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Abstract— One of the biggest challenges of biomedical research is 

not having enough human data. This paper explored Tactile 

Attributes-based Zero-Shot Learning to recognize human data 

results from phantom data. Using this machine learning method, 

we trained a Multilayer Perceptron and a Support Vector 

Machine with the phantom data and estimated the malignancy 

level of the human data. The method showed that despite using 

phantom data for training, we successfully applied the knowledge 

to human data, achieving a malignancy level calculation accuracy 

of 74.42%, a sensitivity of 73.68%, and a specificity of 75.00%. 

Keywords— Zero-shot Learning; Machine Learning; Tumor 

Malignancy  

I. INTRODUCTION 

Breast cancer is a leading cause of death among women 
worldwide [1, 2], accounting for about 30% of newly diagnosed 
cancers in women in 2022 [3]. Breast tumors form when breast 
cells multiply uncontrollably, which can lead to breast cancer, 
either tumorous or non-tumorous. Traditional detection methods 
rely on imaging modalities like ultrasound [4], MRI [5, 6], and 
mammograms [7-10], focusing on human patient data. 
However, acquiring human data is often complex, costly, and 
time-consuming. That is why, our research group [11, 12] has 
used breast phantom data to detect tumors with tactile and 
hyperspectral modalities. These phantoms, made from 
polydimethylsiloxane (PDMS) and Polyvinyl chloride (PVC), 
mimic human breast tissue (Fig. 1(b)). The group also employed 
tactile feature estimation [13] and deep neural networks [14] to 
detect tumors, testing the methods on both phantom and human 
data. These works have prompted us to evaluate the reliability 
of phantom results for human data because real-world 
conditions may differ from phantom scenarios. 

To address the reliability of phantom data and assess if it can 
be an optimal predictor for human data, we decided to explore 
machine learning methods to evaluate potential correlations 
between phantom and human data. Previous studies [15, 16] 
demonstrated that semantic attributes-based Zero-Shot Learning 
(ZSL) can effectively classify unseen objects in the test set. This 
inspired us to explore semantic-based relationships between 
human and phantom data. Semantic attributes-based 
descriptions [15-19], particularly tactile attributes [16-19], have 

been successful in object recognition. Motivated by their works, 
we decided to utilize Tactile Attributes-based Zero-Shot 
Learning for tactile sensing of breast tumors. 

Zero-shot learning (ZSL) enables the identification of new 
objects without prior training data on those objects. It leverages 
data from previously encountered objects to recognize new ones 
by using attribute-based descriptions. Our approach, Tactile 
Attributes-based Zero-Shot Learning, used tactile features and 
descriptions of tactile attributes to classify the attributes. This 
method allowed the system to recognize unseen samples, such 
as malignant or benign tumors, based on their tactile attributes 
using the direct attributes prediction (DAP) method of ZSL [15, 
19]. For breast tumors, these attributes can be size (e.g., small), 
depth (e.g., deep), and elasticity (e.g., hard). Previous works 
have applied ZSL to histopathology images [20], medical image 
artifact reduction [21], and medical image classification [22]. 
However, using ZSL to relate phantom data with human data 
remains unexplored. This paper's key contributions are: (1) 
mapping phantom data knowledge to human data using tactile 
attributes (small, deep, hard, etc.), and (2) utilizing Tactile 
Attributes-based Zero-Shot Learning to recognize human data 
(malignant or benign) based on phantom data knowledge.  

II. METHODOLOGY 

A. Tactile Sensing System 

Using the tactile imaging sensor developed by our research 
group [11, 23], tactile images of phantom and human data were 
captured (Fig. 1). It features a soft, transparent probe measuring 
20 mm × 23 mm × 14 mm with an elastic modulus of 27.16 ± 
0.57 kPa. It includes four 1500 mcd white LEDs, an 18MP 
CMOS camera, and a force sensor (Digikey) measuring forces 
from 0 to 50 N. The tactile imaging sensors use total internal 
reflection to capture images. Without pressure on the sensing tip, 
the camera records no light. When pressure is applied, the 
incident light scatters, forming a tactile image captured by the 
camera (Fig. 1(a)).  

Fig. 1. Tactile Sensing System 
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B. Tactile Attributes-Based Zero-Shot Learning  

      We used tactile binary attributes to facilitate knowledge 

transfer and then applied DAP. We used phantom data as train 

sets (train ⊂    and human data as test sets test ⊂  
. Size, deformation index, and risk score from [13] have been 

used as tactile features space ( ).  Additionally, depth was 

calculated using the same method as the size calculation 

described in [13]. Train data,  = {, … , } and test data,  = 

{, … , } are two disjoint classes’ data. 

     Step 01 (Forming Tactile Attributes Matrix): Each sample 

was characterized by a set of tactile attributes A = {, … , } 

(i.e., A = {small, large, soft, hard, shallow, deep}). Attributes 

were categorized based on their true size, depth, and stiffness 

(or, elasticity). Tumors with a size of 12 mm or less were 

considered small, and large otherwise. Tumors with a depth of 

4 mm or less were deemed shallow, and deep otherwise. For 

stiffness, tumors with a stiffness of 330 kPa or less were 

identified as soft, and hard otherwise. These attributes formed 

the tactile attribute matrix  (Fig. 2), representing the attribute 

space. In Fig. 2, row i corresponds to the tactile attributes-based 

description   
 , … , 

 of a sample s ∈ S, where,  
 ∪ . For a specific sample, the value of , m = 1, … …, M, 

was a binary attribute such that   1 if the attribute  was 

present in that sample and 0 otherwise.  

 
Fig. 2. Tactile Attribute Matrix   

 

        
      Step 02 (Computing Attribute Posteriors):  Tactile 

attributes to be used were small, large, soft, hard, shallow, and 

deep. The train set and their tactile attributes-based descriptions 
 ,  ∈  , for n = 1, 2, … … N, were used to learn a 

mapping from  to , for any  ∈  (Fig. 3).  
 

 
Fig. 3. Attribute Posteriors from Each Attribute Model 

 

In Fig. 3, each attribute  used the tactile feature space to train 

an independent probabilistic binary classifier. For each 

classifier, the corresponding attribute column is the label. When 

a sample's features  were input into  classifier, it estimated 

attribute posterior  ∣ , the probability of  being 

present in . 

For each attribute am, we trained a binary classifier Multilayer 

Perceptron (MLP) using the training dataset train 
 

, 
  such that ,  ∈ train .  We chose MLP for its 

ability to learn hierarchical feature representations and capture 

complex tactile data patterns [24]. Upon examining the tactile 

attribute matrix, we observed a notable imbalance in the 

presence versus absence counts for each attribute, leading to a 

skewed dataset. To address this imbalance and reduce the risk 

of model overfitting, we under-sampled the minority classes by 

randomly removing pairs , 
 until the counts of class 0 

and class 1 for each attribute were equalized. The final balanced 

dataset was used for training the attribute classifier. 

Multilayer Perceptron: We trained the MLP classifier with two 

hidden layers, using the 'logistic' activation function and 'adam' 

optimizer, selected for optimal results.  

       Step 03 (Direct Attributes Prediction): For a test sample  

∈ , the attribute posterior  ∣   for each attribute   

was used by the DAP model along with the tactile attribute-

based descriptions of test samples ,  ∈ , for  
 1, 2, … …  , to infer the final classification  . x was classified 

as the sample having the highest posterior (Fig. 4). 

 
Fig. 4. Direct Attributes Prediction Method Overview 

 

If   1 ∣   0.5 , the attribute might be identified as 

absent from   by the model despite being truly present. To 

reduce misclassification effects, we replaced the attribute 

posterior with a uniform distribution when the attribute was 

identified as absent. Thus, p  1 ∣  had been calculated 

as:    1 ∣   0.5,   1 ∣  .  DAP used 

Bayes’ rule to compute the final sample posterior as follows 

[15]:  
 

      ∣   


∏  

 
 ∣ ;     1, 2, … …       (1) 

where test class priors were considered uniform, i.e.,   
0.5.  To facilitate zero-shot sensing, we computed attribute 

priors, , based on its presence in the test set:  
1  


∑  

 
 . Since ZSL assumes attribute independence 

[15, 19],  ∣  had been computed as ∏  
 

 ∣ . 

Here, 
 ∣  came from each  trained model and  ∣

 was the probability of x being from a particular sample . 

Finally, the mapping function :  →  recognized sample  , 

as the one having the highest posterior: 
 
 

                           
∈

  ∣                      (2) 

Eq. (2) is the maximum a posteriori estimator (MAP) method.         

      Step 04 (Computing Distance Metrics and Malignancy 

Index): Each  classifier’s performance was analyzed on the 
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test set  by the L1 distance between binary attribute labels and 

their posteriors [15]: 

                  ∥∥
∥  


∑  ∈   1 ∣ ∥∥

∥
 

         (3) 

In our case, each sample can be categorized across three binary 

dimensions (small/large, soft/hard, and shallow/deep), resulting 

in eight possible attribute combinations (Table I). Eq. (3) was 

computed on each such sequence of  by averaging  
1 ∣  across the number of appearances of the sequences, . 

If x was collected from a sample,  ∈  , then   1 ∣
 should be close to 

  since   1 ∣   1 if 
  = 1, 

and   1 ∣   0  otherwise.   denotes the set of 

sequences.  

Next, we transformed  ∣   into the malignancy index 

(MI) for each human data as follows: 
 

            ∣    ∣    ∣        (4) 
 

A tumor can be either small or large, soft or hard, and shallow 

or deep. In Eq. (4), we considered only the likelihood of large, 

hard, and deep attributes from each pair (small/large,  soft/hard, 

and shallow/deep) of a sample because these attributes are 

mostly responsible for the malignancy [25]. 

III. RESULTS AND DISCUSSIONS 

The explored method was implemented in v6.4.12 of Jupyter 

Notebook in a Python 3.9.13 environment, utilizing the Scikit-

learn library v1.2.2 for our machine-learning solutions in a local 

laptop. Image processing algorithms were executed on Temple 

University's High-Performance Computing cluster named 

'Compute', which had 20 cores and 240 GB of RAM.  
 

 

Since we used the tactile attribute-based learning technique, we 

first assessed the performance of attribute classifiers. To 

transfer knowledge from phantom data (train set) to human data 

(novel test set), we applied Eq. (1) and Eq. (2) to determine the 

most likely sequence of binary attributes for each human data 

among the eight possible combinations in Table I, which were 

previously obtained from the phantom data. Our objective was 

to differentiate malignant from benign human samples using 

phantom data knowledge, focusing on these unique sequences 

to analyze the attribute classifiers' performance. 

TABLE I.  THE DISTANCE BETWEEN ATTRIBUTES BINARY LABELS AND 

THEIR POSTERIORS (SHOWN FROM THE MLP RESULTS) 
 

 
 

Table I implemented L1 distance using Eq. (3). It illustrates that 

most distances are below 0.5 (white cells), demonstrating how 

well the attribute classifiers can correctly classify an attribute. 

A smaller distance signifies better classification. Therefore, we 

considered ≤ 0.5 was a correct classification and a distance 

above 0.5 was incorrect. This approach yielded an 83.33% 

accuracy for the attribute classifiers.  

        Next, we evaluated the performance of DAP in Eq. (1) on 

the validation set and the 43 human data (test set). We 

implemented our MLP and also the SVM as described in [15] 

and compared their classification accuracies. Using 80% of the 

phantom data for training and the remaining 20% for validation, 

the validation set achieved an accuracy of 73.79% in the MLP 

setup and 68.34% for SVM. In the human dataset, the MLP 

again outperformed the SVM, achieving a recognition accuracy 

of 65.2%, compared to the SVM's accuracy of 55.8%. 

        In [13], the breast cancer risk score used 70% weight to 

the tumor stiffness because stiffness is the most significant 

factor in detecting malignancy and 30% to the tumor size. We 

followed a similar logic in Eq. (4) where the 'Hard' attribute was 

assigned a weight (  ) of 70%, while the remaining two 

attributes each received weights (   and  ) of 15%. This 

method achieved an accuracy of 74.42% in distinguishing 

between malignant (high risk) and benign (low risk) cases in 

Table II, with a sensitivity of 73.68% and a specificity of 

75.00%. Misclassified malignancy estimations are highlighted 

in Table II, considering a malignancy level (ML) of 50% or 

higher as a high level. 
 

TABLE II.  THE MALIGNANCY LEVEL (ML) OF THE HUMAN SAMPLES 

(MI≥0.5 WAS CONSIDERED HIGH) (SHOWN FROM THE MLP RESULTS) [M = 

MALIGNANT AND B = BENIGN] 
 

 

IV. CONCLUSIONS 

We utilized Tactile Attributes-based Zero-Shot Learning to 

transfer knowledge from phantom data to unseen human 

samples. Two binary classifiers, MLP and SVM, were trained 

for each attribute and compared their recognition accuracies. 

We calculated the L1 distance for each unique attribute 

sequence using the attribute posteriors to assess the classifiers’ 

performance and achieved 83.33% accuracy. We conclude that 

even though phantom data was used to train the data, we could 

relate the phantom knowledge with human data with an 

accuracy of 74.42%, a sensitivity of 73.68%, and a specificity 

of 75.00% malignancy level calculation.   

ACKNOWLEDGMENT 

The authors thank Dr. Vira Oleksyuk for helping in the 

phantom and human data acquisition. 

Authorized licensed use limited to: Temple University. Downloaded on September 02,2025 at 16:53:53 UTC from IEEE Xplore.  Restrictions apply. 



V. REFERENCES 

[1] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, 
“Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” 
Int. J. Cancer, vol. 127, no. 12, pp. 2893–2917, 2010, doi: 
10.1002/ijc.25516. 

[2] World Cancer Research Fund, “Cancer Facts and Figures 2021,” World 
Cancer Research Fund International. pp. 1–4, 2021. [Online]. Available: 
http://www.wcrf.org/int/cancer-facts-figures/worldwide-data. 

[3] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 
2022,” CA. Cancer J. Clin., vol. 72, no. 1, pp. 7–33, 2022, doi: 
10.3322/caac.21708. 

[4] Y. Luo, Q. Huang, and X. Li, “Segmentation information with attention 
integration for classification of breast tumor in ultrasound image,” 
Pattern Recognit., vol. 124, Apr. 2022, doi: 
10.1016/j.patcog.2021.108427. 

[5] H. J. Kim et al., “High-resolution diffusion-weighted MRI plus 
mammography for detecting clinically occult breast cancers in women 
with dense breasts,” Eur. J. Radiol., vol. 175, Jun. 2024, doi: 
10.1016/j.ejrad.2024.111440. 

[6] F. E. Zerrad et al., “Microwave Imaging Approach for Breast Cancer 
Detection Using a Tapered Slot Antenna Loaded with Parasitic 
Components,” Materials (Basel)., vol. 16, no. 4, 2023, doi: 
10.3390/ma16041496. 

[7] L. Singh and A. Alam, “An efficient hybrid methodology for an early 
detection of breast cancer in digital mammograms,” J. Ambient Intell. 
Humaniz. Comput., vol. 15, no. 1, pp. 337–360, Jan. 2024, doi: 
10.1007/s12652-022-03895-w. 

[8] S. S. Boudouh and M. Bouakkaz, “New enhanced breast tumor detection 
approach in mammogram scans based on pre-processing and deep transfer 
learning techniques,” Multimed. Tools Appl., vol. 83, no. 9, pp. 27357–
27378, Mar. 2024, doi: 10.1007/s11042-023-16545-w. 

[9] F. Yan, H. Huang, W. Pedrycz, and K. Hirota, “Automated breast cancer 
detection in mammography using ensemble classifier and feature 
weighting algorithms,” Expert Syst. Appl., vol. 227, no. April, p. 120282, 
2023, doi: 10.1016/j.eswa.2023.120282. 

[10] J. G. Melekoodappattu, A. S. Dhas, B. K. Kandathil, and K. S. Adarsh, 
“Breast cancer detection in mammogram: combining modified CNN and 
texture feature based approach,” J. Ambient Intell. Humaniz. Comput., 
vol. 14, no. 9, pp. 11397–11406, 2023, doi: 10.1007/s12652-022-03713-
3. 

[11] A. Sahu, F. Saleheen, V. Oleksyuk, Y. Chen, and C. H. Won, “Tactile and 
hyperspectral imaging sensors for mammary tumor characterization,” 
Proc. IEEE Sensors, pp. 1–4, 2013, doi: 10.1109/ICSENS.2013.6688136. 

[12] F. Saleheen, V. Oleksyuk, A. Sahu, and C.-H. Won, “Non-invasive 
mechanical properties estimation of embedded objects using tactile 
imaging sensor,” in Smart Biomedical and Physiological Sensor 
Technology X, SPIE, May 2013, p. 87190K. doi: 10.1117/12.2015803. 

[13] V. Oleksyuk, R. Rajan, F. Saleheen, D. F. Caroline, S. Pascarella, and C. 
H. Won, “Risk score based pre-screening of breast tumor using 
compression induced sensing system,” IEEE Sens. J., vol. 18, no. 10, pp. 
4038–4045, 2018, doi: 10.1109/JSEN.2018.2817883.  

[14] V. Oleksyuk, N. Rahman, and C. H. Won, “Tactile Sensing System and 
Convolutional Neural Network for Mechanical Property Classification,” 
IEEE Sensors Lett., vol. 7, no. 10, pp. 1–4, 2023, doi: 
10.1109/LSENS.2023.3310356.  

[15] Z. Abderrahmane, G. Ganesh, A. Crosnier, and A. Cherubini, “Haptic 
Zero-Shot Learning: Recognition of objects never touched before,” Rob. 
Auton. Syst., vol. 105, pp. 11–25, Jul. 2018, doi: 
10.1016/j.robot.2018.03.002.  

[16] G. Cao, J. Jiang, D. Bollegala, M. Li, and S. Luo, “Multimodal zero-shot 
learning for tactile texture recognition,” Rob. Auton. Syst., vol. 176, Jun. 
2024, doi: 10.1016/j.robot.2024.104688. 

[17] H. Liu, F. Sun, B. Fang, and D. Guo, “Cross-Modal Zero-Shot-Learning 
for Tactile Object Recognition,” IEEE Trans. Syst. Man, Cybern. Syst., 
vol. 50, no. 7, pp. 2466–2474, Jul. 2020, doi: 
10.1109/TSMC.2018.2818184. 

[18] F. Wang, H. Liu, F. Sun and H. Pan, "Fabric recognition using zero-shot 
learning," in Tsinghua Science and Technology, vol. 24, no. 6, pp. 645-
653, Dec. 2019, doi: 10.26599/TST.2018.9010095. 

[19] Z. Abderrahmane, G. Ganesh, A. Crosnier and A. Cherubini, "Visuo-
Tactile Recognition of Daily-Life Objects Never Seen or Touched 
Before," 2018 15th International Conference on Control, Automation, 
Robotics and Vision (ICARCV), Singapore, 2018, pp. 1765-1770, doi: 
10.1109/ICARCV.2018.8581230. 

[20] M. Y. Lu et al., "Visual Language Pretrained Multiple Instance Zero-Shot 
Transfer for Histopathology Images," 2023 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, 
Canada, 2023, pp. 19764-19775, doi: 10.1109/CVPR52729.2023.01893.  

[21] Y. -J. Chen et al., "Zero-Shot Medical Image Artifact Reduction," 2020 
IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa 
City, IA, USA, 2020, pp. 862-866, doi: 
10.1109/ISBI45749.2020.9098566. 

[22] D. Mahapatra, B. Bozorgtabar and Z. Ge, "Medical Image Classification 
Using Generalized Zero Shot Learning," 2021 IEEE/CVF International 
Conference on Computer Vision Workshops (ICCVW), Montreal, BC, 
Canada, 2021, pp. 3337-3346, doi: 10.1109/ICCVW54120.2021.00373. 

[23] J. H. Lee and C. H. Won, “High-resolution tactile imaging sensor using 
total internal reflection and nonrigid pattern matching algorithm,” IEEE 
Sens. J., vol. 11, no. 9, pp. 2084–2093, 2011, doi: 
10.1109/JSEN.2011.2109038.  

[24] A. Goshtasbi et al., “AI-Infused Soft Fluidic Tactile Sensing,” 2024 IEEE 
7th Int. Conf. Soft Robot., pp. 1095–1100, 2024, doi: 
10.1109/robosoft60065.2024.10522049.  

[25] D. C. Teichgraeber, M. S. Guirguis, and G. J. Whitman, “Breast cancer 
staging: Updates in the AJCC cancer staging manual, 8th edition, and 
current challenges for radiologists, from the AJR special series on cancer 
staging,” Am. J. Roentgenol., vol. 217, no. 2, pp. 278–290, 2021, doi: 
10.2214/AJR.20.25223. 

 

 

 

 

 

 

 

Authorized licensed use limited to: Temple University. Downloaded on September 02,2025 at 16:53:53 UTC from IEEE Xplore.  Restrictions apply. 


