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Abstract— One of the biggest challenges of biomedical research is
not having enough human data. This paper explored Tactile
Attributes-based Zero-Shot Learning to recognize human data
results from phantom data. Using this machine learning method,
we trained a Multilayer Perceptron and a Support Vector
Machine with the phantom data and estimated the malignancy
level of the human data. The method showed that despite using
phantom data for training, we successfully applied the knowledge
to human data, achieving a malignancy level calculation accuracy
of 74.42%, a sensitivity of 73.68%, and a specificity of 75.00%.
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I. INTRODUCTION

Breast cancer is a leading cause of death among women
worldwide [1, 2], accounting for about 30% of newly diagnosed
cancers in women in 2022 [3]. Breast tumors form when breast
cells multiply uncontrollably, which can lead to breast cancer,
either tumorous or non-tumorous. Traditional detection methods
rely on imaging modalities like ultrasound [4], MRI [5, 6], and
mammograms [7-10], focusing on human patient data.
However, acquiring human data is often complex, costly, and
time-consuming. That is why, our research group [11, 12] has
used breast phantom data to detect tumors with tactile and
hyperspectral modalities. These phantoms, made from
polydimethylsiloxane (PDMS) and Polyvinyl chloride (PVC),
mimic human breast tissue (Fig. 1(b)). The group also employed
tactile feature estimation [13] and deep neural networks [14] to
detect tumors, testing the methods on both phantom and human
data. These works have prompted us to evaluate the reliability
of phantom results for human data because real-world
conditions may differ from phantom scenarios.

To address the reliability of phantom data and assess if it can
be an optimal predictor for human data, we decided to explore
machine learning methods to evaluate potential correlations
between phantom and human data. Previous studies [15, 16]
demonstrated that semantic attributes-based Zero-Shot Learning
(ZSL) can effectively classify unseen objects in the test set. This
inspired us to explore semantic-based relationships between
human and phantom data. Semantic attributes-based
descriptions [15-19], particularly tactile attributes [16-19], have
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been successful in object recognition. Motivated by their works,
we decided to utilize Tactile Attributes-based Zero-Shot
Learning for tactile sensing of breast tumors.

Zero-shot learning (ZSL) enables the identification of new
objects without prior training data on those objects. It leverages
data from previously encountered objects to recognize new ones
by using attribute-based descriptions. Our approach, Tactile
Attributes-based Zero-Shot Learning, used tactile features and
descriptions of tactile attributes to classify the attributes. This
method allowed the system to recognize unseen samples, such
as malignant or benign tumors, based on their tactile attributes
using the direct attributes prediction (DAP) method of ZSL [15,
19]. For breast tumors, these attributes can be size (e.g., small),
depth (e.g., deep), and elasticity (e.g., hard). Previous works
have applied ZSL to histopathology images [20], medical image
artifact reduction [21], and medical image classification [22].
However, using ZSL to relate phantom data with human data
remains unexplored. This paper's key contributions are: (1)
mapping phantom data knowledge to human data using tactile
attributes (small, deep, hard, etc.), and (2) utilizing Tactile
Attributes-based Zero-Shot Learning to recognize human data
(malignant or benign) based on phantom data knowledge.

II. METHODOLOGY

A. Tactile Sensing System

Using the tactile imaging sensor developed by our research
group [11, 23], tactile images of phantom and human data were
captured (Fig. 1). It features a soft, transparent probe measuring
20 mm x 23 mm x 14 mm with an elastic modulus of 27.16 +
0.57 kPa. It includes four 1500 mcd white LEDs, an 18MP
CMOS camera, and a force sensor (Digikey) measuring forces
from 0 to 50 N. The tactile imaging sensors use total internal
reflection to capture images. Without pressure on the sensing tip,
the camera records no light. When pressure is applied, the
incident light scatters, forming a tactile image captured by the
camera (Fig. 1(a)).
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Fig. 1. Tactile Sensing System
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B. Tactile Attributes-Based Zero-Shot Learning

We used tactile binary attributes to facilitate knowledge
transfer and then applied DAP. We used phantom data as train
sets (Dygain © X X Y) and human data as test sets (D € X X
7). Size, deformation index, and risk score from [13] have been
used as tactile features space (X). Additionally, depth was
calculated using the same method as the size calculation
described in [13]. Train data, Y = {y, ..., y5 } and test data, Z =
{z4, ..., z, } are two disjoint classes’ data.

Step 01 (Forming Tactile Attributes Matrix): Each sample
was characterized by a set of tactile attributes 4 = {a, ..., ay}
(i.e., A = {small, large, soft, hard, shallow, deep}). Attributes
were categorized based on their true size, depth, and stiffness
(or, elasticity). Tumors with a size of 12 mm or less were
considered small, and large otherwise. Tumors with a depth of
4 mm or less were deemed shallow, and deep otherwise. For
stiffness, tumors with a stiffness of 330 kPa or less were
identified as soft, and hard otherwise. These attributes formed
the tactile attribute matrix K (Fig. 2), representing the attribute
space. In Fig. 2, row i corresponds to the tactile attributes-based
description a’i = [afi, ...,a,swi] of a sample s; € S, where, S =
Y U Z. For a specific sample, the value of a,,, m = I, ... ... , M,
was a binary attribute such that a,,, = 1 if the attribute a,, was
present in that sample and 0 otherwise.
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Fig. 2. Tactile Attribute Matrix K

Step 02 (Computing Attribute Posteriors):  Tactile
attributes to be used were small, large, soft, hard, shallow, and
deep. The train set and their tactile attributes-based descriptions
{a>,y, €Y}, forn =1, 2, ... ... N, were used to learn a
mapping from x to 4, for any x € X (Fig. 3).
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Fig. 3. Attribute Posteriors from Each Attribute Model

In Fig. 3, each attribute a,,, used the tactile feature space to train
an independent probabilistic binary classifier. For each
classifier, the corresponding attribute column is the label. When
a sample's features .+ were input into a,, classifier, it estimated
attribute posterior p(a,, | x), the probability of a,, being
present in ..

For each attribute a,,, we trained a binary classifier Multilayer
Perceptron (MLP) wusing the training dataset DJy;, =
{(x,a3,) such that (x,y) € Dy, }. We chose MLP for its
ability to learn hierarchical feature representations and capture
complex tactile data patterns [24]. Upon examining the tactile
attribute matrix, we observed a notable imbalance in the
presence versus absence counts for each attribute, leading to a
skewed dataset. To address this imbalance and reduce the risk
of model overfitting, we under-sampled the minority classes by
randomly removing pairs (x, a,{l"") until the counts of class 0
and class 1 for each attribute were equalized. The final balanced
dataset was used for training the attribute classifier.
Multilayer Perceptron: We trained the MLP classifier with two
hidden layers, using the 'logistic' activation function and 'adam’
optimizer, selected for optimal results.

Step 03 (Direct Attributes Prediction): For a test sample v
€ JX, the attribute posterior p(a,, | x) for each attribute a,,
was used by the DAP model along with the tactile attribute-
based descriptions of test samples {a?,z, € Z},forl =
1,2,.. .. L, to infer the final classification z, . x was classified
as the sample having the highest posterior (Fig. 4).
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Fig. 4. Direct Attributes Prediction Method Overview

If p(a,, =1 | x) < 0.5, the attribute might be identified as
absent from x by the model despite being truly present. To
reduce misclassification effects, we replaced the attribute
posterior with a uniform distribution when the attribute was
identified as absent. Thus, p(a,, = 1 | x) had been calculated
as: plap,=11x) = max(O.S,p(am =1] x)). DAP used
Bayes’ rule to compute the final sample posterior as follows

[15]:
(zp)

p(z, 1x) = pp(;;l) Map(atix)l =1,2,.. .. L (1)
where test class priors were considered uniform, i.e., p(z) =
0.5. To facilitate zero-shot sensing, we computed attribute
priors, p(a?!), based on its presence in the test set: p(a,, =

1) = 1 L a®! Since ZSL assumes attribute independence
L =1 “Ym

[15, 19], p(a?! | x) had been computed as [[M_, p(a,z,i | x).
Here, p(a,z,i | x) came from each a,, trained model and p(z, |
x) was the probability of x being from a particular sample z;.
Finally, the mapping function f: X — Z recognized sample z,,
as the one having the highest posterior:
zy = f(x) = argmax p(z; | x) 2)
Z|EZ
Eq. (2) is the maximum a posteriori estimator (MAP) method.
Step 04 (Computing Distance Metrics and Malignancy
Index): Each a,, classifier’s performance was analyzed on the
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test set Z by the L; distance between binary attribute labels and
their posteriors [15]:

D, = ||am _tz:xeDtest p(an, =11 x)”1 3)

In our case, each sample can be categorized across three binary
dimensions (small/large, soft/hard, and shallow/deep), resulting
in eight possible attribute combinations (Table I). Eq. (3) was
computed on each such sequence of Z by averaging p(a,, =
1 | x) across the number of appearances of the sequences, N,,.
If x was collected from a sample, z; € Z, then p(a,, =1 |
x) should be close to a;. since p(a, =11x) = 1ifa,’ = 1,
and p(a,, =11x)~ 0 otherwise. D, denotes the set of
sequences.
Next, we transformed p(a,, | x) into the malignancy index
(M) for each human data as follows:

MI = p(a; | XJwy +p(as | X)w, +plag | )wz (4
A tumor can be either small or large, soft or hard, and shallow
or deep. In Eq. (4), we considered only the likelihood of large,
hard, and deep attributes from each pair (small/large, soft/hard,
and shallow/deep) of a sample because these attributes are
mostly responsible for the malignancy [25].

III. RESULTS AND DISCUSSIONS

The explored method was implemented in v6.4.12 of Jupyter
Notebook in a Python 3.9.13 environment, utilizing the Scikit-
learn library v1.2.2 for our machine-learning solutions in a local
laptop. Image processing algorithms were executed on Temple
University's High-Performance Computing cluster named
'Compute', which had 20 cores and 240 GB of RAM.

Since we used the tactile attribute-based learning technique, we
first assessed the performance of attribute classifiers. To
transfer knowledge from phantom data (train set) to human data
(novel test set), we applied Eq. (1) and Eq. (2) to determine the
most likely sequence of binary attributes for each human data
among the eight possible combinations in Table I, which were
previously obtained from the phantom data. Our objective was
to differentiate malignant from benign human samples using
phantom data knowledge, focusing on these unique sequences
to analyze the attribute classifiers' performance.

TABLE L THE DISTANCE BETWEEN ATTRIBUTES BINARY LABELS AND
THEIR POSTERIORS (SHOWN FROM THE MLP RESULTS)

Class (S Small Large Soft Hard | Shallow | Deep
Benign 101010 |0.3713940.258769 | 0.670329 | 0.397853 [ 0.361421 | 0.36144
Benign 101001 {0.369663|0.435628 | 0.369747 | 0.696989 | 0.489205 | 0.568995
Benign | 011010 [0.1665510.565732|0.475415|0.478415 | 0.476771 | 0.364364
Benign | 011001 |0.4069910.430195 | 0.427099 | 0.417013 | 0.324746 | 0.424172
Malignant| 100110 {0.3696560.398011 |0.397657 | 0.492765 | 0.396515 | 0.397421
Malignant| 100101 |0.369663|0.369747 | 0.630279 | 0.407005 | 0.524989 | 0.323893
Malignant| 010110 {0.316749|0.207613 | 0.4327820.453771 | 0.300089 | 0.267012
Malignant| 010101 [0.589123|0.397519 | 0.323898 | 0.624995 | 0.313679 | 0.443899

Table I implemented L distance using Eq. (3). It illustrates that
most distances are below 0.5 (white cells), demonstrating how
well the attribute classifiers can correctly classify an attribute.
A smaller distance signifies better classification. Therefore, we
considered D,,< 0.5 was a correct classification and a distance
above 0.5 was incorrect. This approach yielded an 83.33%
accuracy for the attribute classifiers.

Next, we evaluated the performance of DAP in Eq. (1) on
the validation set and the 43 human data (test set). We
implemented our MLP and also the SVM as described in [15]
and compared their classification accuracies. Using 80% of the
phantom data for training and the remaining 20% for validation,
the validation set achieved an accuracy of 73.79% in the MLP
setup and 68.34% for SVM. In the human dataset, the MLP
again outperformed the SVM, achieving a recognition accuracy
of 65.2%, compared to the SVM's accuracy of 55.8%.

In [13], the breast cancer risk score used 70% weight to
the tumor stiffness because stiffness is the most significant
factor in detecting malignancy and 30% to the tumor size. We
followed a similar logic in Eq. (4) where the 'Hard' attribute was
assigned a weight (w,) of 70%, while the remaining two
attributes each received weights (w; and w;) of 15%. This
method achieved an accuracy of 74.42% in distinguishing
between malignant (high risk) and benign (low risk) cases in
Table II, with a sensitivity of 73.68% and a specificity of
75.00%. Misclassified malignancy estimations are highlighted
in Table II, considering a malignancy level (ML) of 50% or
higher as a high level.

TABLE IL THE MALIGNANCY LEVEL (ML) OF THE HUMAN SAMPLES

(MI>0.5 WAS CONSIDERED HIGH) (SHOWN FROM THE MLP RESULTS) [M =
MALIGNANT AND B = BENIGN]

Patient | MI ML | Biopsy || Patient | MI ML | Biopsy
L 0.73 | High M 23. 0.40 | Low B
2 0.16 | Low B 24. 0.16 | Low M
3 0.40 | Low B 25, 0.16 | Low B
4. 0.26 | Low B 26. 0.52 | High M
5. 0.10 | Low B 27. 0.71 | High M
6 0.37 | Low B 28. 0.91 | High M
1 0.27 | Low M 29. 0.56 | High B
8. 1.00 | High M 30. 0.29 | Low B
9. 0.60 | Low M 31 0.16 | Low B
10. 0.26 | Low M 32. 0.59 | High M
11. 0.18 | Low B 33. 0.46 | Low B
12, 0.16 | Low B 34. 0.47 | Low B
13: 0.20 | High B 35. 044 | Low M
14. 0.59 | High M 36. 0.43 | Low B
15. 0.99 | High M 37. 0.40 | Low B
16. 0.46 | Low B 38. 0.39 | Low B
117 0.80 | High B 39. 0.52 | High B
18. 0.90 | High M 40. 0.61 | High M
19. 1.00 | High M 41. 0.51 | High B
20. 0.90 | High B 42. 0.71 | High M
21 0.80 | High M 43. 0.61 High M
22, 0.40 | Low B

IV. CONCLUSIONS

We utilized Tactile Attributes-based Zero-Shot Learning to
transfer knowledge from phantom data to unseen human
samples. Two binary classifiers, MLP and SVM, were trained
for each attribute and compared their recognition accuracies.
We calculated the L, distance for each unique attribute
sequence using the attribute posteriors to assess the classifiers’
performance and achieved 83.33% accuracy. We conclude that
even though phantom data was used to train the data, we could
relate the phantom knowledge with human data with an
accuracy of 74.42%, a sensitivity of 73.68%, and a specificity
of 75.00% malignancy level calculation.
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