest neighbors of vertices in one subgraph are then
necessarily also in the same subgraph, bringing the squared
adjacency matrix into block-diagonal form

A2 — (AI AH)’ (9)

where each block describes the coupling within one of the two
subgraphs. Therefore, the original bipartite graph decomposes
upon squaring its adjacency matrix into two distinct subgraphs

O 0 O => 5) + O
=> e +
= G} +

bipartite sublattice A sublattice B

A = (A)°

FIG. 2. Squaring graphs. By squaring the (weighted) adjacency
matrix A of a given graph, one can arrive at a squared graph by
interpreting A” as its adjacency matrix. For a given bipartite graph,
this squaring gives an off-diagonal block matrix [as in (1)], which in
its graph theoretical representation is equivalent to a decomposition
in its two subgraphs. This process can be reversed to a “graph square
rooting” procedure by going from right to left in the figure, which
in the graph theoretical representation, amounts to a substitution of
graph cliques of size z (i.e., fully connected plaquettes with z sites)
by z-connected sites.

that are not connected anymore—a procedure which we have
visualized in Fig. 2.

2. Graph square roots

Let us ask whether we can also invert this graph
operation—can we define the square root of an adjacency
matrix so that we end up with another adjacency matrix? That
is, is there a meaningful way to construct the square root of a
given graph?

The algebraic perspective taken above might not be of
immediate help here: If we are given the adjacency matrix M
of some graph, we do not want to simply identify a matrix
A such that A2 =M (or alternatively A = /M), since this
would lead us, in most cases, to a highly connected graph,
which would neither be bipartite nor a typical lattice graph.
Instead, the crux is that the matrix A actually has enlarged
dimensions with regard to M, which upon squaring takes on
an off-diagonal block structure with one of the two blocks
becoming equivalent to M.

But the above graph interpretation of the squaring opera-
tion points to a way to answer these questions: If squaring
a bipartite graph leads to a decomposition into its two sub-
graphs, one can invert this operation by taking the two
subgraphs and declare them to be the two constituent sub-
graphs of a combined bipartite lattice—which would then be
the “square-root graph” of the two. But if one is given only a
single graph how does one find its counterpart graph so that
the two can be joined together into a bipartite graph?

This subgraph matching can be facilitated by an algorithm
that inverts the graph-theoretical interpretation of graph squar-
ing (see Appendix A for a detailed description). Using the
illustration of Fig. 2, we see the effect of graph squaring by
going from left to right in this figure: Any z-coordinated site
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TABLE 1. Graph correspondences. Comparison of our SUSY correspondences and alternate lattice correspondences, including the line
graph construction often used in connection with flat-band lattice models, generalizations of the Lieb lattice beyond the square lattice, and
the graph theoretical notion of medial and premedial lattices. The lower half of the table lists some representative examples in two and three
spatial dimensions with a reference to the triptych-like figures illustrating their respective tight-binding band structures.

Lattice
correspondence Graph Graph Graph Reference
SUSY Fermion lattice (square) Supercharge (root) Boson lattice (square) This work
Line graphs Root Split graph Line graph Refs. [58-60]
Lieb lattices Sublattice Lieb lattice Sublattice Ref. [57]
Graph theory Premedial Medial Ref. [61]
Examples Honeycomb Honeycomb-X Kagome Fig. 1
Square-octagon Square-octagon-X Squagome Fig. 9
fcc Diamond fcc Fig. 15
Diamond Diamond-X Pyrochlore Fig. 18
Hyperoctagon Hyperoctagon-X Hyperkagome Fig. 19

within a given bipartite graph will result, upon squaring, in
a fully connected plaquette with z vertices, which in the lan-
guage of graph theory is also called a cligue. To do the inverse,
i.e., to find the bipartite square-root graph for a given graph by
constructing its matching subgraph, the algorithm now works
in the opposite direction (from right to left): It takes a z clique
and replaces it with a z-coordinated vertex that connects to all
constituents of the prior clique. Performing such replacements
in an iterative manner, where one starts with the largest clique
and proceeds to smaller cliques in subsequent steps, one is
eventually left with the desired matching subgraph and the
entire bipartite graph—the legitimate square-root graph we
are looking for.

C. Connections to other lattice correspondences

SUSY correspondences imply lattice correspondences.
They have been used to connect their respective band struc-
tures and predict flat bands. But SUSY does not require any
specific rules relating to lattice sites, or that the lattice models
are even noninteracting. It only requires fermion degrees of
freedom on one sublattice, bosonic on the other, and a parity-
odd operator defining the supercharge.

We argue below that SUSY is more general than the line
graph correspondences that connect a root graph to a line
graph via a split graph and illustrate this with an example.
At the noninteracting limit, we also argue the bipartite lattice
correspondences recently introduced in Ref. [62] are equal to
SUSY correspondences. Adding to these interacting SUSY
lattice models, SUSY, therefore, transcends a hierarchy of
lattice correspondences, as shown in Table I and Fig. 3.

1. Lieb lattices, split graphs, and bipartite lattices

The Lieb lattice, split graphs, and general bipartite lattices
are SUSY graph correspondences. The Lieb lattice [57] is
the lattice we have denoted as a square-X lattice—a square
lattice where one adds a site to each bond. This bipartite lattice
decomposes into two sublattices, the original square lattice
and the checkerboard lattice. In the notation of graph theory,
the Lieb lattice is considered as a split graph [63] and it can
readily appear as the supercharge Q = ¢'Rb with fermions
on the X sites and bosons on the other sites or vice versa,

see Fig. 26. But we can think of all X lattices considered in
the triptych-like figures of Sec. III, such as the honeycomb-X
lattice and hyperhoneycomb-X lattice, as generalized Lieb
lattices. This generalization identifies Lieb lattices with split
graphs.

Recently, Ref. [62] generalized split graphs to all bipar-
tite lattices. But a general bipartite lattice also defines a
supercharge, for we can place fermions on the A sublat-
tice and bosons on the B sublattice. This mapping between

SUSY
mappings

non-interacting SUSY
lattice correspondences
bipartite lattices

line/root/split graphs
medial/premedial lattices

FIG. 3. Hierarchy of lattice correspondences. Supercharges de-
fine a general relation between bosonic and fermionic systems.
Noninteracting supercharges are a subset and define lattice corre-
spondences. They are the same lattice correspondences defined by
bipartite lattices [62] via the mapping presented in Fig. 29. The flat
bands found, for example, in Ref. [62], obtained by a generalization
of the line graph construction to all bipartite lattices, correspond to
the same flat bands found in the supercharge spectra presented in all
the triptych figures in this paper. A subset of noninteracting SUSY
or bipartite lattice models is the root graphs to line graphs via split
graph correspondences, also known as the premedial lattice to medial
lattice pairings.
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FIG. 4. SUSY beyond the line graph construction. Shown is the
SUSY correspondence between complex fermions on a triangular lat-
tice with nearest-neighbor hopping (blue, left) and complex bosons
on a honeycomb lattice with further neighbor hoppings (red, right)
that falls beyond the line graph lattice construction. For the topologi-
cal classification according to Table II, we find, noting that the Witten
index here is v = 1, that the nexus point in the supercharge spectrum
has a nontrivial topological invariant of 7; = +1.

supercharges and bipartite lattices, discussed in more detail
in Fig. 29, is used throughout this paper to construct spectra
for the supercharge. Hence, bipartite lattices define the same
lattice correspondences as noninteracting SUSY models.

2. Our SUSY algorithm and line graph (root graph),
medial-lattice (pre-medial-lattice) correspondences

The SUSY algorithm presented in Appendix A, maps a
bosonic lattice to a fermionic lattice and vice versa and
appears similar to the line graph construction. Our SUSY
examples and the line graph construction both have tight-
binding spectra hosting flat bands [64]. A line graph of a given
lattice, called the root graph, is obtained from connecting
the vertices on the center of all bonds. line graphs and root
graphs also go by the name of medial and premedial lattices,
respectively [61]. Examples include the kagome lattice, which
is the line graph of the honeycomb lattice (see Fig. 1), or
the three-dimensional (3D) Shastry-Sutherland lattice, which
is the line graph of the hyperoctagon lattice (see Fig. 19).
In these examples, there is exactly one type of clique in the
root graph, a two-site bond, and the graph square-rooting
algorithm derives the line graph. Hence, for any graph with
this property, the SUSY graph correspondence of Sec. II B is
the line graph correspondence.

3. SUSY lattice correspondences beyond line graphs

Let us consider examples beyond the line graph construc-
tion. All “isostatic” cases with an equal number of fermions
and bosons, i.e., a Witten index of v = 0, are beyond the line
graph construction. An example is presented in Fig. 13. These
do not demand flat bands but imply other degeneracies such
as a Dirac point.

An example beyond the line graph construction that does
imply flat bands is presented in Fig. 4. The supercharge lat-
tice in the middle, which is a bipartite dice lattice, harbors
fermions on the triangular sublattice coupled with bosons
at the centers of the triangular plaquettes (of that triangular
sublattice). Squaring this supercharge decouples the fermions

from the bosons with the former hopping on the triangular lat-
tice and the latter on a honeycomb lattice. However, although
the tight-binding Hamiltonian describes the fermionic model
with nearest-neighbor hoppings only, the bosonic Hamilto-
nian includes first, second, and third neighbor hoppings on the
honeycomb lattice. The appearance of a single flat band on the
bosonic side follows from the Witten index of the supercharge
being v = 1, or alternatively, by the honeycomb lattice having
one more atom in its unit cell compared with the triangular
lattice. This example goes beyond the line graph construction
because one graph is not the line graph of the other. But, just
like the spectra in our line graph examples, it exhibits flat
bands and nexus points. More examples of this type are shown
in Appendix D.

4. Summary

In summary, our SUSY graph correspondence and the
graph square-rooting algorithm capture all of the lattice
correspondences discussed in this section (Sec. IIC). The
supercharge defines a bipartite lattice and is analogous to
the Lieb lattice and split graphs. The mapping between the
fermion lattice and boson lattice is analogous to the mapping
between the line graph and its root graph (or medial and
premedial lattices).

While the other lattice correspondences have not been ex-
plicitly discussed as SUSY correspondences, some authors
have used the line graph construction [58-60] and Lieb lat-
tices [57] to construct flat-band models. For a pedagogical
overview see Refs. [65] and [66]. These examples are all
SUSY lattice correspondences.

But SUSY is more general than these mappings, more
general even than lattice correspondences. We have presented
an example above to emphasize that it goes beyond the line
graph construction and can help us search for new flat-band
materials. In Appendix D, we present more examples, aiming
to show the breadth of the SUSY lattice correspondence. But
the interacting spin model presented in Sec. III A is not merely
a lattice correspondence. It has flat bands in the large-S limit
but remains supersymmetric for any S. Hence, the SUSY
discussed in this paper is a general framework capable of
capturing classes of lattice models hosting robust flat bands
or other gapless modes beyond those considered to date in the
literature.

D. SUSY as graph correspondence

The two previous sections have presented two ways of
arriving at a block-diagonal Hamiltonian of the form of (2)—
first, by squaring the supersymmetric charge operator to arrive
at the block-diagonal Hamiltonian Hgysy of (4) and, second,
by squaring the adjacency matrix of a bipartite lattice, A2, of
(9). Equating them all,

RR' M A
()= (" )= (M w00

brings us to the essence of the framework that we develop in
this paper: We can identify the two sublattices of a bipartite
graph (on the right) as fermionic and bosonic partners in a
SUSY theory (middle), whose tight-binding models must be
isospectral, up to zero modes (on the left). Taking the square
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FIG. 5. SUSY matching complex bosons and fermions.
Schematic relation between complex bosons and fermions which
can be connected by a supercharge defined on a bipartite lattice.
In this case, both models are residing on its respective A and B
sublattices.

root of (10) gives

R Al
(e )=l %)= la *0)

which lets us identify the bipartite lattice geometry, given by
the adjacency matrix A (right), with the supercharge (middle),
and whose tight-binding spectrum must be the square root
of the tight-binding spectra of its two subgraphs, up to zero
modes (left).

To illustrate these statements, we can go back to our
initial example of the SUSY correspondence of Fig. 1:
The honeycomb and kagome lattices are, in this frame-
work, supersymmetric partners which are connected via the
honeycomb-X lattice—their parent bipartite lattice or, equiva-
lently, the supercharge. The energy spectra of the three lattices
are indeed connected to one another as described above;
the honeycomb and kagome tight-binding Hamiltonians are
isospectral up to a zero mode on the kagome side, while the
spectrum of the honeycomb-X lattice is indeed the square
root spectrum of the other two. It has symmetric positive-
and negative-energy branches, or particle-hole symmetry in
the parlance of condensed-matter physics, corresponding
to the positive and negative square roots. The zero mode
of the kagome lattice survives as a mid-spectrum flat band
in the honeycomb-X spectrum. The quadratic band minima
at the I" point of the honeycomb and kagome energy spec-
tra become linear modes forming a Dirac cone at the I’
point in the honeycomb-X spectrum. In fact the two latter
observations—particle-hole symmetry and (higher-order) lin-
ear band crossings—are generic features of the energy spectra
of bipartite lattices, whose origin can be naturally explained
within our SUSY framework.

We can also put our SUSY graph correspondence to work
in a constructive manner. One natural way would be to start
from a bipartite lattice, consider it to be a supercharge, and
then identify two isospectral tight-binding models by decom-
posing it into its two sublattices. In the conceptual summary of
our SUSY graph correspondence in Fig. 5 this corresponds to
a start at the bottom and then working our way up. However, in
practical settings, one might be more interested in producing
the supersymmetric partner for a given tight-binding model,
e.g., by starting on the top left of Fig. 5 with a bosonic

tight-binding model and asking whether it has a fermionic
counterpart (or vice versa starting with a fermionic model
and asking whether it has a bosonic counterpart). To con-
struct such a SUSY partner, our graph square-root algorithm
(which inverts the graph squaring of Fig. 2 as detailed in
Appendix A) comes into play—it allows one to simultane-
ously construct both the supersymmetric lattice partners as
well as the square-root bipartite lattice that decomposes into
the two sublattices. If, for instance, one starts with the kagome
lattice, one would readily identify the honeycomb lattice as its
SUSY partner. Multiple other examples will follow in the next
section making connections, e.g., between the square-octagon
and squagome lattices (Fig. 9) or, in three spatial dimensions,
the diamond and pyrochlore lattices (Fig. 18) or the hyperoc-
tagon and hyperkagome lattices (Fig. 19).

All in all, the consequences of identifying SUSY with a
graph correspondence seem quite substantial. The following
parts of this paper are devoted to corroborating this by numer-
ous examples in which the graph language greatly benefits
the analysis and contextualization of various bosonic and
fermionic lattice models.

E. Symmetry, supersymmetry, and topology

To complete our general discussion of SUSY-related
bosonic and fermionic lattice models, we want to expand the
underlying SUSY formalism to also reflect on Hamiltonian
symmetries, band-structure topology, and general classifica-
tion of the connected models.

To start this discussion, it is important to revisit the su-
percharge operator in (3). It not only generates a pair of
isospectral fermionic and bosonic Hamiltonians, it is itself
associated with a third Hermitian operator’

Q=09+ Q =c"Rb+b'Ric

= (f bhH <RT R)(Z) (12)

This operator is an arbitrary Hermitian quadratic form that
anticommutes with fermion parity e™ <’ Tts eigenspectrum is
presented in the middle panel of the triptych-like figures, such
as Fig. 1. For more details, see also the eigenstate mapping in
Fig. 29 of the Appendix. Any deformation of the model pa-
rameters that preserves SUSY will map Oy to some other Qp
and so we can define these SUSY preserving deformations as
simply a deformation of Qy itself. The fermionic and bosonic
Hamiltonians, on the other hand, are not generally deformable
under SUSY preserving deformations for they must maintain
non-negative eigenvalues. Hence, Qy defines the topological
classification of quadratic SUSY problems.

To classify Qy, we begin by identifying the symmetries
of Hr and Hp that are important for the topological clas-
sification of fermionic problems. Then we see how these
symmetries map under SUSY so that knowing a symmetry
of Hp aids in determining its form for Hjp or vice versa.
Finally, this understanding of symmetry will lead us to the
classification of supersymmetric systems via Qy.

3We could also construct another Hermitian charge —i(Q — Q") if
we need to study the full N = 2 SUSY algebra.
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(k) ———> Ju(k))  [v")
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|v<—k>><? u(=k)) )

FIG. 6. Time-reversal symmetry under SUSY map. The category
to define the bosonic time-reversal within the space of the finite-
energy bosonic states |v(k)) by combining the SUSY mapping to
their fermionic partner states |u(k)) and the time-reversal in the
space of the fermionic states, 7. Another time-reversal operator @z
acts within the manifold of the zero modes [v""™) separated by the
projector Pp,. Together, they define the full bosonic time-reversal Tz
in (16).

It has become widely appreciated that one can use
electronic band-structure calculations to readily deduce topo-
logical properties [67]. Doing so rests on the fact that for
fermionic systems, topological invariants are intimately con-
nected to certain unitary and antiunitary symmetries of the
single-particle Hamiltonian matrix [21].

In the case of a fermionic Hamiltonian, the action of
the following set of symmetries is of pivotal importance:
time-reversal symmetry (7), particle-hole symmetry (P),
and chiral or sublattice symmetry (C =7 -P). T and P
are anti-unitary symmetries that commute (7)) or anticom-
mute (P) with the single-particle Hamiltonian matrix, while
C is an anticommuting unitary symmetry. They square to
the possible values of 72 = +1, P> = £+1, C> =0, 1. Com-
bining these symmetries leads to ten topologically distinct
classes of Hamiltonians describing noninteracting fermionic
systems [36].

Consider first the time-reversal symmetry for fermions
and its mapping to bosons. Working in Fourier space, the
fermionic and bosonic eigenstates of Hr and Hp, the Bloch
wave functions |u(k)) and |v(K)), are related as

lu(k)) R lv(k)) and [v(k)) Rik)

Vo) Vo)

This mapping is then associated with the operator

Rkk) = R(k) (14)
- ok

which defines a norm-preserving map between the finite-
energy eigenstates of the concerned Hilbert spaces. But by
construction, this excludes the zero modes of the energy spec-
tra w(k) of the two isospectral Hamiltonians Hp and Hp. If
the flat bands arise when v > 0, i.e., when R is a rectangular
matrix and annihilates the flat-band states, then

lu(k)).  (13)

R(k)’vl((zero)) =0, (15)
when |vlize“’)) is a state in the flat-band manifold. Let us

assume Py, is a projector onto this manifold. The full time-
reversal operator spanning the entire bosonic Hilbert space
(including the flat bands) then is related to the fermionic
time-reversal operator via (see Fig. 6)

Ts(k) = [1 — Pop (IR (—K) Tr (ORK)[1 — Ppy (k)]
+ P (—k)Op(K)Pp (k). (16)

where ®p is a bosonic time-reversal operator that operates
only within the flat-band manifold (e.g., it can be ®3 = UK,
where U is a unitary operator and /X is the complex conjuga-
tion, both restricted to the flat-band manifold). Therefore, the
matrix form of 7 is block-diagonal,

[ RIT;R
n-[ @B} a7

where the upper block, corresponding to all finite-energy
states, is separated from the lower one, which consists of
the zero modes (flat bands), by the projector Pg,. The time-
reversal operator in (16) satisfies Tp(—Kk)7p(k) = 1. If v < 0,
the flat bands either do not arise or they arise on the fermionic
side. Then the mapping is simpler,

Ts(k) = R'(—K)Tr (K)R(K). (18)

As a result, we generally expect the time-reversal symmetry
to map between the fermions and bosons.

Such a mapping cannot be constructed for the bosonic
particle-hole operator Pg when v > 0. This is because, when
restricted to the flat-band manifold which maps onto itself
under particle-hole conjugation, it reduces to the time-reversal
operator 7T only. As a result, such identification in this case
also fails to apply for the bosonic chiral symmetry opera-
tor Cg = Tp - Pp, which is trivial in the presence of the flat
bands. These situations are easily established when the SUSY
for v # 0 identifies a bipartite fermionic system (e.g., on
the honeycomb lattice) with a nonbipartite bosonic system
(e.g., on the kagome lattice). The absence of a mapping
between the fermions and bosons for P and C is then di-
rectly associated with the loss of the bipartite property of
the lattice.

With both the symmetries and the Hermitian operator Oy
identified, we are now in a position to classify our SUSY
models. First, consider the case with no symmetry, just
supersymmetry. We see that fermion parity 7€' is an anti-
commuting unitary operator which acts at the single-particle
level as the anticommuting unitary matrix

Csusy = <I —I)’ (19)

So all SUSY problems are chiral. Then adding the additional
symmetries 7, P, and C that act on both fermions and bosons
as discussed above we see that we cannot additionally add a
C since a chiral symmetry is already present. And, if we add
T, we automatically obtain a P for C =T - P. As a result,
we avoid the difficulty with deriving Pp from Pr pointed
out above. The bipartite-ness of Qy naturally enables a P
symmetry. Hence, in classifying the SUSY problems, either
we do not have 7 and P or we have them both with one
derivable from the other.

With that, we arrive at a fivefold way classification of SUSY
models characterized by the absence of Tsysy/Psusy (class
ATII) and the four classes with Tsusy, Psusy having Tégy =
+1, PgUSY = =£1 (classes BDI, CI, CII, DIII). Previously, two
of us classified the related problem of rigidity matrices [41,43]
and found a threefold classification (classes AIIl, BDI, and
CII). So by classifying Qy, we have now found two previously
unknown classes of SUSY Hamiltonians.
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To construct a classification table, we need to identify
the topology of the classifying space of Qy in each of the
five symmetry classes. Following the classification of rigidity
matrices [43], we can arrive at this by carrying out a singular
value decomposition of a generic rectangular R matrix of di-
mension M x N as R = UXV' (U and V are unitary matrices
of dimension M x M and N x N, respectively) and smoothly
flatten the singular values ¥ — I/« y. The resulting flattened
matrix then lives in a potentially nontrivial topological space
defined by the gapping condition that no singular values van-
ish. The effect of this transformation on Qy is to place it in
the form

Oy — <U V) (INXM IMXN) <U' VT)‘ (20)

Inserting ¢/"/4)%we can rotate this expression into an eigen-

value decomposition

| EYSY
Ou—P —Iyxm P, (1)

Oy (N—m)

with
P— (U V) ei(n/4)o’_v, (22)

where, without loss of generality, we have considered M < N.
For the case v = 0, where R is a square matrix with M =
N, the singular value gapping condition is identical to the
eigenvalue gapping condition for all five classes AIll, BDI,
CI, CII, and DIII. For v # 0, however, we arrive at a space
of Hermitian matrices where some eigenvalues are forced
to vanish by SUSY. These eigenvalues appear as protected
flat bands in SUSY band structure calculations. The gapping
condition now corresponds to a pair of (positive and negative)
eigenvalues vanishing to create additional zero eigenvalues.
An example in band structures is a nexus point [68-71]: a
point where multiple energy bands merge in a three- or higher-
fold degenerate fashion (including, in particular, a possible
combination with flat bands, which will be the case for most of
our examples). Hence, by flattening the eigenvalues of Qy, we
map it onto certain spaces of matrices that can have nontrivial
topology.

The final steps are to identify the topology of the classify-
ing spaces and to compute topological invariants to identify
protected zero modes. We carry these steps out in Appendix B
where we present complete example calculations along with
tables of homotopy groups associated with each class, dimen-
sion, and Witten index v. It turns out that all of the examples
in the next section, Sec. III, are in the BDI symmetry class. To
highlight their potential topological zero modes, we therefore
present in Table II the BDI table produced in Appendix B and
the figures that constitute the associated examples.

In summary, the SUSY band structures that fit into the
formalism of this paper fall into the fivefold classification of
chiral Hamiltonians. For the case v = 0, we can resort to the
tenfold way to classify Qg while for v £ 0 we can rely on
Ref. [43] for the class AIII (unitary), BDI (orthogonal), and
CII (symplectic). Building on these references, Appendix B
presents the five tables classifying the SUSY band structures.

TABLE II. Topological classification of SUSY Hamiltonians
with finite Witten index. The table (on the left) indicates topological
invariants (Z,, Z) as a function of Witten index v. It is organized not
by the spatial dimension used in the tenfold way table [37-40] but by
homotopy groups m,. Mathematically, the latter corresponds to maps
from n-dimensional sphere S, to the flattened supercharge in (20).
In physical terms, m; is also known as the Berry phase and 7, as the
Chern number, which we here associate with features (such as nexus
points) of the zero-energy band of the supercharge band structure
(depicted in the middle panel of the triptych-like figures of Sec. III).
Shown are results for symmetry class BDI [43]; four more symme-
try classes are discussed in Appendix B leading to a fivefold way
classification scheme, fully tabulated in Table V of the Appendix.
On the right, we tabulate example systems (illustrated in the respec-
tively linked figures) with nontrivial topological index, including
the supercharge on the following lattice geometries: honeycomb-
X (Fig. 1), square-X/Lieb lattice (Fig. 26), hyperhoneycomb-X
(Fig. 10), diamond-X (Fig. 18), and hyperoctagon-X (Fig. 19). The
nontrivial homotopy groups associated with certain features in their
respective band structure are illustrated in Fig. 25 of the Appendix.

BDI Figures with examples
Vv Ty %) T3 T Ty 3
1 Z, 0 V/ 1,26
2 0 Z Z 10, 18, 19 10, 18, 19
3 0 0 Z
4 0 0 0

III. FRUSTRATED MAGNETS

In putting our SUSY correspondence to work, let us turn
to the phenomenology of frustrated magnets as one realm to
highlight the conceptual insights one might quickly derive in
connecting them to SUSY-related free-fermion systems. One
such insight relates to the Maxwell counting for geometrically
frustrated magnets, which we discuss in the language of our
SUSY correspondence in Sec. III A. Another insight is that
SUSY allows for a classification of extensive ground-state
manifolds in classical spin models, which we subsequently
turn to in Sec. IIIB. Our SUSY correspondence can also
be employed to predict magnon dispersions for certain frus-
trated magnets in large magnetic fields, which we discuss in
Sec. I C, and parton dispersions for certain quantum spin
liquids, in Sec. III D.

A. Maxwell counting for geometrically frustrated magnets

The first case study of our SUSY formalism in the con-
text of frustrated magnetism concerns the special class of
geometrically frustrated magnets that can satisfy a total spin
constraint on each simplex (or fully connected plaquette in the
parlance of the current paper) of the lattice [33,34]. Common
examples include kagome and pyrochlore Heisenberg antifer-
romagnets where these simplices correspond to triangles and
tetrahedra, respectively. But less common examples are also
possible such as distorted kagome antiferromagnets [35] and
even the square lattice Néel antiferromagnet since a two-site
bond can also be viewed as a simplex [22] or a fully connected
plaquette, as indicated in Fig. 2. To see the presence of these
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spin constraints, we need to write the spin model Hamiltonian
as a perfect square,

2
H = ZJ,»I-S,» . SJ -+ const = % Z |:Z a,»S[:| s (23)

(ij) A Liea

where A denotes the simplex of the lattice, we keep spin
rotation invariance for simplicity and generalize the total spin
constraint to include the a; factors. Note the similarity of this
perfect square formulation to a balls-and-springs model with
potential energy %kefn, e, the extension of spring m, such as
those discussed below in Sec. IV. This special form of the
Hamiltonian enables a SUSY correspondence [22], which we
cast in our general framework in the following.

We can identify both a quantum and a classical SUSY
model from the perfect square Hamiltonian (23). In the quan-
tum case, the individual terms of the Hamiltonian do not
generally commute with one another and therefore cannot be
simultaneously satisfied in the ground state. In the classical
case, however, each term in the Hamiltonian can be simultane-
ously satisfied, thereby defining a set of Maxwell constraints.
Let us, in the following, first visit the quantum case and the
behavior of magnon excitations of an ordered state and then
turn to the classical case to illustrate the role of SUSY and the
relation between the Witten index and Maxwell counting in
geometrically frustrated magnets.

1. Quantum antiferromagnets

In the quantum case, we can define a supersymmetric
charge from the total spin on a simplex by associating a
fermion with each component of this spin in the large-S limit
[22]. For simplicity, we study a pure XY quantum model,
similar to those studied for their connections to gauge theories
[72] or deconfined quantum criticality [73]. For such models,
we can construct the supercharge

J
Q= \/;CTASA, (24)

where Sy =} ,(Sjx +iSjy). It has a U(1) symmetry in
which spin rotations around the z axis, S, — e"GS;, are ab-
sorbed into a phase change of the fermions, cZ — e cz, and
leads to the SUSY Hamiltonian %{Q, o,

J \
Hgysy = 5 Z [S2A +(1- ZCZCA)SZ] —J Z CZSZAA’CA"
A (AA)

(25)

where the first term is the perfect square Hamiltonian of (23)
with a; = 1, S the total xy spin of simplex A, §% the total z
component of simplex A, and S5 ,, is the z component of the
spin on the site shared by neighboring simplices A and A’.
In this way, we arrive at an interacting SUSY problem where
fermions and bosons know about each other’s existence. Since
the spin model Hamiltonian of (23) does not involve spins in-
teracting with fermions, this new model is not directly related
to the original one. But we see that, in the large-S limit, the
fermions and bosons decouple and, at the quadratic level, the
magnons of a geometrically frustrated magnet of the kind we
are discussing here will have a fermionic SUSY partner.

As the avid reader might have already noticed, the formu-
lation in terms of an effective total spin on a simplex bears
some similarity to the lattice construction algorithm of Fig. 2
(and outlined in Appendix A) as it groups edges of the lattice
in terms of fully connected plaquettes. Building a supercharge
by combining such a fully connected plaquette of the original
lattice with a new particle in its center, a fermion in this case,
is graphically equivalent to introducing a new vertex in the
center of a clique and connecting it with all existing vertices
of this clique. For instance, in the case of an XY model on
the kagome lattice, the ¢ and ¢' are placed on the honeycomb
lattice, formed by the center of the triangles of the kagome
lattice—or, in the parlance of this paper, the SUSY partner of
the kagome lattice.

To decouple the fermions and bosons, in a subsequent step,
we expand around a ground state of the magnetic system. We
do so by expressing the on-site spin operators Sii =5+ iS'?
and S; in terms of Holstein-Primakoff [74] bosonic (magnon)

annihilation and creation operators b; and b; as

St=y25—n;b;, S; =bl\/2S—n;, S =8—n;

(26)

where n; = b;b ; measures the on-site magnon occupancy. In
general, we do so differently on each site, choosing the z
direction to point along the local magnetic ordering vector.

We can attempt to expand the supercharge to order /S in a
large-S expansion. Doing so, we obtain a supercharge similar
in form to (3),

0 =c"Rib+ "Ry, 27)

but here there are two matrices Ry and R, unlike in (3). We
can also wonder if the approximation preserves the SUSY
algebra that demands Q% = 0. We find

Q* = ¢'R|RI . (28)

This would be a pairing term in the fermion Hamiltonian.
For all the cases we discuss below, we find fermion pairing
vanishes and Q2 = 0, the A" = 2 SUSY algebra is preserved
by the large-S approximation.

Proceeding to derive the SUSY Hamiltonian, via Hsysy =

3{0. 07}, yields
Hsusy = 3¢'(RiR] — RoR))c + 16 (R]R; + RIR3)b
+ (bRIR;b + H.c.). (29)

Thus, expanding around a ground state of the XY model
(spontaneously) violates the U(1) symmetry of magnons but
not of the fermions—the superfluid of magnons are partnered
with metallic fermions.

Now, in this XY model, there are many large-S ground
states, each with its own magnon dispersions. These ground
states define the frustration: the spins struggle to choose the
best from among all the ground-state options. One way to
understand this frustration is to take a walk along a path in the
ground-state manifold and, stopping at points along the walk,
study the magnon band structure. Let us do so in a kagome
lattice example.

One “ferrimagnetic” walk in the kagome lattice XY model
defined above, is to start from the antiferromagnetic “q = 0
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FIG. 7. Kagome lattice magnons (right) and their SUSY partner
(left). Spectra are shown along a “ferrimagnetic” path in the XY
model ground-state manifold: at the z-polarized ferromagnetic point
6 =0 (top), at 6 = /4 in the ferrimagnetic region (middle), at
the antiferromagnetic ¢ = 0 point 6 = /2 (bottom). These band
structures show how ferromagnetic magnons have a quadratic band-
touching semimetal as a SUSY partner. Similar to the band structure
in Fig. 1, we note that the Witten index is v = 1 for all three panels
with the quadratic band touching (in the two upper panels) exhibiting
a nontrivial ; topology.

state” defined by three spin ordering vectors A, B, C lying in
the xy plane with A + B 4+ C = 0; placing one on each of the
three sites in the unit cell. Then add a z component uniformly
to all three ordering vectors, capturing this change by the
polar angle 6 that is 7 /2 in the g = O state and zero in the
fully tilted simple ferromagnetic state. This walk then takes
us from a classic antiferromagnetic state to the fully polarized
ferromagnetic state.

In Fig. 7, we present the evolution of the magnon band
structure and their SUSY partner along the above walk. It
shows at all points except 8 = m /2, that the ferrimagnetic
states reproduce Fig. 1—the magnons have a flat band with
a quadratic band touching at the I" point (with a nontrivial
topology) and a semimetal as a SUSY partner. These states
preserve the XY spin rotational symmetry of the spins and
the U(1) symmetry of a metal. But the bandwidth depends on
the point along the walk and vanishes as the purely antiferro-
magnetic point & — 7 /2 is reached. At this special point, flat
bands emerge in both the magnon and partner fermion models.

We can take a second walk in the infinite-dimensional
space of ground states of the large-S spin model, this time
following a purely antiferromagnetic trajectory. Here we be-
gin with the g = 0 state and rotate it out of the xy plane,
keeping S5 = 0. This can be achieved by rotating about the
B direction by an amount «, a rotation that lifts the A spins
above the plane and C spins below the plane. Surprisingly,

this rotation has no effect on the band structure: all of these
antiferromagnetic states have a vanishing magnon bandwidth.

These results suggest thermal order-by-disorder would be
different from quantum order-by-disorder. Thermal order-by-
disorder is an entropic selection of ground states that results
from warming up the system from its 7 = 0 ground state. For
the kagome XY model, we would expect a much larger en-
tropy for the antiferromagnetic states than the ferromagnetic
states and so an antiferromagnetic state would be selected at
large S but finite 7. On the other hand, the pure ferromagnetic
state at & = 0 is an eigenstate of the full interacting Hamil-
tonian. This state has the least quantum fluctuations and so
is the most stable ground state. It should be selected at finite
S, T — 0. So the two limits do not commute and we expect
the ordering tendencies will be different between thermal and
quantum fluctuations, much like the ¢ = 0 is selected by quan-
tum fluctuations while the higher entropy +/3 x +/3 state (not
discussed here) is selected by thermal fluctuations in the XX Z
kagome antiferromagnet [75].

Before concluding, we must comment on the full inter-
acting theory. The Hamiltonian of (25) preserves magnon
number and has many known eigenstates [76]. Hence, the
ferromagnetic (zero-magnon) ground state, the one-magnon
states, the two-magnon states, etc. are all mapped to them-
selves by Hsysy and captured by small matrices. Specifically,
we find the “all-down” spin state with zero fermions per site
and the “all-up” spin state with one fermion per site is exactly
at zero energy. In addition to these two zero-magnon states,
we find the one-magnon states, produced by the linear com-
binations of the all-down states raised by one unit of angular
momentum, S[*| — 8, =S, ...), or lowering the all-up states by
one unit of angular momentum, S;°1S, S, . . .), have exactly the
band structure of the bosonic dispersions plotted in Fig. 7
with the flat band at zero energy and a bandwidth of 6JS.
Hence, there are an infinite number of zero modes among
the one-magnon states. Similarly, we find two zero energy
states among the one-fermion states, the states corresponding
all-down spins with one fermion occupying the k = O state
and the all-up state with one hole occupying the k = 0 hole
state. There are clearly more zero-energy states than these.
In total, we find an infinite number of exact ferromagnetic
eigenstates in the SUSY model of (25). We have not identified
any antiferromagnetic eigenstates and do not expect to do so.
We conjecture these all are lifted to finite energy by quan-
tum fluctuations and are only at zero energy in the classical
S — oo limit. Hence, we still expect ferromagnetism to be
selected by quantum fluctuations.

2. Classical Maxwell counting

In the previous discussion, we computed the band structure
of a large-S kagome XY model and found a flat band of
magnons partnered with metallic fermions. Let us turn our
attention to the existence of this flat band, for in these models,
it is the fundamental cause of their frustration effects.

The supercharge of (24), introduces one complex fermion
on each simplex and, at the classical level, two total spin
constraints imposed on the ground state by the S3 term.
Expressing the complex fermion as two real fermions cZ =
Yax — iyay suggests that we have fermionized the constraints:
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Yax corresponds to the So, =0 constraint and y,, to the
Say =0 constraint. Similarly, one complex boson b; sug-
gests that we have two real “degrees of freedom” per
site. Hence, from a real-fermion, real-boson perspective, the
single-particle Witten index, which counts the difference be-
tween the number of bosons and fermions, corresponds in the
classical limit to Maxwell counting: The number of “degrees
of freedom” minus the number of constraints is twice the num-
ber of complex boson operators b; minus twice the number of
complex fermion operators ca. In this way, we can exactly
reproduce Moessner and Chalker’s Maxwell counting [33,34]
in a supersymmetric theory.

For the specific case of the kagome XY model discussed
above, the Maxwell counting works out to four constraints per
unit cell (which has two triangles) and six real degrees of free-
dom (three spins). Hence, the Maxwell counting tells us there
is a minimum of v = 6 — 4 = 2 real degrees of freedom, i.e.
one complex degree of freedom, per unit cell. This therefore
demands the existence of one flat band in the magnon-number
preserving band structure as presented in Fig. 7.

Maxwell counting involves more than identifying flat
bands, it also enables topology through topological mechan-
ics [7]. In this vein, topological properties of magnons in
distorted kagome antiferromagnets were studied in Ref. [35]
by placing them in the form of (23). This study found two
classes of problems associated with a triangulated surface
in spin space called spin origami [77-79]. Flattenable spin
origami with a flat band of zero energy magnons, and non-
flattenable spin origami with Fermi-surface-like degeneracy
of magnons. These results are due to SUSY [22], but SUSY
was not employed directly in obtaining them. Nevertheless,
the topological property of spin waves discussed in this paper
is precisely that expected by the SUSY encoded in (24) up-
graded to Heisenberg spins, an upgrade that is possible [22]
with the real formalism discussed in Sec. IV.

In summary, we have demonstrated the use of SUSY and
our lattice construction to find highly frustrated magnets, ma-
terials whose magnons exhibit a flat band at different points
on their large-S ground-state manifold. Using an XY model
as an example, a model with a global U(1) symmetry, and
following Ref. [22], we wrote down a supercharge assigning
a fermion creation operator to the xy-plane component of the
total spin constraint on a simplex. This approach reproduced
the Moessner-Chalker-Maxwell counting [33,34] identifying
highly frustrated magnets as underconstrained systems, recog-
nizing that such counting formally is associated with a SUSY
system. This formal connection revealed a hidden U(1) sym-
metry of the magnons in the example studied—their fermionic
partner is a semimetal instead of a superfluid. In addition,
our identification of such systems is broader than Moessner
and Chalker, capturing lattices that go beyond corner-sharing
simplices.

B. Ground-state manifolds

As a second case study for our SUSY framework, we
exclusively turn to classical spin models, which are often
considered the first step in the search for unconventional forms
of magnetism. Conceptual advances such as the discussion of
residual entropies [80,81] as a defining signature of frustration

[82,83] or the identification of cooperative paramagnetism
[84], emergent Coulomb phases [85], or order-by-disorder
phenomena [86] have been formulated in the context of such
classical models alongside the establishment of classical spin
liquids [87] and spin ice [88,89]. Many of these phenomena
are evolving around extensive ground-state manifolds of geo-
metrically frustrated Heisenberg antiferromagnets.

Here we apply our SUSY framework to accomplish two
conceptual goals in this context. First, we explicate how the
SUSY lattice correspondence leads one to quickly identify
lattice geometries for which Heisenberg antiferromagnets are
likely to exhibit extensive ground-state manifolds. One prime
example is the (classical) kagome antiferromagnet which we
connected to the honeycomb-kagome case study in our intro-
duction (Fig. 1). We also see many other instances in two
and three spatial dimensions in this section, which are all
exemplified by similar triptych-like figures, such as Fig. 18
below which makes the case for the pyrochlore antiferromag-
net. Second, we use our framework to recast a spin-fermion
correspondence in terms of our SUSY framework, which had
been formulated by some of us [90] to provide a link between
the spin spiral ground-state manifolds of frustrated spin mod-
els and Fermi surfaces of electronic tight-binding models.

1. Luttinger-Tisza method

The starting point for our discussion is a classical Heisen-
berg antiferromagnet whose Hamiltonian we write as

%Heisenberg = ZMijSi ' Sj» (30)
ij

where the three-component vectors S = (§%, §¥, §¢) denote
O(3) spins and M;; describes the (antiferromagnetic) coupling
between two spins at real-space coordinates i and j. For a
given lattice structure, the individual M;; reflect the connectiv-
ity of this geometry and constitute the entries of a (weighted)
adjacency matrix M.

We are interested in the ground states minimizing the en-
ergy of this Hamiltonian, which, under certain circumstances,
one can identify analytically using the Luttinger-Tisza (LT)
method [91,92]. This method is based on the observation that
any ground state minimizing (30) is also a ground state of
the unconstrained problem where |S;| # 1. Hence, solving the
unconstrained problem first using linear algebra can enable
the solution of the constrained problem. For certain lattices,
this attempt at a solution always succeeds and leads to copla-
nar spin spirals (see Fig. 8) with the same unit cell as the
underlying lattice. Not all classical spin ground states can
be characterized in this way, but Heisenberg models have a
tendency to do so [93].

Specifically, the LT approach proceeds by Fourier trans-
forming the interaction matrix of (30) to its momentum space
representation M (k) and diagonalizing it for a given momen-
tum k—a step that is strongly reminiscent of tight-binding
calculations and which we build upon in the following. Before
doing so, let us point out a key distinction here in that one still
has to reconstruct the real-space coplanar spin spiral once one
has identified the momentum k of the minimal eigenvalue.
The wave vector of this spin spiral is simply given by k
and phases of individual spins within the real-space basis
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FIG. 8. Coplanar spin spirals. Schematic drawing of a coplanar
spin spiral on the diamond lattice. The Heisenberg spins on every
site enclose a fixed angle when traversing through the lattice along
the spiral wave vector (as indicated by the faint background arrow).
Such phases are relevant as ground states of many classical frustrated
antiferromagnets.

can be read off the eigenstate itself as long as the equal-
length hard-spin constraint is fulfilled—a constraint which we
have effectively relaxed when simply diagonalizing M(k). For
Bravais lattices, however, this constraint must be generically
fulfilled [94], while for non-Bravais lattices this must not be
the case and, by enforcing the constraint, one might end up
selecting a subset of states found by the minimization.

2. Extensive degeneracies and flat bands

One approach of equating the LT approach to a band-
structure calculation is to identify, on the level of matrix
equivalences, the spin interaction matrix with the (bosonic)
right-hand side of Fig. 5. We do this using the algorithm pre-
sented in Appendix A, which allows us to express M = R'R.
In doing so, the lattice correspondence of our SUSY frame-
work identifies our LT calculation on some lattice (such as the
kagome) with a free-fermion calculation on some other lattice

6 — 1] — 6 ]
> > >
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FIG. 9. SUSY correspondence of square-octagon and squagome
lattices. Complex fermions (blue, left) on the square-octagon lat-
tice are supersymmetrically linked to complex bosons (red, right)
on the squagome lattice. The mapping can be established with a
supercharge which can be interpreted as the adjacency matrix of a
square-octagon-X lattice (center plot), i.e., a square-octagon lattice
with additional sites on every bond. For the topological classification
according to Table II, we find, noting that the Witten index here is
v = 2, that the nexus point in the supercharge spectrum has a trivial
topological invariant of 7, = 0, see also the illustration in Fig. 25 of
the Appendix.
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FIG. 10. The hyperhoneycomb lattice and its SUSY partner.
The hyperhoneycomb (10,3)b lattice (left) is connected to a three-
dimensional lattice of corner-sharing triangles which bears some
similarity to the two-dimensional kagome lattice but should be distin-
guished from the hyperkagome lattice of Fig. 19. For the topological
classification according to Table II, we find, noting that the Witten
index here is v = 2, that the nexus point in the supercharge spec-
trum has a nontrivial topological invariant of 7, = +1, see also the
illustration in Fig. 25 of the Appendix.

(such as the honeycomb) as isospectral up to zero modes. But
it is exactly the possible formation of such zero-energy flat
bands that we are after when asking whether the Heisenberg
antiferromagnet on some given lattice possibly has an exten-
sive ground-state manifold. The kagome-honeycomb SUSY
identification alluded to above is precisely of this sort and lets
us conclude that the kagome antiferromagnet has an extensive
ground-state degeneracy.

This idea can be readily generalized to other lattice ge-
ometries. In two spatial dimensions, one might consider
the squagome antiferromagnet (Fig. 9), which has recently
drawn some attention for the possible experimental realiza-
tion of a spin liquid state in KCugAlBiO4(SO4)sCl [95]. The
squagome is SUSY-related via our lattice correspondence to
the square-octagon lattice (hence its name), whose smaller
unit cell has two sites less than the one of the squagome
lattice; this gives rise to a Witten index of v =2 and two
flat bands in the squagome spectrum pointing to an extensive
ground-state degeneracy and the formation of a classical spin
liquid ground state [96,97] similar to the case of the kagome
antiferromagnet.

In three spatial dimensions, a well-known spin model with
an extensive ground-state manifold is the classical pyrochlore
antiferromagnet (Fig. 19), which can also be captured by our
SUSY-framework as the pyrochlore lattice is SUSY-connected
via our lattice correspondence to the diamond lattice—the two
additional sites in the pyrochlore unit cell (with regard to the
one of the diamond lattice, see Fig. 18) indicate a Witten index
of v = 2 and the formation of two flat bands in the pyrochlore
spectrum, the harbingers of an extensive ground-state degen-
eracy, spin liquid, and spin ice physics [33,34].

As a final example, we can also construct a possibly in-
teresting three-dimensional lattice geometry, which has not
received much attention so far, by applying our SUSY graph
correspondence to the tricoordinated hyperhoneycomb lattice
(Fig. 10), which has been investigated in the context of the
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FIG. 11. Spin spiral manifolds. Shown are the ground-state man-
ifolds of coplanar spin spirals, exemplified by their respective
k wave vectors in momentum space. Heisenberg antiferromag-
nets on different lattice geometries exhibit manifolds of varying
dimensionality—points for the triangular lattice, lines for the fcc
lattice and J;-J, honeycomb model, as well as entire surfaces for the
J1-J> diamond lattice.

Kitaev material §-LiIrO; [98]. To do so, we employ our
lattice construction (Fig. 2) to arrive at a three-dimensional
structure of corner-sharing triangles, depicted on the right-
hand side of Fig. 10. The latter might have deserved to be
named hyperkagome, which however has been taken by the
distinct lattice geometry of Fig. 19 that is SUS Y-related to the
hyperoctagon lattice (both of which share a screw symmetry
that is absent in the lattice geometries at hand). The point
here is that our SUSY correspondence allows us to readily
infer that the Heisenberg antiferromagnet on this lattice of
corner-sharing triangles will exhibit an extensive ground-state
degeneracy (i.e., a flat band in its LT spectrum) and as such
likely a spin liquid ground state. This observation is expected
to generally hold for the SUSY-partners of the entire family of
tri-coordinated lattices in three spatial dimensions [99-101].

3. Spin spirals and Fermi surfaces

Another approach of relating the LT approach for classical
Heisenberg models to electronic band-structure calculations
is motivated by the observation that, for many geometrically
frustrated antiferromagnets, the manifold of coplanar spin
spiral ground states resembles a Fermi surface [90]. Probably
the most striking example is the J;-J, Heisenberg antiferro-
magnet on the diamond lattice [102], for which the manifold
of spin spiral states evolves as a function of J,/J; from a
spherical geometry (for small J,/J;) to an open topology as
depicted in Fig. 11 (for intermediate J,/J;), and collapses into
one-dimensional lines in the limit of J,/J; — oo, which cor-
responds to two decoupled face-centered cubic (fcc) lattices,
also illustrated in Fig. 11. While the above cases relate to clas-
sical spin liquid ground states and systems with (sub)extensive
ground-state manifolds, one can also make such a connec-
tion between coplanar spin spirals and nodal electronic states
for ordered classical states. Take, for instance, the triangular
lattice Heisenberg antiferromagnet with its well-known 120°
ordered ground states (Fig. 12); in momentum space, the two
possible ordering patterns of this 120° order correspond to
momentum vectors K and K’ at the corners of the Brillouin
zone—the well-known location of the Dirac cones of the
honeycomb tight-binding model for free fermions. That one
can indeed relate these two situations in a one-to-one SUSY
correspondence in a similar way as one can connect the line-
like or surface-like spin spiral manifolds above to the nodal
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FIG. 12. 120° order in the classical Heisenberg antiferromagnet
on the triangular lattice. The two possible ordering patterns (left and
right) correspond to wave vectors K and K’ at the corners of the
Brillouin zone (BZ).

lines or Fermi surfaces of SUSY-related electronic models
will be the second SUSY correspondence for LT calculations
that we discuss here.

The conceptual difference to the first scenario above is that
we are now aiming to connect a ground-state property of the
classical spin model, captured by the minimal energies in the
LT spectrum, to what is typically a mid-spectrum feature—the
Fermi surface of an electronic tight-binding model. But in
the language of our SUSY correspondences, this immediately
brings to mind that we might want to connect to the spectrum
of the SUSY charge and the tight-binding spectrum of its
lattice model. Let us exemplify this for the 120° order of
the triangular lattice antiferromagnet. Our SUSY lattice corre-
spondence (Fig. 2) connects the triangular lattice via a square
root to the honeycomb lattice whose two triangular sublattices
are SUSY partners as established before and illustrated in our
triptych-like form in Fig. 13. But when drawing our attention
to the supercharge itself and its tight-binding spectrum in the
middle panel of Fig. 13, we indeed find the correspondence
that we have been looking for—the minima of the LT spec-
trum [left and right in Fig. 13 at K (and K’, not shown)] get
mapped to the Dirac points in the middle of the well-known
electronic tight-binding spectrum of the honeycomb lattice

T T T T T t
T K M r T K M r r K M r
momentum momentum momentum

FIG. 13. SUSY corresponding triangular lattices. Complex
fermions (blue, left) on a triangular lattice are supersymmetrically
linked to complex bosons (red, right) on the same triangular lattice.
The mapping can be established with a supercharge which can be
interpreted as the adjacency matrix of a honeycomb lattice whose
two sublattices are the two triangular lattices, respectively. For the
topological classification according to Table VI, we find, noting that
the Witten index here is v = 0, that the Dirac point at the K point
in the supercharge spectrum has a nontrivial topological invariant of

=+1.
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FIG. 14. SUSY matching spin-spiral ground states and free
fermion Fermi surfaces. Correspondence between a bipartite fermion
model and two distinct spin models on its two sublattices is shown
in which the Fermi surface resembles the respective ground-state
manifolds of coplanar spin spirals.

and the square-rooting along the way turns the quadratic band
minima of the LT calculation into the quintessential linear
dispersions of the Dirac cones.

Let us formulate this SUSY perspective on the spin-
fermion correspondence [90] in more mathematical terms
using our previously established framework. To this end, we
use the correspondence between a supercharge and a free
chiral fermion lattice model on the lattice geometry of the
supercharge. Such a free chiral fermion lattice model of the

form
H= (c cb) (R+ R)(Z}) (31)

maps onto a supercharge via ¢4 — ¢ and cg — b. Hence,
the Dirac points in the spectrum of the supercharge actu-
ally correspond to Dirac points in this associated fermionic
Hamiltonian. Going from the supercharge to one of the SUSY
partnering sublattices one has to square this matrix H yielding
a block-diagonal form as in (10). In the spin-fermion corre-
spondence, we now identify one of the two blocks RR' or
R'R with the spin interaction matrix M that we diagonalize in
the LT approach, as demonstrated in Fig. 14. Of course, this
squaring of the original matrix has the effect that the two pos-
itive and negative energy branches of the original fermionic
tight-binding model get mapped onto one another and that
the Fermi energy features in the middle of the particle-hole
symmetric spectrum get mapped onto the minimal energy
features of the squared Hamiltonian. We have summarized
this SUSY correspondence between a classical spin model on
some lattice geometry with a fermionic tight-binding model
on its square-root lattice in the illustration of Fig. 14 above.
Having established this SUSY framework for the spin-
fermion correspondence we can return to the cases of
spin models with multiple spin spiral ground states whose
(sub)extensive ground-state degeneracies can be captured by
some nontrivial manifold in momentum space. The first exam-
ple here might be the one of face-centered cubic (fcc) lattice
Heisenberg antiferromagnet, which exhibits a subextensive
ground-state manifold of spin spiral states whose wave vec-
tors constitute a /ine in momentum space [103], see Fig. 11.
Putting our SUSY correspondence to work, we can connect
this manifold to the Fermi surface of the fermionic tight-
binding model on its square-root graph—the diamond lattice
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FIG. 15. Spin-fermion SUSY correspondence for the fcc anti-
ferromagnet. Complex fermions (blue, left) on the fcc lattice are
supersymmetrically linked to complex bosons (red, right) on the
same fcc lattice. The mapping can be established with a supercharge
which can be interpreted as the adjacency matrix of a diamond lattice
whose two sublattices are the two fcc lattices, respectively. For the
topological classification according to Table VI, we find, noting that
the Witten index here is v = 0, that the line of Dirac points between
the K and K’ points in the supercharge spectrum has a nontrivial
topological invariant of 7r; = +1 (a Berry phase of 7 around the line
node).

(with its two fcc sublattices), which indeed exhibits a line-like
Fermi surface (Fig. 15).

One might also be able to go one step further and con-
struct, via our SUSY correspondence, a nontrivial spin model
with a spin spiral surface describing its ground states that
has hitherto not been studied. One attempt in doing so is
to start from the hyperoctagon lattice geometry as super-
charge and take its lattice square (see Fig. 16) to arrive at
a three-dimensional variant of the Shastry-Sutherland model
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FIG. 16. Spin-fermion SUSY correspondence for the three-
dimensional Shastry-Sutherland antiferromagnet. Complex fermions
(blue, left) on the hyperoctagon lattice (middle) are supersymmetri-
cally linked to complex bosons (red, right) on a three-dimensional
generalization of the Shastry-Sutherland lattice, see Fig. 27 in the
Appendix. The ground-state manifold of spin-spiral states for this
3D Shastry-Sutherland model is illustrated in Fig. 17 below. For the
topological classification according to Table VI, we find, noting that
the Witten index here is v = 0, that the Dirac point between the I'
and the K point and that between the X and I" in the supercharge
spectrum are topologically trivial (yielding a trivial 7).
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() (b)

FIG. 17. Spin-spiral ground-state manifold of the three-
dimensional ~Shastry-Sutherland antiferromagnet. While the
unconstrained diagonalization of the spin interaction matrix leads to
a two-dimensional manifold of spin spiral states (panel a), enforcing
the Luttinger-Tisza constraint reduces the actual ground states to a
set of individual k points (panel b).

(akin to a similar SUSY connection in two spatial dimensions
between the square-octagon and Shastry-Sutherland lattices
exemplified in Fig. 27 of the Appendix). Since the fermionic
tight-binding band structure on the hyperoctagon lattice
exhibits a regular Fermi surface [104], this brings us, at first
sight, to a full spin spiral surface (of codimension one) in
the case of the three-dimensional Shastry-Sutherland model.*
Unfortunately, however, this spin spiral surface is not stable
upon enforcing the Luttinger-Tisza constraint, which is not
fulfilled by the vast majority of k points constituting the spin
spiral surface, but only a finite set of individual points, see
Fig. 17. We leave it as an open challenge for future work to
identify a nearest-neighbor Heisenberg antiferromagnet that
indeed exhibits a full spin spiral surface, preferably via the
SUSY correspondence at hand.

Finally, there is the class of J;-J, Heisenberg models [93]
for which the spin-fermion SUSY correspondence is partic-
ularly interesting because it seems to generically map spin
systems to fermionic systems with a full Fermi surface, i.e.,
a nodal manifold of codimension one. This is the case for
the aforementioned J;-J, model on the diamond lattice [102],
a restricted J;-J5 model on the body-centered cubic (bcc)
lattice [90,106] or the J;-J, model on the honeycomb lattice
[107] where the Fermi surface (or line in the two-dimensional
model) exists in various shapes and topologies for a wide
range of parameters J,/J;. For the J;-J, model on the fcc
lattice [108,109] one also finds a spin-spiral surface, albeit
only for a single coupling parameter J, = J; /2. Conceptually,
these J;-J» models differ from what we have discussed so far
in that they allow for couplings within the same sublattice
of a bipartite lattice or are defined for a nonbipartite lattice
in the first place. As such, our SUSY lattice construction
which is supposed to start from a clean bipartite graph does
not immediately apply. However, one can still create a proper
“graph squaring” in this case [90] by retaining the same lattice

“This might be an interesting spin model for future exploration,
as it might, for instance, exhibit a spin-Peierls instability akin to its
fermionic counterpart [105] which might relax the spin spiral surface
to a spin spiral line upon inclusion of phonon modes.

geometry but doubling the degrees of freedom on every site.’
We refer the interested reader to Ref. [90] for further details
of this SUSY mapping (although the language of SUSY was
not yet adopted in that article).

C. Magnon dispersions

In the third case study of our SUSY framework, we
switch our attention from frustrated magnets at zero mag-
netic field to those in large magnetic fields. These exhibit
number-conserving magnons—bosonic excitations that arise
near saturation fields [45,110-112]—and again the SUSY
correspondence will reveal the existence of frustration.

Let us start with an instructive example: for the kagome
antiferromagnet in a magnetic field, it has been observed that
below the saturation field, localized one-magnon states popu-
late the hexagonal motifs of the kagome lattice in the densest
possible packing—a triangular magnon crystal [45,113]. Such
magnon localization is intimately related to and a precursor
of the existence of the flat band in the nearby polarized state
[111]. Here we explain the existence of the flat band using
our SUSY framework: the magnons have a SUSY partner on
the honeycomb lattice. We will, in the first step, construct the
fermionic analog of such a (topological) magnon spectrum.
Reverting this procedure in a second step, we demonstrate
how one can then predict nontrivial magnon phenomenology
from their fermionic SUSY partners.

To accomplish the first step, going from bosonic magnon
dispersions to its SUSY fermionic counterpart, we again
return to our principal example of the honeycomb-kagome
correspondence from the introduction (Fig. 1). Here we start
on the kagome side and consider a spin-S kagome Heisenberg
antiferromagnet subject to a uniform magnetic field 2 > 0,

H=J)8;-S;—h) S (32)
) i

(i,j

At high fields, beyond a saturation value of h = 6JS, the
ground state is a fully polarized state [45,46,110]. To obtain
the excitation spectrum of magnons in this phase we express
the on-site spin operators S,.i =5+ iS'y and S§ in terms
of bosonic (magnon) annihilation and creation operators b;

and b; following the Holstein-Primakoff expansion of (26).
Keeping up to terms quadratic in the bosonic operators in
the large-S limit (assuming & o S), we arrive at a bosonic
tight-binding Hamiltonian on the kagome lattice,

MY =TS (bjb; +He)+ (h—4I)Y ni.  (33)
(i) i

with a hopping of strength JS and chemical potential (h —
4JS). Translating to Fourier space, the corresponding Bloch

>The J;-J, fcc model is somewhat special here, as its underlying
lattice geometry is nonbipartite. However, at the singular coupling
of J, = J; /2, one can replace checkerboard plaquettes spanned by J;
and J, in the underlying fcc lattice by newly added four-coordinated
sites to form a fermion lattice, thereby allowing for a spin-fermion
correspondence.
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Hamiltonian reads
Hl[j(k) =h—-4JS+S ijagome(di — dj — L)eik.(d"idﬁl‘),
L
(34

where Jiagome(dr) = J if dr represents the nearest-neighbor
separation on the kagome lattice with basis vectors d;
and Bravais lattice vectors L and zero otherwise. The
spectrum consists of a flat branch of magnons at wg =
h—6JS and two dispersive branches at wy =h —3JS +
JS\/3+2) cos(k - d;) identical to Fig. 1 on the kagome
side shifted by a constant (h — 6JS) (to obtain exactly the
same spectrum, set the field to exactly the point of saturation
h = 6J5). This high-field limit of a frustrated kagome Heisen-
berg antiferromagnet, therefore, provides us with a natural
setup to realize the simplest tight-binding model of bosons
on the kagome lattice.

Let us now proceed to explicitly construct its fermionic
partner, which via our SUSY lattice correspondence we expect
to live on the honeycomb lattice and be exactly isospectral
to the bosonic kagome model (up to flat bands). Our starting
point is the magnon Hamiltonian Hg(k) in (34), where for
simplicity we set the magnetic field to the point of saturation
h = 6JS to bring the lowest eigenvalue of Hp(k), the flat
band, to wx = 0. The crucial step then is to construct the
supercharge matrix R of (3) by factorizing Hg(k) in (34) as
Hz(k) = RT(k)R(k). To keep in mind, such a decomposition
should preserve the locality of Hg(k), namely, if Hg(Kk) con-
sists only of nearest-neighbor hoppings, so should be reflected
in the connectivities of R(k). This would then yield a local
fermion model with preserved topological signatures such as
localized edge modes if the bosonic side has any.

In essence, the factorization is tantamount to the square-
rooting of Hg(k). We could produce this factorization
using the graph square-rooting algorithm of Appendix A.
But instead, we can also draw insights from our graph
correspondence—one may opt for a decomposition such that
R(k) is a rectangular matrix. Specifically, for the kagome-
honeycomb case, it is a 2 x 3 matrix as the partner lattice of
kagome is the honeycomb lattice (Fig. 1). This implies the
Witten index is v = 1 and there is a flat band on the kagome
side.

Empowered with the knowledge of this graph corre-
spondence, we first identify the supercharge matrix R(k).
Introducing lower case indexing for the bosonic lattice and
upper case indexing for the fermionic lattice, we can express
1t as

Ryj(k) = Vs Z Jhoneycomb-x (N7 — d;j — L)eik'("’_df—[‘)’
L

(35)

where Jhoneycomb-x (8T) = VT if 8r is the nearest-neighbor sep-
aration on the honeycomb-X lattice with honeycomb basis
vectors n; and zero otherwise. Together d; and n; form the
basis of the bipartite honeycomb-X lattice.

Please note the simplicity of the step from (34) to (35)
arises from the choice of the “canonical gauge” where the
Fourier transform is taken with the site locations e’** and
not the “periodic gauge” where it is taken with the unit cell

location e® R [114]. If preferred, one can always switch to the
periodic gauge after the Hamiltonians are identified.

The superpartner of the magnon model, e.g., the fermionic
Hamiltonian, then derives by noting its Bloch form Hp (k) =
R(kK)R" (k) which reads

H[i(k) =3JS + S ZJhoneycomb(n[ —n; — L)eik'(nl_nJ_L)v
L
(36)

where Jhoneycomb(8T) = J if ér connect nearest neighbors on
the honeycomb lattice and zero otherwise. This Hamiltonian
has an identical spectrum as the magnons but the flat band. We
immediately recognize that this fermionic model represents
the well-known Dirac semimetal on the honeycomb lattice.

In summary, magnons described by a kagome Heisenberg
model at saturation field have a fermionic partner with an
index of v = 1 demanding a flat band in their spectrum. This
would seem like a complex procedure to discover a flat band,
but it has an important benefit: it implies that a Heisenberg
model on any example illustrated in the triptych-like figures of
Sec. III that exhibits a nonzero Witten index v £ 0 leads to a
magnon dispersion with a flat band in a saturation field—and
thereby constitutes a candidate system for a magnon crystal
just below saturation. This allows us to go well beyond the
known cases of kagome [111] and pyrochlore [112] anti-
ferromagnets and postulate magnon crystals just below the
saturation field, for instance, also for the squagome and the
hyperkagome antiferromagnets along with a number of other
two- and three-dimensional systems.

D. Parton dispersions

The phenomenon of displaying identical band structures
by virtue of a graph correspondence finds realization in other
frustrated magnets as well, specifically, in quantum spin liquid
(QSL) that have been discussed in certain spin-orbit coupled
materials. Such QSL are unconventional phases of matter with
one characteristic being the emergence of fractional excita-
tions, called partons, instead of more conventional magnons
(as discussed above) or electronic quasiparticles. Depending
on the underlying effective microscopic descriptions, the par-
tons can range from being Abrikosov spinons [115], which
are charge-neutral complex fermions carrying spin S = 1/2,
to Majorana fermions [116,117], which are also charge neu-
tral but do not carry any spin quantum number. While it
remains an interesting open question if one can construct an
exact SUSY mapping between different types of partons, we
observe a curious similarity between the respective parton
dispersions in two such distinct types of QSLs: One that
features a spinon Fermi surface of gapless Abrikosov spinons
coupled to U(1) gauge fields [118], and the other that features
a Majorana Fermi surface of Majorana fermions coupled to
Z, gauge fields [104]. This identification turns out to ensue
from the same type of graph correspondence that we have
been discussing in our SUSY construction, but now between
the underlying lattice geometries that harbor the QSLs. In
other words, the graph correspondence enlightens the fact that
the hopping Hamiltonians of partons on these two lattices
must be isospectral (except for possible flat bands which do
not play a substantial role here).
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FIG. 18. Diamond-pyrochlore SUSY correspondence. Complex
fermions (blue, left) on the diamond lattice are supersymmetrically
linked to complex bosons (red, right) on the pyrochlore lattice. The
middle panel shows the band structure of the supercharge lattice
Hamiltonian on the diamond-X lattice. For the topological classifi-
cation according to Table II, we find, noting that the Witten index
here is v = 2, that the nexus point in the supercharge spectrum has a
nontrivial topological invariant of 7w, = —1, see also the illustration
in Fig. 25 of the Appendix.

The U(1) QSL has been discussed in the context of a
Heisenberg model on the hyperkagome lattice [118], after
experimental indications of spin liquid behavior were reported
for the hyperkagome iridate compound NayIr;Og [119]. Via
our graph correspondence the spinon spectrum of this U(1)
QSL can be identified with the Majorana spectrum of a
Z, QSL emerging in a three-dimensional Kitaev model on
the hyperoctagon lattice [104] whose Hamiltonian consists
of characteristic bond-directional Ising-like spin exchanges
[120]. Both of these lattices, the hyperkagome, and the hy-
peroctagon, can be obtained from our previous examples
of the pyrochlore and the diamond lattice with a suitable
depletion of tetrahedra or bonds, respectively, but more im-
portantly in our context here, also from one another—the
hyperoctagon lattice is the premedial lattice of the hyperk-
agome lattice [104]. That is, one obtains the hyperoctagon
structure by shrinking each triangle of the hyperkagome lat-
tice to a single vertex and respecting the connectivity of the
original corner-sharing triangles—but this is precisely the
lattice square-rooting procedure of our SUSY lattice corre-
spondence (Fig. 2). Identifying these two lattice geometries
as superpartners, we can also quickly construct the lattice
of the supercharge that mediates the transformation between
the two—the hyperoctagon-X lattice illustrated in the middle
of Fig. 19. The graph correspondence thus implies that the
spinon excitation spectrum in the hyperkagome lattice has
a bosonic partner on the hyperoctagon lattice. Surprisingly,
however, we find it also coincides with the Majorana exci-
tation spectrum on the same hyperoctagon lattice. It turns
out that the real symmetric hopping matrix of the bosons is
gauge equivalent via b; — ib;, j € sublattice A to the real an-
tisymmetric hopping matrix of the Majorana fermions on the
bipartite hyperoctagon lattice. Hence, both feature extended
two-dimensional Fermi surfaces around the point of isotropic

T T T T T T T T T
r K K' X T T K K' X T T K K' X T

momentum momentum momentum

FIG. 19. Hyperoctagon-hyperkagome SUSY correspondence.
Complex fermions (blue, left) on the hyperoctagon lattice are su-
persymmetrically linked to complex bosons (red, right) on the
hyperkagome lattice. The middle panel shows the band structure of
the supercharge lattice Hamiltonian on the hyperoctagon-X lattice.
For the topological classification according to Table II, we find,
noting that the Witten index here is v = 2, that the nexus point in
the supercharge spectrum has a nontrivial topological invariant of
1w, = +1; see also the illustration in Fig. 25 of the Appendix.

hoppings of the fermions on the individual lattices.® We have
thus connected two enigmatic QSLs discussed in the literature
via our SUSY framework.

We return to Kitaev QSLs in Sec. IV, where we exploit the
fact that they can be cast in terms of free Majorana fermion
models to formulate a SUSY connection to real bosons and
their classical analogs to discuss mechanical incarnations of
Kitaev spin liquid physics.

IV. TOPOLOGICAL MECHANICS

‘We now turn to the second broader context in which we can
apply our SUSY framework to establish connections between
two seemingly distant fields—topological mechanics and the
physics of Majorana fermions. It rests on the principal ob-
servation that mechanical systems evolve around phase-space
coordinates (g, p), i.e., the classical limit of real bosonic de-
grees of freedom whose most natural SUSY partners are real
(Majorana) fermions. On a technical level, this will require us
to expand our SUSY correspondence, which we had presented
for the case of complex bosons and fermions in Sec. II, to the
case of real bosons and fermions. We see this also has impli-
cations on the accompanying SUSY lattice correspondence.

Since the dynamics in mechanical setups is generally time-
reversal symmetric and our SUSY correspondence respects
this symmetry (as in the complex case), a natural starting point
on the fermionic side is to consider time-reversal symmetric
Majorana Hamiltonians. In the parlance of symmetry classes,
the latter belong to symmetry class BDI in the tenfold way
[21,36] and admit a block-off-diagonal form as in (1) when
expressed in a suitable basis. As we discuss in the follow-

®Note that since the hyperkagome has a six-site unit cell while the
hyperoctagon has only four sites in its unit cell, this leads to a twofold
degenerate flat band in the spinon spectrum on the hyperkagome
lattice (this is an example of the Witten index v = 2).
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FIG. 20. SUSY correspondence for real fermions and bosons.
Real (Majorana) fermions on a bipartite lattice (such as the honey-
comb lattice on the left) have an isospectral SUSY partner in the form
of real bosons on one of its sublattices (such as the triangular lattice
on the right). Eigenmodes in these systems, depicted in the lower
panels, agree for all non-negative energies, including potential zero
modes.

ing (Sec. IV A), this matrix form implies that it is always
possible to construct a local supercharge that generates a
representative fermion Hamiltonian from this class [121]. The
locality is crucial in preserving the topology of the models
identified by SUSY, i.e., to carry over to the bosonic side.
We demonstrate that this procedure is not only a natural con-
nection between real fermions and bosons but offers another
important reward—the canonically conjugate positions and
momenta get decoupled in the resultant bosonic Hamiltonian,
crucially allowing us to formulate classical analogs in terms
of balls-and-springs networks. SUSY, thus, paves the way for
constructing proper mechanical analogs of Majorana models
that can be studied in table-top experiments. Notably, these
mechanical systems will exhibit a topological response pro-
tected by SUSY, if the fermionic partner system has any.

This section reviews previous work [7,14,15,122] on this
subject, placing it within the larger SUSY framework we
developed above for complex fermions. This includes iden-
tifying the class of the real Hamiltonian and how the real
formalism fits into the topological classification presented
above. It also includes a discussion of the Berry curvature, and
how in our examples the real formalism has a finite curvature.
Principal examples, which we present in the following, will
include mechanical analogs of topological superconductors
(in Sec. IV B), Kitaev spin liquids (in Sec. IV C), and higher-
order topological insulators (in Sec. IV D).

A. SUSY mapping for real fermions and bosons

We set out by recasting the SUSY formalism, outlined
in Sec. I A for complex fermions and bosons, to their real
counterparts. Our starting point will be a model system on
the fermionic side, i.e., a Majorana fermion hopping model,
that we define on a bipartite lattice such as the honeycomb
lattice depicted on the left in Fig. 20. Note that this choice of
a bipartite lattice for the fermionic side is a first distinction
to the complex SUSY scenario where we did not make such

a restriction. Adapting a suitable basis, one can cast such a
Majorana Hamiltonian on any given bipartite lattice into a
block off-diagonal form

i A B
HF = —5 f Aij + H.c.

i —A\ (v*
AR (AT )(VB), (37)

where the matrix A represents the lattice adjacencies (or
connections between the sublattices A and B) weighted by
appropriate hopping strengths and the y“ and y? are the
Majorana creation and annihilation operators that reside on
the two sublattices. We now want this Hamiltonian to be
the fermionic component of a SUSY Hamiltonian Hsysy =
%{Q, o, generated by a supercharge Q. To this end, let us
consider the Hermitian supercharge

Q =y 'Ai;q; + v/ 1i;p;

- A q
o (M) e

which connects the Majorana fermion operators y* and y %
(on the two sublattices of the fermionic lattice) to real bosonic
operators ¢ and p, which are equal in number and conjugate
to one another. The SUSY Hamiltonian of this Hermitian su-
percharge Hsusy = Q% = Hr + Hp then block-decomposes
into a fermionic and bosonic part. The resultant bosonic
Hamiltonian, in terms of the variables (g, p) reads

1< N P
Hp =7 > aiAT A + 3 > bibi
ij i

Ll os (ATA (4
=3 G D) ( 1> <ﬁ>. (39)

Before we further inspect this bosonic Hamiltonian let us
first point out a few noteworthy features that distinguish the
construction so far from the complex case and, in particu-
lar, the lattice correspondence expounded before. First, let us
introduce, in analogy to our discussion of complex fermion-
boson SUSY in Sec. II, the matrix

A
R=(* ) (40)

which is representative of the supercharge Q. In the real case
discussed here, it is block-diagonal. Moreover, in the complex
case, following the interpretation of the SUSY in terms of a
graph correspondence, the fermionic and the bosonic models
were defined on the two sublattices of a bipartite lattice (which
we identified with the supercharge). The real case is strikingly
different in this context: It is the Majorana fermions that now
span the entire bipartite lattice under consideration, while their
bosonic partners inhabit only one of its sublattices. This is
visualized in Fig. 20 where we start with a Majorana fermion
model on the honeycomb lattice (left) and end up with bosonic
degrees of freedom that live on one of its two triangular
sublattices (right). Technically, it is sublattice B by virtue
of the construction of Q in (38).” We have schematically

70f course, this has been a matter of choice. If one switches the tags
A and B of the Majorana operators in (38), then the bosonic modes
will occupy the other sublattice.
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FIG. 21. SUSY correspondence of real bosons and Majorana
fermions. Schematic relation between real bosons and Majorana
fermions. Here, the real bosons reside on the sublattice of the bi-
partite Majorana fermion lattice.

summarized this SUSY correspondence between Majorana
fermions and real bosons and their lattice correspondence in
Fig. 21.

The spectral identification induced by the supercharge Q
of (38) is subtle and distinct from the complex case. For the
complex case, we had isospectrality between two Hermitian
matrices, the two Bloch Hamiltonians RR™ and RR. In the
real case, the excitation spectra of Hy and Hp are obtained
from the respective equations of motion in the Fourier space

d (m)_l( . —A(k)) (m)
de\ys) — \AT(k) V)’
d(py_ . —1\(p
& (@)"(A*(k)A(k) )(q) @b

and diagonalizing the matrices on the right-hand side which
are known as the Lie generators [123]. In a compact form, the
fermionic and the bosonic Lie generators read respectively as

Lr = R(K)mR (k) and L5 = o»RT(K)R(K),

where o0, is an extension of the Pauli matrix in the enlarged
space of dimension 2N for N number of operators of each
flavor (both fermionic and bosonic) in the unit cell or equiv-
alently, 2N sites in the unit cell. The forms of the two Lie
generators suggest they are isospectral, again except for zero
modes, with the excitation spectrum in the bosonic model
being identified with the positive branch of the eigenvalues of
L, see the bottom panels of Fig. 20 for our example system.

1. Classical limit

We note that all the operators in our discussion above are
quantum-mechanical ones. In the appropriate classical limit,
the boson Hamiltonian in (39) represents a mechanical analog
of the Majorana Hamiltonian in (37) in terms of a balls-and-
springs model. Without loss of generality, we can assume the
balls to be of unit masses with their dynamics described by
the classical Hamiltonian

CREDICEE W,
= % > ai(ATA)g; + % D0 (42)
ij i

In the first line of the above equation, the spring extensions
are denoted by {e,,} which can be linearized in terms of the
coordinates of the balls, {¢'} via e,, = A,;¢' introducing a

compatibility matrix A. The matrix R, introduced in (40)
extends this to accommodate all bosonic degrees of freedom
{(¢", p))} and is referred to as the rigidity matrix of the me-
chanical system. It thereby also renders a physical meaning to
the supercharge (38) of our construction.

Reexpressing the classical Hamiltonian in (42) as

k," Ki 1
Ha=) S @—a)’+) Sa+5> 0
ij i i
we observe the mechanical model comprises both intersite

and onsite springs of spring constants k;; and «;, respectively.
Their parametric dependence can be read off as [15]

kij=—Y ALA,. (44)
acA
Ki=Y AL =Y ki, (45)
acA beB

where k;; are the off-diagonal elements of ATA, that, by
virtue of our SUSY construction, arise from the next-nearest-
neighbor Majorana hopping (within the boson sublattice B)
and «; are the diagonal elements of ATA arising from the
Majoranas hopping back and forth, modified by a contribution
coming from the intersite springs. The matrix

D=ATA

is known as the dynamical matrix of the mechanical model.

The normal-mode frequencies are obtained from the square
root of the eigenvalues of D, however, the normal modes are
not the eigenstates of D. As described in the previous section,
they are instead obtained by diagonalizing the Lie generator
L of the equations of motion (41). The positive branch of the
eigenvalues of Lp coincides with the square-rooted eigenval-
ues of D. In the following, we unfold the topology associated
with these normal modes in periodic systems.

2. Topology of real bosons

Previously, in Sec. II, we identified the topological in-
variants to classify the band topology in quadratic systems
of complex fermions and bosons that are related by SUSY.
We revisit this here for the real case to illuminate the same
for the normal modes in mechanical systems and unveil new
topological invariants.

We first need to settle the relationship between the real and
complex formalisms. The Hermitian supercharge discussed
in the previous sections, such as in (38), is focused on the
BDI class. The general form is Q = yRx where we combine
the canonical coordinates into one vector x = (4, p)7 and
have not placed any restrictions on R so that it describes a
system with no symmetry. Written this way, the matrix R is
a general real rectangular matrix but now appears double the
size of the corresponding matrix in the complex formalism
(12). Switching from real to complex variables then produces
a supercharge of the form

Osr = (c*c)(ﬁ% ﬁf) (,f) (46)

So this doubling turns out to exactly match the Hermitian
part of Eq. (27) in our example from geometrically frustrated
magnets in Sec. III A. Hence, a change of variables from real
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to complex reveals indeed Q@ = Qgp. But we also see that at a
matrix level, obtained by writing

1
Q=30 x><RT R) (,{) (7

and writing Qgr in a similar way with spinor (c, ¢t b, b7,
the topological class of Q and QgF are the same, class BDI.
Even though there is no physical symmetry in the real for-
malism beyond fermion parity, the matrix as viewed by the
topological class has both 7 and P symmetry. So the topolog-
ical properties in the real formalism can readily be understood
just by directly classifying the matrix defining the quadratic
real supercharge.

The use of this real formalism comes with a benefit: their
Berry curvature signals a topological nontrivial system. To
understand this, we need to step back and consider the subtlety
of the real formalism.

The supercharge for the complex case identifies individ-
ual fermionic eigenstates with their bosonic partners at equal
(nonzero) energies as in (13), thereby connecting the two
Hilbert spaces. What demarcates the real case is that such
a spectral identification, instead of two Hamiltonians, ap-
plies to the two Lie generators £ and Lp in (41). While
Lp turns out to be the Majorana Hamiltonian itself and
therefore a Hermitian operator, Lp is a Krein-Hermitian op-
erator satisfying 0,Lp = L0, [124,125]. Accordingly, the
bosonic normal modes obtained by diagonalizing L5 obey
(vmloa|v,) = [03]m., While the fermionic ones, obtained by
diagonalizing Lr, obey (u,|u,) = & ». In other words, for the
real case, the supercharge relates the members (the fermionic
states) of a Hilbert space to those (the bosonic states) of a
Krein space.

With the classification and Lie generator eigenvalue prob-
lems in mind, the SUSY map, discussed in Sec. IIE in (14),
implies a constraint on the Berry phases associated with the
same band in each of the three SUSY eigenproblems

00" = 05" + 03" (48)

This constraint is readily determined by expressing, for exam-
ple, the fermionic states |u,,(k)) that are eigenvectors of Lp
in the Berry phase 9}’”) in terms of the bosonic eigenstates
|v,(K)) that are Krein space eigenvectors of L. Doing so

leads to the relation
iyg(um(k)lakum(k» -dk

= iyg(vm(k)ldzlakvm(k)) -dk

+y§ Im [ (14, (K)| (9 R) [0 (K)) ]
Von(k)

where we identify the third term as the Berry phase of an
eigenvalue problem associated with the supercharge Q (not
discussed).

This constraint allows for an alternative interpretation of
the protection of zero modes in a SUSY system, as the
constraint itself implies the existence of an alternative Berry
potential. For the bosonic system, this SUSY Berry potential

- dk, (49)

can be written as
A = (Un(K)]ioa (Vi + RTVR) v, (K),  (50)

where the single-particle bosonic state |v,,(K)) is an eigenstate
of Lp at energy w, (k) (a similar statement is readily made
for the fermionic system). A(S%)SY is mathematically identical

to the fermionic Berry potential that gives rise to 6’;’") but
defined entirely by the bosonic eigenvalue problem and the
R matrix. Therefore, SUSY reveals an additional covariant
derivative term on top of the conventional bosonic Berry con-
nection (v,,(K)|ios|Vkv,,(K)). The constraint of (48) allows a
bosonic system to inherit the Berry phase of the SUS Y-related
fermionic system (and vice versa).

The above perspective allows us to define the bosonic
Berry phase in supersymmetric systems in an alternate way

ONuse = Ay -k, o1

which can indeed reveal nontrivial windings w = 91(;”) /m for
the nodal points or lines in the spectrum of the normal modes
in a topological mechanical system—examples of which will
follow in the next sections. Similar to the case of complex
fermions and bosons presented in Appendix E, the supersym-
metric version of the Berry curvature for a mechanical system
will follow from Fim, =V x AU, and will be useful in
exploring the topology of Chern bands in apposite setups.

This discussion brings the SUSY formulation of topologi-
cal mechanics to a special footing compared with the complex
fermion-boson correspondence, where all our examples fea-
tured, in contrast with what has been discussed here, identical
Berry phases and curvatures rendering a vanishing SUSY
contribution to the underlying Berry connection (see again
Appendix E). In the mechanical systems, the topology in
the bosonic models is revealed by the supersymmetric Berry
potential in (50) while the conventional definition of the Berry
connection signals merely a trivial phase.

In the following, we discuss one- and two-dimensional
examples of mechanical systems which are the supersymmet-
ric partner of the Kitaev chain, the Kitaev honeycomb spin
liquid, and a higher-order topological insulator of Majorana
fermions.

B. Mechanical analog of the Kitaev chain:
The Kane-Lubensky chain

In their groundbreaking paper on topological mechanics
[7], Kane and Lubensky contemplated a mechanical analog
of the Su-Schrieffer-Heeger (SSH) model by constructing a
chain of rotors connected by springs with a dimerized unit
cell, i.e., two rotors per unit cell, as illustrated on the right
of Fig. 22. This is an example of an isostatic mechanical
frame where the number of constraints matches the number
of degrees of freedom in the system. The SSH model [126]
itself constitutes what in today’s terms is the first example
of fermionic topological bands with gapless edge modes aris-
ing from a bulk-edge correspondence [67]. Analogously, the
mechanical model supports zero modes at the boundary for
specific configurations in the parameter space when small
angular displacements around a dimerized configuration of
the rotors are connected to the spring lengths /, = A,;6; (A
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FIG. 22. SUSY between the Kane-Lubensky chain and the Ki-
taev chain. The superpartner of the Kitaev Majorana chain (left) is the
Kane-Lubensky chain (right) of mechanical rotors. The dimerization
of the Kane-Lubensky chain requires doubling the unit cell of the
Kitaev chain. SUSY identifies the positive branch of the spectra on
both sides.

being the compatibility matrix). For a periodic chain with
uniform rotors (of radius r, separated by a distance a), one
can work in Fourier space to obtain [127]

q+ q-
Ak) = ; , 52
(k) (q q+elk(2a)) (52)

where g+ = rcos@(2rsin0 + a)/(a*> + 4r* cos?> 0)'/2, 6 (the
angular deviation from a vertical axis) specifying the dimer-
ized configuration as in Fig. 22.

The normal-mode frequencies are obtained from the square
root of the eigenvalues of the dynamical matrix D(k) = ATA
(a representative spectrum shown in Fig. 22 with red solid
lines for r/a = 0.5, & = 0.1). In real space, for a chain of N
rotors, the dynamical matrix D = ATAisan N x N matrix of
the form

@ ¢ 0 0 - 4

¢ & ¢ 0 - 0
e T R

0 0 - & & &

¢ 0 0 - & &

Applying our SUSY correspondence, one can recognize the
superpartner of this mechanical model is the Kitaev chain
[128] with the two hoppings specified by g.. As on the me-
chanical or bosonic side, the chain is dimerized, we obtain
a four-site unit cell for the fermion model. The spectrum is
shown in Fig. 22 with blue solid lines (for r/a = 0.5,6 = 0.1)
which is periodic over k € [—m /2, w /2] due to the unit-cell
doubling.

As an important extension, next, we demonstrate how one
can construct a random Kitaev chain from a random one-
dimensional phonon problem at the isostatic point identifying
the two as superpartners of each other. For this, we consider a
random N x N dynamical matrix which is structurally similar
to the Kane-Lubensky dynamical matrix in (53) in terms of

connectivities and can be expressed as

a b 0 0 b
b a b 0 0
_ 0 b a b 0
D= (54)
o o0 --- b a b
b 0 0 -~ b a

Here a,b are coupling parameters of the phonon model
assuming random values, unlike the Kane-Lubensky chain
where they were specific functions of r, a, 6.8

To construct the fermionic model, one requires to identify a
supercharge or equivalently, to derive a random compatibility
matrix A from the dynamical matrix D such that D = ATA.
It turns out that, for this one-dimensional problem, such a de-
composition is indeed possible where the matrix A maintains
the same degree of locality as D in terms of the connectivities
and assumes an N x N form

by b, O 0 0
0 b b 0 0
. 0O 0 b b 0
A= : : : : : [ (55)
o 0 --- 0 b by
b, O o -+ 0 b
where
by =xVb, by=+bjxi, xi=%|—+ L 1,
2b 2b
(56)

(see Appendix F for a detailed derivation). This compatibility
matrix leads us to a Majorana Hamiltonian Hr identical to
(37) but A replaced with A. In other words, given a set of ran-
dom parameters modeling a generic one-dimensional phonon
problem restricted to nearest-neighbor connections (like the
Kane-Lubensky chain), we can always derive a random Ki-
taev chain as its superpartner (Fig. 22) that shares the same
excitation spectrum and the topology.

C. Mechanical analog of the Kitaev spin liquid

The Kitaev spin liquid [117] is a paradigmatic state of mat-
ter where spin degrees of freedom fractionalize into itinerant
Majorana fermions and a static Z, gauge structure. On the
honeycomb lattice, the Majorana fermions exhibit a gapless
Dirac spectrum in the absence of any time-reversal symmetry-
breaking terms and (roughly) isotropic couplings along the
three distinct lattice directions. For strongly anisotropic
couplings the Majorana band-structure gaps out and one tran-
sitions into a topological phase that is primarily defined via its
gauge structure as a Z, toric code. The magic of the Kitaev
model is that all these statements have a rigorous analytical
foundation. The original spin model with its bond-directional
Ising-like exchange terms can be recast in terms of auxiliary

8 As an interesting side note, the matrix in (54) can be recognized
as a random chiral one-dimensional fermionic Hamiltonian when the
diagonal elements are zero [31].
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FIG. 23. Mechanical analogs of quantum spin liquids. (a) The mechanical Kitaev model is a balls-and-springs model on the triangular
lattice, where the masses at each site are restricted to a movement along the axis perpendicular to the lattice plane (see the side view in the
lower row). (b) Mechanical analog of a second-order spin liquid on the square lattice.

Majorana fermion degrees of freedom as a quadratic Majorana
Hamiltonian

Hiiuew = Y SIS = —iy/'Ayjyf +He., (57
(i, )a
which allows for an exact solution [117].

But with an eye on our SUSY correspondence, we note
that the right-hand-side of (57) is precisely of the form of
the fermionic Hamiltonian (37) used in our SUSY correspon-
dence for real fermions and bosons discussed above. The
matrix A encodes the hopping of the Majorana fermions de-
scribed by operators y* and y? on the underlying honeycomb
lattice (with the two triangular sublattices A and B as shown in
Fig. 23). Following the steps outlined in Sec. IV A above, we
can write down its SUSY partner in terms of real bosons, take
its classical limit, and arrive at a balls and springs model on the
triangular lattice® as illustrated in Figs. 23(a) and 23(b). Each
mass, located at a site of this triangular lattice, is restricted to
a movement along an axis perpendicular to the lattice plane
and is connected via two types of springs to both the plane and
its neighboring masses.

This mechanical Kitaev model retains many interesting
features of its quantum-mechanical counterpart [15]. For in-
stance, its mechanical response exhibits the Dirac spectrum
familiar from the quantum model near isotropic coupling—a
notable feature for the mechanical system in the sense that
on the level of individual springs, one always has quadratic
excitation spectra and the formation of a linear dispersion
constituting the Dirac cone is as such direct evidence of
many-body physics. We find that, also in this mechanical
model, the Dirac cones have nonzero windings when the
supersymmetric Berry phase (51) is computed, with its quan-
tized value +m solely attributed to the closed-path integral
of the SUSY-induced additional term in (50). When moving

?0Our model can also be considered to be a particularly simple balls
and springs incarnation of “mechanical graphene,” which was first
put forward in Ref. [14].

away from isotropic couplings into the strongly anisotropic
toric-code limit of the quantum model, the mechanical analog
will again go along and now exhibit a gapped excitation
spectrum. This is again a somewhat unusual situation for a
mechanical system as the opening of a gap and the absence of
any well-defined low-energy modes implies that the mechan-
ical system remains rigid for low-frequency drives—again a
many-body phenomenon since individual springs defy any
small-frequency rigidity.

Notably, such a mechanical Kitaev model not only retains
classical analogs of the itinerant Majorana fermions in its
propagating phonon modes but also exhibits its underlying
Z, gauge structure with classical analogs of the static vison
excitations of the quantum model. For instance, one can excite
a pair of such gauge excitations by switching the sign of
an intersite interaction, just like in the quantum case, only
that it is a spring constant in the classical context. Individual
visons can then be moved around by flipping additional spring
constants, e.g., to study braiding in the classical model. In a
similar spirit, a Majorana version of the Kekule tight-binding
model studied in Ref. [122] would lead to a mechanical analog
through our (real) SUSY prescription; adopting a suitably
designed dynamical protocol can enable braiding of the topo-
logical zero modes therein. One could also set up a scattering
experiment where propagating phonon modes and spatially
arranged gauge excitations give rise to interference effects,
akin to studying the scattering of itinerant Majorana fermions
in the presence of massive vison excitations in the quantum
model.

D. Mechanical analog of higher-order topological insulator

Being restricted to symmetry class BDI for the Majorana
fermion models in our SUSY correspondence of real bosons
and fermions, we unfortunately miss one of the more interest-
ing features of the Kitaev honeycomb model—the formation
of a gapped topological phase of the Majorana fermions in the
presence of time-reversal symmetry breaking (which brings
the system into symmetry class D). But despite the absence
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FIG. 24. SUSY for a Majorana fermion higher-order topological
insulator. Majorana fermions on a decorated square lattice have an
isospectral SUSY partner in the form of real bosons on two disjoint
copies of the square lattice. Eigenmodes in these systems agree for
positive energies.

of such a phase in the classification of topological insula-
tors in symmetry class BDI in two spatial dimensions [21],
there is still another possibility for the formation of highly
nontrivial band structure—the formation of higher-order topo-
logical insulator (HOTT) [129].

Such a HOTI for itinerant Majorana fermions has been
discussed in the context of a second-order Kitaev spin liquid
[130] where the nontrivial topology manifests itself in gapless
Majorana corner modes. While the original spin model, in that
case, has been formulated on the five-coordinated Shastry-
Sutherland lattice (in order to retain the exact solvability of
the spin model), we can here proceed with a somewhat simpler
starting point and follow the work of Benalcazar e al. [129] in
defining a free Majorana fermion model on the square lattice
with staggered couplings among the elementary plaquettes, as
illustrated in Fig. 24. Every such elementary plaquette shall
be pierced by a 7 flux so that the Bloch Hamiltonian takes the

form
. AT(k
Hygon(k) = z(_ N )>, (58)
where
At = (1T remk—p — b (59
T\t +re t+ retk )

with the coupling parameters ¢ and A denoting the interplaque-
tte and intraplaquette hopping strengths, respectively. Feeding
this Majorana Hamiltonian into our SUSY correspondence,
deriving its real bosonic SUSY partner, and taking its classical
limit, we arrive at a balls-and-springs model (Fig. 23) whose
onsite and intersite springs have spring constants ¢> 4+ A% and
—t A, respectively, and the masses are restricted to move along
an out-of-plane axis only.

This mechanical analog of a Majorana HOTI (or the
second-order Kitaev spin liquid of Ref. [130]) retains, by con-
struction, the gapped spectrum (Fig. 24) and the topological
response of its quantum-mechanical ancestor. Most strikingly,

this includes the formation of floppy (gapless) corner modes,
which on the mechanical level are tightly interwoven with the
onsite spring couplings. The latter are sensitive to the number
of neighbors, which, in a setup with open boundary conditions
(i.e., a system with actual edges and corners), gives rise to
a spatial variation of these couplings along the boundary of
the mechanical system. Notably, a non-Abelian extension of
the supersymmetric Berry connection in (50) also enables
constructing bosonic Wilson loop operators to decode the
topology in this mechanical analog of a HOTI. Such a bosonic
topological phase is characterized, like their fermionic coun-
terparts [129], by a quantized quadruple moment that, in this
case, follows from the eigenvalues of the bosonic Wilson
loops as discussed in detail in Ref. [130]. When the coupling
parameters of the mechanical model are steered away from
the topological trivial regime—where the corner masses ex-
perience a restoring force—into the topological regime, these
corner masses become essentially free, i.e., they can be moved
arbitrarily far from their equilibrium positions without any
restoring force. This is the mechanical equivalent of a floppy
corner mode.

V. OUTLOOK

Our work introduces an application of SUSY to identify
free theories of bosons and fermions as superpartners on
an extensive variety of lattice geometries that are of high
relevance to several condensed-matter setups from frustrated
magnets to superconductors. At its core, the formulation
entails a prescription of squaring and square-rooting Hamil-
tonians, a mapping that can be elegantly understood in terms
of lattice adjacencies in arbitrary spatial dimensions. This
mapping then gives rise to topological invariants associated
with the single-particle Witten index v of the SUSY theory
and a fivefold way classification of the supercharge.

The mapping from bosons to fermions is a specific high-
light for it opens the door to the discovery and/or control
of unexpectedly-low-energy modes in bosonic systems. One
could, for example, use this mapping to scan through materials
databases seeking topologically protected phonon (magnon)
zero modes in associated nearest neighbor truncated phonon
(magnon) models. Next-neighbor perturbations would then
lift these zero modes to finite energy but leave them at an
unexpectedly low energy due to locality. In addition to scan-
ning through a materials database (such as Ref. [131] for
topological phonons), one could also use the mapping to
design materials with these unexpected low-energy modes.
In the end, such a program, with an unwanted finite locality
replacing the unwanted occupation of bulk modes, is similar
to the current search and design of electronic [132-137] as
well as, more recently, phononic topological materials [138].

A conceptually interesting aspect of the SUSY is that it also
allows us to establish a connection between the Riemannian
structures associated with the manifolds of quantum states
(Bloch states) of different lattice models that share identical
band structures. Such information is encoded in the quantum
geometric tensor [139]

X,r; = (8k,um|(l - |um><u;11|)|ak,um>a
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whose real part yields the quantum metric g;; measuring the
distance between nearby quantum states and the imaginary
part, the Berry curvature [140]. We observe that, for a number
of lattice models connected by SUSY, the imaginary part, i.e.,
the Berry curvature, appears to be identical for the fermionic
and bosonic counterparts, but there is a small, but nonvan-
ishing difference in the associated metric elements g;;. This
should have an immediate impact on physical observables that
connect to the quantum metric, which include the anomalous
Hall conductivity in a nonuniform electric field [141] or the
diamagnetic response of flat-band superconductors [142], and
should warrant future exploration, particularly exploring these
phenomena in SUSY-related bosonic systems.

Another interesting aspect of our SUSY framework is that
it also encapsulates theoretical recipes to realize “square-root
topological phases” [48-51] including the 2"th root series
[52-54]. In addition, it gives way to envision topological
states in bosonic systems by squaring, an approach which,
so far, has received limited attention [41] despite the recent
proposal [143] that periodically driven systems could unveil
new possibilities to realize such exotic phases in the labora-
tory. For generic quadratic bosonic systems generated by our
SUSY correspondence, a local topology-preserving map can
be constructed to reduce them to number-conserving Hamil-
tonians [144]. Studying how SUSY influences such mappings
in the space of their fermionic counterparts is an interesting
future direction.

While the present work pertains to the noninteracting limit
of bosonic and fermionic systems, extending it to interacting
systems, such as in the model of (25), could solve a number of
interesting puzzles in the field of strongly correlated electrons.
It could be that Fendley’s discovery [145] of a SUSY-like
mapping between states in the transverse field Ising model
or Kitaev chain system may point the way. It is “SUSY-like”
because the mapping preserves the states’ energy up to small
corrections in the system size. So there is reason to believe
that an interacting version of the phenomena discussed in this
paper, especially of the Kitaev chain example we discuss,
indeed exists. Taking a cue from a recently identified strategy
for square-rooting the functions of bosonic number operators
[146], Heisenberg spin models may also serve as a fertile
playground for extending our work to interacting systems.
Lastly, if such an interacting version of SUSY exists, it may
also provide insights into Z, quantum spin liquids whose
fusion rule e x m = ¢ identifies bosonic spinons paired with
Z, visons as fermionic spinons [147] but are difficult to study
beyond exactly solvable models. Perhaps the right step to-
wards solving these puzzles is to connect the SUSY discussed
in this paper, which requires locality and is revealed by lattice
geometry, to those discovered to describe certain interacting
phase transitions on the surface of certain symmetry-protected
topological insulators [148—150].

The most pressing need for such an interacting extension
could be to explain the origin of intertwined orders [151]
in the cuprates and other high-temperature superconductors.
Intertwined orders arise due to a seemingly fine-tuned compe-
tition between several ordering tendencies. Physicists working
on these systems did not expect accidental degeneracies. They
proposed them only after decades of work and surprising
discoveries. However, such accidental low-energy phenomena

are a natural consequence of the topology discussed in this
paper. While our models exhibit strictly zero-energy modes,
actual materials would have soft modes at finite but low en-
ergy, parametrically small in the strength of further neighbor
interactions. If someone constructs such a theory, then perhaps
it would indeed solidify SUSY as a pillar of condensed-matter
physics.
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APPENDIX A: GRAPH OF SQUARE-ROOTING
ALGORITHM

The algorithm for taking graph square roots discussed in
this paper was first introduced as a “lattice construction” al-
gorithm in Ref. [90]. Here we derive it in a more conceptual
manner, starting solely from squaring an adjacency matrix,

(ADic =Y AijAj. (A1)
J

It is apparent that an edge between vertices i and k in the
squared graph corresponds to (the sum of all) combinations
of edges going from vertex i to k via intermediate vertices
j. In more practical terms, this constitutes the next-nearest
neighbors of the graph.

It is well known that, in a bipartite graph, the next-nearest
neighbors of one of the two sublattices only reside within that
sublattice. Therefore, if one would construct a bipartite graph
for a given lattice in such a way that the given lattice arises
from taking next-nearest neighbors in the bipartite graph,
one would naturally define a second sublattice which can be
viewed as the superpartner to the given lattice.

The last piece of the algorithm is to show how exactly
one can define a bipartite graph in such a way for a given
lattice. This construction is at the heart of the lattice con-
struction algorithm and relies on the observation that locally,
a z-coordinated site of one sublattice in the bipartite graph
results in a fully connected plaquette (or clique in graph lan-
guage) with z vertices in the other sublattice upon squaring, cf.
Fig. 2. Therefore, to go the other way, we propose to replace
all z cliques with z-coordinated sites, constituting the new
sublattice and thus producing the bipartite graph.
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For practical applications, note that every z clique contains
cliques of order z — 1. One therefore needs to mandate that
the algorithm should start by replacing maximal plaquettes in
descending order of their size. This will guarantee that one
replaces a minimal amount of plaquettes. It is further known
from computer science that finding all maximal cliques in a
graph is generally an NP-hard problem. However, in a physics
situation, the graphs one usually has to deal with are lattices
whose unit cells have a rather finite number of elements
which in turn puts an upper limit on how large cliques can
become and thereby greatly alleviates the problem of clique
identification.

Note also, that the replacement of plaquettes can only
guarantee the connectivity of the graph, but not its labels. In
a physical situation, hopping (or interaction) strengths would
appear as labels in the adjacency matrix, which further com-
plicates the calculation of the labels within the bipartite graph.

In total, the entire lattice construction algorithm can be
summarized as follows, assuming one is given a lattice with
connectivities labeled by the set of numbers {t;}:

(1) Identify all cliques within the lattice.

(2) In descending order, let X be either the full set or
a subset of cliques that includes all the vertices and do the
following to every clique in X’

(a) Add a new vertex to the center.

(b) Remove the edges.

(c) Add new edges between the new vertex and the old
vertices.

Assert: All the old edges of the initial lattice are re-
moved, and only the newly added edges are retained.

(3) Assign labels A;; to the newly added edges; reduce
the number of labels using graph symmetries. The result is
a matrix of the form

Arn
A= .
<AII—I >

(4) Use the following to produce a system of equa-
tions that link the newly created labels A;; to the old labels

t = ZAijAjka
J

(A2)

(A3)

where t;; is nonzero only when i and k refer to the old vertices.

(5) Solve these equations to obtain fitting labels for the
bipartite lattice.

Assert: a solution is found.

(6) Construct the partner of t;; from (A1) with i and k now
referring to the new vertices.

This algorithm provides a solution, a partner lattice, to
the square rooting problem, but other solutions are possible.
The line graph algorithm is essentially the same algorithm as
above, but step 2 is replaced by starting from the smallest
cliques, i.e., the edges (see Sec. II C). Once the algorithm is
performed for these cliques, all higher cliques are automati-
cally removed, for larger cliques always contain the smaller
ones. Also, if step 2 is applied a second time to the partner
lattice, it does not necessarily yield the original lattice. It may
produce yet another partner. Hence, backtracing step 2, in
addition to the line graph construction, is another replacement
for this step.

The labels in step 3 are generally complex numbers. In this
paper, we have limited ourselves to choosing real numbers and
to time-reversal invariant problems.

Step 5 involves solving a nonlinear system of equa-
tions that may not always yield a solution or may yield
multiple solutions. A solution was found in all cases we
studied in this paper. But for problems with multiple Wyckoff
centers in the unit cell, a solution may not be possible. Still, it
could be obtained by fine-tuning just one or two parameters,
such as experimentally, by applying pressure or temperature.
This case would identify SUSY regions in the phase diagram.

In summary, this algorithm provides a method to generate
a partner lattice of a given lattice. It does not deliver a unique
solution but only one compliant with graph rules and squaring.

APPENDIX B: FIVEFOLD WAY CLASSIFICATION
OF SUSY MODELS

In this Appendix, we present a detailed discussion of the
symmetry-based classification of Hermitian supercharges. A
key result of this approach is that by imposing the con-
ventional symmetries that classify the Hamiltonians of free
fermionic systems [37-40], the supercharge can belong to
one of the five distinct classifying spaces, which leads us
to a fivefold way classification as will be elaborated in the
following.

A supercharge is fundamentally characterized by the Wit-
ten index v: its Bloch spectrum features precisely v flat bands
at zero energy. The topology of additional band-degeneracy
points at zero energy coinciding with the flat bands, so-called
nexus points [68-71], has a remarkable dependence on this
Witten index v that can be understood in terms of homotopy
maps [43]. Of specific interest in the parlance of condensed-
matter setups are (i) the zeroth homotopy group my(M),
which is the set of mappings of a single point into a classifying
(or topological) space M and can lead to topological invari-
ants like sign[Pfaffian] (the emergence of such an invariant
has been discussed in, e.g., Refs. [152] and [35]); (ii) the first
or the fundamental homotopy group (M), which is the set
of mappings of loops into M and gives rise to invariants such
as the Berry phase; (iii) the second homotopy group 7,(M),
the set of mappings of closed surfaces into M leading to
invariants like the Chern number; and (iv) the third homotopy
group m3(M), the set of mappings of closed volumes into
M characterizing, e.g., Hopf insulators [153]. In what fol-
lows, we elucidate the fivefold classification of supercharges
for each value of v specializing in the homotopy groups
from n = 0 to 3. In a subsequent Appendix, Appendix C, we
provide a number of examples by classifying the topology of
some of the lattice models in two and three dimensions that
are discussed in the main text.

Let us start our discussion by considering the matrix repre-
senting the Hermitian supercharge Oy in (12), which, by the
very nature of our SUSY construction, is chiral, i.e., it takes

the general form
R
H= (RT ) B1)

Symmetry-wise it, therefore, belongs to one of the five chi-
ral classes AIll, BDI, CII, CI, or DIII in the tenfold way
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TABLE III. Five chiral symmetry classes to which a chiral
Hamiltonian can belong. The last column is of the corresponding
classifying spaces of the K theory [38]. The notation “/”” here refers
to the coset space.

Cartan label T2 P? c? Classifying space
Alll 0 0 1 Uw)

BDI 1 1 1 O(N)

(@11 -1 -1 1 Sp(2N)

CI 1 -1 1 UWN) / O(N)
DIII -1 1 1 U(2N) / Sp(2N)

classification [39]. Table III summarizes how the time-reversal
T and the particle-hole P operator behave in each one of
these classes (while all have the chiral symmetry, i.e., C’=1
and the resultant classifying spaces (M) of the (spectrally
flattened) Hamiltonians [38].

The antiunitary symmetry operators, 7 and P, and the
unitary symmetry operator C in each one of these classes
impose specific conditions on the matrix H when we consider
it as a first-quantized Hamiltonian, namely,

THT '=H, PHP !=-H, CHC'=-H. (B2

Adapting a canonical representation of these symmetries in
each of the five classes of Table III, one can understand what
these conditions have to imply for the matrix R which we list
in Table IV.

Let us now remind us of the fact that SUSY renders a Wit-
ten index v to each R in terms of its dimensions: for R being
an arbitrary M x N matrix, v = N — M. Therefore, when R is
a square matrix, which is referred to as the isostatic case, the
Witten index is v = O whereas for a rectangular R matrix, the
nonisostatic cases, v # 0, the latter exclusively manifesting in
flat bands in conjunction with (degenerate) point nodes in the
band structures of H.

For the flat bands in a SUSY problem always appear at
zero energy, their topology cannot be classified in terms of
the tenfold way. In fact, for the first three classes—Alll,
BDI, and CII—the different values of v (the isostatic and the
nonisostatic cases) exhibit distinct topology as discussed by
two of us [43] in terms of homotopy groups m, (mapping
the n-dimensional sphere S, to the classifying spaces M in
Table III). For the last two classes—CI and DIII—R must be
a square matrix and one can as well compute the stable ho-

TABLE IV. Canonical representation of the symmetries in the
five chiral classes. /C denotes complex conjugation. The last column
enlists the condition to be obeyed by the matrix R in each of these
classes in compliance with (B2).

TABLE V. Fivefold way classification table of SUSY lattice
models. For each of the five chiral symmetry classes, the table in-
dicates topological invariants (Z,, Z) as a function of Witten index v
and homotopy groups 7,. It thereby generalizes Table II of the main
text, which is specific to symmetry class BDI. For symmetry classes
Alll, BDI, and CII, Witten indices v greater than the listed values
exhibit trivial topology, while for the class CI and DIII, the topology
turns out to be the same for any v # 0 and v = 0. For the reader’s
convenience, we have also resorted the results from this table for
fixed Witten indices in Tables VI (v = 0) and VII (v = 1).

Cartan label v o T ) T3
Alll 0 0 Z 0 Z
1 0 0 Z 0
>2 0 0 0 0
BDI 0 Zy Zy 0 Z
1 0 7y 0 7
2 0 0 Z Z
3 0 0 0 Z
>4 0 0 0 0
CII 0 0 0 0 Z
>1 0 0 0 0
CI 0 0 Z Z 7
>1 0 Z Zy Z,
DIII 0 0 Z 0 0
>1 0 Z 0 0

motopy groups of the respective classifying spaces (following
Bott’s original work [154]), which will be independent of v.
This leads us to the aforementioned fivefold way classification
of the supersymmetric lattice models, i.e., the supercharges,
which is shown in Table V, where we list the possible topo-
logical invariants, for each of the five symmetry classes, as
a function of the Witten index and the homotopy groups up
to 3 relevant for models in d = 1, 2, 3 dimensions. For the
reader’s convenience, we also reorganize the results from this
table for specific Witten indices in Tables VI (v = 0) and VII
(v=1).

Note in the above discussion, the Witten index v is of
fundamental importance and not the spatial dimensionality
of a model unlike what is typically done in the tenfold way
classification table to reveal strong invariants [37-40]. When
computing a topological invariant of a lattice model, we often

TABLE VI. Fivefold classification table of SUSY lattice mod-
els (the supercharges) for fixed Witten index v = 0O providing the
topological invariants for each symmetry class and the first four
homotopy groups 7.

v=20

Cartan

label T P C Condition on R Cartan label T Ty T T3
Alll 03 Alll 0 Z 0 Z
BDI K o.K o3 R*=R BDI Z» 7y 0 Z
CII 03 Qi —-1®iK o031  (io)R*(—ioy) =R CII 0 0 0 7
CI O'],C —iO’zIC 03 RT =R CI 0 Z Zz ZQ
DIII i IC oK o3 RT =R DIII 0 Z 0 0
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TABLE VII. Fivefold classification table of SUSY lattice mod-
els (the supercharges) for fixed Witten index v = 1 providing the
topological invariants for each symmetry class and the first four
homotopy groups 7,,.

v=1
Cartan label T T T T3
Alll 0 0 Z 0
BDI 0 Ziy 0 Z
CII 0 0 0 0
CI 0 Z Zs Z,
DIII 0 Z 0 0

resort to the band structures in d dimensions, characterized
by the pseudomomenta k, for which a d-dimensional torus
T, should be considered as the base manifold instead of the
sphere S;. But in doing so, it turns out we only miss out
on the information about weak topological invariants (which
can exist only in translation symmetric systems). To note,
in presence of such a parameter K, the conditions noted in
Table IV become

BDIL: R*(k) = R(—k),

CII: (i02)R*(k)(—ioy) = R(—k),

CL: RT(k) = R(—k),

DIII: RT(k) = —R(—k). (B3)

Here we seek to explore the topology of the nodes in the band
structures of H at zero energy that involve flat bands. The
relevant parameter is what is known as the node dimension-
ality, which is distinct from the spatial dimensionality. The
node dimensionality turns out to be dictated primarily by the
Witten index. For characterization of such nodes in the ten
Atland-Zirnbauer (AZ) classes without the flat bands (i.e., the
isostatic case, v = 0) in terms of homotopy groups, we refer
to Ref. [152] where this has previously been established. The
present work generalizes these ideas to the nonzero Witten
index v £ O for the five chiral AZ classes.

The following Appendix will illuminate the topology of
several lattice models all of which have a chiral Bloch Hamil-
tonian as in (B1) representing their Hermitian supercharge
QOpy. All these examples belong to symmetry class BDI. We
seek to find appropriate topological invariants that fit the BDI
class in Table V by computing the relevant 7, for a given
Witten index v.

APPENDIX C: TOPOLOGY OF THE SUSY LATTICE
MODELS IN BDI CLASS

To appreciate the topology of SUSY models with nonzero
Witten index v # 0, which we have classified in the previous
Appendix, we return to some of the principal examples from
the main text (illustrated in the triptych-like figures of Sec. III)
and elucidate the nontrivial topological invariants with the
nexus points of their respective supercharge models. The latter
arise from nontrivial homotopy groups 7| and 7, in two- and
three-dimensional lattice geometries, respectively. Note that
all examples are in symmetry class BDI.

We focus on the part of the band structures near the band
degeneracy points at zero energy that include the flat bands
and might exhibit additional band degeneracies, e.g., in the
form of Dirac crossings, at the so-called nexus points. The
basic idea now is to project onto the relevant bands of the
original chiral Bloch Hamiltonian H(k) near such a band-
degeneracy point and derive an effective Hamiltonian H(k)
involving only those bands. This effective Hamiltonian H(k)
is not generally in a chiral form but we can adopt a basis in
which the chiral symmetry operator is diagonal and reexpress
H(k) in that basis to restore its chiral form. Depending on
its dimension N, H(k) can be written in terms of the suitable
SU(N) generators A as

HKk)=H;+dK)- A, (C1H
where Hy is the effective Hamiltonian at the degeneracy point.
We then inspect the profile of the vector d(k) in the Fourier
space (as illustrated in Fig. 25) over loops or spheres encom-
passing the degeneracy point depending on the Witten index
v of the supercharge to begin with.

Let us illustrate this procedure with examples for some
of the lattice models with v # 0 studied in this paper in the
following:

Honeycomb-X lattice. (Fig. 1) For the honeycomb-kagome
SUSY correspondence, the Hermitian supercharge yields a
Bloch Hamiltonian on the intermediate honeycomb-X lattice
that has a flat band and a threefold degeneracy at the I" point
of the Brillouin zone. With a Witten index of v =1 in this
case R(k) is a 2 x 3 matrix. Around the I" point, we obtain
a 3 x 3 effective Hamiltonian H(k) which we linearize to
obtain the vector d(k). This vector turns out to have two
components that, when plotted over the Brillouin zone, reveal
a full winding over any closed path around the I" point (see
Fig. 25). We are therefore able to conclude that this model
exhibits nontrivial topology, just as Table V suggests for m;
with v = 1. As long as the degeneracy involving the flat band
is indeed present, we find perturbations cannot destroy such a
winding pattern rendering it a topological nature.

Square-X or Lieb lattice. (Fig. 26) For the square-X (Lieb)
lattice, we have a Witten index of v = 1 and R(k)isa 1l x 2
matrix. The original Block Hamiltonian H(k) is 3 x 3 matrix,
and no further projection is required. The band structure has
a threefold degeneracy at K = (£, £). The winding of the
resultant two-component d(k) vector, obtained by linearizing
H(k) around one of the K points, is shown in Fig. 25, reveal-
ing a nontrivial topology due to ;.

Square-octagon-X lattice. (Fig. 9) The square-octagon-
X lattice mediates the SUSY correspondence between the
square-octagon and the squagome lattice. This is an example
with Witten index v = 2 and an R(k) of dimensions 4 x 6.
A fourfold degenerate point is present along with two flat
bands at the four corners of the Brillouin zone with K =
(£7/(2 ++/2),0) and K’ = (0, £7 /(2 + +/2)). Adapting a
basis in which the chiral symmetry is diagonal, we find the
effective 4 x 4 Hamiltonian to take a chiral form with an
effective 1 x 3R matrix. However, after linearizing around
one of the K points at play, we find the vector d(k) is
a two-component only. The winding of this vector around
the K point is shown in Fig. 25, for which we need to
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FIG. 25. Topological invariants from homotopy. The three examples for two-dimensional lattice geometries in the top row exhibit a
nontrivial homotopy associated with 7, i.e., a nontrivial Berry phase around the nexus points located at high-symmetry points in the Brillouin
zone (indicated in blue). Shown are the supercharge lattices honeycomb-X (Fig. 1), square-X/Lieb lattice (Fig. 26), and square-octagon-X
(Fig. 9). The three examples for three-dimensional lattice geometries in the bottom row, exhibit a nontrivial homotopy for 7, (and are
hence plotted over a unit sphere S, and its projection onto R?), i.e., they exhibit a nontrivial skyrmion number when projecting onto
the two-dimensional plane (bottom row). Shown are the supercharge lattices hyperhoneycomb-X (Fig. 10), diamond-X (Fig. 18), and
hyperoctagon-X (Fig. 19). The topology in these examples follows from the homotopy classification of the BDI class against the Witten
index v as shown in Table II. For all examples plotted are the different components of the vector d(k) that represents an effective Bloch
Hamiltonian linearized around the band degeneracy points at zero energy [see (C1)].

immediately express a word of caution: while the plot might
seem to suggest that there is a nontrivial topology associated
with | for this v = 2 model (and a trivial topology for ),
this is unexpected for BDI class at v = 2, see Table II. To test
if this is an accidental degeneracy, we added third-neighbor
connections but that did not gap out the nexus point. One pos-
sible explanation is the existence of an additional symmetry,
such as a lattice symmetry, that changes the class, but we have
not investigated this issue any further.

In a similar fashion to the two-dimensional examples
discussed above, we can now move on to analyze some three-
dimensional SUSY models:

Diamond-X lattice. (Fig. 18) The Hermitian supercharge
responsible for the SUSY correspondence between the dia-
mond and pyrochlore lattices can be envisaged as a chiral
Bloch Hamiltonian on the intermediate diamond-X lattice.
This is another example of Witten index v = 2 and an R(k)
of dimensions 2 x 4 (akin to the square-octagon-X lattice
discussed above). A fourfold degenerate point is present along
with two flat bands at the I" point of the Brillouin zone.
After linearizing the effective Hamiltonian, which is a 4 x 4
chiral matrix with an off-diagonal block R(k) of dimensions
1 x 3, around the I" point, we find the vector d(k) is of three

components. Plotted over the Brillouin zone (see Fig. 295), it
reveals a hedgehog texture surrounding the I" point arising
from a nontrivial topology due to m, as Table V suggests.
Projecting this texture onto two spatial dimensions reveals a
skyrmion, a whirl in the texture which is another manifestation
of the nontrivial topology at play here.

Hyperhoneycomb-X lattice. (Fig. 10) The Hermitian charge
mediating the SUSY correspondence between the hyperhon-
eycomb lattice and its SUSY partner is a Bloch Hamiltonian
on the hyperhoneycomb-X lattice. This is a v = 2 system with
a fourfold degeneracy at the I" point of the Brillouin zone and
two flat bands. After linearizing, the effective Hamiltonian
takes the form a 4 x 4 chiral matrix with an off-diagonal block
R(k) of dimensions 1 x 3, around the I'" point. We find the
vector d(k) is of three components. When plotted over the
Brillouin zone (see Fig. 25), it reveals a hedgehog texture
surrounding the I' point (and a two-dimensional skyrmionic
projection) arising from a nontrivial topology due to m, as
Table V suggests.

Hyperoctagon-X lattice. (Fig. 19) The Hermitian charge
mediating the SUSY correspondence between the hyperoc-
tagon lattice and its SUSY partner, the hyperkagome lattice,
manifests as a Bloch Hamiltonian on the hyperoctagon-X
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lattice. This is yet another v = 2 system with fourfold de-
generacy at the K point of the Brillouin zone and two flat
bands. After linearizing around the K point, the effective
Hamiltonian takes the form of a 4 x 4 chiral matrix with an
off-diagonal block R(k) of dimensions 1 x 3. We find the
vector d(k) is of three components. Plotted over the Brillouin
zone (see Fig. 25), it reveals a hedgehog texture surrounding
the K point (and a two-dimensional skyrmionic projection)
arising from a nontrivial topology due to 7, as indicated by
Table V.

APPENDIX D: ADDITIONAL EXAMPLES OF SUSY
LATTICE CORRESPONDENCES AND BEYOND LINE
GRAPH CONSTRUCTION

In addition to the SUSY lattice correspondences for tight-
binding models of complex fermions and bosons presented in
the main paper, we provide a few more instances to widen its
applicability. The first one coincides with the line graph con-
struction and the second one reproduces an identical partner
with no additional flat bands. In distinction, the third and the
fourth examples take us beyond the line graph construction
in which our SUSY links two lattices as the superpartners
that are not the line graph of one another (shown in Fig. 28),
yet, (one of them) hosting flat bands. A characteristic of the
supercharge lattice in these two cases is that in the associ-
ated bipartite graph, the connections between the sites of one
sublattice are mediated by more than one site from the other
sublattice, unlike the examples shown so far. It turns out such a
bipartite model can host multiple flat bands (given by the Wit-
ten index) at Dirac-type band crossing(s) in its tight-binding
spectrum. In the latter two examples, the multiplicity of the
connectivity in the supercharge lattice provides a new control
for the number of flat bands in addition to the geometry of the
graph.

The first example is a SUSY lattice correspondence be-
tween the square lattice and the checkerboard lattice (which
is sometimes also referred to as planar pyrochlore lattice) via
the square-X lattice (Fig. 26) that is commonly referred to as
the Lieb lattice [57]. The additional site in the checkerboard
unit cell with regard to the square lattice manifests itself in
a single flat band in the checkerboard band structure, point-
ing to an extensive ground-state manifold of the Heisenberg
antiferromagnet on this lattice [34].

The second example (Fig. 27) pertains to the square-
octagon lattice whose two sublattices each constitute a
so-called Shastry-Sutherland lattice [155], which has been ex-
tensively discussed in the context of SrCu,(BO3), [156—158].
This SUSY lattice correspondence allows us to formulate a
spin-fermion SUSY correspondence between the spin physics
on the Shastry-Sutherland lattice and fermions on the square-
octagon lattice, the planar variant of the three-dimensional
scenario that we discussed in the main text when connect-
ing the hyperoctagon lattice and a 3D generalization of the
Shastry-Sutherland lattice (Fig. 16).

The third example [Fig. 28(a)] demonstrates how to design
a supersymmetric partner of the square lattice (blue, left)
which is not its line graph (unlike the first example), yet
hosts flat bands. The partner turns out to be a square-octagon
lattice (red, right). The supercharge lattice, in this case, admits

8 8
14
B =
4 g o g 4
/ =] =
(3] [}
14
0 0

energy

T T T T T T
T K M T r K M r T K M r
momentum momentum momentum

FIG. 26. SUSY corresponding square and checkerboard lattices.
Complex fermions (blue, left) on the square lattice are supersym-
metrically linked to complex bosons (red, right) on the checkerboard
lattice. The mapping can be established with a supercharge which can
be interpreted as the adjacency matrix of a square-X lattice (center
plot), i.e., a square lattice with additional sites on every bond whose
two sublattices are the square and checkerboard lattices respectively.
For the topological classification according to Table II, we find,
noting that the Witten index here is v = 1, that the nexus point in
the supercharge spectrum has a nontrivial topological invariant of
m; = +1, see also the illustration in Fig. 25 of the Appendix.

multiple connectivities between the sublattices i.e., the blue
sites are doubly connected with each other via the red sites,
because of which the square-octagon lattice formed by the
red sites develops modulated and all-to-all hoppings in the
octagonal plaquettes. The supercharge has Witten index v = 3
exacting three flat bands in the tight-binding spectrum of the
square-octagon side.

T T T T T T
T K M r T K M r T K M r

momentum momentum momentum

FIG. 27. SUSY corresponding Shastry-Sutherland lattices. Com-
plex fermions (blue, left) on the Shastry-Sutherland lattice are
supersymmetrically linked to complex bosons (red, right) on the
same lattice. The mapping can be established with a super-
charge which can be interpreted as the adjacency matrix of a
square-octagon lattice (center plot) whose two sublattices are both
Shastry-Sutherland lattices. For the topological classification accord-
ing to Table VI, we find, noting that the Witten index here is v = 0,
that the Fermi surface in the supercharge spectrum has a trivial
topological invariant of 7; = 0.
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FIG. 28. More examples on the (SUSY-enabled) beyond line
graph construction. (a) Complex fermions (blue, left) on the square
lattice are supersymmetrically linked to complex bosons (red, right)
on the square-octagon lattice with modulated and all-to-all connec-
tions within the octagonal plaquettes. The mapping is established
with a supercharge interpreted as the adjacency matrix of the lattice
(center plot) where the connections between one type of sublattice
are mediated by one/multiple sites from the other sublattice placing
such a bipartite network beyond the split graph line graph construc-
tion. (b) Another similar construction with the complex fermions
(blue, left) on the honeycomb lattice with its partner bosonic model
on another decorated honeycomb lattice with two of the three ad-
jacent hexagons around each honeycomb vertex allowing all-to-all
connections within themselves. The Witten index is v = 3 in (a) and
v = 4 in (b) rendering the Fermi surface in both supercharge spectra

a trivial topology with 7y = 0 (according to Table V). |

1/zx 1/zy
Zy Z
0 (2/2) /Y2
(2/2,) /Y2 0

Ak) =t

where z,, = ¢’ and ¢ denotes the hopping strengths. The
unit cell here comprises eight sites included in a basis

A A A A T
(Vlk Vi Yh Yk Yh Vi Vi Vﬁ()-

This fermionic Hamiltonian can be generated by a super-
charge whose matrix form is

R(k) = (1 A(k)>.

The bosonic model it yields is defined on the Shastry-
Sutherland lattice with the sites hosting unit masses and the
bonds, the springs including intrasite contributions as the
other examples. This is an intriguing case of a mechani-
cal setup where the phonon spectrum exhibits a manifold
of Goldstone modes that form a line in momentum space
(akin to a Fermi surface). The spectrum also exhibits a

(D3)

Constituting our fourth example Fig. 28(b) illuminates an-
other instance of a multiply connected supercharge lattice
which is of relevance in the context of flat-band quantum
materials. The supercharge lattice is realized in the family of
compounds CrX3 (X = Cl, Br, I), where the Cr cations inhabit
one sublattice, and the halogen (X) anions the other [159]
and establishes a supersymmetric link between the nearest-
neighbor honeycomb network (blue, left) and its non-line
graph partner (red, right)—another honeycomb network but
with modulated and all-to-all hoppings within 2/3 of the
honeycomb plaquettes. The charge has Witten index v = 4,
hosting four flat bands at £ = 0O that also appear on the red
honeycomb network which comprises the halogen sites in
CI‘X3.

Our final example in this Appendix is to illustrate the real
fermion-boson SUSY applying to the square-octagon lattice
that hosts a Kitaev spin liquid [160]. Following the prescrip-
tion of the real fermion-boson SUSY in Sec. IV A, we connect
the Majorana fermions on this lattice to a spring-mass network
forming the Shastry-Sutherland lattice. This is in a similar
spirit to what is done in Ref. [15] where a mechanical analog
of the Kitaev honeycomb model has been devised. However,
this new mechanical model importantly allows us to also vary
the flux sectors of this model thereby probing both gapped and
gapless Majorana spectra in the w-flux and zero-flux phases,
respectively.

In detail, the Majorana Hamiltonian on the square-octagon
lattice is defined as

Hy (k) = i(A(k) _AT(k)), (D1)

with

(2x2y)"/V? 0
0 (2x2y) /Y2

1/z, Zx

1/z Zy

, D2)

(

dispersionless section along a path between certain high-
symmetry points (I to K) in the Brillouin zone. This example
illuminates novel topological properties of phonon bands be-
yond those studied in Ref. [15] and opens up a new avenue
for realizing exotic phonon dispersions in mosaic structure
lattices.

APPENDIX E: TOPOLOGY FOR COMPLEX
FERMION-BOSON SUSY CORRESPONDENCE

Topological twists (or defects) in fermionic bands can
be characterized by quantized phases or integer-valued in-
variants originating from the homotopy classification of
tight-binding Hamiltonians [39,161,162]. For instance, the
Berry phase has been an incredibly useful tool to charac-
terize the topology of (nodal) band structures in electronic
systems [163-166].
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FIG. 29. An eigenstate “olog of SUSY states [167] showing the
mappings of single-particle eigenstates between the chiral fermion
model H¢ associated with the supercharge [see Eq. (12)], the boson
model Hjp and the fermion model Hr [see Eq. (4)]. Notice the zero
energy space of H¢ splits into two sectors, one on the A sublattice
that maps to eigenstates of Hr and one on the B sublattice that
maps to eigenstates of Hp. Following a given eigenstate of H, with
finite energy leads to the same state independent of which path is
taken. Note: the mapping under Q, Q' of the many-body Hsysy
states follows a similar pattern, with Q preserving R = Ng + Nj,
the so-called “R” symmetry [168], mapping the eigenstates in Fock
sector (Np, Ng) to those in Fock sector (N 4+ 1, Nz — 1) and QFf
mapping (Np, Ng) to (Np — 1, Ng + 1).

Berry phases. For the SUSY lattice models at hand, spec-
ified via the Hamiltonians RR" and R'R, the Berry phases
associated with the corresponding Bloch wave functions turn
out to be intimately related. Using the wave function relations
of Eq. (13), illustrated in Fig. 29, one can show that if the
closed-orbit Berry phase for a (fermionic) eigenfunction of
RR' is given by

oRR — if (u(k)|du(k)) - dk, (E1)

then the one for the (bosonic) eigenfunction of RR at the
same energy will be

oR'R — i?§<u(k)|aku(k)> . dk

_ RR ?g Im( (u(K)| R (K))]
o VoK)

Of particular interest here is the additional term in the second
line, which points to a potential difference in the bosonic and
fermionic Berry phases. It is a direct consequence of the wave
function correspondence in (13) and notably involves both the
fermionic and bosonic states. If we reexpress it entirely in
terms of the bosonic states by further utilizing the mapping in

dk.  (E2)

(13), we arrive at a SUSY version of the bosonic Berry phase
G308 = i%(v(k)wkv(k)) -dk

+y§ Im[(v(k) R (3 R)|v(k))]
wn(K)

Only if the integrand in the second augmenting term can be
written as dxJF (k) for some function F(k), then the con-
ventional Berry phases 6r and 6p, acquired under adiabatic
evolution along any closed orbit, in the two supersymmetri-
cally related systems will be equal. Such a vanishing of the
augmenting term would also be ensured by imposing that the
matrix RT(¢R) at its heart is Hermitian and [R', 3R] =
0. (For a Hermitian R these two conditions are in fact
equivalent'®). For the honeycomb-kagome correspondence
described above, where both band structures (of RR" and
R'R) feature Dirac points, the second term in (E3) indeed
vanishes. As a result, the conventional Berry phases 6r and
0p in the two systems around these point nodes are identical
and admit quantized values £

Berry curvature. Similarly, one can study how the Berry
curvature is related between the bosonic and the fermionic
tight-binding models that are connected by such a supersym-
metric identification. For a given (isolated) fermionic band
|u,) in the spectrum of Hr = RR the Berry curvature can
be cast as

dk.  (E3)

(|0 HE ) <um|ayHF [1t,)

(a)n — Wy, )2

FO(k) = —2Im | )"

m#n

where 9; = d/dk;. Then the corresponding supersymmetric

bosonic partner state in the spectrum of Hz = R'R given by
|v,) will have a Berry curvature of

. (E4)

Z (vnlaxR”um)(umlayR|Un>

(wn — W)

F(k) = FK) + 21m|:
m#n

_§ fliRIn) 0 3R '”")]’ (ES)

man (a)n - wm)

which like the Berry phase above is found to be augmented by
an additional term.

The expression in (E4) formally resembles the result of a
second-order perturbation theory calculation. It is a gauge-
invariant form of the Berry curvature that admits contributions
owing to the transitions from all other bands to the given nth
band considering 0;H as a perturbation. In a similar spirit, one
can inspect the supersymmetric contribution in (E5) which
reveals two noteworthy features. First, the supersymmetric
contribution recognizes 9;R and 3.R", i.e., derivatives of the
supercharges, as first-order perturbations. The conventional
term instead concerns the derivative of the fermionic Hamil-
tonian 9;Hr as second-order perturbations instead. Second,
the supersymmetric contribution comprises two complemen-
tary components signifying two distinct types of transitions
(admixing the bosonic and fermionic Hilbert spaces)—the

Such a condition is noted in Ref. [169] that studied Berry phase
in quadratic bosonic systems.
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FIG. 30. SUSY contribution to the bosonic Berry curvature. The
SUSY contribution to the bosonic Berry curvature consists of two
distinct transitions between the fermionic vector space {|u)} (blue)
and the bosonic vector space {|v)} (red): (i) |u,) — |Un,) Shown
in dashed arrows and (ii) |u,-,) —> |v,) shown in dotted arrows
(detailed in the text).

first term in the square bracket in (E5) is due to the transi-
tions from the bosonic Bloch state |v,) to all eigenvectors in
the vector space of its fermionic superpartner indexed with
m # n, as schematically illustrated in Fig. 30. In contrast,
the second term is due to the transitions from the fermionic
eigenvector |u,) (the superpartner of |v,)) at the same energy
wy, to all the eigenvectors in the bosonic vector space {|v)}
indexed with m # n. Similar to what we have seen for the
Berry phase above, it turns out that in the honeycomb-kagome
correspondence, when we gap out the Dirac cones with a
small inversion symmetry-breaking parameter to isolate the
uppermost band in both cases, these two terms nullify each
other rendering the fermionic and bosonic Berry curvatures
identical F® (k) = F® (k).

Defacto, it seems that for the SUSY connection of complex
fermions and bosons discussed here, there is no distinction of
the SUSY version of the Berry phase and its original variant,
and similarly for the Berry curvature. At least this is what
we find for a number of examples discussed in Sec. III. A
completely different picture awaits us when we turn to the
case of real fermions and bosons, which we discussed in
Sec. IV, in the context of topological mechanics.

APPENDIX F: KANE-LUBENSKY CHAIN
TO KITAEV CHAIN

Let us complement the discussion of the SUSY corre-
spondence of one of our principal examples in topological
mechanics, between the (bosonic) Kane-Lubensky chain and
the (fermionic) Kitaev chain, in the main text with a more
detailed derivation here. In particular, let us demonstrate how
to derive a local compatibility matrix A of the form given in
(55) (of the main text) from the Kane-Lubensky dynamical
matrix

a b 0 0 b
b a b 0 0
- 0 b a b 0 .
D=1 . ] |1 =A"A, (FD)
o 0 --- b a b
b 0 O b a

which enables constructing a Kitaev chain as a superpartner
of the phonon problem. The strategy is to first construct an
incidence matrix of the graph represented by the phonon chain
which entails interactions up to the next-nearest neighbors
as reflected in D, thereby retaining the features of locality
same as D. This is important to construct a local fermionic
Hamiltonian via our SUSY approach. It provides a simple
mathematical demonstration of the graph square-rooting algo-
rithm presented earlier applied to formulate supersymmetric
partners of random nearest-neighbor one-dimensional bosonic
models.

To proceed, the first step is to project out the diagonal
terms of D to construct a weighted adjacency matrix that con-
tains the connectivities (including the bond strengths) between
distinct sites of the phonon chain. Note the parameters a, b
in (F1) are arbitrary positive numbers representing a generic
one-dimensional phonon model with an adjacency matrix

0 » O o --- b
b 0 b o --- 0
- 0O » O b - 0
A= : : : : : N (F2)
o o0 --- b 0 b
b 0 0 --- b 0

Regarding the underlying phonon lattice as a one-dimensional
graph with connectivities between the next-nearest neighbor-
ing sites only, the incidence matrix induces a map from the
sites, denoted by {i}, to the bonds of this graph, denoted by
{a}, which we can write as

xivb  b/x, 0 0 o0
0 xvb  b/x 0 0
7= 0 0 x3wb  Nb/x3) - 0

6 XN.\/Z
(F3)

\/Z./x N O 0

for a periodic N-site (and N-bond) isostatic chain. We then
determine the parameters {x,}, which is a set of N real-valued
numbers on the bonds, by imposing the condition

fi 1 0 0 - 1
1 A 1 0 - 0
o 0 1 I 0 i
rropl® LA Yy
0 0 - 1 fyg |1
1 0 0 - 1 fy
with f, = x2 + 1/x2 or, equivalently,
X2+ 1/x2 = a/b, (F5)

which has four solutions

a a
xi=4 [ —+ [——1, (F6)
26V 2b

independent of «, leading to the N x N compatibility matrix
A noted in (55) of the main text.
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