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ABSTRACT 

 

Metal additive manufacturing (AM) enables unprecedented design freedom and the production of 

customized, complex components. However, the rapid melting and solidification dynamics 

inherent to metal AM processes generate heterogeneous, non-equilibrium microstructures that 

significantly impact mechanical properties and subsequent functionality. Predicting 

microstructure and its evolution across spatial and temporal scales remains a central challenge 

for process optimization and defect mitigation. While conventional experimental techniques and 

physics-based simulations provide a physical foundation and valuable insights, they face critical 

limitations such as high computational cost, limited scalability, and difficulty bridging across 

scales. In contrast, data-driven machine learning (ML) offers an alternative prediction approach 

and powerful pattern recognition but often operate as “black-box”, lacking generalizability and 

physical consistency, particularly in data-scarce scenarios. To overcome these limitations, 

physics-informed machine learning (PIML), including physics-informed neural networks (PINNs), 
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has emerged as a promising paradigm by embedding governing physical laws into neural network 

architectures, thereby enhancing accuracy, transparency, data efficiency, and extrapolation 

capabilities. This work presents a comprehensive evaluation of modeling strategies for 

microstructure prediction in metal AM. The strengths and limitations of experimental, 

computational, and data-driven methods are analyzed in depth, and highlight recent advances in 

hybrid PIML frameworks that integrate physical knowledge with ML. Key challenges, such as data 

scarcity, multi-scale coupling, and uncertainty quantification, are discussed alongside future 

directions. Ultimately, this assessment underscores the importance of PIML-based hybrid 

approaches in enabling predictive, scalable, and physically consistent microstructure modeling 

for site-specific, microstructure-aware process control and the reliable production of high-

performance AM components. 

 

Keywords: metal additive manufacturing, microstructures, computational modeling, data-driven 

modeling, physics-informed machine learning, scientific machine learning, melt pool dynamics, 

grain growth, thermal history, solidification 

 

NOMENCLATURE 

 

English Symbols/Abbreviations 

AD: Automatic Differentiation 

AE: Acoustic Emission 

AI: Artificial Intelligence 

AM: Additive Manufacturing 
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ANN: Artificial Neural Network 

CA: Cellular Automata 

CAFD: Cellular Automata Finite Difference 

CAFE: Cellular Automata Finite Element 

CET: Columnar-to-Equiaxed Transition 

CFD: Computational Fluid Dynamics 

cGAN: Conditional Generative Adversarial Network 

CNN: Convolutional Neural Network 

DED: Directed Energy Deposition 

DL: Deep Learning 

EB-PBF: Electron Beam Powder Bed Fusion 

EBSD: Electron Backscatter Diffraction 

EDS/EDX: Energy Dispersive X-ray Spectroscopy 

FEA: Finite Element Analysis 

FEM: Finite Element Method 

FD-MC: Finite Difference-Monte Carlo 

FVM: Finite Volume Method 

G: Thermal Gradient 

GAN: Generative Adversarial Network 

GCN: Graph Convolutional Network 

GIN: Graph Isomorphism Network 

GNN: Graph Neural Network 

GPR: Gaussian Process Regression 
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IHT: Intrinsic Heat Treatment 

KMC: Kinetic Monte Carlo 

KNN: K-Nearest Neighbors 

LBM: Lattice Boltzmann Methods 

LOF: Lack-of-Fusion 

LPBF: Laser Powder Bed Fusion 

LSTM: Long Short-Term Memory network 

ML: Machine Learning 

NN: Neural Network 

OM: Optical Microscopy 

PCNN: Physics-Constrained Neural Network 

PDE: Partial Differential Equation 

PDAS: Primary Dendrite Arm Spacing 

PEGN: Physics-Embedded Graph Network 

PF: Phase-Field 

PIMA: Physics-Informed Model Design 

PIMC: Physics-Informed Model Components 

PIML: Physics-Informed Machine Learning 

PIMO: Physics-Informed Output Constraints 

PINN: Physics-Informed Neural Network 

PIMT: Physics-Informed Training 

PCA: Principal Component Analysis 

PBF: Powder Bed Fusion 
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R: Solidification Rate 

RF: Random Forest 

RNN: Recurrent Neural Network 

SEM: Scanning Electron Microscopy 

SMA: Shape Memory Alloy 

SVM: Support Vector Machine 

TDGL: Time-Dependent Ginzburg-Landau Equation 

TEM: Transmission Electron Microscopy 

UQ: Uncertainty Quantification 

VAE: Variational Autoencoder 

XCT: X-ray Computed Tomography 

XRD: X-ray Diffraction 

 

Greek Symbols 

𝛼: Alpha Phase 

𝛼′: Alpha-Prime Martensite 

𝛽: Beta Phase 

𝜀 ′: Epsilon-Prime Martensite 

ℒ: Total Loss Function 

ℒ 𝐵𝐶: Boundary Condition Loss Term 

ℒ 𝐼𝐶: Initial Condition Loss Term 

ℒ 𝑃𝐷𝐸 : Partial Differential Equation Loss Term 
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1. INTRODUCTION 

 

1.1 Microstructures in Metal Additive Manufacturing 

Metal AM has emerged as a transformative technology for producing complex geometry metal 

components, multi-material components, and functionally graded materials,1 across various 

industries, including aerospace, biomedical, tooling, automotive, and energy.2 By overcoming the 

design constraints of traditional manufacturing methods, such as machining and forming, metal 

AM has gained significant popularity in the past decade. Applications range from lightweight, 

topology-optimized aerospace components and patient-specific implants to complex heat 

exchangers and fuel nozzles.2, 3 

According to the ASTM F2792 standard and the more recent ASTM F52900, metal AM 

processes are broadly categorized into Powder Bed Fusion (PBF) and Directed Energy Deposition 

(DED).2 PBF selectively melts successive layers of powder using a high-energy laser or electron 

beam, while DED involves the simultaneous deposition and melting of powder or wire feedstock 

using a focused laser source. Both processes are characterized by rapid melting and solidification 

with high thermal gradients and cooling rates, leading to complex microstructure (including 

defects) formation and evolution.  

From a metallurgical standpoint, the rapid solidification inherent to melt pool results in 

complex thermal histories and non-equilibrium conditions that strongly influence the 

microstructure and properties of the final part. The steep thermal gradients and cooling rates, often 

exceeding 10⁴–10⁶ K/s, can give rise to microstructural features such as hierarchical solidification 

structures, anisotropic grain growth, and metastable phase formations.4 For instance, many alloys 

exhibit a tendency toward elongated columnar grain growth along the build direction, which causes 
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anisotropic mechanical behavior. Such characteristics are often undesirable in applications 

requiring isotropic properties, particularly in critical aerospace and biomedical components.5 

Furthermore, the nature of cyclic and localized heat input during AM introduces complex melt 

pool dynamics that may lead to process-induced defects, including porosity (e.g., keyhole or lack-

of-fusion (LOF) pores), cracking, and residual stresses. These microstructural heterogeneities and 

defects not only compromise mechanical performance but also impose significant challenges for 

part certification and quality assurance.6 These issues can be mitigated through tailored materials, 

process optimization, real-time monitoring, interlayer deformation, and both intrinsic and post-

process heat treatments. Achieving "first-time-right" builds remains a critical barrier to the broader 

industrial adoption of metal AM, especially in safety-critical applications. 

Addressing these challenges necessitates a comprehensive understanding of the complex 

microstructures in metal AM. The microstructure formation process is highly nonlinear and 

governed by numerous interdependent process parameters such as laser power, scanning speed, 

hatch spacing, and layer thickness.7 Extensive research efforts have been dedicated to elucidating 

microstructure formation through a combination of experimental characterization, computational 

modeling, and data-driven approaches. Experimental techniques remain as a foundation for 

quantifying microstructural features, such as grain morphology, crystallographic texture, phase 

distribution, and defect types, but the extreme processing conditions of AM processes often hinder 

direct in-situ monitoring. Therefore, computational modeling has become a critical tool for probing 

the thermal, mechanical, and metallurgical phenomena during AM.8 Finite Element Analysis 

(FEA) is commonly employed to predict temperature profiles and residual stresses,9 while 

mesoscale techniques such as Phase-Field (PF), Cellular Automata (CA) and Kinematic Monte 

Carlo (KMC) modeling are used to simulate grain growth and solidification dynamics.10 In recent 
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years, data-driven methods, particularly ML approaches such as PINNs, have emerged as powerful 

tools for microstructure modeling and optimization.11 In summary, unlocking the full potential of 

metal AM hinges on the integration of experimental insights, multi-physics simulations, and data-

driven models to establish predictive approaches. Such integrated approaches are key to predicting 

microstructure formation and characteristics, tailoring microstructures, minimizing defects, and 

ensuring the repeatable production of high-performance, application-specific components. 

 

1.2 Data-Driven Approach for Microstructure Prediction 

In-process sensing and monitoring are essential for enabling real-time quality control and 

improving microstructural predictability in metal AM. Various sensor modalities, including optical 

(high-speed cameras, vision systems), thermal (infrared (IR) cameras, pyrometers), acoustic 

emission (AE) sensors, and spectral devices, are widely used to capture key process signatures 

such as melt pool geometry,3 temperature distribution, plume dynamics, spatter, and surface 

morphology.12 These measured signals provide critical insight into the transient and localized 

conditions during the build, which are directly linked to microstructural outcomes such as grain 

size, orientation, porosity, and residual stresses. As such, in-situ monitoring offers a non-

destructive means of observing process stability, detecting defects, and identifying deviations in 

real time, forming the foundation for data-driven process control strategies.8 

Recent research emphasizes the integration of large sensor data with computational models to 

enhance predictive capabilities. Data-driven approaches using ML and deep learning (DL) have 

been successful in analyzing sensor signals to predict melt pool behavior, detect defects, and 

forecast microstructural features.14  Hybrid approaches, enhance robustness and generalizability 

in data-scarce conditions. For instance, Bevans et al.13 developed a digital twin framework for 
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Inconel 718 by integrating IR camera-based thermal histories, physics-based thermal models, and 

ML algorithms to predict melt pool depth and grain size. This illustrates how combining sensor 

data with physical insights improves microstructure prediction. However, challenges remain in 

handling data uncertainty, ensuring cross-platform applicability, and achieving real-time 

responsiveness.14 Despite this, the continued advancement of in-situ sensing technologies and 

modeling techniques holds great promise for realizing intelligent and adaptive AM processes with 

tailored microstructures and improved part quality. 

The future of metal AM is moving toward intelligent and autonomous systems, powered by 

advanced in-situ monitoring, sensor fusion, and real-time control. Recent reviews have highlighted 

the importance of combining sensing technologies with automated feedback to improve the quality 

and consistency of AM builds. For instance, Mu et al.15 proposed a digital twin framework for 

metal-DED that helps optimize the process through virtual simulations. Similarly, Cai et al.16 

reviewed sensing and control in laser-based AM, showcasing progress in sensors, data collection, 

and control algorithms aimed at reducing defects and increasing reliability. Herzog et al.17 also 

emphasized the role of ML in defect-detection and quality assurance through real-time monitoring. 

These advancements are leading toward AM systems that can automatically adjust laser power, 

scan speed, or material flow during printing, reducing defects and minimizing the need for post-

processing. However, challenges remain, especially in ensuring sensor reliability, handling large 

volumes of data, and creating adaptive control strategies that work across different AM machines 

and materials. 

Researchers are also exploring PIML, which combines physical laws with ML models. While 

traditional ML needs large, high-quality datasets and often lacks physical meaning, PIML 

improves accuracy and generalization by using built-in physical principles. Future research is 
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looking at more advanced PIML methods, such as using physics in training (PIMT), model design 

(PIMA), components (PIMC), and output constraints (PIMO).18 Hybrid models that combine 

different types of data, like thermal images, sound, and high-speed videos, will further strengthen 

real-time prediction and control of microstructures.19, 20 In addition, multiscale PIML models that 

capture behavior from the micro to macro level are essential to fully understand and control the 

link between process, structure, and properties in metal AM.21 These approaches aim to create 

smart, adaptive AM systems that are highly precise, efficient, and reliable.20  

 

1.3 Paper Structure 

To provide an in-depth assessment of microstructure prediction in metal additive 

manufacturing, a structured literature review is conducted, focusing on ML approaches, with 

particular emphasis on PIML, including PINNs as a prominent subset. The review emphasizes the 

recent literature that combines experimental methods, data-driven modeling, and physics-based 

approaches, particularly in the context of microstructure evolution in LPBF and DED processes. 

Relevant articles were identified through targeted searches using Google Scholar and Scopus, with 

selection criteria based on publication date (primarily from 2018 to 2025), relevance to ML, PINN, 

and PIML, and a decade-long span for studies focusing on process parameter effects on 

microstructure. Additional references were incorporated through backward citation tracing of key 

articles. For document analysis and synthesis, NotebookLM was used to assist in extracting, 

organizing, and summarizing key insights from the selected literature. Additionally, ChatGPT and 

Gemini played a significant role in summarizing, analyzing, and structuring the extracted content. 

These AI tools facilitated the identification of key research themes, the rephrasing of complex 

sections, and the organization of ideas. Perplexity AI were also consulted for supplementary article 



Page 11 of 78 

 

suggestions and for validating exploratory topics, ensuring a comprehensive and up-to-date review 

of the field. 

The structure of the article is organized as follows: Section 2 outlines the fundamentals of 

microstructure formation in metal AM, emphasizing the role of melt pool dynamics, thermal 

gradients, and solidification behavior. Section 3 presents conventional experimental methods used 

for microstructural analysis and model validation. Section 4 discusses physics-based modeling 

approaches that simulate microstructure evolution using governing physical principles. Section 

5 reviews data-driven and hybrid strategies, highlighting the integration of physical knowledge 

into machine learning frameworks to enhance prediction accuracy and generalizability. Section 6 

discusses current challenges in the field, such as data scarcity, generalizability, and physical 

consistency. Finally, Section 7 concludes with a summary and highlights future research directions 

toward integrating PIML for microstructure-aware AM process design. 

 

 

2. COMPLEX MELT POOL PHENOMENA IN METAL AM 

 

2.1 High Temperature Gradients and Cooling Rates  

Metal AM processes, notably LPBF and DED, are characterized by extreme thermal conditions 

unlike conventional methods. These involve very high melt pool temperatures (up to 3000 °C) and 

steep thermal gradients (G), which, combined with the solidification rate (R), lead to exceptionally 

high cooling rates (G×R), potentially reaching 10⁵–10⁷ K/s in LPBF22 and 10²–10⁵ K/s in DED.23 

These thermal conditions, heavily influenced by process parameters like laser power and scan 

speed,8, 23 are critical determinants of the final microstructure. High cooling rates (G×R) generally 
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promote microstructural refinement, reducing primary dendrite spacing and grain size, as faster 

cooling enhances nucleation and limits growth.23 Studies have shown that lower heat input 

correlates with higher G and improved strength,24 while rapid cooling near melt pool boundaries 

fosters grain refinement.23 Conversely, slower cooling, perhaps due to shorter inter-layer times or 

higher energy input, can result in coarser grains.25  

The morphology of the solidifying structure is primarily governed by the ratio G/R.26, 27 As 

depicted in solidification maps (Fig. 1, top), high G/R values favor directional solidification, often 

leading to columnar grains growing epitaxially layer upon layer, frequently aligned with the build 

direction and contributing to crystallographic texture. Lower G/R values tend to promote the 

formation of equiaxed grains. Transitions between these morphologies can occur within the melt 

pool itself due to local variations in G and R,28, 29 resulting in mixed microstructures, as observed 

experimentally in alloys like Ti (Fig. 1, bottom). Furthermore, the rapid solidification inherent to 

AM often suppresses equilibrium phase transformations, leading to the formation of metastable 

phases, such as α′-martensite in titanium alloys4 or ε-/α′-martensite in certain steels.30 Repeated 

thermal cycling also induces intrinsic heat treatment (IHT) effects, driving solid-state 

transformations like precipitation or tempering, and can lead to elemental segregation, forming 

features like Laves phases in Inconel 71831 or influencing precipitation in AlSi10Mg.32 

While beneficial for achieving fine microstructures and potentially enhanced 

strength/hardness, these extreme thermal conditions also pose challenges.33 Steep thermal 

gradients contribute to high residual stresses, potentially causing part distortion or cracking.8 

Improper energy input, either too low or too high, can respectively cause lack-of-fusion porosity 

or keyhole-induced porosity and overheating.34 The resulting microstructural features, such as 

grain size, morphology, texture, phase distribution, and defects, collectively dictate the final 



Page 13 of 78 

 

mechanical performance, including strength, ductility, and anisotropy.8 Therefore, precise control 

and understanding of the thermal phenomena during AM are essential for tailoring microstructures 

and optimizing component integrity and properties. 

 

2.2 Melt Pool Dynamics 

Melt pool dynamics play a central role in microstructure evolution during metal AM. High 

thermal gradients, rapid solidification, and Marangoni convection in the melt pool create complex 

transient conditions that influence grain morphology, phase formation, and defect generation. Key 

process parameters, such as laser power, scanning speed, and hatch spacing, directly affect melt 

pool geometry and thermal history, thus shaping the solidification path, as shown in Fig. 2. 

Solidification parameters, namely the temperature gradient (G) and solidification rate (R), jointly 

determine microstructural features via the G/R and GR values. Repeated thermal cycling in multi-

layer builds introduces further complexity through remelting, heat treatment, and recrystallization. 

Computational modeling, supported by experimental methods like EBSD and synchrotron 

imaging, enables the prediction of melt pool behavior and microstructure. The following 

subsections explain the different phenomena in the melt pool and their influence on melt pool 

geometry. 

Marangoni convection: Marangoni flow is a surface-tension-driven phenomenon that plays a 

significant role in metal AM. It arises from the presence of surface tension gradients along the free 

surface of the melt pool, which are typically induced by temperature variation.27, 35–37 In most 

metallic liquids, surface tension exhibits an inverse relationship with temperature, meaning that 

hotter regions possess lower surface tension compared to cooler regions.18, 37 This gradient in 

surface tension generates a tangential force that drives the fluid flow from areas of lower surface 
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tension (hotter, often the center of the laser beam) towards areas of higher surface tension (cooler, 

often the edges of the melt pool).36  However, as highlighted by multiple studies, the presence of 

surface-active elements, such as sulfur in steels, can significantly alter this behavior, potentially 

reversing the flow direction to inward (from cooler edges to the hotter center).3, 27 These 

Marangoni-induced flow patterns are fundamental in shaping the melt pool's size, depth, and 

overall dynamics, which directly dictates the conditions under which the material solidifies. 

The profound influence of Marangoni convection extends directly to the resulting 

microstructure of the additively manufactured part. By dictating the fluid flow and heat distribution 

within the melt pool, Marangoni forces modify the crucial solidification parameters, specifically 

the thermal gradient (G), the solidification rate (R), and their ratio (G/R). These conditions 

determine the size and shape of the metal grains. Marangoni convection directly affects 

solidification rates and thermal gradients, which are critical in determining grain growth and 

crystallographic texture.3 For instance, process-microstructure models have shown that convection 

affects grain structure by influencing nucleation events and the direction of grain growth. For 

instance, stronger Marangoni flow can enhance bulk nucleation and promote equiaxed grains,37 

though its impact on grain morphology may be limited under some conditions.35 Its influence is 

indirect, acting through melt pool shape and thermal gradients. The flow can also influence the 

overall grain alignment, called texture, and can even be strong enough to bend growing crystal 

structures called dendrites.33 Hence, the Marangoni convection determines the melt pool behavior 

and consequently impacts the microstructure.  

Natural convection: Natural convection in LPBF and DED arises from buoyancy forces due 

to temperature-induced density gradients in the melt pool,27, 37 lighter fluid rises while cooler, 

denser fluid sinks, driving vertical flow that redistributes heat and alters cooling rates, key factors 
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in solidification and grain evolution.38 Unlike Marangoni convection, which is driven by surface 

tension gradients along the melt pool surface (primarily horizontal), natural convection acts 

throughout the melt pool volume and is predominantly vertical.38 Although generally weaker than 

Marangoni flow, natural convection has been shown to influence melt pool symmetry and grain 

orientation, especially in larger pools (e.g., DED). It is often modeled using the Boussinesq 

approximation and studied via CFD simulations.18 Experimentally, its effect is inferred from 

asymmetries in melt pool geometry or grain structures (e.g., elongated columnar grains near the 

melt pool center) as shown in the bottom Fig. 1. For example, Liu et al.39 used a multiscale thermal 

and PF model in electron beam powder bed fusion (EB-PBF) of Ti-6Al-4V to show how the 

interaction between thermal gradients and preferred growth directions controls grain orientation 

and texture. Likewise, Liu et al.40 applied a 3D thermal-fluid and CA model in L-DED to highlight 

how melt pool convection, driven by Marangoni and buoyancy forces, shapes grain morphology. 

Evaporation and recoil pressure: Recoil pressure, generated by intense laser-induced surface 

evaporation, plays a pivotal role in melt pool dynamics, particularly in LPBF and to some extent 

in DED, as shown in Fig. 2. The vapor jet exerts a downward force on the melt pool, creating a 

surface depression that enhances laser absorption through multiple reflections, potentially leading 

to keyhole formation at high energy densities.41 Excessive recoil pressure can destabilize the melt 

pool, promoting spatter, denudation, and powder entrainment.42 Its magnitude scales with laser 

power and scan speed and is highly sensitive to beam shape and intensity distribution.43 Processing 

under vacuum or low ambient pressure, lowers the boiling point and amplifies recoil-induced 

vapor plume effects, while elevated pressures may suppress vaporization but increase plasma 

formation, which can further influence melt pool stability.44  

A deeper understanding of internal melt pool pressures has been advanced through 
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computational modeling. Dai et al.42 used a multiphase computational fluid dynamics (CFD) 

model to simulate the effects of recoil pressure on melt pool behavior in LPBF. Their work showed 

that recoil pressure strongly governs melt pool depression and spatter formation, which are critical 

for pore generation and microstructure evolution. Complementary studies also explored how 

vapor-induced recoil pressure contributes to instability in the melt pool, influencing solidification 

fronts and leading to defects such as keyholes and porosity.45 Furthermore, they illustrated that 

recoil pressure gradients drive Marangoni and convective flows, which impact melt pool shape, 

solidification fronts, and dendrite orientation. 

Remelting: Remelting in metal AM, whether intentional (e.g., via a second laser pass) or 

unintentional due to heat accumulation, plays a critical role in modifying microstructure by altering 

thermal history, temperature gradients, and cooling rates, especially in LPBF and DED 

processes.46, 47 The extent and effects of remelting are governed by parameters like laser power, 

scan speed, layer thickness, and overlap, and can be tailored using pulsed wave lasers.46–48 This 

secondary thermal cycle influences grain structure variably, some studies report grain refinement 

through nucleation or fragmentation of columnar grains,47, 49 while others observe grain coarsening 

due to prolonged high temperatures.50 It also affects crystallographic texture, occasionally 

producing more randomly oriented grains that reduce anisotropy.47 Moreover, remelting modifies 

solid-state phase transformations and precipitation behavior, affecting phase fractions, 

nanoprecipitate formation, e.g., Al₃(Sc,Zr), and ultimately, mechanical properties like 

microhardness, strength, elongation, and isotropy.47, 51, 52 Additionally, the influence of in-situ laser 

polishing on pore defects is also observed. Collectively, these findings position remelting as a 

powerful strategy for microstructure and property tailoring in AM. 
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3. EXPERIMENTAL CHARACTERIZATION METHODS 

 

Experimental characterization provides the essential physical foundation for understanding 

microstructure characteristics and evolution in metal AM processes like LPBF and DED.53 

Establishing clear relationships of process-microstructure-property is critical for validating both 

physics-based and data-driven predictive models.54–56 While simulations offer valuable insights, 

their fidelity hinges on calibration and verification against the experimental data.8 

A wide range of experimental methods (see Table 1) is used to observe microstructures and 

defects at different length scales, as shown in Fig. 3. Techniques like Optical Microscopy (OM) 

and Scanning Electron Microscopy (SEM) are employed for basic microstructural analysis, while 

advanced tools such as Electron Backscatter Diffraction (EBSD), X-ray Computed Tomography 

(XCT), and Transmission Electron Microscopy (TEM) provide high-resolution crystallographic, 

3D, or nanoscale insights. These methods not only support direct investigations but also serve as 

ground truth for refining simulations and training ML models.8 Together, these methods enhance 

understanding of the complex process–microstructure–property relationships in metal AM. Their 

integration with computational approaches continues to drive advancements in AM research and 

industrial practice. A more detailed discussion of the experimental limitations and emerging 

strategies to address them is presented later in the review. 
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4. PHYSICS-BASED COMPUTATIONAL MODELING 

 

Physics-based approaches like PF, CA, and KMC simulate microstructure evolution by 

solving governing equations for nucleation, grain growth, and phase transformations. Physics-

based computational methods are essential tools for understanding and predicting microstructure 

evolution during metal AM processes. These methods use fundamental physical principles to 

simulate the complex phenomena occurring during AM, providing insights into the process-

microstructure-property relationships. The following subsections discuss different numerical 

techniques used to determine the microstructure in metal AM. 

 

4.1 Phase-Field (PF) Method 

PF modeling has emerged as a powerful mesoscale approach for simulating solidification 

phenomena in metal AM, particularly under the rapid cooling and complex morphologies 

encountered in LPBF and DED.67–69 Unlike sharp interface models, PF employs 

thermodynamically consistent field variables (order parameters) governed by time-dependent 

Ginzburg-Landau (TDGL) equations,70 allowing implicit tracking of solid-liquid interfaces and 

grain boundaries.68, 71 PF models simulate nucleation, often based on undercooling, followed by 

competitive grain growth, dendritic evolution, and coarsening.72, 73 Its ability to resolve dendritic 

microstructures, such as primary dendrite arm spacing (PDAS), and predict features like 

microsegregation and crystallographic texture, makes PF especially suited for AM.74 Studies by 

Radhakrishnan et al.74 and Ma et al.75 have demonstrated PF’s strength in capturing columnar-to-

equiaxed transition (CET), grain size distribution, and branching behavior under AM thermal 
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conditions. Solute diffusion is inherently modeled, enabling prediction of microsegregation and 

phase formation, critical for local mechanical properties. 

PF also allows crystallographic anisotropy to be incorporated in energy and mobility terms, 

enabling prediction of texture aligned with directional heat flow, as often observed experimentally 

in AM builds.76, 77 While PF simulations are limited to mesoscale volumes (10–100s of µm),68, 73 

as shown in Fig. 4, they provide indirect insight into defects like hot cracking via microsegregation 

patterns and can be coupled with stress models for further prediction.76, 78 Multi-physics 

integrations have enhanced PF's predictive capability, thermal fields from CFD or Finite Element 

Method (FEM) models,69, 75, 79 and melt pool dynamics from Lattice Boltzmann Methods80 have 

been used to drive PF evolution more accurately. These developments and their applications are 

summarized in Table 2. Computational advances, including adaptive meshing, parallelization, and 

integration with ML, now enable large-scale 3D simulations of polycrystalline microstructures 

over microsecond to millisecond timescales. Compared to CA or KMC, PF’s diffuse interface and 

thermodynamic rigor (often using CALPHAD databases for alloys like Inconel 718 and Ti-6Al-

4V) make it a more fundamental and flexible tool for AM microstructure modeling.60, 68, 69, 71, 72 

 

4.2 Cellular Automata (CA) Method 

CA modeling has become a widely adopted mesoscale approach for simulating microstructure 

evolution in metal AM,82 offering a strong balance between computational efficiency and physical 

realism.83 CA discretizes the domain into a lattice of cells,10 where each cell updates its state (e.g., 

phase, grain orientation) based on local interaction rules and transient thermal fields, as shown in 

Fig. 5, typically sourced from FEM or Finite Volume Method (FVM) simulations.84 This approach 

effectively captures key solidification mechanisms such as nucleation, anisotropic grain growth, 
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competitive growth, and epitaxial extension across layers.85 CA models operate over micrometer-

to-millimeter spatial scales and microsecond-to-second timeframes,86 making them suitable for 

simulating representative AM volumes, including multiple melt tracks and layers.87 Grain-scale 

phenomena, like fusion boundary nucleation, anisotropic dendritic growth, and competitive texture 

evolution, are well captured in 3D CA.7 Grain morphologies such as columnar, equiaxed, and 

zigzag structures have been simulated for alloys like Inconel 718 and AA-2024, with average grain 

size predictions often within 10–15% of experimental data.88 An overview of these advancements 

is given in Table 3. Compared to PF models, CA models are more computationally scalable while 

retaining strong physical representations of grain growth, texture evolution, and morphology 

formation in AM processes.10, 54, 83 

 

4.3 Kinetic Monte Carlo (KMC) Method 

KMC modeling has become a key approach for simulating solidification phenomena in metal 

AM, particularly for predicting microstructure evolution at the mesoscale capturing.69 These 

methods simulate the probabilistic evolution of microstructures through discrete events, such as 

atomic rearrangements and grain boundary migrations, driven by thermodynamic principles like 

the minimization of interfacial energy.50, 91 These models are well-suited to the stochastic nature 

of grain growth and texture development that occurs during AM solidification. Applications of 

KMC, such as the open-source SPPARKS simulator,92 exemplify its power in generating 

representative microstructures for AM processes. 

A primary mechanism modeled in KMC is curvature-driven grain boundary migration, with 

events like atom attachment/detachment at solid-liquid interfaces, as shown in Fig. 6. Such models 

have been employed to study the effects of process parameters such as laser speed on grain 
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morphology,93 and transient thermal fields on grain structure dynamics.94 Furthermore, KMC 

methods predict crystallographic texture by incorporating orientation-dependent event rates, as 

demonstrated by Pauza et al.95 and Whitney et al.,60 where coupled models like Finite Difference-

Monte Carlo (FD-MC) help simulate texture evolution under complex AM heating cycles. Recent 

advancements have focused on improving the computational efficiency of KMC simulations using 

high-performance computing, as well as incorporating more realistic physical models, particularly 

for nucleation and grain competition.10, 91 A summary of these developments and their applications 

is presented in Table 4. In addition, KMC simulations have been integrated with data-driven 

approaches to better understand process-microstructure relationships.92 Despite these advances, 

limitations in handling complex events like nucleation and grain growth under varied thermal 

conditions remain, highlighting areas for future improvement.75 

 

 

5. DATA-DRIVEN MODELS 

Data-driven techniques are capable of handling complex problems across various fields, 

including computer science, robotics, aviation, biomedical science, materials science, and 

manufacturing.97 The inherent complexities and limitations of experimental approaches in metal 

AM have necessitated the adoption of data-driven modeling techniques, such as artificial 

intelligence (AI), particularly ML.6 Specifically, researchers have applied ML techniques in 

different aspects of the metal AM, such as process control, design for AM, process monitoring, 

process parameter optimization, quality control, defect detection, and property prediction.97 While 

experimental methods play a crucial role in characterizing AM processes, they often fall short in 

capturing the dynamic, fine-scale phenomena that occur during material deposition and 
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solidification.6 Moreover, the vast number of process parameters and their intricate 

interdependencies pose significant challenges for comprehensive exploration through traditional 

experimentation alone.98 High computational costs of physics-based simulation models often limit 

their feasibility for real-time applications.14 Given the high-dimensionality and non-linearity of 

AM processes, data-driven modeling has emerged as a powerful tool to complement physics-based 

models.98 By leveraging experimental and simulation data, AI/ML techniques can improve 

accuracy, efficiency, and scalability in predictive modeling, ultimately accelerating advancements 

in AM technology.66 This section provides a comprehensive review of the current state-of-the-art 

in data science-based modeling for microstructure prediction in AM, encompassing the diverse 

ML algorithms employed, the types of data utilized, and the key applications in prominent AM 

processes. 

5.1 Machine Learning Models 

A significant amount of work has focused on utilizing ML algorithms trained on experimental 

data to predict microstructural features in AM components. These approaches aim to learn the 

intricate, often non-linear relationships between input variables (e.g., process parameters, in-situ 

monitoring data) and output microstructural characteristics (e.g., grain size, phase distribution, 

defect formation). A wide array of ML algorithms has been employed, encompassing supervised 

learning, unsupervised learning, and deep learning paradigms.99 Supervised learning algorithms, 

which learn from labeled datasets, are particularly dominant and include linear models (Linear 

Regression, Logistic Regression), instance-based learning (K-Nearest Neighbors - KNN), tree-

based models (Decision Trees, Random Forests, Gradient Boosting), Support Vector Machines 

(SVM), Neural Networks (fully connected NN, convolution NN, Recurrent Neural Networks 

(RNNs)), Long Short-Term Memory networks (LSTMs), and Gaussian Process Regression (GPR). 
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Unsupervised learning techniques such as clustering (K-means, Hierarchical clustering, Gaussian 

Mixture Models) and dimensionality reduction (Principal Component Analysis - PCA) are often 

used for exploratory data analysis and feature engineering. 

Deep learning (DL), a subset of ML employing multi-layered neural networks, has gained 

substantial traction, with CNNs, RNNs/LSTMs, Generative Adversarial Networks (GANs), and 

Variational Autoencoders (VAEs) being prominent architectures.100 CNNs excel at handling 

image-based representations of microstructures, commonly derived from experiments or 

simulations, by learning hierarchical spatial features directly from raw pixel data through 

convolutional and pooling layers. Architectures like U-Net and 3D CNNs have proven effective 

for tasks such as classification, semantic segmentation, object detection, and direct property 

prediction.59 These models also act as powerful feature extractors, enabling dimensionality 

reduction and integration with other ML models like RNNs or LSTMs for modeling temporal 

evolution.101, 102 Despite their strengths, CNNs treat microstructures as regular grids, which may 

limit their ability to capture irregular grain interactions, an area where GNNs, with their 

topological awareness, offer a complementary advantage.103 

Graph Neural Networks (GNNs) emerge as a powerful tool for predicting the properties of 

polycrystalline materials by leveraging the graph-like structure of microstructures generated 

through simulations. GNNs provide a robust approach for analyzing the complex topology of 

polycrystalline microstructures in metal AM.104 By representing individual grains as nodes and 

their boundaries as edges, GNNs effectively capture hierarchical relationships critical to 

determining material behavior. This graph-based representation allows GNNs to inherently 

understand grain adjacency and connectivity, fundamental aspects of microstructural evolution. 

Unlike CNNs, which treat microstructure images as regular grids, GNNs operate directly on the 
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irregular structure of grains, learning features that remain invariant to spatial arrangement and 

grain count.103, 104 Through message-passing mechanisms, GNNs aggregate information from 

neighboring grains, enabling the network to capture the influence of local microstructural 

environments on both individual grains and overall material behavior. This capability positions 

GNNs as a potentially superior alternative to CNNs in microstructure analysis tasks. For example, 

Dai et al.105 employed GNNs for predicting magnetostriction, while Thomas et al.103 applied them 

to fatigue damage prediction. Several GNN architectures have been applied to microstructure 

analysis in AM. Graph Convolutional Networks (GCNs), which generalize convolution to graph 

data, have been utilized for feature extraction based on local grain neighborhoods.106 Although 

Graph Isomorphism Networks (GINs) have not been widely explored in AM microstructure 

analysis, their high expressive power suggests they hold potential for future applications.103 

Additionally, Physics-Embedded Graph Networks (PEGN), proposed by Xue et al.,71 as shown in 

Fig. 7, reformulate the phase-field problem of microstructure evolution in AM as an unsupervised 

machine learning task on a graph, significantly accelerating simulations. 

Additionally, RNNs and LSTM networks, like GrainNN101 and GrainGNN,104 have been used 

to model the temporal evolution of microstructures under rapid solidification. These models, 

including PEGN and GrainGNN, not only enhance microstructure representation but also predict 

material properties, serving as efficient surrogate models to reduce the need for extensive 

experimentation. Their ability to model the evolution of grain structures under varying processing 

conditions is essential for designing materials with tailored properties.  
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5.1.1 Features of ML models 

ML models used for microstructure prediction in metal AM typically rely on diverse input 

features tailored to the modeling objective. These include process parameters (e.g., laser power, 

scan speed), thermal history, grain orientation, microstructural images, in-situ monitoring data 

(e.g., thermal signatures, AE signals), and material-specific attributes like chemical composition 

or powder characteristics. The outputs range from grain structure features, such as morphology, 

size, and orientation, to defect classification (e.g., pores, voids) and mechanical properties (e.g., 

yield strength, ultimate tensile strength). 

Recent studies showcase the variety of ML methods adapted to LPBF and DED processes. For 

instance, CNNs, including 3D CNNs and U-Net architectures, as shown in Fig. 8, have been 

applied for grain structure and defect prediction.68, 107 Generative models like cGANs are used for 

reconstructing microstructural features from processing parameters, while LSTM models such as 

GrainNN predict time-resolved grain growth. Other approaches include artificial neural networks 

(ANNs) that estimate grain growth from thermal gradients, and hybrid CNN-wavelet models to 

infer mechanical property distributions. These techniques demonstrate the growing application of 

ML in modeling process-microstructure-property relationships. A summary of ML-based studies 

for microstructure modeling used in AM is provided in Table 5. 

 

5.1.2 Training data 

ML models for microstructure prediction in metal AM are trained using both experimental and 

synthetic data. Experimental data typically includes images measured by SEM, EBSD, OM, and 

XCT, along with process parameters like laser power, scan speed, and build orientation. These 

datasets serve as inputs for models such as CNNs, which are well-suited for analyzing 
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microstructural features. CNNs are widely used for tasks including defect detection, grain size 

estimation, porosity analysis, and phase segmentation. GANs, particularly cGANs, further 

enhance experimental datasets by generating synthetic microstructures, helping to address issues 

of data scarcity and cost. These ML applications using experimental data are summarized in Table 

6. 

To broaden predictive capabilities, simulation-generated data from physics-based models such 

as PF, CA, and KMC modeling are also utilized. These simulations replicate microstructure 

evolution under varied processing conditions, offering extensive and controllable datasets for 

training. ML models trained on such synthetic data can be used for surrogate modeling, parameter 

calibration, and accelerated simulations, providing insights into scenarios that are difficult to 

capture experimentally. The integration of both experimental and simulation data has significantly 

improved microstructure prediction across AM processes like LPBF, DED, and EPBF. A summary 

of ML-integrated simulation frameworks used in AM is provided in Table 7. 

 

5.1.3 Hybrid Machine Learning Approaches 

To enhance predictive capabilities and better capture the complex spatio-temporal evolution 

of microstructures in metal AM, hybrid ML models are gaining traction. A particularly promising 

direction involves combining CNNs with RNNs or LSTM architectures. In these models, CNNs 

extract spatial features from microstructure images, while RNNs or LSTMs model their temporal 

evolution, enabling predictions of grain growth or phase transformation over time.115 Additionally, 

using pre-trained CNNs as feature extractors followed by traditional ML regressors can be 

advantageous when data is scarce. This transfer of learned spatial features minimizes the need for 

extensive domain-specific training.100 
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To bridge simulation and experimental domains more effectively, advanced hybrid learning 

strategies, such as hierarchical networks, multi-task learning, and transfer learning, are also 

gaining adoption. These approaches reduce model complexity, enhance generalization, and embed 

physical fidelity. Representative examples of these methods and their implementation strategies 

are summarized in Table 8.1151139810014 

These hybrid approaches are instrumental in advancing predictive modeling for metal AM. 

Expanding on such methodologies, hierarchical multi-scale models have combined FD-MC 

simulations for part-scale thermal prediction with PF modeling of α/α' transformations, where ML 

surrogates effectively bridge scale transitions.60 Similarly, multi-task learning frameworks have 

demonstrated the ability to simultaneously predict grain morphology and phase fractions from 

processing parameters and thermal histories, enhancing generalization in data-sparse settings. 

Transfer learning further strengthens this hybrid toolkit, by leveraging simulation-trained models 

and fine-tuning with sparse experimental data, it significantly boosts predictive performance for 

real-world applications. Furthermore, Ren et al.116 combined high-speed synchrotron X-ray 

imaging, in situ thermal imaging, and physics-based simulations to investigate pore defect 

formation caused by unstable keyhole oscillations in LPBF of Ti-6Al-4V, while Yadav et al.117 

integrated data-driven and physics-driven components to model grain evolution in laser DED. 

Likewise, PINNs offer a compelling framework by embedding physical constraints directly into 

learning, especially powerful when experimental data is limited but physical laws are well 

established.  
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5.2 Physics-Informed Machine Learning (PIML) 

PIML has emerged as a promising approach for modeling AM processes, especially in data-

scare environment or when dealing with the noisy data, offering a potential solution to the 

limitations of traditional experimental, analytical, and numerical methods.118, 119 These traditional 

methods often suffer from drawbacks such as extensive setup times, high costs, difficulties in 

generalization, and significant computational burdens.120 PIML aims to address these challenges 

by fusing physical laws with neural networks, enabling the development of process-

microstructure-property models that are rapid, generalizable, scalable, and transferable across 

diverse AM processes, machines, and materials, while maintaining accuracy under varying 

processing conditions.11, 121–123 

A core component of PIML is the incorporation of physical laws, expressed as partial 

differential equations (PDEs) (e.g., conservation of mass, energy and momentum, heat transfer 

equations), into the training process. This is achieved by adding loss terms to the loss function that 

penalizes deviations from the governing equations.119 This embedding of physics enhances 

interpretability, reduces data requirements, and ensures physically plausible predictions. Figure 9 

illustrates a typical PINN architecture applied to metal AM, showcasing the integration of physical 

laws into the training process. A baseline PINN's loss function can be expressed as: 

 

 

ℒ =  ℒ 𝑃𝐷𝐸  +  ℒ 𝐵𝐶  +  ℒ 𝐼𝐶  

 

(1) 

where these terms represent the losses associated with the PDE, boundary conditions, and initial 

conditions, respectively.119, 124 

PINNs approximate a mesh-free approach,125, 126 solutions to governing conservation equations 

(e.g., PDEs), melt pool dynamics, grain nucleation and growth dynamics by minimizing a loss 
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function that integrates physics-based constraints with initial/boundary conditions, and also some 

experimental or simulated data.122, 123 This allows for incorporating prior knowledge into the 

model.127 Modern deep learning libraries have enabled the use of automatic differentiation (AD), 

which ensures efficient computation of gradients, reducing the computational cost associated with 

traditional numerical simulations.126 While AD is commonly used, the possibility of replacing it 

with an approximation of a differentiation operator to further decrease computation time and 

potentially guarantee a convergent rate has been explored.128 Thus, in principle, PINNs can be 

completely unsupervised when the data is not readily available and boundary or initial conditions 

are well defined.119 

A range of neural network architectures has been proposed to enhance the predictive power of 

PINNs in AM. CNNs, LSTMs, and GNNs have been integrated into PINN frameworks, each 

contributing to specific modeling challenges.124 CNNs have shown effectiveness in image-based 

microstructure prediction,121 while LSTMs excel in modeling time-dependent solidification 

processes.127 GNNs, in particular, have advanced the accuracy of grain structure predictions by 

efficiently handling irregular, non-Euclidean geometries, which are common in AM.71, 124 

 

5.3 Applications of PINN-based Microstructure Modeling in AM 

Unlike conventional DL approaches, which rely heavily on large-labeled datasets, PINNs 

embed fundamental physics laws, such as conservation of mass, energy and momentum, heat 

transfer equations, and grain growth dynamics, into their learning process. This allows them to 

predict temperature fields,122, 123, 125, 129 melt pool dynamics,71, 128 porosity formation,11, 130 and 

thermal stresses.131 With this background, PINNs has potential application in predicting 
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microstructural features like grain morphology, phase distributions, and defect formations under 

varying processing conditions. 

The ability of PINNs to handle multi-scale phenomena is particularly beneficial for metal AM, 

where processes span a wide range of scales. In AM, accurately capturing the transient temperature 

fields is essential, as these thermal gradients drive grain growth and the overall evolution of 

microstructures. PINN models can be tailored to focus on different scales by adjusting their loss 

functions to emphasize fine details in temperature gradients, even within smaller melt pools. As 

shown in Table 9, PINNs have demonstrated effectiveness in predicting temperature fields during 

metal AM, with accuracy levels varying across different AM processes. For instance, recent 

studies have demonstrated that transfer learning-based PINN models can predict the 3D 

temperature distribution during single-track metal deposition with high accuracy, with average 

temperature prediction errors reported to be below 1.3 %,125 despite the limited availability of 

labeled data. 

In addition to temperature prediction, PINNs have proven effective in modeling melt pool 

dynamics. By incorporating temperature-dependent material properties132 into customized loss 

functions based on physical laws,125, 137 these models can accurately estimate both the size and 

temperature of the melt pool.129, 134 They are even capable of inferring key process parameters such 

as the Reynolds and Peclet numbers from temperature and velocity data using an inverse 

approach.131 This capability extends to predicting complex behaviors like melt pool dynamics 

under the influence of Argon gas-driven shear flows, without using any training data on velocity 

and pressure, thereby avoiding the need to directly solve the notoriously challenging nonlinear 

Navier–Stokes equations.131  
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The evolution of microstructures also depends on grain growth and solidification processes, 

which are intimately linked to the material’s thermal history. Recent advancements include the 

integration of PINNs with other computational methods to model microstructure evolution, as 

shown in Table 10. For example, a study detailed the calibration of a thermo-microstructural model 

for LPBF of Hastelloy X by integrating a PINN for thermal analysis with a CA model for 

microstructure simulation.138 This approach leveraged the computational efficiency of PINNs for 

thermal model calibration through inverse analysis based on experimental melt pool dimensions, 

ultimately identifying the optimal CA parameters to represent observed microstructures. Similarly, 

Liu et al.139 also explored a hybrid physics-based data-driven process design framework using 

physics-constrained neural networks to construct surrogates of process-microstructure 

relationships for optimizing dendritic growth in alloys like Ti-6Al-4V. Kats et al.113 proposed a 

PIML framework for refining DED process parameters to achieve specific grain microstructures 

by using high-fidelity numerical data and extracting thermal gradients and cooling rates to predict 

grain size and aspect ratio. 

 

5.4 PINNs: Current Status and Future Directions 

The current active area of development involves modifications to the baseline PINN 

framework. Ongoing research includes the use of adaptive activation functions to improve learning 

performance and convergence in solving differential equations.140 Efforts are also being made to 

implement domain decomposition and preconditioning strategies, which aim to improve 

scalability and accuracy when handling large spatio-temporal domains through parallel 

computing.141 In addition, alternative sampling methods are being investigated to increase training 

efficiency in regions with sharp gradients or complex physical behavior.142 
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A significant advancement in this field is the integration of PINNs with in-situ monitoring 

techniques, such as real-time thermal imaging (see Table 9). By incorporating real-time sensor 

data into the PINN framework, these models can dynamically update their predictions, leading to 

more accurate process control and optimization. This approach is further reinforced by the 

development of physics-informed online learning models, which continuously update their 

weights as new data becomes available, thereby improving real-time process control.123 Another 

promising direction is Transfer Learning and Domain Adaptation, which enhances the 

generalization capabilities of PINNs for metal AM applications.125 These methods involve pre-

training PINNs with simulation data (see Table 9) and fine-tuning them with experimental data, 

reducing training time and improving prediction accuracy. This approach enables PINNs to 

leverage computationally generated data while ensuring robust performance when applied to real-

world experimental observations. Given the inherent uncertainties in AM processes, researchers 

are actively developing probabilistic PINN models to enable uncertainty-aware predictions.143–146 

These models provide confidence intervals for predictions, offering a more comprehensive 

understanding of model reliability and robustness. Finally, ongoing research is focused on 

architectural enhancements for PINNs in AM applications.11, 125 This includes the incorporation of 

lightweight attention mechanisms, ResNet blocks, and fully connected layers to better capture 

spatiotemporal correlations within complex AM processes while maintaining computational 

efficiency. These architectural enhancements aim to boost the model's ability to learn and represent 

the intricate physical dynamics that govern microstructure evolution. 
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6. CHALLENGES AND OUTLOOK 

 

6.1 Experimental characterization challenges 

Despite advances in characterization techniques, significant challenges remain in capturing the 

microstructure evolution during metal AM. A major limitation is the inability to directly observe 

microstructural changes during the rapid melting and solidification phases. While in-situ 

monitoring of thermal fields and melt pool dynamics offers indirect insights, these methods do not 

visualize the evolving solid structure itself. Establishing clear relationships between the wide range 

of process parameters and the resulting hierarchical microstructure across multiple length scales is 

difficult and requires extensive experimentation. This effort is further hampered by the lack of 

high-throughput and standardized characterization methods, as well as difficulties in managing the 

large datasets produced by modern techniques. 

Moreover, comprehensive experimental campaigns remain costly and time-consuming, acting 

as a bottleneck for validating simulation models. Similar to other approaches, the high cost of 

experiments under complex conditions, such as the unstable and highly dynamic nature of the melt 

pool with rapid thermal and flow fluctuations, along with its microscopic scale that complicates 

in-situ observation, limits the availability of validation data. Even simulation-guided methods, like 

the KMC approach, ultimately depend on rigorous experimental validation. Addressing these 

challenges requires innovative experimental methods. Emerging techniques such as synchrotron-

based high-speed X-ray imaging and diffraction offer promising in-situ capabilities. Correlative 

microscopy, combining XCT, SEM/EBSD, and TEM on the same sample, provides a more 

comprehensive multi-scale perspective. Additionally, ML tools can accelerate the analysis of 
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complex image and diffraction data, supporting the generation of high-fidelity datasets needed to 

validate both physics-based and data-driven models. 

 

6.2 Numerical modeling challenges 

Recent progress in numerical modeling has significantly advanced our understanding of 

microstructure evolution in metal AM, particularly in LPBF and DED. However, simulating the 

rapid solidification and non-equilibrium conditions intrinsic to AM remains computationally 

challenging. High-fidelity models such as PF are particularly resource-intensive, limiting their 

scalability for large-scale or multi-layer simulations, and thus driving ongoing efforts in 

algorithmic optimization. Although more efficient, CA and KMC methods still face challenges in 

modeling full-part geometries and often rely on empirical parameters that are difficult to calibrate 

under AM-specific conditions. Table 11 summarizes key computational approaches for 

microstructure modeling, outlining their features, strengths, and numerical limitations. 

Additionally, critical phenomena such as solute segregation, re-melting, and defect formation, key 

to grain morphology and texture, are either oversimplified or neglected in most models. 

Beyond individual modeling approaches, developing accurate multi-scale frameworks that 

couple different physical phenomena across length and time scales remains a core challenge. The 

hierarchical nature of AM solidification, from melt pool behavior to grain evolution and atomic-

scale interactions, necessitates integrated models that can resolve process–microstructure–

property linkages. Coupled frameworks that integrate CFD, FEM, and microstructure models show 

promise, but these are often computationally expensive and difficult to validate experimentally. 

Sequential or weakly coupled strategies, while more feasible, can suffer from data mapping 

inaccuracies across differing grids or solvers, ultimately reducing predictive accuracy. Bridging 
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these gaps will require the adoption of hybrid approaches, particularly ML techniques, including 

PINNs, to enable faster and more accurate simulations across scales. 

 

6.3 ML challenges 

Despite recent progress, purely data-driven models for microstructure prediction in metal AM 

face key limitations. A major hurdle is the lack of comprehensive, high-quality, and well-labeled 

datasets linking process parameters to detailed 3D microstructural outcomes. The multi-scale, 

multi-physics nature of microstructure evolution, driven by rapid solidification, complex thermal 

gradients, and non-equilibrium effects, is difficult to fully capture with “black-box” ML models. 

While ML offers speed and scalability, these models often lack physical interpretability and may 

produce unreliable predictions, especially when extrapolating beyond the training domain or 

across different length scales. Integrating physics-based knowledge into ML improves 

generalization, but balancing accuracy, scalability, and fidelity across scales remains challenging. 

Furthermore, many existing models primarily focus on predicting static microstructural features, 

with limited capability to capture the dynamic evolution of microstructure during processing. 

A key challenge is generalizability across different AM processes, as models trained on one 

process (e.g., PBF) may not perform well on others (e.g., DED) due to differences in thermal 

histories and grain evolution. This underscores the need for standardized data-sharing protocols 

and public benchmark datasets, such as AMMD and AM-Bench, which, similar to MNIST and 

ImageNet in computer vision, could significantly enhance ML transferability in AM. Additionally, 

DL models often suffer from high computational cost, lack of interpretability, and an inability to 

quantify uncertainty, which limits their reliability in decision-making contexts. However, 

challenges remain in modeling dynamic microstructure evolution, managing computational cost, 
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and improving model explainability, making physics-informed and uncertainty-aware hybrid 

models essential for trustworthy and robust AM predictions. Recent advances in Uncertainty 

Quantification (UQ) have addressed this by distinguishing between aleatoric (process-induced) 

and epistemic (model-related) uncertainties. Techniques such as Bayesian Neural Networks 

(BNNs), probabilistic models and ensemble learning are gaining traction. Advancing uncertainty-

aware, explainable ML frameworks is crucial for trustworthy and scalable predictive modeling in 

AM. 

 

6.4 PIML modeling outlook 

PIML has emerged as a promising framework for modeling microstructural evolution in metal 

AM. By embedding governing physical laws into neural networks, PINNs provide a mesh-free 

alternative to traditional PDE solvers, enabling simulation of complex phenomena such as heat 

transfer and grain growth. However, challenges persist in training stability, computational cost, 

and generalization across materials, geometries, and process conditions. Ongoing research is 

exploring solutions such as domain decomposition, dynamic loss weighting, and adaptive 

sampling to improve training efficiency and accuracy. Transformer-based PINNs and neural 

operators are also being investigated to address issues like spectral bias, gradient imbalance, and 

ill-conditioning. Despite being designed for low-data regimes, PINNs still rely on high-quality 

experimental or simulated training data, and errors such as "propagation failure" can accumulate 

without proper initialization or boundary conditioning. 

When modeling highly complex and multi-physics phenomena like microstructural evolution, 

the underlying PDEs can be too intricate for PINNs to learn effectively without anchoring through 

experimental or numerical data. While PINNs offer flexibility across spatial-temporal scales, 
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unlike traditional numerical methods constrained by time-stepping schemes, convergence can be 

slow or unstable under stiff or poorly scaled conditions. Without sufficient grounding, error 

accumulation and unreliable extrapolation can occur. Another limitation of PINNs lies in their 

application to multi-physics, high-dimensional AM processes such as LPBF, where balancing 

constraints or hyperparameter from different physical domains remains difficult. Addressing these 

challenges requires improved strategies for UQ, such as Bayesian PINNs, and enhanced data 

handling methods, including transfer learning and data augmentation. Recent advances have also 

focused on error control in noisy or sparse datasets and incorporating dynamic activation functions 

to better represent unknown conditions. To make PINNs viable for real-time adaptive control in 

AM, future work must prioritize scalable algorithms, robust training strategies, and high-

performance computing integration. Interdisciplinary collaboration will be essential to bridge the 

gap between data-driven models, physics-based principles, and practical AM implementation. 

 

 

7. CONCLUSIONS 

 

This work has assessed the state-of-the-art of microstructure modeling for metal AM, with a 

particular focus on processes such as LPBF and DED. Foundational experimental techniques 

remain essential for characterizing microstructural features and validating predictive models. 

Traditional computational methods, such as PF, CA, and KMC, offer valuable mechanistic insights 

into phenomena like grain growth and solidification dynamics, but they face limitations in 

scalability, computational cost, and complexity. Meanwhile, data-driven approaches using ML 

have shown significant promise in capturing complex process–microstructure relationships. 
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However, these models often require large, high-quality labeled datasets and high computation 

cost, and tend to operate as “blackbox”, limiting interpretability and generalizability. These 

challenges emphasize the growing need for physics-informed learning frameworks that can enable 

accurate yet data-efficient microstructure prediction, process optimization, and consistent part 

quality in AM. 

PIML, particularly PINNs, has emerged as a powerful paradigm that bridges the gap between 

physics-based modeling and data-driven modeling. By embedding governing physical laws into 

the training process of neural networks, PINNs offer improved generalizability, reduced data 

dependence, and enhanced interpretability. Applications of PINNs to thermal field prediction and 

melt pool dynamics have demonstrated great potential, offering mesh-free solutions and achieving 

high accuracy even with small, labeled data, and ongoing research is now extending their use to 

direct microstructure prediction. Future efforts may focus on improving training efficiency, 

incorporating uncertainty quantification, adopting advanced neural architectures such as CNNs, 

LSTMs networks, and GNNs, and integrating real-time in-situ sensing for adaptive process 

control. As PIML progresses, interdisciplinary collaboration and the convergence of experimental, 

computational, and AI-driven approaches will be essential for building robust, scalable, and 

intelligent AM systems capable of producing defect-free, high-performance components with 

tailored microstructures. 
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FIGURES 

 

 

 

 

FIG. 1: Solidification map as a function of temperature gradient and solidification rate27 (top),27 and micrograph 

showing the formation of equiaxed and columnar grains in a solidified melt pool29 (bottom).29 

FIG. 2: Different multiphysics and forces acting on the melt pool.2  
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FIG. 3: Four microstructure levels in LPBF-processed SS316L: melt pool, grains, cells & dendrites, and twins & 

phases, shown in decreasing scale.56 

FIG. 4: Phase-field modeling framework for the solidification of Ti-6Al-4V, illustrating beta grain growth.67 (FZ: 

Fusion Zone Boundary; HAZ: Heat Affected Zone Boundary). 
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FIG. 5: Cellular Automata model illustrating grain boundary nucleation in LPBF of Al-alloy; (a) Transverse Direction 

(TD) section at mid-width and (b)–(d) corresponding Build Direction (BD) sections.85 

FIG. 6: KMC-simulated thermal gradient (G), solidification rate (R), and microstructure evolution for a thin-wall 

build, highlighting layer variations and nucleation effects.50 
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FIG. 7: PEGN framework for single-track PBF, modeling grain evolution as a graph with iterative feature updates via 

gradient descent.71 

FIG. 8: 3D U-Net for microstructure prediction using grain orientation and temperature inputs with coarse-grained 

time steps.68 
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FIG. 9: PINN framework integrating experimental and/or simulation data with physics-based constraints. 
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TABLES 

 

Table 1: Characterization Techniques and Applications in Metal AM 

 

Technique Process Application Focus Ref. 

OM LPBF Grain size, melt pool size, porosity 57 

SEM LPBF, DED 

Melt pool, porosity (LOF/gas/keyhole), dendrites 

structure, surface analysis 

46, 58 

EBSD LPBF, DED 
Grain orientation, size, texture, misorientation, 

β-grain 

39, 59 

X-ray Diffraction 

(XRD) 
LPBF, DED Phases (α, β, martensite), texture 60, 61 

TEM LPBF, DED 

Dislocations, precipitates, substructures, 

strengthening 

62, 63 

Energy Dispersive 

X-ray Spectroscopy 

(EDS/EDX) 

LPBF, DED Composition, phase ID, vaporization defects 28, 64 

XCT LPBF, DED 

3D pore imaging: morphology, volume, 

distribution 

56 

In-situ Process 

Monitoring 

LPBF, DED 
Melt pool size, keyhole, spatter, balling 

(IR/Vis/Acoustic) 

65, 66 
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Table 2: PF Modeling Applications in AM 

 

Process Material Application Focus Ref. 

LPBF Ti-6Al-4V 
Solidification (β grain) and β→α/α’ transformation 

using hybrid PF + ML + FDMC 

60 

DED H13 steel 

Melting, solidification, dendrite growth, solid phase 

transformation, CALPHAD-based 

81 

LPBF 

Ti-based alloys  

(Ti-45Al) 

PDAS prediction, site-specific segregation, melt pool 

validation 

77 

LPBF IN 718 
Solidification and multiphase modeling, integration 

with post-build heat treatment 

75 

LPBF/DED 

Ni-based 

superalloys 
Microstructure evolution, PF-FE-CALPHAD coupling 74 
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Table 3: CA Modeling Applications in AM 

 

Process Material Application Focus Ref. 

LPBF 316L SS 
Grain structure formation during solidification, using 

CAFE (CA + thermal FE) 

84 

DED Ti-6Al-4V 

Thermal history, grain morphology (dendritic, columnar), 

nucleation, growth orientation (CA-FE) 

89 

DED 

Binary β-Ti alloy 

systems 

Grain nucleation and growth, Columnar-to-Equiaxed 

Transition (CET), parameter effects 

83 

LPBF Ti-6Al-4V, 
Grain structure evolution (2D & 3D CAFD), 

experimental validation 

7 

LPBF NiTi SMA 

Microstructure evolution using numerical CA modeling 

approach 

90 
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Table 4: KMC Modeling Applications in AM 

 

Process Material Application Focus Ref. 

LPBF High-Mn steel 
KMC-based 3D microstructure dataset generation; 

scan strategy effects 

92 

LPBF/DED IN 625, 304L SS 

Dynamic KMC for grain morphology prediction 

under evolving melt pool and HAZ conditions 

94 

LPBF 

Ni-based 

superalloy 

Texture-aware Potts model; effects of hatch spacing 

and layer thickness 

95 

 

DED Ti–6Al–4V 
Grain growth modeling in HAZ; solid-state phase 

evolution during thermal cycles 

96 
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Table 5: ML Models for Microstructure and Property Prediction in Metal AM 

 

Process ML Model Input Output Ref. 

LPBF 
VGGNet 

(3D CNN) 

Grain ID, crystal orientation Mechanical properties 107 

LPBF 

Modified U-Net 

(CNN) 
Microstructure images 

Elastic stress fields, 

defect mapping 

58 

DED 

CNN + Wavelet 

Transform 

Thermal history Ultimate tensile strength 108 

LPBF  
Conditional GAN 

(cGAN) 

Laser power & speed 
Microstructural feature 

prediction 

109 

DED  ANN 

Thermal gradient, crystal 

orientation 
Grain growth prediction 110 

LPBF LSTM (GrainNN) Temporal grain growth data 
Epitaxial grain growth 

prediction 

101 
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Table 6: ML Applications Using Experimental Data in Metal AM 

 

Experimental Data Process ML Model Application Ref. 

Micrograph Images 

(OM, SEM) 

LPBF cGAN 
Predicted α-phase / martensite 

morphology and size 

109 

Pyrometer & High-

speed Camera 
LPBF SeDANN Predicted the melt pool width 111 

Thermal & Optical 

Tomography Images 

LPBF KNN 

Predicted porosity, melt pool 

depth, and grain size 

13 

High-speed Imaging LPBF 
SVM, MLP, 

KNN, RF, CNN 

Detected various defects 

(keyhole, under-melting, balling) 

58 
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Table 7: ML–Integrated Simulation Frameworks for Microstructure Prediction in Metal AM 

 

Simulation Process ML Model Applications Ref. 

PF Method 

LPBF 
CNNs / 3D U-

Net 

3D grain structure prediction, surrogate 

modeling for complex PF simulations 

68 

LPBF 

Diffusion 

Probabilistic 

Field Model 

Captures irregular and realistic grain 

morphologies for microstructure 

generation 

112 

CA Method DED 
Neural 

Networks (NN) 

CA-FVM + NN to predict grain 

shape/aspect ratio from thermal history 

113 

KMC 

Method 
LPBF/DED LSTM-SE 

Surrogate time-dependent modeling of 

precipitate kinetics 

114 
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Table 8: Hybrid ML Methods for Microstructure Prediction in Metal AM 

 

Hybrid Method Input Output Remarks Ref. 

CNN + RNN / 

LSTM 

Microstructure 

images 

Grain growth, phase 

evolution 

Learns spatial features 

and their temporal 

dynamics 

115 

Hierarchical 

Networks 

Thermal history 

Microscale grain 

morphology, phase 

fractions 

ML surrogates couple 

mesoscale and microscale 

predictions 

113 

Multi-task 

Learning 

Thermal history, 

process 

parameters 

Grain size, 

orientation, phase 

fraction 

A single model 

simultaneously predicts 

multiple microstructural 

features 

98 

Transfer 

Learning 

Simulation-

trained CNN 

features 

Experimental 

microstructure 

predictions 

Enhances real-world 

predictions using limited 

experimental data 

100 

Physics-Data 

Fusion 

Simulation data, 

in-situ/optical 

observations 

Microstructure 

evolution (Potential) 

Combines physics-based 

modeling with data-

driven learning 

14 
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Table 9: PINN Applications for Thermal Prediction and Melt Pool Dynamics in AM 

 

Process Method Input Output Ref. 

DED 
Transfer Learning-

based PINN 

IR images, simulation 

data 

3D temperature field 125 

DED PINN 

FEM simulation data, 

validated by DED 
Temperature field 132 

LPBF/DED ANN-based PIML Simulation data 

Temperature, melt pool 

dimension 

133 

LPBF/DED Thermoelastic PINN 
Process parameters, 

FEM data 

Temperature 

(thermoelastic behavior) 

134 

DED PIML No labeled data 3D temperature field 135 

LPBF/DED RAA-PIML 

Temperature – small 

labeled simulations 

Temperature field, melt 

pool morphology 

122 

LPBF/DED Two-level PIML 
Process parameters, 

pre-scan temperature 

Melt pool size 136 
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Table 10: PINN Applications for Microstructure Prediction in AM 

 

Process Method Input Output Ref. 

LPBF/DED 
PCNN with Bayesian 

Optimization 

PF simulation with 

varying parameters 

Dendritic area, micro 

segregation 

139 

DED PIML 

High-fidelity 

numerical data 
Grain microstructures 113 

LPBF 

PINN for thermal & CA 

microstructure model 

Experimental melt 

pool dimensions 

Temperature, melt pool, 

microstructure 

138 
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Table 11: Comparison of Modelling Approaches 

 

Approach Key Features Advantages Limitations 

PF 

Continuous 

representation, multi-

physics 

High fidelity; detailed 

interface tracking 

High computational cost; 

parameter sensitivity; 

Effective for small time scale 

CA 

Discrete, rule-based 

evolution 

Fast, captures local 

interactions 

Limited resolution; 

oversimplification 

KMC 
Probabilistic, event-

driven simulation 

Effective for large-

time scale 

Computationally intensive 

for large systems 

Data-

Driven  

Uses large datasets; 

various architectures 

Fast predictions; 

transferable to new 

data  

“Black box” behavior; high 

data requirement 

 

 

 


