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ABSTRACT
Among thenonparametricmethods of estimating the number of communities (K) in a community detection
problem, methods based on the spectrum of the Bethe Hessian matrices (Hζ with the scalar parameter ζ )
have garneredmuch popularity for their simplicity, computational efficiency, and robustness to the sparsity
of data. For certain heuristic choices of ζ , suchmethods have been shown to be consistent for networkswith
N nodes with a common expected degree of ω(logN). In this article, we obtain several finite sample results
to show that if the input network is generated from either stochastic block models or degree-corrected
block models, and if ζ is chosen from a certain interval, then the associated spectral methods based on Hζ
is consistent for estimating K for the sub-logarithmic sparse regime, when the expected maximum degree
is both o(logN) and ω(1), under some mild conditions even in the situation when K increases with N. We
also propose a method to estimate the aforementioned interval empirically, which enables us to develop
a consistent K estimation procedure in the sparse regime. We evaluate the performance of the resulting
estimation procedure theoretically, also empirically through extensive simulation studies and application to
a comprehensive collection of real-world network data. Supplementarymaterials for this article are available
online.
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1. Introduction

Statistical analysis of networks has now become a well-studied
field within statistics (see Goldenberg et al. 2010; Kolaczyk and
Csárdi 2014 for reviews). Methods for network data analysis are
being developed not only in the discipline of statistics but also in
computer science, physics, and mathematics. Network datasets
show up in several disciplines. Examples include networks
originating from biosciences such as gene regulation networks
(Emmert-Streib, Dehmer, and Haibe-Kains 2014), protein–
protein interaction networks (De Las Rivas and Fontanillo
2010), structural (Rubinov and Sporns 2010) and functional
networks (Friston 2011) of brain and epidemiological networks
(Reis, Kohane, and Mandl 2007); networks originating from
socialmedia such as Facebook, Twitter and LinkedIn (Faloutsos,
Karagiannis, and Moon 2010); citation and collaboration
networks (Lehmann, Lautrup, and Jackson 2003); information
and technological networks such as internet-based networks
(Adamic and Glance 2005), power networks (Pagani and
Aiello 2013) and cell-tower networks (Isaacman et al. 2011).
There are several active research areas in developing statistical
inference methods for network data analysis and for deriving
the theoretical properties of the statistical methods. Examples
of inferential questions that have received a lot of attention in
current active research include fitting random graph models to
the network datasets (Goldenberg et al. 2010), finding stochastic
properties of summary statistics of networks like subgraph
counts (Bickel, Chen, and Levina 2011), community detection
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(Fortunato 2010; Abbe 2017) and link prediction (Liben-Nowell
and Kleinberg 2007).

The last two decades saw a resurgence of interest in a problem
popularly known as “community detection.” For this problem,
the main task is to partition the nodes of a given graph into K
communities so that the number of edges within communities
is more than that between communities, where K is assumed to
be known a priori. Such community structures are also known
as assortative community structures. Estimating the number
of clusters in a clustering problem has quite a bit of history
(e.g., Rousseeuw 1987; Tibshirani, Walther, and Hastie 2001;
Von Luxburg 2010). However, estimating the number of clusters
in a clustering problem does not directly carry over to the prob-
lem of estimating the number of communities in a community
detection problem.

Recently, a new line of research to estimate K for network
datasets with community structure has become active in the
literature. Typical approaches in this regard include designing
suitable algorithms, testing the performance of the algorithms
using simulated data, and proving desirable properties of the
algorithms (e.g., Le and Levina 2015; Bordenave, Lelarge, and
Massoulié 2015; Gulikers, Lelarge, and Massoulié 2016; Riolo
et al. 2017; Wang and Bickel 2017; Yan, Sarkar, and Cheng 2018;
Hu et al. 2019; Ma, Su, and Zhang 2021). Degree-Corrected
Block Model (DCBM), Stochastic Block Model (SBM), and sev-
eral of their variants have been widely used to generate random
networks with community structure.
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While the initial focus in the literature for estimating K
has been developing algorithms and drawing support from
domain-specific intuition and empirical studies using SBM (e.g.,
Saade, Krzakala, and Zdeborová 2014; Riolo et al. 2017; Yan,
Sarkar, and Cheng 2018), there has been recent progress in
attaining a theoretical understanding of community number
estimation using model selection techniques. Bhattacharyya
and Bickel (2015) proposed a hypothesis testing approach with
bootstrapping, Chen and Lei (2018) and Li, Levina, and Zhu
(2020) used cross-validation, Yan, Sarkar, and Cheng (2018)
proposed a semidefinite programming approach, Hu et al.
(2019) used the BIC criterion, Chen andHero (2018) considered
a phase transition criterion, and Ma, Su, and Zhang (2021)
presented an approach based on binary segmentation and profile
likelihood ratio. Cerqueira and Leonardi (2018) introduced a
novel method, albeit computationally inefficient, based on a
penalized version of the Krichevsky-Trofimov (KT) mixture
distribution to detect K for SBM networks, and the authors
showed consistency of the method in sparse regimes provided
the expectedmean degree grows to infinity. A stepwise goodness
of fit approach for the estimation of K was also provided in
another recent work by Jin et al. (2022). But the method in Jin
et al. (2022) was based on denser networks.

As nonparametric alternatives that are computationallymore
efficient and applicable to a broader range of settings, methods
based on the spectrum of the non-backtracking operator1
(Bordenave, Lelarge, and Massoulié 2015; Gulikers, Lelarge,
and Massoulié 2016) and Bethe Hessian operator2 have been
considered (e.g., Saade, Krzakala, and Zdeborová 2014; Le
and Levina 2015; Dall’Amico, Couillet, and Tremblay 2019,
2020). Bordenave, Lelarge, and Massoulié (2015) and Gulikers,
Lelarge, and Massoulié (2016) analyzed the spectrum of the
non-backtracking matrix theoretically in the sparse case for
two-community networks. A review of the community number
estimation methods related to the Bethe Hessian and the
non-backtracking matrix is given in Section 2.4. However,
none of the proposed methods in the literature produces a
computationally efficient (polynomial-time) estimator of the
number of communities with mathematically rigorous proofs for
correctness and consistency in the sparse network regime when
the expected degrees of the nodes are sub-logarithmic in the
number of nodes for networks with community structures. We
focus on this specific problem in this article.

The main contributions of this article are the following.

• We show that if ζ is chosen from a specific interval, then
the number of communities K of networks generated from
either the SBM or the DCBM can be estimated by counting
the number of negative eigenvalues of the associated Bethe
Hessian matrix Hζ having parameter ζ even when the net-
work is heterogeneous in terms of the expected degrees of the
nodes. We derive theoretical results in order to show that the

1Given a set of edges E in a graph, the non-backtracking operator is a 2|E| ×
2|E|matrix indexed by directed edges such that the (ij, kl)th element takes
on a value of 1 if j = k, i "= l and 0 otherwise.

2Given an N × N adjacency matrix A, the Bethe Hessian operator is an N × N
matrix definedas (ζ2−1)I−ζA+Dwithparameter ζ > 1, a diagonalmatrix
D with the degree of node i in Dii and identity matrix I. See Section 2.3 for
a detailed discussion.

estimated number of communities is consistent in the sparse
regime, where the maximum among the expected degrees
of all N nodes is both ω(1) and o(logN), under some mild
conditions on the signal-to-noise parameters of the SBM
and DCBM, even when K increases with N. Results in this
article are one of the very few rigorous results to show that it
is possible to estimate the number of communities consistently
and (computationally) efficiently for networks in the sparse
regime.

• We also provide a method to find an estimator within the
aforementioned interval from which one needs to choose
the parameter ζ in order to have a consistent estimator of
K using Hζ . We derive theoretical results in order to show
that the estimator of K based on the empirically estimated ζ

as mentioned above is consistent in the sparse regime under
some mild conditions on the parameters of the SBM and
DCBM. We note that there are two tuning parameters in
the estimation procedure.We provide theoretical guidance in
Lemma4.3 and empirical guidance in Section 5.2.1 for tuning
these hyperparameters. To the best of our knowledge, the K-
estimation procedure we have developed here is the first of its
kind in that it is simultaneously (a) computationally efficient
(polynomial-time), (b) provably consistent (a rigorous analytic
proof is given in Section 4), and (c) works consistently even
when the input network is in the sparse regime.

• We demonstrate the efficacy of our methods via extensive
simulation studies and the application of our approach to a
comprehensive collection of real-world network data arising
in diverse areas of interest.

The rest of the article is organized into five sections. In
Section 2, we provide an introduction to the network data gen-
erating models, the Bethe Hessian matrices, and the relevant
literature. In Section 3, we provide theoretical results on the
Bethe Hessian matrices for networks in the sparse regime. In
Section 4, we provide an algorithm for estimating K and pro-
vide theoretical results on the consistency of the estimator. In
Section 5, we provide an extensive simulation study on various
aspects of the proposed method to estimate K and compare our
proposed method with existing ones. In Section 6, we apply our
proposed method to a large collection of real-world network
datasets.

2. Preliminaries

2.1. Notation

For some constant N, if for all n ≥ N, we use the well-known
rate notations,

f (n) =






O(g(n)) if lim supn→∞
f (n)
g(n) < ∞

o(g(n)) if lim supn→∞
f (n)
g(n) = 0

ω(g(n)) if lim infn→∞
f (n)
g(n) = ∞

#(g(n)) if lim infn→∞
f (n)
g(n) > 0 and

lim supn→∞
f (n)
g(n) < ∞.

R+ (resp. Z+) denotes the set of positive real numbers
(resp. integers). ForN ∈ Z+, let [N] denote the set {1, 2, . . . ,N}.
The adjacency matrix, denoted by A, is a random symmetric



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

matrix whose rows and columns are labeled by nodes in [N],
where Aij equals 1 (resp. 0) if there is an (resp. no) edge between
nodes i and j. 1N denotes a vector of N ones and IN denotes
the N × N identity matrix. The average observed degree (the
average row sum of A) is denoted by dA := 1

N 1TNA1N . λ
↓
% (A)

(resp. λ↑
% (A)) denotes the %th largest (resp. smallest) eigenvalue

ofA. λmax(A) (resp. λmin(A)) denotes the largest (resp. smallest)
eigenvalue of A. ‖·‖ (resp. ‖·‖F , ‖·‖ψ1/2 , and ρ(·)) denotes the
spectral norm (resp. Frobenius norm, Orlicz norm, and spectral
radius) for matrices. Note that the spectral radius for a square
matrix is its maximum absolute eigenvalue. Given a vector x
having length n, let diag(x) be an n × n diagonal matrix whose
diagonal entries are those of x. For an n×nmatrixM, let diag(M)

denote an n × n diagonal matrix which is obtained from M by
zeroing out all off-diagonal entries. For a matrixM,Mij denotes
its (i, j)th element. Similarly, xi denotes the ith element of a
vector x. For a given parameter p, we use p̂ to denote an estimator
that will be specified. We denote the cardinality of a finite set S
by |S|. For notational convenience, we use P to denote E(A). A
summary of some more notations involving A and P is given in
Table 1.

2.2. Network GenerativeModel

The degree-corrected block model (DCBM), which includes
the standard stochastic block model (SBM) as a special case,
is a generative model for network data that embeds a com-
munity structure in A. DCBM has four sets of parameters:
(a) the number of communities K; (b) the community allo-
cation probability vector π = (π1, . . .,πK) ∈ (0, 1)K satis-
fying

∑
i∈[K] πi = 1; (c) the degree parameter vector ) =

(ψ1, . . .,ψN) with ψi ∈ (0, 1], ∀i ∈ [N]; and (d) the K × K con-
nectivity probability matrix B of rank K with all positive eigen-
values3. Given the parameters, the community labels z1, . . . , zN
for nodes 1, . . . ,N, respectively are generated independently
fromMultinomial(1;π) distribution. Having obtained the com-
munity labels, nodes i and j are connected with probability
ψiψjBzi,zj . The latent membership vector z = (z1, . . ., zN) ∈
[K]N consisting of community labels for all nodes is a set of
unknown latent variables for the model. For each k ∈ [K],
Ck ⊆ [N] denotes the set of all nodes having community label k.

In our theoretical results in Section 3, we take ) to be a set
of fixed (nonrandom) numbers in (0, 1). In the supplement (see
Section B.2), we extend our theoretical results to the case where
) is allowed to be a random vector. In order to maintain the
identifiability of the DCBM parameters, we assume that ) are
normalized so that the maximum in each community is 1 (as
done in Lei and Rinaldo 2015). That is,

max
i∈Ck

ψi = 1 for all k ∈ [K] (1)

Suppose (ψi′)i are unnormalized degree parameters, then we
take for all i, ψi = ψ ′

i/maxj∈Ck ψ ′
j , i ∈ Ck, so that the

identifiability assumption is satisfied.
We letNk :=

∑
i∈Ck

[ψ2
i /dPi ], where dPi is the expected degree

of node i, for each k ∈ [K]. For k ∈ [K], Nk is a measure of

3This is a standard condition to ensure assortative community structures (Lei
and Rinaldo 2015; Bhattacharyya and Chatterjee 2020).

the contribution of degree parameters to the expected degree in
the kth community. Without loss of generality, we consider that
community sizes are in descending order, that is, |C1| ≥ |C2| ≥
· · · ≥ |CK |. Community sizes are assumed to be balanced,
that is, |C1|/|CK | = #(1). Let Z be the N × K community
membership matrix, such that Zik = 1 if node i ∈ Ck. Then,
the above network generating mechanism tells us that

Z1,∗, . . .,ZN,∗
iid∼Multinomial(1;π),

P := diag())
(
ZBZT − diag(ZBZT)

)
diag()),

Aij
indep∼ Bernoulli(Pij) for 1 ≤ i < j ≤ N.

We denote the maximum expected degree by dPmax :=
maxi∈[N]

∑N
j=1 Pij. dPmin is defined in a similar way. bmax and

λ denote the largest element of B and the minimum eigenvalue
of the normalized matrix B

bmax
, respectively.

The SBM is obtained from the DCBM as a special case by
setting ψi = 1 for all i ∈ [N].

We summarize our notations in Table 1.

2.3. The Bethe HessianMatrix

The Bethe Hessian matrix for a network is defined as

Hζ := (ζ 2 − 1)IN +DA
1 − ζA (2)

where ζ > 1 is a scalar parameter,DA
1 := diag(A1N) and ζ > 1.

ζ is o$en referred to as the “radius” ofHζ . Once an appropriate
value for ζ is chosen, the discrete set of negative eigenvalues of
the resulting matrix Hζ are isolated from the contiguous bulk.
Then, estimatingK entails counting the number of these isolated
negative eigenvalues. For this reason, the negative eigenvalues
are referred to as the “informative eigenvalues” of the matrix,
while the contiguous bulk is referred to as uninformative. Next,
we discuss several heuristics that have been proposed in the
literature for choosing ζ so that the negative eigenvalues of the
associatedBetheHessianmatrix are informative.We also discuss
some other approaches for estimating K.

2.4. Review of Other K-EstimationMethods

What follows is an overview of various approaches that have
been proposed in the literature for estimatingK. While some are
based on the Bethe Hessian matrix, many others are not. Some
of themethods have been used for comparative empirical studies
in Sections 5 and 6.

Several methods have been proposed based on the Bethe
Hessian matrices. First, on the question of what values to use for
the parameter ζ , it was first empirically shown in Saade, Krza-
kala, and Zdeborová (2014) that the number of negative eigen-
values of the Bethe Hessian matrix directly estimates K when
ζ is assigned either

√
dP for assortative networks or

√
ρ(NB)

for sparse networks with the bounded expected degree, where
NB is the non-backtracking matrix.4 The consistency of these
estimators was proved in Le and Levina (2015) for regimes
dP = ω(logN), in which estimator ζ̂a :=

( 1
N

∑
i∈[N] dAi

)1/2 was

4See footnote 1 for definition.
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Table 1. Summary of notations.

Sample Population

Notation Definition Notation Definition

A N × N adjacency matrix P E(A)
dAi Observed degree of node i (ith row sum of A) dPi Expected degree of node i (ith row sum of P)
dA Average observed degree (average of row sums of A) dP Average expected degree (average of row sums of P)
dAmax Maximum observed degree (maximum row sum of A) dPmax Maximum expected degree (maximum row sum of P)
dAmin Minimum observed degree (minimum row sum of A) dPmin Minimum expected degree (minimum row sum of P)
d̂Pmin Estimator of dPmin bmax Largest element of matrix B
λmin(A) Smallest eigenvalue of A λ λmin

(
B/bmax

)

DA1 diag(A1N) (diagonal matrix where the observed degrees
are on the diagonal)

DP1 diag(P1N) (diagonal matrix where the expected degrees
are on the diagonal)

DAζ (ζ − 1
ζ )IN + 1

ζ D
A
1 for ζ ≥ 1 DPζ (ζ − 1

ζ )IN + 1
ζ D

P
1 for ζ ≥ 1

Nk
∑

i∈Ck [ψ
2
i /d

P
i ]where Ck is kth largest community

Table 2. Definitions of ζ estimates and interval bounds.

Method Notation Definition

1 ζ̂ An estimate chosen pursuant to Step (3) in
Algorithm 4.1

2 ζ̂a Defined as
( 1
N

∑
i∈[N] dAi

)1/2 as an estimator
for

√
Nbmax

3 ζ̂m Defined as(( ∑
i∈[N](dAi )

2)/
( ∑

i∈[N] dAi
)
− 1

)1/2 as
an approximation of

√
ρ(NB)

4 ζ̂NB
√

ρ(NB) calculated using the approximation of
NB in eq. (27) in Dall’Amico, Couillet, and
Tremblay (2021)

5 ζL c/νK in Claim 1 in Dall’Amico, Couillet, and
Tremblay (2021) as an approximation of the
lower bound for the interval for ζ

6 ζU
√
c+ in Claim 1 in Dall’Amico, Couillet, and
Tremblay (2021) as an approximation of the
upper bound for the interval for ζ 1

NOTE: Methods 2 and 3 are from (Le and Levina 2015). Method 4 is from (Dall’Amico,
Couillet, and Tremblay 2021).
1c = 1T 1

E[ψi]2
Bdiag(|C1|, . . . , |CK |)1/K , vp = λ

↓
p (

1
E[ψi]2

Bdiag(|C1|, . . . , |CK |)),
and+ = 1

E[ψi]2
E[ψ2

i ].

Table 3. K-estimation methods.

Algorithm Description and source

1 BH
ζ̂

An estimate for K based on Algorithm 4.1
2 BHa Counting the negative eigenvalues of H

ζ̂a
3 BHm Counting the negative eigenvalues of H

ζ̂m
4 BHac BHa with a correction for small positive eigenvalues
5 BHam BHmwith a correction for small positive eigenvalues
6 BHNB Counting the negative eigenvalues of H

ζ̂NB
7 LRBIC Penalized likelihood fromWang and Bickel (2017)
8 NCV Cross-validation based on node-pair splitting procedure

from Chen and Lei (2018)
9 ECV Cross-validation for approximately low-rank networks

from Li, Levina, and Zhu (2020).

NOTE: Methods 2 through 5 are from Le and Levina (2015). Method 6 is from
(Dall’Amico, Couillet, and Tremblay 2021).

proposed for
√
dP and computationally efficient approximation

ζ̂m :=
((∑

i∈[N](dAi )2
)
/
( ∑

i∈[N] dAi
)

− 1
)1/2 was proposed

for
√

ρ(NB). Le and Levina (2015) then proposed estimating
K by counting the number of negative eigenvalues of Hζ̂a

, that

Table 4. Simulation settings.

Setting N η γ φ )

1 15,000 25 1 1 Unif(0.5, 1)
2 {1000, 5000, 15,000, 25 1 1 Unif(0.5, 1)

25,000, 35,000}
3 15,000 {15, 17.5, 20, 1 1 Unif(0.5, 1)

22.5, 25}
4 15,000 25 {0.8, 0.85, 0.9, 1 Unif(0.5, 1)

0.95, 1}
5 15,000 25 1 {0.8, 0.85, 0.9, Unif(0.5, 1)

0.95, 1}
6 15,000 25 1 1 {I,UA ,UB ,

PA , PB}∗
7 1000 {15, 17.5, 20, 1 1 Unif(0.5, 1)

22.5, 25}

NOTE: K ∈ {3, 7, 10, 25} for all settings. ∗For notational convenience, we denote I = Unif(1, 1),
UA = Unif(0.75, 1), UB = Unif(0.5, 1), PA = Pareto(0.58, 10), and PB = Pareto(1.16, 10).

is, the Bethe Hessian matrix based on ζ̂a as the parameter
value, and similarly Hζ̂m

. To overcome the observed tendency
of these methods to underestimate K in unbalanced networks,
the authors proposed a correction whereby some of the small
positive eigenvalues sufficiently isolated within the bulk are
counted as informative.

The method perhaps closest to our proposed approaches
is discussed in Dall’Amico, Couillet, and Tremblay (2021). In
that paper, the authors claim, with empirical support and non-
rigorous but intuitive arguments from statistical physics, that K
can be inferred by (a) finding a value for ζ such that the largest
eigenvalue of Hζ that is isolated from the bulk is zero; then (b)
concluding that K is the number of isolated eigenvalues. The
authors in Dall’Amico, Couillet, and Tremblay (2021) proposed√

ρ(NB) as an estimator of ζ . The value of
√

ρ(NB) was calcu-
lated using the largest eigenvalue in modulus of a variation of
the non-backtracking matrix (eq. (27) in Dall’Amico, Couillet,
and Tremblay 2021). In Section 5, we provide an empirical com-
parison of the approach proposed in Dall’Amico, Couillet, and
Tremblay (2021) and our methods with extensive simulations.

Other than the Bethe Hessian-based methods, there have
been several other approaches proposed in the literature. The
more commonly-studied approaches have centered around the
model selection. Wang and Bickel (2017) proposed a model
selection criterion for choosing K in the form of a penalized
likelihood. The authors proved its asymptotic consistency under
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both SBM and DCBM in the O(logN) regime. Ma, Su, and
Zhang (2021) used pseudo-likelihood ratio and binary seg-
mentation to estimate the number of communities in DCBM.
But these likelihood-based methods are not computationally
efficient. Another class of methods for model selection uses
network cross-validation, which is based on the idea that the
community structure can still be recovered even when a small
subset (validation set) of the edges is removed for use in selecting
the optimal K based on the performance on this validation
set. In Chen and Lei (2018), a cross-validation strategy was
proposed adapted to SBM andDCBMdata based on a node-pair
splitting procedure. Li, Levina, and Zhu (2020) proposed amore
general cross-validation strategy applicable to a broader class
of networks that are approximately low-rank. However, none
of these proposed estimators for K has asymptotic consistency
in the o(logN) regime. Also, compared to the methods based
on the Bethe Hessian matrices, the model selection methods
are computationally more expensive due to multiple iterations
of calculations of likelihood and loss functions, which renders
them impractical when network data are large.

In Sections 5 and 6, we evaluate the performance of our
methods against two groups of benchmarks using simulated
and real-world data. First, we test our method for choosing
the parameter ζ consisting of our oracle interval derived in
Section 3 and their empirical estimators. Second, we compare
the accuracy of our algorithm for estimating K with other Bethe
Hessian-based methods and non-Bethe Hessian approaches in
Section 5.

3. Theoretical Results on the Bethe HessianMatrices

Our main theoretical contribution is twofold. First, we show
that even in a sparse regime when Nbmax is o(logN) and ω(1),
the number of informative (negative) eigenvalues ofHζ directly
estimates K consistently. Second, we propose a novel interval of
appropriate values such that for any ζ chosen from this interval,
the number of informative eigenvalues of the associated matrix
Hζ directly estimates K. We show that this interval also conve-
niently serves as a sufficient condition for the correct estimation
of K. Below, we walk through our theoretical results in several
steps and build intuition with intermediate results.

In this section, we make the assumption that the degree
parameters ) are fixed. In supplement section B.2, we relax this
assumption and extend our theoretical results in this section
by allowing ) to be random. Relevant prior results from the
literature are given in supplement section A and full proofs for
all of our results are presented in supplement section C.

The first step in our analysis involves exploiting the con-
nection between the Bethe Hessian matrices and normalized
Laplacian matrices. The connection between these twomatrices
was pointed out in Dall’Amico, Couillet, and Tremblay (2019).
In order to prove the properties of the eigenvalues of the Bethe
Hessianmatrices, we firstmove from the BetheHessianmatrices
to their Laplacian counterparts.We show that the Bethe Hessian
matrix and its Laplacian have the same inertia for the same
adjacency matrices.

Lemma 3.1. Let LAζ := 1
ζ Hζ = DA

ζ − A and define the sym-
metric normalized Laplacian L(LAζ ) := (DA

ζ )
−1/2LAζ (DA

ζ )
−1/2.

Then, Hζ and L(LAζ ) have the same number of negative eigen-
values.

The proof of the result uses Sylvester’s Law of Inertia (Horn
and Johnson 2012) and is given as Theorem A.4 in supplement
section A.

Now, we focus on the symmetric normalized Laplacian
matrix, L(LAζ ). The next result shows that the symmetric
normalized Laplacian of the Bethe Hessian matrix concentrates
around its expectation.

Lemma 3.2. Let L(LAζ ) be as defined in Lemma 3.1, and
we similarly define its population counterpart as L(LPζ ) :=
(DP

ζ )
−1/2LPζ (DP

ζ )
−1/2, where LPζ := DP

ζ − P. Suppose Nbmax
is o(logN) and ω(1). Then, for any r ≥ 1, with probability at
least 1 − e−r ,

∥∥∥L(LAζ ) − L(LPζ )
∥∥∥ ≤ Cr2ζ(Nbmax)3/2

(ζ 2 − 1)2

(
1+ Nbmax

ζ − 1

)

for some constant C and ζ = ω(
√
Nbmax).5

Lemma 3.2 gives a concentration bound forL(LAζ ) around its
population counterpart, and one can see that with an increase
in r, the bound becomes a high probability event. Note that
this result holds for sparse regimes of expected degrees that
are o(logN). The proof uses concentration results from random
matrix theory stated as Theorem A.3 in Supplement section A.

Since for certain choices for the scalar parameter ζ , the
population counterpart of the Laplacian, L(LPζ ), has exactly K
negative eigenvalues, combined with Lemmas 3.1 and 3.2, the
final result is obtained which says thatHζ has exactlyK negative
eigenvalues with high probability for certain values of the scalar
parameter ζ .

Theorem 3.3. For a network generated from the DCBM with
parameters (K,πK×1,)N×1, BK×K), suppose that community
sizes are balanced, that is, |C1|

|CK | = #(1). Let β := bmaxλdPminNK ,
where bmax, λ, dPmin, and NK are as defined in Table 1. Then,
under the condition that Nbmax is both o(logN) and ω(1), Hζ

has exactly K negative eigenvalues for all

ζ ∈ 1
2
(
β ±

√
β2 + 4 − 4dPmin

)
(3)

with probability at least 1 − exp
[
− (ζ/

√
Nbmax)3/2−δ

]
for any

δ ∈ (0, 3/2). The last probability bound is 1 − o(1) if either

λ = ω

( K√
Nbmax

· d
P
max
dPmin

)
(4)

or (assuming dPmax/dPmin = #(1))

λ = ω

( K√
Nbmax

)
(5)

5As ζ → 1, the left-hand side of the inequality in Lemma 3.2 approaches the
value

∥∥∥(DP
1 )

−1/2P(DP
1 )

−1/2 − (DA
1 )

−1/2A(DA
1 )

−1/2
∥∥∥. Here, note that the

term (DA
1 )

−1/2 explodes in sparse settings. For this reason, the hypothesis
of the Lemma includes the condition that ζ = ω(

√
Nbmax).
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Figure 1. (Sparse networks) d̂Amin versus dPmin for networks with dP = 3.5
√
logN under the settings listed in Table 4. Each panel shows four subplots corresponding to

K ∈ {3(top), 7, 10, 25}. Blue boxes denote {5%, 50%, 95%}-percentiles of d̂min(P) based on 20 replications and {0.8dPmin, d
P
min, 1.2d

P
min} are shown in black.

Remark 1. Thehigh probability statement inTheorem3.3 comes
from the hypothesis of Lemma 3.2 that ζ = ω(

√
Nbmax),

and the conditions (3) and δ ∈ (0, 3/2). In order to have
ζ = ω(

√
Nbmax) and (3), one must also have ζ = #(β) =

ω(
√
Nbmax). This implies the second assertion of Theorem 3.3

involving (4) and (5). In the rest of this article, we denote the
above interval in (3) by “the oracle ζ interval” or simply “the
oracle interval” when the context is clear. We call (3) the “oracle
interval” since the interval is based on population parameters
and thus is not observable. In Section 4, we propose an empirical
ζ estimator that lies within this oracle interval with high proba-
bility6.

6It is worth noting that a sufficient condition for the detection of K is that the
interval appearing in (3) is nonnegative, that is, β2 + 4 ≥ 4dPmin. Solving
this inequality by substituting in the expression for β and rearranging, one
can obtain the expression (bmax − bmin)

2 + #(1) > 8(bmax + bmin).

Note that since the concentration result given in Lemma 3.2
holds for the sparse regime Nbmax = o(logN), the oracle
interval appearing in (3) can be nonempty for the same regime
Nbmax = o(logN) as well.

We also provide a sufficient condition onλ for the existence of
the oracle interval (3). The existence of this interval depends on
whether the radicand in (3) is positive and in turn, guarantees
detectability of K with a high probability for any ζ chosen
from (3). Thus, we obtain a sufficient condition involving the

Although this expression appears on the surface similar to the threshold
for weak recovery in the related problem domain of community detection,
one should use caution inmaking such comparisons.While our objective in
this article is to consistently estimate K as the degree tends to infinity at a
rateω(1) and o(log(N)), the goal in weak recovery in community detection
is to detect community labels in the constant degree setting better than a
certain accuracy level.
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Figure 2. (Dense networks) d̂Pmin versus d
P
min for networks with d

P = 0.193(logN)2 under the settings listed in Table 4. Each panel shows four subplots corresponding to
K ∈ {3(top), 7, 10, 25}. Blue boxes denote {5%, 50%, 95%}-percentiles of d̂Pmin based on 20 replications and {0.8dPmin, d

P
min, 1.2d

P
min} are shown in black.

parameters of the DCBM that generates the input network for
detecting K correctly.

Corollary 3.4. In the setup of Theorem3.3, with high probability,
K can be detected if the following holds:

λ = ω

( K
√
dPmin

)
. (6)

Remark. An equivalent statement to (6) is K = o(λ
√
dPmin).

Note that (6) is a sufficient, not necessary, condition. We
discuss this point in light of our empirical studies in Section 7.
Nonetheless, these conditions provide intuition about the
situations when K can be estimated in the sparse regime
Nbmax = o(logN).

4. Empirical Method for Estimation of K

In this section, we propose an approach for empirically estimat-
ing a ζ value that lies within the oracle interval (3). In order to
get the empirical ζ estimate, we proceed in two steps.

First, we propose an estimator d̂Pmin for the minimum
expected degree dPmin in the following lemma using the quantile
function based on the empirical distribution of the degrees
defined as follows.

Definition 4.1. The empirical cumulative distribution function
F of degrees {dAi }i is defined as

F(y) := 1
N

N∑

i=1
dAi (7)
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Figure 3. (Sparse networks) Oracle ζ intervals (black triangles) versus ζ estimated pursuant to alternative Bethe Hessian-based methods under Simulation Settings in
Table 4. Endpoints of the oracle interval are denoted by triangles. Each estimated ζ is denoted by a colored dot representing themedian of 20 replications. ζ̂ was computed
with c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3). Each panel shows four subplots corresponding to K ∈ {3(top), 7, 10, 25}.

Definition 4.2. Given the empirical cumulative distribution
function F defined in (7), the quantile functionQ : [0, 1] → Z+

is defined as

Q(x) := inf{y ∈ R+ : x ≤ F(y)} (8)

Lemma 4.3. Under the framework of Theorem 3.3 and given
f (N) = o(logN), let d̂Pmin = max

{
dAi |dAi < Q( c

f (N) ), i ∈ [N]
}
,

for some c ∈ (0, f (N)) and quantile functionQ as defined in (8).
Then, with probability at least 1 − 2δ,

d̂Pmin ∈
(
(1 − εδ)dPmin, (1+ εδ)dPmin

)
(9)

for any

εδ ≥
√

−2 log(cδ/f (N))

dPmin
. (10)

Remark 1. In Lemma 4.3, the quantity δ can be arbitrarily small
depending on the concentration bound of the estimate d̂Pmin to its
population counterpart dPmin. So, the estimate d̂Pmin can be close
to dPmin with high probability depending on the extent of their
proximity.

Remark 2. The inequality (10) says that the lower bound for
εδ increases as cδ/f (N) gets smaller. That is to say, in addi-
tion to the constant c being sufficiently large, f (N) also can be
taken to be arbitrarily small to obtain an estimate d̂Pmin that is
sufficiently close to dPmin with high probability. Essentially, we
need to take f (N) = ω(1) and dPmin = ω(log(f (N)) to have
εδ = o(1).

Next, we use d̂Pmin to estimate the oracle interval (3) in Theo-
rem 3.3 which, if it exists, provides a sufficient condition for the
detection of K with high probability. To do this, we choose the
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Figure 4. (Dense networks) Oracle ζ intervals (black triangles) versus ζ estimated pursuant to alternative Bethe Hessian-based methods under Simulation Settings in
Table 4. Endpoints of the oracle interval are denoted by triangles. Each estimated ζ is denoted by a colored dot representing themedian of 20 replications. ζ̂ was computed
with c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3). Each panel shows four subplots corresponding to K ∈ {3(top), 7, 10, 25}.

estimatedmid-point of the oracle interval in (3) as the empirical
estimate for ζ , denoted ζ̂ .

The mid-point of the oracle interval in (3) is given by β
2 . We

provide β̂
2 =

√
d̂Pmin − 1+ ε̂δ d̂Pmin/(1 − ε̂δ) as an estimate of β

2
in Step 3 of Algorithm 4.1. The proof of Theorem 4.4 provides a
rigorous justification that β̂

2 lies in the oracle interval around β
2

with high probability. The Bethe HessianHζ is constructed with
ζ̂ and K̂ is simply the number of the negative eigenvalues ofHζ̂ .
The steps delineated above are summarized in Algorithm 4.1.

Remark. There are two tuning parameters in Algorithm 4.1: c
and ε̂δ , both of which emanate from Lemma 4.3. A larger c in
Step 2 leads to a larger d̂min(A0) and ε̂δ in Step 3 remedies the
bias in its estimation of dPmin by increasing ζ . See Section 5.2.1
for empirical findings on tuning these parameters. Hereina$er,

we denote the ζ parameter obtained in Step 3 in Algorithm 4.1
by ζ̂ and Algorithm 4.1 by BHζ .

Finally, we end this sectionwith themain summarizing result
on the efficacy of estimator K̂ from Algorithm BHζ .

Theorem 4.4. Under the framework of Theorem 3.3, with prob-
ability at least 1 − δ as defined in Lemma 4.3, K̂ obtained from
Algorithm 4.1 is the true K.

The proof of Theorem 4.4 is given in supplement C.

5. Simulations

We first illustrate the existence of the oracle ζ intervals and
compare it to the ζ interval [ζL, ζU ] proposed in (Dall’Amico,



10 N. HWANG ET AL.

Figure 5. (Up: Sparse networks; Down: Dense networks) Oracle ζ intervals (black triangles), ζU (brown solid lines), and ζL (cyan solid lines) versus ζ estimated pursuant
to alternative Bethe Hessian-based methods under Simulation Settings 2, 3, and 6 in Table 4. Endpoints of the oracle interval are denoted by triangles. Each estimated ζ

is denoted by a colored dot representing the median of 20 replications. ζ̂ was computed with c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3). Each panel shows four subplots
corresponding to K ∈ {3(top), 7, 10, 25}.

Couillet, and Tremblay 2021) (see definitions in Table 2). We
also compare the effectiveness of ζ̂ computed in Algorithm 4.1
with ζ̂a, ζ̂m, and ζ̂NB in aligning the number of negative eigen-
values with K. Then, we evaluate the performance of BHζ̂ in
estimating K versus other Bethe Hessian-based methods and
other approaches discussed in Section 2.4 and summarized in
Table 3. Lastly, in Section 6, we apply our approach to 15 real-
world datasets. Notations and definitions are summarized in
Table 2.

5.1. Network Data Generation

Network data were generated under the DCBM in (2.2) and
operationalized as follows:

Z ∼ Mult(1; (γK , . . ., γK + (i − 1) 2(1 − γ )

K(K − 1)
, . . ., 2 − γ

K ))

B := ρB0 := ρ[b(1K1TK − IK)+ diag(φηb, . . .,φηb

+ (i − 1)2(1 − φ)ηb
K − 1

, . . ., (2 − φ)ηb)K]
where γ determines the extent of the imbalance in relative
community sizes, ρ controls the overall degree density of the
network, φ determines the variation in within-community
degree densities, and η sets the in-out ratio of degrees. η is
monotonically related to λ and thus controls the community
structure signal strength. Like, under the case φ = 1, that is we
have no variations among the within community probabilities,
λ = 1 − η−1. Each model parameter was varied incrementally
in simulating the adjacency matrices as shown in Table 4.
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Figure 6. (Sparse networks) Accuracy of K̂ computed pursuant to alternative Bethe Hessian-basedmethods under Simulation Settings in Table 4. BH
ζ̂
was computed with

c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3). Each panel shows three subplots corresponding to K ∈ {3(top), 7, 10}.

Let dP ∈ {6, 7, 8, 9, 10} for Setting 1 and dP ∈ {3.5
√
logN,

0.193(logN)2} for Settings 2 through 7, where the specific
constants were chosen such that dP = 9.2 for N = 1000.
For Settings 1 through 6, η is increased by 10 when dP =
3.5

√
logN since a stronger signal is needed to recover K in

more sparse networks. The parameter values in Pareto(0.58, 10)
and Pareto(1.16, 10) were chosen to effect the same variance
as Unif(0.75, 1) and Unif(0.5, 1), respectively. Each setting was
simulated with 20 replications.

5.2. Results

5.2.1. Hyperparameter Tuning
Figures 1 and 2 show the performance of d̂Pmin in estimating
dPmin in networks of varying levels of sparsity. Networks have
dP = 3.5

√
logN in Figure 1 and dP = 0.193(logN)2 in Figure 2.

d̂min(P) was computed using Lemma 4.3 with c = 0.3 and

ε̂δ = 0.2 for the reasons we discuss next. Observe that while
d̂Amin generally lies in the interval [0.8dPmin, 1.2dPmin], it tends to
underestimate when: (a) the network is sparse; (b) the degree
distribution is uniform; and (c) community sizes and densities
are more balanced, that is, γ and φ are closer to 1. In our
empirical analyses, c = 0.3 worked well in the estimation of K
regardless of the density regime. For better results, one can con-
sider adjusting c higher (lower resp.) for networks inmore sparse
(dense resp.) regimes and have homogeneous (heterogeneous
resp.) degree distributions. Letting ε̂δ = 0.2 seemed to allow
d̂min(P) enough flexibility to closely approximate dPmin. Results
based on other values of the hyperparameters are presented in
supplement Section D.

5.2.2. Existence of Oracle ζ intervals
The sufficient conditions stated in (4) and (5) for detecting K in
Corollary 3.4 depends on the following:
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Figure 7. (Dense networks) Accuracy of K̂ computed pursuant to alternative Bethe Hessian-based methods under Simulation Settings in Table 4. BH
ζ̂
was computed with

c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3). Each panel shows three subplots corresponding to K ∈ {3(top), 7, 10}.

1. Sparsity: Nbmax and dPmin
2. Signal strength (in/out ratio): λ
3. Number of communities: K
4. Network and relative community sizes, and degree hetero-

geneity: N and NK

We investigate the effect of each on the size of oracle intervals
whose positive value indicates the existence of the interval.
Figure 3 shows oracle intervals for sparse networks of expected
average degree dP = 3.5

√
logN and Figure 4 for denser net-

works with dP = 0.193(logN)2.
The length of the oracle intervals tends to increase in net-

works that are (a) denser (higher average degree); (b) larger
(greaterN); (c) fewer communities (lower K); (d) more assorta-
tive (higher in/out ratio); (e)more balanced in either community
sizes or community sparsity; and (f) less heterogeneity or less
skewness in the degree distribution.

5.2.3. Performance Comparison
In this section, we use simulated networks to assess the perfor-
mance of Algorithm 4.1 in relation to alternative approaches.
First, we demonstrate that whenever the oracle interval exists,
ζ̂ lies inside the interval while ζ̂a, ζ̂m, and ζ̂NB fall outside the
interval in networks that are sparse, imbalanced, or lacking sig-
nal strength. ζ̂ also lies within the boundaries [ζL, ζU ] proposed
in Dall’Amico, Couillet, and Tremblay (2021). Second, we show
empirically that with ζ̂ , Algorithm 4.1 outputs K̂ that is more
accurate than those output by other methods.

Figures 3 and 4 depict ζ̂ versus ζ̂a, ζ̂m, and ζ̂NB. Networks are
generated according to simulation settings in Table 4. Figure 3 is
based on sparse networks with dP = 3.5

√
logN and Figure 4

is based on more dense networks with dP = 0.193(logN)2.
Figure 5 compares ζL and ζU proposed in Dall’Amico, Couillet,
and Tremblay (2021) to our oracle intervals and ζ estimates
based on Settings 2, 3, and 6. Figures 6 and 7 show accuracy
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Figure 8. (Top Row) Accuracy of K̂ computed pursuant to alternative methods under Setting 7 in Table 4. (Bottom Row) K̂ using BHa, BHm, and BH
ζ̂
with K = 3. In both

rows, BH
ζ̂
was computed with c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3). (Bottom Row) Oracle ζ intervals (black triangles) versus ζ estimated pursuant to alternative Bethe

Hessian-based methods with K = 3. In both rows, BH
ζ̂
was computed with c = 0.3 and ε̂δ = 0.2 (see Lemma 4.3).

Algorithm 4.1 BHζ : Empirical K-estimation
Input: Adjacency matrix A, threshold parameter c, up-

scaling parameter ε̂δ , function f (N) = o(logN)

Output: Estimated number of communities K̂
1: Obtain A0 by removing zero-degree nodes from A
2: d̂Pmin(A0) = max

{
di(A0)|di(A0) < Q( c

f (N) ), i ∈ [N]
}
,

where c ∈ (0, f (N)) andQ is the quantile function as defined
in (8)

3: Choose ζ̂ =
√
d̂Pmin(A0) − 1+ ε̂δ d̂Pmin(A0)/(1 − ε̂δ) where

ε̂δ can be computed with d̂Pmin(A0) in (10)
4: ComputeHζ̂ := (ζ̂ 2 − 1)IN +DA0

1 − ζ̂A0 whereDA0
1 is the

diagonal degree matrix of A0
5: Perform eigen-decomposition ofHζ̂ and let K̂ be the num-

ber of negative eigenvalues ofHζ̂

6: K̂ is the estimate of K.

rates of K̂ defined as the proportion of the number of correct
estimates from 20 network replicates. The networks considered
here are the same as those in Figures 3 and 4 with the exception
of K = 25, which was excluded since the oracle ζ intervals did
not exist. Figure 8 compares the performance of BHζ̂ with other
methods based on 20 replications of smaller, sparse networks
(N = 1000, dP = 9.2).

We make a few observations regarding the performance of
the Algorithm 4.1 from Figures 3–8:

1. In Figures 3 and 4, we observe that when the oracle interval
does exist, ζ̂ from Algorithm 4.1 lies inside the interval and
closer to the center of the interval while ζ̂a, ζ̂m, and ζ̂NB are
larger and lie outside the interval in networks that are made

more challenging by more imbalance in community sizes,
lower signal strength, and higher sparsity. This is illustrated,
for example, in the subplot in row 3 column 3 in Figure 3
corresponding to sparse networks of balanced community
sizes and densities with N = 15,000, K = 10, η = 25, and
uniformly distributed degrees.

Lemma B.2 in the supplement provides an intuition for
why ζ̂ is closer to the center of the oracle interval. Accord-
ing to the Lemma, the quantity

√
dPminλK((DA′

1 )−1/2A′(DA′
1 ))

(where A′ is a regularized version of A and DA′
1 its diagonal

degree matrix) lies between the center and the upper bound
of the oracle interval under more signal-rich conditions (i.e.,
fewer communities, more assortative structure, or more bal-
anced in either community sizes or community sparsity)
compared to the conditions for the existence of the interval.
For instance, consider the network corresponding to the sub-
plot in row 3 column 3 in Figure 3 where low assortativity
due to the small η makes it a challenging network. Since
ζ̂ 2
a = dA ≈ ζ̂ 2

m =
∑

d2i∑
di − 1 ≈ Nbmax ≥ λ1(A′) ≥

dPminλK((DA′
1 )−1/2A′(DA′

1 )), it is more likely for ζ̂a, ζ̂m, and
ζ̂NB to be farther away from the center of the interval, or even
outside of it, compared to ζ̂ . In general, ζ̂a, ζ̂m, and ζ̂NB are
not ideal choices for ζ in challenging networks.

2. It is evident in Figure 5 that, for networks of diverse settings of
size, signal strength, anddegree distribution, ζ̂ also lieswithin
the boundaries [ζL, ζU ] proposed in Dall’Amico, Couillet,
and Tremblay (2021). It can also be observed that, for easy
settings where the ζ oracle interval exists, ζL is close to the
lower bound of the oracle interval, while ζU is smaller than
the upper bound of the oracle interval. Dall’Amico, Couillet,
and Tremblay (2021) also provided estimators for ζL and
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Table 5. K-estimation in real-world network data.

Dataset Nodes Edges c d̄ Ground truth∗ K K̂

polblogs 1500 19,000 0.8 12.8 2 (Chen et al. 2016) 2
Political books 105 441 0.3 8.4 3 (Chen and Lei 2018) 3
TerroristRel 881 8600 0.3 9.9 21 (Yang et al. 2022) 21
fb-CMU-Carnegie49 6637 249,967 0.2 75.3 3 (Rossi and Ahmed 2015) 4
Citation3Core 707 3285 0.5 9.3 15 (Li et al. 2020) 15
Email-Enron 36,692 183,831 0.5 10.0 267 (Chen et al. 2016) 68
karate 34 78 1.5 4.6 2 (Zachary 1977) 2
Red Hot Jazz Archive 198 2742 0.08 55.4 4 (Jazz-Archive 2002) 4
NCAA Football 115 613 0.9 10.7 12 (Newman and Girvan 2004) 7
Santa Fe Coauthorship 271 200 0.95 3.4 3 (Girvan and Newman 2002) 3
Dolphins 62 159 0.95 5.1 2 (Lusseau et al. 2003) 2
Les Miserable 77 254 0.95 6.6 6 (Newman and Reinert 2016) 4
Statistics Coauthorship 635 1204 0.95 3.8 7 (Ji and Jin 2016) 7
C. elegans 453 4585 0.35 20.2 10 (Duch and Arenas 2005) 10
Email-Tarragona 1133 5449 0.7 9.6 13 (Duch and Arenas 2005) 13

NOTE: ∗Ground truth” values are given if known; otherwise, estimated values are reported in the literature. ε̂δ was set to 0.05 for all datasets. Adjusting ε̂δ to 0.194 for
TerroristRel and 0.3 for fb-CMU-Carnegie49 improves the number of accurate estimates to 12. See supplement section E for detailed discussions of each dataset and the
reference sources and explanations for ground truth K.

ζU . Comparisons with their estimators for ζL and ζU are
presented in supplement section D.

3. One can readily see in Figures 6 and 7 that BHζ̂ outper-
forms alternative methods, especially when K is small and
even when the sufficiency condition in Corollary 3.4 is not
satisfied. An example is the case with K = 10 and dP ∈
{6, 7, 8} demonstrated in the subplots in row 3 column 1 in
both figures.

4. Figure 8 demonstrates that while BHζ̂ generally outperforms
the other methods, it can underperform when the oracle
interval does not exist due to, for example, K being too large
and η too small. Nevertheless, we note that onlyBHζ̂ is shown
to work in sparse networks while enjoying computational
efficiency. In contrast, LRBIC, NCV, and ECV are computa-
tionally expensive especially for large networks.

6. Real-World Network Applications

We test the efficacy of our algorithm on 15 real-world networks
discussed in the literature. Our results and summary numbers
of the datasets are presented in Table 5. Ground truth values
of K are shown if known; otherwise, estimated values cited in
the literature are shown along with citations. The values used
for the hyperparameter c in BHζ̂ and ε̂δ are also shown. In 10
of the 15 networks, our algorithm correctly detects K that is
consistent with either the ground truth or what is reported in
the literature. The number of accurate estimates increased to
12 a$er making adjustments to ε̂δ for two of the datasets. We
note that our algorithm correctly detects K even in cases where
the ground truth K is higher than the sufficiency threshold
in Corollary 3.4. Examining the remaining four networks for
which our algorithm did not detect the ground truth K, we note
that K is significantly larger than the sufficiency threshold in
Corollary 3.4 compared to the other 11 networks. For instance,
the “Email-Enron” has an average degree of only 10, implying
a sufficient condition K value of less than

√
10. However, its

“ground truthK” per Chen et al. (2016) ismuch larger at 267.We
refer to supplement section E for a detailed discussion of each
dataset.

7. Discussion

Despite the effectiveness and efficiency of the Bethe Hessian-
based methods for estimating K, the potential for their
widespread adoption has been hampered by the uncertainty
around the parameter ζ . Although several heuristics for picking
a value for ζ have been proposed with some empirical support
and principles from statistical physics, the question of precisely
what values of ζ allow for K detection with rigorous theoretical
guarantees for correctness has remained open. In this regard,
our main contribution in this article is a precise, theoretically
rigorous characterization of the interval of values from which ζ

can be chosen to ensure with a high probability that true K is
detected by using the corresponding Bethe Hessian matrix. We
provide an algorithm to empirically estimate this interval and
the parameter dPmin that is needed in the interval calculation
and prove their correctness and consistency. Both extensive
simulation studies and test applications to real-world networks
attest to the efficacy of our method.

We note that we have not addressed the necessary condition
for detecting K in this article, rather we have focused on finding
some sufficient conditions. In other words, the lack of existence
of the oracle interval does not preclude the detectability of K.
Based on the success of our algorithm in detectingK in networks
not meeting the sufficiency condition in Corollary 3.4, we con-
jecture that the oracle interval we presented in this article can be
widened. The extent to which it can be widened would depend
on the necessary condition for K detection, and we believe it to
be a promising future research topic.

Supplementary Materials

The supplementary information contains Appendices A–E, R code files
related to the paper, and the real world network datasets used in the paper.
AppendicesA–C contain the supplementary theoretical results. AppendixD
contains additional simulation results. Appendix E contains the details of
the real-world network data analysis. In the code files, README.html
and README.rmd files provide the workflow details. Separately, simula-
tion.html and simulation.rmd provide theworkflow of the simulation study,
and realdata_analysis.html and realdata_analysis.rmdprovide theworkflow
of the real-life network data analysis.
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