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ABSTRACT

Metal additive manufacturing (AM) enables unprecedented design freedom and the production of
customized, complex components. However, the rapid melting and solidification dynamics
inherent to metal AM processes generate heterogeneous, non-equilibrium microstructures that
significantly impact mechanical properties and subsequent functionality. Predicting
microstructure and its evolution across spatial and temporal scales remains a central challenge
for process optimization and defect mitigation. While conventional experimental techniques and
physics-based simulations provide a physical foundation and valuable insights, they face critical
limitations such as high computational cost, limited scalability, and difficulty bridging across
scales. In contrast, data-driven machine learning (ML) offers an alternative prediction approach
and powerful pattern recognition but often operate as “black-box”, lacking generalizability and
physical consistency, particularly in data-scarce scenarios. To overcome these limitations,

physics-informed machine learning (PIML), including physics-informed neural networks (PINNs),
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has emerged as a promising paradigm by embedding governing physical laws into neural network
architectures, thereby enhancing accuracy, transparency, data efficiency, and extrapolation
capabilities. This work presents a comprehensive evaluation of modeling strategies for
microstructure prediction in metal AM. The strengths and limitations of experimental,
computational, and data-driven methods are analyzed in depth, and highlight recent advances in
hybrid PIML frameworks that integrate physical knowledge with ML. Key challenges, such as data
scarcity, multi-scale coupling, and uncertainty quantification, are discussed alongside future
directions. Ultimately, this assessment underscores the importance of PIML-based hybrid
approaches in enabling predictive, scalable, and physically consistent microstructure modeling
for site-specific, microstructure-aware process control and the reliable production of high-

performance AM components.

Keywords: metal additive manufacturing, microstructures, computational modeling, data-driven
modeling, physics-informed machine learning, scientific machine learning, melt pool dynamics,

grain growth, thermal history, solidification

NOMENCLATURE

English Symbols/Abbreviations
AD: Automatic Differentiation
AE: Acoustic Emission

Al: Artificial Intelligence

AM: Additive Manufacturing
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ANN: Artificial Neural Network

CA: Cellular Automata

CAFD: Cellular Automata Finite Difference
CAFE: Cellular Automata Finite Element
CET: Columnar-to-Equiaxed Transition
CFD: Computational Fluid Dynamics
cGAN: Conditional Generative Adversarial Network
CNN: Convolutional Neural Network

DED: Directed Energy Deposition

DL: Deep Learning

EB-PBF: Electron Beam Powder Bed Fusion
EBSD: Electron Backscatter Diffraction
EDS/EDX: Energy Dispersive X-ray Spectroscopy
FEA: Finite Element Analysis

FEM: Finite Element Method

FD-MC: Finite Difference-Monte Carlo
FVM: Finite Volume Method

G: Thermal Gradient

GAN: Generative Adversarial Network
GCN: Graph Convolutional Network

GIN: Graph Isomorphism Network

GNN: Graph Neural Network

GPR: Gaussian Process Regression
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IHT: Intrinsic Heat Treatment

KMC: Kinetic Monte Carlo

KNN: K-Nearest Neighbors

LBM: Lattice Boltzmann Methods

LOF: Lack-of-Fusion

LPBF: Laser Powder Bed Fusion

LSTM: Long Short-Term Memory network
ML: Machine Learning

NN: Neural Network

OM: Optical Microscopy

PCNN: Physics-Constrained Neural Network
PDE: Partial Differential Equation

PDAS: Primary Dendrite Arm Spacing
PEGN: Physics-Embedded Graph Network
PF: Phase-Field

PIMA: Physics-Informed Model Design
PIMC: Physics-Informed Model Components
PIML: Physics-Informed Machine Learning
PIMO: Physics-Informed Output Constraints
PINN: Physics-Informed Neural Network
PIMT: Physics-Informed Training

PCA: Principal Component Analysis

PBF: Powder Bed Fusion
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R: Solidification Rate

RF: Random Forest

RNN: Recurrent Neural Network

SEM: Scanning Electron Microscopy
SMA: Shape Memory Alloy

SVM: Support Vector Machine

TDGL: Time-Dependent Ginzburg-Landau Equation
TEM: Transmission Electron Microscopy
UQ: Uncertainty Quantification

VAE: Variational Autoencoder

XCT: X-ray Computed Tomography

XRD: X-ray Diffraction

Greek Symbols

a: Alpha Phase

a': Alpha-Prime Martensite

[: Beta Phase

¢': Epsilon-Prime Martensite

L: Total Loss Function

L gc: Boundary Condition Loss Term
L ;c: Initial Condition Loss Term

L ppg: Partial Differential Equation Loss Term
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1. INTRODUCTION

1.1 Microstructures in Metal Additive Manufacturing

Metal AM has emerged as a transformative technology for producing complex geometry metal
components, multi-material components, and functionally graded materials,! across various
industries, including aerospace, biomedical, tooling, automotive, and energy.? By overcoming the
design constraints of traditional manufacturing methods, such as machining and forming, metal
AM has gained significant popularity in the past decade. Applications range from lightweight,
topology-optimized aerospace components and patient-specific implants to complex heat
exchangers and fuel nozzles.? 3

According to the ASTM F2792 standard and the more recent ASTM F52900, metal AM
processes are broadly categorized into Powder Bed Fusion (PBF) and Directed Energy Deposition
(DED).2 PBF selectively melts successive layers of powder using a high-energy laser or electron
beam, while DED involves the simultaneous deposition and melting of powder or wire feedstock
using a focused laser source. Both processes are characterized by rapid melting and solidification
with high thermal gradients and cooling rates, leading to complex microstructure (including
defects) formation and evolution.

From a metallurgical standpoint, the rapid solidification inherent to melt pool results in
complex thermal histories and non-equilibrium conditions that strongly influence the
microstructure and properties of the final part. The steep thermal gradients and cooling rates, often
exceeding 10-10° K/s, can give rise to microstructural features such as hierarchical solidification
structures, anisotropic grain growth, and metastable phase formations.* For instance, many alloys

exhibit a tendency toward elongated columnar grain growth along the build direction, which causes
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anisotropic mechanical behavior. Such characteristics are often undesirable in applications
requiring isotropic properties, particularly in critical aerospace and biomedical components.>
Furthermore, the nature of cyclic and localized heat input during AM introduces complex melt
pool dynamics that may lead to process-induced defects, including porosity (e.g., keyhole or lack-
of-fusion (LOF) pores), cracking, and residual stresses. These microstructural heterogeneities and
defects not only compromise mechanical performance but also impose significant challenges for
part certification and quality assurance.® These issues can be mitigated through tailored materials,
process optimization, real-time monitoring, interlayer deformation, and both intrinsic and post-
process heat treatments. Achieving "first-time-right" builds remains a critical barrier to the broader
industrial adoption of metal AM, especially in safety-critical applications.

Addressing these challenges necessitates a comprehensive understanding of the complex
microstructures in metal AM. The microstructure formation process is highly nonlinear and
governed by numerous interdependent process parameters such as laser power, scanning speed,
hatch spacing, and layer thickness.” Extensive research efforts have been dedicated to elucidating
microstructure formation through a combination of experimental characterization, computational
modeling, and data-driven approaches. Experimental techniques remain as a foundation for
quantifying microstructural features, such as grain morphology, crystallographic texture, phase
distribution, and defect types, but the extreme processing conditions of AM processes often hinder
direct in-situ monitoring. Therefore, computational modeling has become a critical tool for probing
the thermal, mechanical, and metallurgical phenomena during AM.® Finite Element Analysis
(FEA) is commonly employed to predict temperature profiles and residual stresses,’ while
mesoscale techniques such as Phase-Field (PF), Cellular Automata (CA) and Kinematic Monte

Carlo (KMC) modeling are used to simulate grain growth and solidification dynamics.!? In recent
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years, data-driven methods, particularly ML approaches such as PINNs, have emerged as powerful
tools for microstructure modeling and optimization.'! In summary, unlocking the full potential of
metal AM hinges on the integration of experimental insights, multi-physics simulations, and data-
driven models to establish predictive approaches. Such integrated approaches are key to predicting
microstructure formation and characteristics, tailoring microstructures, minimizing defects, and

ensuring the repeatable production of high-performance, application-specific components.

1.2 Data-Driven Approach for Microstructure Prediction

In-process sensing and monitoring are essential for enabling real-time quality control and
improving microstructural predictability in metal AM. Various sensor modalities, including optical
(high-speed cameras, vision systems), thermal (infrared (IR) cameras, pyrometers), acoustic
emission (AE) sensors, and spectral devices, are widely used to capture key process signatures
such as melt pool geometry,’ temperature distribution, plume dynamics, spatter, and surface
morphology.!? These measured signals provide critical insight into the transient and localized
conditions during the build, which are directly linked to microstructural outcomes such as grain
size, orientation, porosity, and residual stresses. As such, in-situ monitoring offers a non-
destructive means of observing process stability, detecting defects, and identifying deviations in
real time, forming the foundation for data-driven process control strategies.?

Recent research emphasizes the integration of large sensor data with computational models to
enhance predictive capabilities. Data-driven approaches using ML and deep learning (DL) have
been successful in analyzing sensor signals to predict melt pool behavior, detect defects, and
forecast microstructural features.!* Hybrid approaches, enhance robustness and generalizability

in data-scarce conditions. For instance, Bevans et al.!? developed a digital twin framework for
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Inconel 718 by integrating IR camera-based thermal histories, physics-based thermal models, and
ML algorithms to predict melt pool depth and grain size. This illustrates how combining sensor
data with physical insights improves microstructure prediction. However, challenges remain in
handling data uncertainty, ensuring cross-platform applicability, and achieving real-time
responsiveness.'* Despite this, the continued advancement of in-situ sensing technologies and
modeling techniques holds great promise for realizing intelligent and adaptive AM processes with
tailored microstructures and improved part quality.

The future of metal AM is moving toward intelligent and autonomous systems, powered by
advanced in-situ monitoring, sensor fusion, and real-time control. Recent reviews have highlighted
the importance of combining sensing technologies with automated feedback to improve the quality
and consistency of AM builds. For instance, Mu et al.!> proposed a digital twin framework for
metal-DED that helps optimize the process through virtual simulations. Similarly, Cai et al.!®
reviewed sensing and control in laser-based AM, showcasing progress in sensors, data collection,
and control algorithms aimed at reducing defects and increasing reliability. Herzog et al.!” also
emphasized the role of ML in defect-detection and quality assurance through real-time monitoring.
These advancements are leading toward AM systems that can automatically adjust laser power,
scan speed, or material flow during printing, reducing defects and minimizing the need for post-
processing. However, challenges remain, especially in ensuring sensor reliability, handling large
volumes of data, and creating adaptive control strategies that work across different AM machines
and materials.

Researchers are also exploring PIML, which combines physical laws with ML models. While
traditional ML needs large, high-quality datasets and often lacks physical meaning, PIML

improves accuracy and generalization by using built-in physical principles. Future research is
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looking at more advanced PIML methods, such as using physics in training (PIMT), model design
(PIMA), components (PIMC), and output constraints (PIMO).!® Hybrid models that combine
different types of data, like thermal images, sound, and high-speed videos, will further strengthen
real-time prediction and control of microstructures.!'®- 20 In addition, multiscale PIML models that
capture behavior from the micro to macro level are essential to fully understand and control the
link between process, structure, and properties in metal AM.?! These approaches aim to create

smart, adaptive AM systems that are highly precise, efficient, and reliable .?°

1.3 Paper Structure

To provide an in-depth assessment of microstructure prediction in metal additive
manufacturing, a structured literature review is conducted, focusing on ML approaches, with
particular emphasis on PIML, including PINNs as a prominent subset. The review emphasizes the
recent literature that combines experimental methods, data-driven modeling, and physics-based
approaches, particularly in the context of microstructure evolution in LPBF and DED processes.
Relevant articles were identified through targeted searches using Google Scholar and Scopus, with
selection criteria based on publication date (primarily from 2018 to 2025), relevance to ML, PINN,
and PIML, and a decade-long span for studies focusing on process parameter effects on
microstructure. Additional references were incorporated through backward citation tracing of key
articles. For document analysis and synthesis, NotebookLM was used to assist in extracting,
organizing, and summarizing key insights from the selected literature. Additionally, ChatGPT and
Gemini played a significant role in summarizing, analyzing, and structuring the extracted content.
These Al tools facilitated the identification of key research themes, the rephrasing of complex

sections, and the organization ofideas. Perplexity Al were also consulted for supplementary article
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suggestions and for validating exploratory topics, ensuring a comprehensive and up-to-date review
of the field.

The structure of the article is organized as follows: Section 2 outlines the fundamentals of
microstructure formation in metal AM, emphasizing the role of melt pool dynamics, thermal
gradients, and solidification behavior. Section 3 presents conventional experimental methods used
for microstructural analysis and model validation. Section 4 discusses physics-based modeling
approaches that simulate microstructure evolution using governing physical principles. Section
5 reviews data-driven and hybrid strategies, highlighting the integration of physical knowledge
into machine learning frameworks to enhance prediction accuracy and generalizability. Section 6
discusses current challenges in the field, such as data scarcity, generalizability, and physical
consistency. Finally, Section 7 concludes with a summary and highlights future research directions

toward integrating PIML for microstructure-aware AM process design.

2. COMPLEX MELT POOL PHENOMENA IN METAL AM

2.1 High Temperature Gradients and Cooling Rates

Metal AM processes, notably LPBF and DED, are characterized by extreme thermal conditions
unlike conventional methods. These involve very high melt pool temperatures (up to 3000 °C) and
steep thermal gradients (G), which, combined with the solidification rate (R), lead to exceptionally
high cooling rates (GxR), potentially reaching 10°-107 K/s in LPBF?? and 10>-10° K/s in DED.?3
These thermal conditions, heavily influenced by process parameters like laser power and scan

speed,? 2* are critical determinants of the final microstructure. High cooling rates (GXR) generally
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promote microstructural refinement, reducing primary dendrite spacing and grain size, as faster
cooling enhances nucleation and limits growth.?* Studies have shown that lower heat input
correlates with higher G and improved strength,?* while rapid cooling near melt pool boundaries
fosters grain refinement.?* Conversely, slower cooling, perhaps due to shorter inter-layer times or
higher energy input, can result in coarser grains.?

The morphology of the solidifying structure is primarily governed by the ratio G/R.2%27 As
depicted in solidification maps (Fig. 1, top), high G/R values favor directional solidification, often
leading to columnar grains growing epitaxially layer upon layer, frequently aligned with the build
direction and contributing to crystallographic texture. Lower G/R values tend to promote the
formation of equiaxed grains. Transitions between these morphologies can occur within the melt
pool itself due to local variations in G and R,?% 2 resulting in mixed microstructures, as observed
experimentally in alloys like Ti (Fig. 1, bottom). Furthermore, the rapid solidification inherent to
AM often suppresses equilibrium phase transformations, leading to the formation of metastable
phases, such as o'-martensite in titanium alloys* or &-/0/-martensite in certain steels.>* Repeated
thermal cycling also induces intrinsic heat treatment (IHT) effects, driving solid-state
transformations like precipitation or tempering, and can lead to elemental segregation, forming
features like Laves phases in Inconel 7183! or influencing precipitation in AISil10Mg.3?

While beneficial for achieving fine microstructures and potentially enhanced
strength/hardness, these extreme thermal conditions also pose challenges.’® Steep thermal
gradients contribute to high residual stresses, potentially causing part distortion or cracking.®
Improper energy input, either too low or too high, can respectively cause lack-of-fusion porosity
or keyhole-induced porosity and overheating.>* The resulting microstructural features, such as

grain size, morphology, texture, phase distribution, and defects, collectively dictate the final
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mechanical performance, including strength, ductility, and anisotropy.® Therefore, precise control
and understanding of the thermal phenomena during AM are essential for tailoring microstructures

and optimizing component integrity and properties.

2.2 Melt Pool Dynamics

Melt pool dynamics play a central role in microstructure evolution during metal AM. High
thermal gradients, rapid solidification, and Marangoni convection in the melt pool create complex
transient conditions that influence grain morphology, phase formation, and defect generation. Key
process parameters, such as laser power, scanning speed, and hatch spacing, directly affect melt
pool geometry and thermal history, thus shaping the solidification path, as shown in Fig. 2.
Solidification parameters, namely the temperature gradient (G) and solidification rate (R), jointly
determine microstructural features via the G/R and GR values. Repeated thermal cycling in multi-
layer builds introduces further complexity through remelting, heat treatment, and recrystallization.
Computational modeling, supported by experimental methods like EBSD and synchrotron
imaging, enables the prediction of melt pool behavior and microstructure. The following
subsections explain the different phenomena in the melt pool and their influence on melt pool
geometry.

Marangoni convection: Marangoni flow is a surface-tension-driven phenomenon that plays a
significant role in metal AM. It arises from the presence of surface tension gradients along the free
surface of the melt pool, which are typically induced by temperature variation.?’- 3337 In most
metallic liquids, surface tension exhibits an inverse relationship with temperature, meaning that
hotter regions possess lower surface tension compared to cooler regions.'® 37 This gradient in

surface tension generates a tangential force that drives the fluid flow from areas of lower surface
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tension (hotter, often the center of the laser beam) towards areas of higher surface tension (cooler,
often the edges of the melt pool).3¢ However, as highlighted by multiple studies, the presence of
surface-active elements, such as sulfur in steels, can significantly alter this behavior, potentially
reversing the flow direction to inward (from cooler edges to the hotter center).> 27 These
Marangoni-induced flow patterns are fundamental in shaping the melt pool's size, depth, and
overall dynamics, which directly dictates the conditions under which the material solidifies.

The profound influence of Marangoni convection extends directly to the resulting
microstructure of the additively manufactured part. By dictating the fluid flow and heat distribution
within the melt pool, Marangoni forces modify the crucial solidification parameters, specifically
the thermal gradient (G), the solidification rate (R), and their ratio (G/R). These conditions
determine the size and shape of the metal grains. Marangoni convection directly affects
solidification rates and thermal gradients, which are critical in determining grain growth and
crystallographic texture.? For instance, process-microstructure models have shown that convection
affects grain structure by influencing nucleation events and the direction of grain growth. For
instance, stronger Marangoni flow can enhance bulk nucleation and promote equiaxed grains,’’
though its impact on grain morphology may be limited under some conditions.?® Its influence is
indirect, acting through melt pool shape and thermal gradients. The flow can also influence the
overall grain alignment, called texture, and can even be strong enough to bend growing crystal
structures called dendrites.??* Hence, the Marangoni convection determines the melt pool behavior
and consequently impacts the microstructure.

Natural convection: Natural convection in LPBF and DED arises from buoyancy forces due
to temperature-induced density gradients in the melt pool,?”- 37 lighter fluid rises while cooler,

denser fluid sinks, driving vertical flow that redistributes heat and alters cooling rates, key factors
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in solidification and grain evolution.3® Unlike Marangoni convection, which is driven by surface
tension gradients along the melt pool surface (primarily horizontal), natural convection acts
throughout the melt pool volume and is predominantly vertical .3® Although generally weaker than
Marangoni flow, natural convection has been shown to influence melt pool symmetry and grain
orientation, especially in larger pools (e.g., DED). It is often modeled using the Boussinesq
approximation and studied via CFD simulations.'® Experimentally, its effect is inferred from
asymmetries in melt pool geometry or grain structures (e.g., elongated columnar grains near the
melt pool center) as shown in the bottom Fig. 1. For example, Liu et al.3? used a multiscale thermal
and PF model in electron beam powder bed fusion (EB-PBF) of Ti-6Al-4V to show how the
interaction between thermal gradients and preferred growth directions controls grain orientation
and texture. Likewise, Liu et al.*° applied a 3D thermal-fluid and CA model in L-DED to highlight
how melt pool convection, driven by Marangoni and buoyancy forces, shapes grain morphology.

Evaporation and recoil pressure: Recoil pressure, generated by intense laser-induced surface
evaporation, plays a pivotal role in melt pool dynamics, particularly in LPBF and to some extent
in DED, as shown in Fig. 2. The vapor jet exerts a downward force on the melt pool, creating a
surface depression that enhances laser absorption through multiple reflections, potentially leading
to keyhole formation at high energy densities.*! Excessive recoil pressure can destabilize the melt
pool, promoting spatter, denudation, and powder entrainment.*?> Its magnitude scales with laser
power and scan speed and is highly sensitive to beam shape and intensity distribution.*? Processing
under vacuum or low ambient pressure, lowers the boiling point and amplifies recoil-induced
vapor plume effects, while elevated pressures may suppress vaporization but increase plasma
formation, which can further influence melt pool stability.**

A deeper understanding of internal melt pool pressures has been advanced through
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computational modeling. Dai et al.#?> used a multiphase computational fluid dynamics (CFD)
model to simulate the effects of recoil pressure on melt pool behavior in LPBF. Their work showed
that recoil pressure strongly governs melt pool depression and spatter formation, which are critical
for pore generation and microstructure evolution. Complementary studies also explored how
vapor-induced recoil pressure contributes to instability in the melt pool, influencing solidification
fronts and leading to defects such as keyholes and porosity.*> Furthermore, they illustrated that
recoil pressure gradients drive Marangoni and convective flows, which impact melt pool shape,
solidification fronts, and dendrite orientation.

Remelting: Remelting in metal AM, whether intentional (e.g., via a second laser pass) or
unintentional due to heat accumulation, plays a critical role in modifying microstructure by altering
thermal history, temperature gradients, and cooling rates, especially in LPBF and DED
processes.*® 47 The extent and effects of remelting are governed by parameters like laser power,
scan speed, layer thickness, and overlap, and can be tailored using pulsed wave lasers.**® This
secondary thermal cycle influences grain structure variably, some studies report grain refinement
through nucleation or fragmentation of columnar grains,*’-4° while others observe grain coarsening
due to prolonged high temperatures.’® It also affects crystallographic texture, occasionally
producing more randomly oriented grains that reduce anisotropy.*’ Moreover, remelting modifies
solid-state phase transformations and precipitation behavior, affecting phase fractions,
nanoprecipitate formation, e.g., Als(Sc,Zr), and ultimately, mechanical properties like
microhardness, strength, elongation, and isotropy.4’-31-32 Additionally, the influence of in-situ laser
polishing on pore defects is also observed. Collectively, these findings position remelting as a

powerful strategy for microstructure and property tailoring in AM.
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3. EXPERIMENTAL CHARACTERIZATION METHODS

Experimental characterization provides the essential physical foundation for understanding
microstructure characteristics and evolution in metal AM processes like LPBF and DED.>3
Establishing clear relationships of process-microstructure-property is critical for validating both
physics-based and data-driven predictive models.543¢ While simulations offer valuable insights,
their fidelity hinges on calibration and verification against the experimental data.®

A wide range of experimental methods (see Table 1) is used to observe microstructures and
defects at different length scales, as shown in Fig. 3. Techniques like Optical Microscopy (OM)
and Scanning Electron Microscopy (SEM) are employed for basic microstructural analysis, while
advanced tools such as Electron Backscatter Diffraction (EBSD), X-ray Computed Tomography
(XCT), and Transmission Electron Microscopy (TEM) provide high-resolution crystallographic,
3D, or nanoscale insights. These methods not only support direct investigations but also serve as
ground truth for refining simulations and training ML models.® Together, these methods enhance
understanding of the complex process—microstructure—property relationships in metal AM. Their
integration with computational approaches continues to drive advancements in AM research and
industrial practice. A more detailed discussion of the experimental limitations and emerging

strategies to address them is presented later in the review.
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4. PHYSICS-BASED COMPUTATIONAL MODELING

Physics-based approaches like PF, CA, and KMC simulate microstructure evolution by
solving governing equations for nucleation, grain growth, and phase transformations. Physics-
based computational methods are essential tools for understanding and predicting microstructure
evolution during metal AM processes. These methods use fundamental physical principles to
simulate the complex phenomena occurring during AM, providing insights into the process-
microstructure-property relationships. The following subsections discuss different numerical

techniques used to determine the microstructure in metal AM.

4.1 Phase-Field (PF) Method

PF modeling has emerged as a powerful mesoscale approach for simulating solidification
phenomena in metal AM, particularly under the rapid cooling and complex morphologies
encountered in LPBF and DED.7% Unlike sharp interface models, PF employs
thermodynamically consistent field variables (order parameters) governed by time-dependent
Ginzburg-Landau (TDGL) equations,’ allowing implicit tracking of solid-liquid interfaces and
grain boundaries.%® 7! PF models simulate nucleation, often based on undercooling, followed by
competitive grain growth, dendritic evolution, and coarsening.”> 73 Its ability to resolve dendritic
microstructures, such as primary dendrite arm spacing (PDAS), and predict features like
microsegregation and crystallographic texture, makes PF especially suited for AM.’* Studies by
Radhakrishnan et al.”* and Ma et al.”> have demonstrated PF’s strength in capturing columnar-to-

equiaxed transition (CET), grain size distribution, and branching behavior under AM thermal
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conditions. Solute diffusion is inherently modeled, enabling prediction of microsegregation and
phase formation, critical for local mechanical properties.

PF also allows crystallographic anisotropy to be incorporated in energy and mobility terms,
enabling prediction of texture aligned with directional heat flow, as often observed experimentally
in AM builds.”® 77 While PF simulations are limited to mesoscale volumes (10—100s of um),%. 73
as shown in Fig. 4, they provide indirect insight into defects like hot cracking via microsegregation
patterns and can be coupled with stress models for further prediction.’® 78 Multi-physics
integrations have enhanced PF's predictive capability, thermal fields from CFD or Finite Element
Method (FEM) models,®: 7>- 7° and melt pool dynamics from Lattice Boltzmann Methods® have
been used to drive PF evolution more accurately. These developments and their applications are
summarized in Table 2. Computational advances, including adaptive meshing, parallelization, and
integration with ML, now enable large-scale 3D simulations of polycrystalline microstructures
over microsecond to millisecond timescales. Compared to CA or KMC, PF’s diffuse interface and
thermodynamic rigor (often using CALPHAD databases for alloys like Inconel 718 and Ti-6Al-

4V) make it a more fundamental and flexible tool for AM microstructure modeling.60- 8. 69. 71,72

4.2 Cellular Automata (CA) Method

CA modeling has become a widely adopted mesoscale approach for simulating microstructure
evolution in metal AM,*? offering a strong balance between computational efficiency and physical
realism.®? CA discretizes the domain into a lattice of cells,!® where each cell updates its state (e.g.,
phase, grain orientation) based on local interaction rules and transient thermal fields, as shown in
Fig. 5, typically sourced from FEM or Finite Volume Method (FVM) simulations.?* This approach

effectively captures key solidification mechanisms such as nucleation, anisotropic grain growth,
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competitive growth, and epitaxial extension across layers.®> CA models operate over micrometer-
to-millimeter spatial scales and microsecond-to-second timeframes,3 making them suitable for
simulating representative AM volumes, including multiple melt tracks and layers.?” Grain-scale
phenomena, like fusion boundary nucleation, anisotropic dendritic growth, and competitive texture
evolution, are well captured in 3D CA.7 Grain morphologies such as columnar, equiaxed, and
zigzag structures have been simulated for alloys like Inconel 718 and AA-2024, with average grain
size predictions often within 10—-15% of experimental data.®® An overview of these advancements
is given in Table 3. Compared to PF models, CA models are more computationally scalable while
retaining strong physical representations of grain growth, texture evolution, and morphology

formation in AM processes. 05483

4.3 Kinetic Monte Carlo (KMC) Method

KMC modeling has become a key approach for simulating solidification phenomena in metal
AM, particularly for predicting microstructure evolution at the mesoscale capturing.’® These
methods simulate the probabilistic evolution of microstructures through discrete events, such as
atomic rearrangements and grain boundary migrations, driven by thermodynamic principles like
the minimization of interfacial energy.’ °! These models are well-suited to the stochastic nature
of grain growth and texture development that occurs during AM solidification. Applications of
KMC, such as the open-source SPPARKS simulator,”? exemplify its power in generating
representative microstructures for AM processes.

A primary mechanism modeled in KMC is curvature-driven grain boundary migration, with
events like atom attachment/detachment at solid-liquid interfaces, as shown in Fig. 6. Such models

have been employed to study the effects of process parameters such as laser speed on grain
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morphology,”® and transient thermal fields on grain structure dynamics.’* Furthermore, KMC
methods predict crystallographic texture by incorporating orientation-dependent event rates, as
demonstrated by Pauza et al.”> and Whitney et al.,°® where coupled models like Finite Difference-
Monte Carlo (FD-MC) help simulate texture evolution under complex AM heating cycles. Recent
advancements have focused on improving the computational efficiency of KMC simulations using
high-performance computing, as well as incorporating more realistic physical models, particularly
for nucleation and grain competition.!%°! A summary of these developments and their applications
is presented in Table 4. In addition, KMC simulations have been integrated with data-driven
approaches to better understand process-microstructure relationships.®? Despite these advances,
limitations in handling complex events like nucleation and grain growth under varied thermal

conditions remain, highlighting areas for future improvement.”

5. DATA-DRIVEN MODELS

Data-driven techniques are capable of handling complex problems across various fields,
including computer science, robotics, aviation, biomedical science, materials science, and
manufacturing.’’” The inherent complexities and limitations of experimental approaches in metal
AM have necessitated the adoption of data-driven modeling techniques, such as artificial
intelligence (AI), particularly ML.% Specifically, researchers have applied ML techniques in
different aspects of the metal AM, such as process control, design for AM, process monitoring,
process parameter optimization, quality control, defect detection, and property prediction.®” While
experimental methods play a crucial role in characterizing AM processes, they often fall short in

capturing the dynamic, fine-scale phenomena that occur during material deposition and
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solidification.® Moreover, the vast number of process parameters and their intricate
interdependencies pose significant challenges for comprehensive exploration through traditional
experimentation alone.”® High computational costs of physics-based simulation models often limit
their feasibility for real-time applications.'* Given the high-dimensionality and non-linearity of
AM processes, data-driven modeling has emerged as a powerful tool to complement physics-based
models.”® By leveraging experimental and simulation data, AI/ML techniques can improve
accuracy, efficiency, and scalability in predictive modeling, ultimately accelerating advancements
in AM technology.% This section provides a comprehensive review of the current state-of-the-art
in data science-based modeling for microstructure prediction in AM, encompassing the diverse
ML algorithms employed, the types of data utilized, and the key applications in prominent AM

Processes.

5.1 Machine Learning Models

A significant amount of work has focused on utilizing ML algorithms trained on experimental
data to predict microstructural features in AM components. These approaches aim to learn the
intricate, often non-linear relationships between input variables (e.g., process parameters, in-situ
monitoring data) and output microstructural characteristics (e.g., grain size, phase distribution,
defect formation). A wide array of ML algorithms has been employed, encompassing supervised
learning, unsupervised learning, and deep learning paradigms.®® Supervised learning algorithms,
which learn from labeled datasets, are particularly dominant and include linear models (Linear
Regression, Logistic Regression), instance-based learning (K-Nearest Neighbors - KNN), tree-
based models (Decision Trees, Random Forests, Gradient Boosting), Support Vector Machines
(SVM), Neural Networks (fully connected NN, convolution NN, Recurrent Neural Networks

(RNNs)), Long Short-Term Memory networks (LSTMs), and Gaussian Process Regression (GPR).
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Unsupervised learning techniques such as clustering (K-means, Hierarchical clustering, Gaussian
Mixture Models) and dimensionality reduction (Principal Component Analysis - PCA) are often
used for exploratory data analysis and feature engineering.

Deep learning (DL), a subset of ML employing multi-layered neural networks, has gained
substantial traction, with CNNs, RNNs/LSTMs, Generative Adversarial Networks (GANs), and
Variational Autoencoders (VAEs) being prominent architectures.!® CNNs excel at handling
image-based representations of microstructures, commonly derived from experiments or
simulations, by learning hierarchical spatial features directly from raw pixel data through
convolutional and pooling layers. Architectures like U-Net and 3D CNNs have proven effective
for tasks such as classification, semantic segmentation, object detection, and direct property
prediction.”® These models also act as powerful feature extractors, enabling dimensionality
reduction and integration with other ML models like RNNs or LSTMs for modeling temporal
evolution.!!. 102 Despite their strengths, CNNs treat microstructures as regular grids, which may
limit their ability to capture irregular grain interactions, an area where GNNs, with their
topological awareness, offer a complementary advantage.!'%3

Graph Neural Networks (GNNs) emerge as a powerful tool for predicting the properties of
polycrystalline materials by leveraging the graph-like structure of microstructures generated
through simulations. GNNs provide a robust approach for analyzing the complex topology of
polycrystalline microstructures in metal AM.!% By representing individual grains as nodes and
their boundaries as edges, GNNs effectively capture hierarchical relationships critical to
determining material behavior. This graph-based representation allows GNNs to inherently
understand grain adjacency and connectivity, fundamental aspects of microstructural evolution.

Unlike CNNs, which treat microstructure images as regular grids, GNNs operate directly on the
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irregular structure of grains, learning features that remain invariant to spatial arrangement and
grain count.'%: 1% Through message-passing mechanisms, GNNs aggregate information from
neighboring grains, enabling the network to capture the influence of local microstructural
environments on both individual grains and overall material behavior. This capability positions
GNN s as a potentially superior alternative to CNNs in microstructure analysis tasks. For example,
Dai et al.'% employed GNNs for predicting magnetostriction, while Thomas et al.!%3 applied them
to fatigue damage prediction. Several GNN architectures have been applied to microstructure
analysis in AM. Graph Convolutional Networks (GCNs), which generalize convolution to graph
data, have been utilized for feature extraction based on local grain neighborhoods.!% Although
Graph Isomorphism Networks (GINs) have not been widely explored in AM microstructure
analysis, their high expressive power suggests they hold potential for future applications.!0
Additionally, Physics-Embedded Graph Networks (PEGN), proposed by Xue et al.,’! as shown in
Fig. 7, reformulate the phase-field problem of microstructure evolution in AM as an unsupervised
machine learning task on a graph, significantly accelerating simulations.

Additionally, RNNs and LSTM networks, like GrainNN!°! and GrainGNN, %4 have been used
to model the temporal evolution of microstructures under rapid solidification. These models,
including PEGN and GrainGNN, not only enhance microstructure representation but also predict
material properties, serving as efficient surrogate models to reduce the need for extensive
experimentation. Their ability to model the evolution of grain structures under varying processing

conditions is essential for designing materials with tailored properties.
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5.1.1 Features of ML models

ML models used for microstructure prediction in metal AM typically rely on diverse input
features tailored to the modeling objective. These include process parameters (e.g., laser power,
scan speed), thermal history, grain orientation, microstructural images, in-situ monitoring data
(e.g., thermal signatures, AE signals), and material-specific attributes like chemical composition
or powder characteristics. The outputs range from grain structure features, such as morphology,
size, and orientation, to defect classification (e.g., pores, voids) and mechanical properties (e.g.,
yield strength, ultimate tensile strength).

Recent studies showcase the variety of ML methods adapted to LPBF and DED processes. For
instance, CNNs, including 3D CNNs and U-Net architectures, as shown in Fig. 8, have been
applied for grain structure and defect prediction.5® 17 Generative models like cGANs are used for
reconstructing microstructural features from processing parameters, while LSTM models such as
GrainNN predict time-resolved grain growth. Other approaches include artificial neural networks
(ANNs) that estimate grain growth from thermal gradients, and hybrid CNN-wavelet models to
infer mechanical property distributions. These techniques demonstrate the growing application of
ML in modeling process-microstructure-property relationships. A summary of ML-based studies

for microstructure modeling used in AM is provided in Table 5.

5.1.2 Training data

ML models for microstructure prediction in metal AM are trained using both experimental and
synthetic data. Experimental data typically includes images measured by SEM, EBSD, OM, and
XCT, along with process parameters like laser power, scan speed, and build orientation. These

datasets serve as inputs for models such as CNNs, which are well-suited for analyzing
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microstructural features. CNNs are widely used for tasks including defect detection, grain size
estimation, porosity analysis, and phase segmentation. GANSs, particularly cGANSs, further
enhance experimental datasets by generating synthetic microstructures, helping to address issues
of data scarcity and cost. These ML applications using experimental data are summarized in Table
6.

To broaden predictive capabilities, simulation-generated data from physics-based models such
as PF, CA, and KMC modeling are also utilized. These simulations replicate microstructure
evolution under varied processing conditions, offering extensive and controllable datasets for
training. ML models trained on such synthetic data can be used for surrogate modeling, parameter
calibration, and accelerated simulations, providing insights into scenarios that are difficult to
capture experimentally. The integration of both experimental and simulation data has significantly
improved microstructure prediction across AM processes like LPBF, DED, and EPBF. A summary

of ML-integrated simulation frameworks used in AM is provided in Table 7.

5.1.3 Hybrid Machine Learning Approaches

To enhance predictive capabilities and better capture the complex spatio-temporal evolution
of microstructures in metal AM, hybrid ML models are gaining traction. A particularly promising
direction involves combining CNNs with RNNs or LSTM architectures. In these models, CNNs
extract spatial features from microstructure images, while RNNs or LSTMs model their temporal
evolution, enabling predictions of grain growth or phase transformation over time.!'> Additionally,
using pre-trained CNNs as feature extractors followed by traditional ML regressors can be
advantageous when data is scarce. This transfer of learned spatial features minimizes the need for

extensive domain-specific training.!%
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To bridge simulation and experimental domains more effectively, advanced hybrid learning
strategies, such as hierarchical networks, multi-task learning, and transfer learning, are also
gaining adoption. These approaches reduce model complexity, enhance generalization, and embed
physical fidelity. Representative examples of these methods and their implementation strategies
are summarized in Table 8.1151139810014

These hybrid approaches are instrumental in advancing predictive modeling for metal AM.
Expanding on such methodologies, hierarchical multi-scale models have combined FD-MC
simulations for part-scale thermal prediction with PF modeling of o/a' transformations, where ML
surrogates effectively bridge scale transitions.®® Similarly, multi-task learning frameworks have
demonstrated the ability to simultaneously predict grain morphology and phase fractions from
processing parameters and thermal histories, enhancing generalization in data-sparse settings.
Transfer learning further strengthens this hybrid toolkit, by leveraging simulation-trained models
and fine-tuning with sparse experimental data, it significantly boosts predictive performance for
real-world applications. Furthermore, Ren et al.!'® combined high-speed synchrotron X-ray
imaging, in situ thermal imaging, and physics-based simulations to investigate pore defect
formation caused by unstable keyhole oscillations in LPBF of Ti-6Al-4V, while Yadav et al.!'”7
integrated data-driven and physics-driven components to model grain evolution in laser DED.
Likewise, PINNs offer a compelling framework by embedding physical constraints directly into
learning, especially powerful when experimental data is limited but physical laws are well

established.
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5.2 Physics-Informed Machine Learning (PIML)

PIML has emerged as a promising approach for modeling AM processes, especially in data-
scare environment or when dealing with the noisy data, offering a potential solution to the
limitations of traditional experimental, analytical, and numerical methods.!'® 1% These traditional
methods often suffer from drawbacks such as extensive setup times, high costs, difficulties in
generalization, and significant computational burdens.!?° PIML aims to address these challenges
by fusing physical laws with neural networks, enabling the development of process-
microstructure-property models that are rapid, generalizable, scalable, and transferable across
diverse AM processes, machines, and materials, while maintaining accuracy under varying
processing conditions.!!> 121-123

A core component of PIML is the incorporation of physical laws, expressed as partial
differential equations (PDEs) (e.g., conservation of mass, energy and momentum, heat transfer
equations), into the training process. This is achieved by adding loss terms to the loss function that
penalizes deviations from the governing equations.'!” This embedding of physics enhances
interpretability, reduces data requirements, and ensures physically plausible predictions. Figure 9
illustrates a typical PINN architecture applied to metal AM, showcasing the integration of physical

laws into the training process. A baseline PINN's loss function can be expressed as:

L =Lppg + Lpc+ Ly (1)

where these terms represent the losses associated with the PDE, boundary conditions, and initial
conditions, respectively.!1% 124

PINNs approximate a mesh-free approach, 2> 126 solutions to governing conservation equations
(e.g., PDEs), melt pool dynamics, grain nucleation and growth dynamics by minimizing a loss

Page 28 of 78



function that integrates physics-based constraints with initial/boundary conditions, and also some
experimental or simulated data.'?> 123 This allows for incorporating prior knowledge into the
model.'?” Modern deep learning libraries have enabled the use of automatic differentiation (AD),
which ensures efficient computation of gradients, reducing the computational cost associated with
traditional numerical simulations.'?¢ While AD is commonly used, the possibility of replacing it
with an approximation of a differentiation operator to further decrease computation time and
potentially guarantee a convergent rate has been explored.'?® Thus, in principle, PINNs can be
completely unsupervised when the data is not readily available and boundary or initial conditions
are well defined.!"”

A range of neural network architectures has been proposed to enhance the predictive power of
PINNs in AM. CNNs, LSTMs, and GNNs have been integrated into PINN frameworks, each
contributing to specific modeling challenges.'?* CNNs have shown effectiveness in image-based
microstructure prediction,'?! while LSTMs excel in modeling time-dependent solidification
processes.'?” GNNs, in particular, have advanced the accuracy of grain structure predictions by

efficiently handling irregular, non-Euclidean geometries, which are common in AM.7!- 124

5.3 Applications of PINN-based Microstructure Modeling in AM

Unlike conventional DL approaches, which rely heavily on large-labeled datasets, PINNs
embed fundamental physics laws, such as conservation of mass, energy and momentum, heat
transfer equations, and grain growth dynamics, into their learning process. This allows them to
predict temperature fields,!?2 123 125. 129 melt pool dynamics,”!> 128 porosity formation,''- 130 and

thermal stresses.!3! With this background, PINNs has potential application in predicting
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microstructural features like grain morphology, phase distributions, and defect formations under
varying processing conditions.

The ability of PINNSs to handle multi-scale phenomena is particularly beneficial for metal AM,
where processes span a wide range of scales. In AM, accurately capturing the transient temperature
fields is essential, as these thermal gradients drive grain growth and the overall evolution of
microstructures. PINN models can be tailored to focus on different scales by adjusting their loss
functions to emphasize fine details in temperature gradients, even within smaller melt pools. As
shown in Table 9, PINNs have demonstrated effectiveness in predicting temperature fields during
metal AM, with accuracy levels varying across different AM processes. For instance, recent
studies have demonstrated that transfer learning-based PINN models can predict the 3D
temperature distribution during single-track metal deposition with high accuracy, with average
temperature prediction errors reported to be below 1.3 %,!?° despite the limited availability of
labeled data.

In addition to temperature prediction, PINNs have proven effective in modeling melt pool
dynamics. By incorporating temperature-dependent material properties'3? into customized loss
functions based on physical laws,'?* 137 these models can accurately estimate both the size and
temperature of the melt pool.'?% 134 They are even capable of inferring key process parameters such
as the Reynolds and Peclet numbers from temperature and velocity data using an inverse
approach.!3! This capability extends to predicting complex behaviors like melt pool dynamics
under the influence of Argon gas-driven shear flows, without using any training data on velocity
and pressure, thereby avoiding the need to directly solve the notoriously challenging nonlinear

Navier—Stokes equations.!3!
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The evolution of microstructures also depends on grain growth and solidification processes,
which are intimately linked to the material’s thermal history. Recent advancements include the
integration of PINNs with other computational methods to model microstructure evolution, as
shown in Table 10. For example, a study detailed the calibration of a thermo-microstructural model
for LPBF of Hastelloy X by integrating a PINN for thermal analysis with a CA model for
microstructure simulation.'3® This approach leveraged the computational efficiency of PINNs for
thermal model calibration through inverse analysis based on experimental melt pool dimensions,
ultimately identifying the optimal CA parameters to represent observed microstructures. Similarly,
Liu et al.!3 also explored a hybrid physics-based data-driven process design framework using
physics-constrained neural networks to construct surrogates of process-microstructure
relationships for optimizing dendritic growth in alloys like Ti-6Al-4V. Kats et al.!!* proposed a
PIML framework for refining DED process parameters to achieve specific grain microstructures
by using high-fidelity numerical data and extracting thermal gradients and cooling rates to predict

grain size and aspect ratio.

5.4 PINNs: Current Status and Future Directions

The current active area of development involves modifications to the baseline PINN
framework. Ongoing research includes the use of adaptive activation functions to improve learning
performance and convergence in solving differential equations.'4? Efforts are also being made to
implement domain decomposition and preconditioning strategies, which aim to improve
scalability and accuracy when handling large spatio-temporal domains through parallel
computing.'4! In addition, alternative sampling methods are being investigated to increase training

efficiency in regions with sharp gradients or complex physical behavior.!4?
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A significant advancement in this field is the integration of PINNs with in-situ monitoring
techniques, such as real-time thermal imaging (see Table 9). By incorporating real-time sensor
data into the PINN framework, these models can dynamically update their predictions, leading to
more accurate process control and optimization. This approach is further reinforced by the
development of physics-informed online learning models, which continuously update their
weights as new data becomes available, thereby improving real-time process control.!?> Another
promising direction is Transfer Learning and Domain Adaptation, which enhances the
generalization capabilities of PINNs for metal AM applications.!?> These methods involve pre-
training PINNs with simulation data (see Table 9) and fine-tuning them with experimental data,
reducing training time and improving prediction accuracy. This approach enables PINNs to
leverage computationally generated data while ensuring robust performance when applied to real-
world experimental observations. Given the inherent uncertainties in AM processes, researchers
are actively developing probabilistic PINN models to enable uncertainty-aware predictions.!43-146
These models provide confidence intervals for predictions, offering a more comprehensive
understanding of model reliability and robustness. Finally, ongoing research is focused on
architectural enhancements for PINNs in AM applications.!!- 125 This includes the incorporation of
lightweight attention mechanisms, ResNet blocks, and fully connected layers to better capture
spatiotemporal correlations within complex AM processes while maintaining computational
efficiency. These architectural enhancements aim to boost the model's ability to learn and represent

the intricate physical dynamics that govern microstructure evolution.
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6. CHALLENGES AND OUTLOOK

6.1 Experimental characterization challenges

Despite advances in characterization techniques, significant challenges remain in capturing the
microstructure evolution during metal AM. A major limitation is the inability to directly observe
microstructural changes during the rapid melting and solidification phases. While in-situ
monitoring of thermal fields and melt pool dynamics offers indirect insights, these methods do not
visualize the evolving solid structure itself. Establishing clear relationships between the wide range
of process parameters and the resulting hierarchical microstructure across multiple length scales is
difficult and requires extensive experimentation. This effort is further hampered by the lack of
high-throughput and standardized characterization methods, as well as difficulties in managing the
large datasets produced by modern techniques.

Moreover, comprehensive experimental campaigns remain costly and time-consuming, acting
as a bottleneck for validating simulation models. Similar to other approaches, the high cost of
experiments under complex conditions, such as the unstable and highly dynamic nature of the melt
pool with rapid thermal and flow fluctuations, along with its microscopic scale that complicates
in-situ observation, limits the availability of validation data. Even simulation-guided methods, like
the KMC approach, ultimately depend on rigorous experimental validation. Addressing these
challenges requires innovative experimental methods. Emerging techniques such as synchrotron-
based high-speed X-ray imaging and diffraction offer promising in-situ capabilities. Correlative
microscopy, combining XCT, SEM/EBSD, and TEM on the same sample, provides a more

comprehensive multi-scale perspective. Additionally, ML tools can accelerate the analysis of
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complex image and diffraction data, supporting the generation of high-fidelity datasets needed to

validate both physics-based and data-driven models.

6.2 Numerical modeling challenges

Recent progress in numerical modeling has significantly advanced our understanding of
microstructure evolution in metal AM, particularly in LPBF and DED. However, simulating the
rapid solidification and non-equilibrium conditions intrinsic to AM remains computationally
challenging. High-fidelity models such as PF are particularly resource-intensive, limiting their
scalability for large-scale or multi-layer simulations, and thus driving ongoing efforts in
algorithmic optimization. Although more efficient, CA and KMC methods still face challenges in
modeling full-part geometries and often rely on empirical parameters that are difficult to calibrate
under AM-specific conditions. Table 11 summarizes key computational approaches for
microstructure modeling, outlining their features, strengths, and numerical limitations.
Additionally, critical phenomena such as solute segregation, re-melting, and defect formation, key
to grain morphology and texture, are either oversimplified or neglected in most models.

Beyond individual modeling approaches, developing accurate multi-scale frameworks that
couple different physical phenomena across length and time scales remains a core challenge. The
hierarchical nature of AM solidification, from melt pool behavior to grain evolution and atomic-
scale interactions, necessitates integrated models that can resolve process—microstructure—
property linkages. Coupled frameworks that integrate CFD, FEM, and microstructure models show
promise, but these are often computationally expensive and difficult to validate experimentally.
Sequential or weakly coupled strategies, while more feasible, can suffer from data mapping

inaccuracies across differing grids or solvers, ultimately reducing predictive accuracy. Bridging
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these gaps will require the adoption of hybrid approaches, particularly ML techniques, including

PINNS, to enable faster and more accurate simulations across scales.

6.3 ML challenges

Despite recent progress, purely data-driven models for microstructure prediction in metal AM
face key limitations. A major hurdle is the lack of comprehensive, high-quality, and well-labeled
datasets linking process parameters to detailed 3D microstructural outcomes. The multi-scale,
multi-physics nature of microstructure evolution, driven by rapid solidification, complex thermal
gradients, and non-equilibrium effects, is difficult to fully capture with “black-box” ML models.
While ML offers speed and scalability, these models often lack physical interpretability and may
produce unreliable predictions, especially when extrapolating beyond the training domain or
across different length scales. Integrating physics-based knowledge into ML improves
generalization, but balancing accuracy, scalability, and fidelity across scales remains challenging.
Furthermore, many existing models primarily focus on predicting static microstructural features,
with limited capability to capture the dynamic evolution of microstructure during processing.

A key challenge is generalizability across different AM processes, as models trained on one
process (e.g., PBF) may not perform well on others (e.g., DED) due to differences in thermal
histories and grain evolution. This underscores the need for standardized data-sharing protocols
and public benchmark datasets, such as AMMD and AM-Bench, which, similar to MNIST and
ImageNet in computer vision, could significantly enhance ML transferability in AM. Additionally,
DL models often suffer from high computational cost, lack of interpretability, and an inability to
quantify uncertainty, which limits their reliability in decision-making contexts. However,

challenges remain in modeling dynamic microstructure evolution, managing computational cost,
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and improving model explainability, making physics-informed and uncertainty-aware hybrid
models essential for trustworthy and robust AM predictions. Recent advances in Uncertainty
Quantification (UQ) have addressed this by distinguishing between aleatoric (process-induced)
and epistemic (model-related) uncertainties. Techniques such as Bayesian Neural Networks
(BNNs), probabilistic models and ensemble learning are gaining traction. Advancing uncertainty-
aware, explainable ML frameworks is crucial for trustworthy and scalable predictive modeling in

AM.

6.4 PIML modeling outlook

PIML has emerged as a promising framework for modeling microstructural evolution in metal
AM. By embedding governing physical laws into neural networks, PINNs provide a mesh-free
alternative to traditional PDE solvers, enabling simulation of complex phenomena such as heat
transfer and grain growth. However, challenges persist in training stability, computational cost,
and generalization across materials, geometries, and process conditions. Ongoing research is
exploring solutions such as domain decomposition, dynamic loss weighting, and adaptive
sampling to improve training efficiency and accuracy. Transformer-based PINNs and neural
operators are also being investigated to address issues like spectral bias, gradient imbalance, and
ill-conditioning. Despite being designed for low-data regimes, PINNSs still rely on high-quality
experimental or simulated training data, and errors such as "propagation failure" can accumulate
without proper initialization or boundary conditioning.

When modeling highly complex and multi-physics phenomena like microstructural evolution,
the underlying PDEs can be too intricate for PINNs to learn effectively without anchoring through

experimental or numerical data. While PINNs offer flexibility across spatial-temporal scales,

Page 36 of 78



unlike traditional numerical methods constrained by time-stepping schemes, convergence can be
slow or unstable under stiff or poorly scaled conditions. Without sufficient grounding, error
accumulation and unreliable extrapolation can occur. Another limitation of PINNs lies in their
application to multi-physics, high-dimensional AM processes such as LPBF, where balancing
constraints or hyperparameter from different physical domains remains difficult. Addressing these
challenges requires improved strategies for UQ, such as Bayesian PINNs, and enhanced data
handling methods, including transfer learning and data augmentation. Recent advances have also
focused on error control in noisy or sparse datasets and incorporating dynamic activation functions
to better represent unknown conditions. To make PINNs viable for real-time adaptive control in
AM, future work must prioritize scalable algorithms, robust training strategies, and high-
performance computing integration. Interdisciplinary collaboration will be essential to bridge the

gap between data-driven models, physics-based principles, and practical AM implementation.

7. CONCLUSIONS

This work has assessed the state-of-the-art of microstructure modeling for metal AM, with a
particular focus on processes such as LPBF and DED. Foundational experimental techniques
remain essential for characterizing microstructural features and validating predictive models.
Traditional computational methods, such as PF, CA, and KMC, offer valuable mechanistic insights
into phenomena like grain growth and solidification dynamics, but they face limitations in
scalability, computational cost, and complexity. Meanwhile, data-driven approaches using ML

have shown significant promise in capturing complex process—microstructure relationships.
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However, these models often require large, high-quality labeled datasets and high computation
cost, and tend to operate as “blackbox”, limiting interpretability and generalizability. These
challenges emphasize the growing need for physics-informed learning frameworks that can enable
accurate yet data-efficient microstructure prediction, process optimization, and consistent part
quality in AM.

PIML, particularly PINNs, has emerged as a powerful paradigm that bridges the gap between
physics-based modeling and data-driven modeling. By embedding governing physical laws into
the training process of neural networks, PINNs offer improved generalizability, reduced data
dependence, and enhanced interpretability. Applications of PINNs to thermal field prediction and
melt pool dynamics have demonstrated great potential, offering mesh-free solutions and achieving
high accuracy even with small, labeled data, and ongoing research is now extending their use to
direct microstructure prediction. Future efforts may focus on improving training efficiency,
incorporating uncertainty quantification, adopting advanced neural architectures such as CNNss,
LSTMs networks, and GNNs, and integrating real-time in-situ sensing for adaptive process
control. As PIML progresses, interdisciplinary collaboration and the convergence of experimental,
computational, and Al-driven approaches will be essential for building robust, scalable, and
intelligent AM systems capable of producing defect-free, high-performance components with

tailored microstructures.
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FIG. 1: Solidification map as a function of temperature gradient and solidification rate?’ (top),?’ and micrograph
showing the formation of equiaxed and columnar grains in asolidified melt pool® (bottom).?
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FIG. 2: Different multiphysics and forces acting on the melt pool .2
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FIG. 3: Four microstructure levels in LPBF-processed SS316L: melt pool, grains, cells & dendrites, and twins &
phases, shown in decreasing scale.®
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FIG. 4: Phase-field modeling framework for the solidification of Ti-6Al-4V, illustrating beta grain growth.5” (FZ:
Fusion Zone Boundary; HAZ: Heat Affected Zone Boundary).
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FIG. 5: Cellular Automata model illustrating grain boundary nucleation in LPBF of Al-alloy; (a) Transverse Direction
(TD) section at mid-width and (b)—(d) corresponding Build Direction (BD) sections.3?
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FIG. 6: KMC-simulated thermal gradient (G), solidification rate (R), and microstructure evolution for a thin-wall
build, highlighting layer variations and nucleation effects.®®
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FIG. 8: 3D U-Net for microstructure prediction using grain orientation and temperature inputs with coarse-grained
time steps.8
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FIG. 9: PINN framework integrating experimental and/or simulation data with physics-based constraints.
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TABLES

Table 1: Characterization Techniques and Applications in Metal AM

Technique Process Application Focus Ref.

OM LPBF Grain size, melt pool size, porosity 2
Melt pool, porosity (LOF/gas/keyhole), dendrites
SEM LPBF, DED 46, 58

structure, surface analysis

Grain orientation, size, texture, misorientation,

EBSD LPBF, DED ML
B-grain
X-ray Diffraction
LPBF, DED Phases (a, B, martensite), texture 60, 61
(XRD)
Dislocations, precipitates, substructures,
TEM LPBF, DED (258
strengthening
Energy Dispersive
X-ray Spectroscopy LPBF, DED = Composition, phase ID, vaporization defects 28, 64
(EDS/EDX)
3D pore imaging: morphology, volume,
XCT LPBF, DED &
distribution
In-situ Process Melt pool size, keyhole, spatter, balling
LPBF, DED 65, 66
Monitoring (IR/Vis/Acoustic)
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Table 2: PF Modeling Applications in AM

Process Material Application Focus Ref.

Solidification (B grain) and fB—o/a’ transformation
LPBF Ti-6Al-4V 60
using hybrid PF + ML + FDMC

Melting, solidification, dendrite growth, solid phase
DED H13 steel 81
transformation, CALPHAD-based

Ti-based alloys  PDAS prediction, site-specific segregation, melt pool
LPBF i
(Ti-45A1) validation

Solidification and multiphase modeling, integration
LPBF IN 718 s
with post-build heat treatment

Ni-based

LPBF/DED Microstructure evolution, PF-FE-CALPHAD coupling =~ 74
superalloys
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Table 3: CA Modeling Applications in AM

Process Material Application Focus Ref.

Grain structure formation during solidification, using
LPBF 316L SS ih
CAFE (CA + thermal FE)

Thermal history, grain morphology (dendritic, columnar),
DED  Ti-6Al-4V 89
nucleation, growth orientation (CA-FE)

Binary B-Ti alloy = Grain nucleation and growth, Columnar-to-Equiaxed
DED e
systems Transition (CET), parameter effects

Grain structure evolution (2D & 3D CAFD),
LPBF Ti-6Al-4V, 7
experimental validation

Microstructure evolution using numerical CA modeling

LPBF NiTi SMA 20
approach
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Table 4: KMC Modeling Applications in AM

Process Material Application Focus Ref.

KMC-based 3D microstructure dataset generation;
LPBF High-Mn steel e
scan strategy effects

Dynamic KMC for grain morphology prediction
LPBF/DED 1IN 625, 304L SS 94
under evolving melt pool and HAZ conditions

Ni-based Texture-aware Potts model; effects of hatch spacing
LPBF =
superalloy and layer thickness

Grain growth modeling in HAZ; solid-state phase

DED Ti—6Al-4V 96
evolution during thermal cycles
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Table 5: ML Models for Microstructure and Property Prediction in Metal AM

Process ML Model Input Output Ref.
VGGNet
LPBF Grain ID, crystal orientation Mechanical properties AUy
(3D CNN)
Modified U-Net Elastic stress fields,
LPBF Microstructure images >8
(CNN) defect mapping
CNN + Wavelet
DED Thermal history Ultimate tensile strength 108
Transform
Conditional GAN Microstructural feature
LPBF Laser power & speed 109
(cGAN) prediction
Thermal gradient, crystal
DED ANN Grain growth prediction = 110
orientation

Epitaxial grain growth
LPBF  LSTM (GrainNN) Temporal grain growth data 1ol
prediction
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Table 6: ML Applications Using Experimental Data in Metal AM

Experimental Data

Micrograph Images
(OM, SEM)
Pyrometer & High-
speed Camera
Thermal & Optical

Tomography Images

High-speed Imaging

Process

LPBF

LPBF

LPBF

LPBF

ML Model

cGAN

SeDANN

KNN

SVM, MLP,

KNN, RF, CNN

Application Ref.

Predicted a-phase / martensite
109

morphology and size

Predicted the melt pool width 1l

Predicted porosity, melt pool
13

depth, and grain size
Detected various defects

58

(keyhole, under-melting, balling)
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Table 7: ML-Integrated Simulation Frameworks for Microstructure Prediction in Metal AM

Simulation Process ML Model Applications Ref.

CNNs /3D U- 3D grain structure prediction, surrogate

LPBF 68
Net modeling for complex PF simulations
PF Method Diffusion Captures irregular and realistic grain
LPBF Probabilistic morphologies for microstructure 12
Field Model generation
Neural CA-FVM + NN to predict grain
CA Method DED 13

Networks (NN)  shape/aspect ratio from thermal history
KMC Surrogate time-dependent modeling of

LPBF/DED LSTM-SE 114
Method precipitate kinetics
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Table 8: Hybrid ML Methods for Microstructure Prediction in Metal AM

Hybrid Method

CNN + RNN/

LST™M

Hierarchical

Networks

Multi-task

Learning

Transfer

Learning

Physics-Data

Fusion

Input

Microstructure

images

Thermal history

Thermal history,
process

parameters

Simulation-
trained CNN

features

Simulation data,
in-situ/optical

observations

Output

Grain growth, phase

evolution

Microscale grain
morphology, phase

fractions

Grain size,
orientation, phase

fraction

Experimental
microstructure

predictions

Microstructure

evolution (Potential)

Remarks

Learns spatial features
and their temporal

dynamics

ML surrogates couple
mesoscale and microscale

predictions

A single model
simultaneously predicts
multiple microstructural

features

Enhances real-world
predictions using limited

experimental data

Combines physics-based
modeling with data-

driven learning

Ref.

115

113

98

100

14
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Table 9: PINN Applications for Thermal Prediction and Melt Pool Dynamics in AM

Process Method Input Output Ref.
Transfer Learning- IR images, simulation
DED 3D temperature field =
based PINN data

FEM simulation data,
DED PINN Temperature field 132
validated by DED

Temperature, melt pool

LPBF/DED ANN-based PIML Simulation data =
dimension

Process parameters, Temperature

LPBF/DED Thermoelastic PINN 134
FEM data (thermoelastic behavior)

DED PIML No labeled data 3D temperature field s

Temperature — small Temperature field, melt

LPBF/DED RAA-PIML 122
labeled simulations pool morphology

Process parameters,
LPBF/DED  Two-level PIML Melt pool size e
pre-scan temperature

Page 76 of 78



Process

LPBF/DED

DED

LPBF

Table 10: PINN Applications for Microstructure Prediction in AM

Method

PCNN with Bayesian

Optimization

PIML

PINN for thermal & CA

microstructure model

Input
PF simulation with
varying parameters
High-fidelity
numerical data
Experimental melt

pool dimensions

Output Ref.

Dendritic area, micro
139

segregation

Grain microstructures 113

Temperature, melt pool,
138

microstructure
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Approach

PF

CA

KMC

Data-

Driven

Table 11: Comparison of Modelling Approaches

Key Features

Continuous
representation, multi-
physics

Discrete, rule-based
evolution
Probabilistic, event-

driven simulation

Uses large datasets;

various architectures

Advantages

High fidelity; detailed

interface tracking

Fast, captures local
interactions
Effective for large-
time scale

Fast predictions;
transferable to new

data

Limitations

High computational cost;
parameter sensitivity;
Effective for small time scale
Limited resolution;
oversimplification
Computationally intensive

for large systems

“Black box” behavior; high

data requirement
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