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Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic 
prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. 
Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions 
could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that context
ually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction mod
els for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic 
architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these 
traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breed
ing values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolor) 
and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome 
marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities 
that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly 
connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.
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Introduction
The increasingly pressing challenge of feeding the growing global 
population, estimated to reach 9 billion by 2050, necessitates a sig
nificant increase in food production (Hunter et al. 2017). Against 
the backdrop of climate change, this challenge underscores a crit
ical need to explore cutting-edge methods for crop improvement 
(Mohd Saad et al. 2022). Plant architecture has been an important 
target of selection in crop improvement and central to the huge 
gains in productivity from breeding seen throughout the past cen
tury. With inevitable decreases in arable farmland worldwide and 
shifting weather patterns, modern-day crop improvement must 
adjust plant ideotypes for diverse environments and thus archi
tectural traits remain a key target (Huang et al. 2022).

A core breeding objective to accommodate these challenges 
has been to increase planting density without compromising 
plant fitness. Consequently, modern high-density planting 
schemes for cereal crops have been successfully implemented, re
sulting in significantly increased productivity per unit area 
(Cao et al. 2022). In maize (Zea mays), this was realized through 
breeding efforts focused on architectural traits such as upright 
leaves, minimal branching, and tillering. Narrower leaf angle 

(LA) and reduced tassel branch number (TBN) not only have sig
nificant implications for crop management but also enable better 
light penetration into the lower canopy. This reduces competition 

for sunlight and hence optimizes photosynthetic efficiency. Such 

breeding efforts resulted in a higher number of plants per hectare 

and, consequently, a substantial increase in crop yields (Duvick 

2005).
Plant architectural traits, including LA and inflorescence struc

ture (e.g. TBN), exhibit high heritability across economically im

portant crops (Upadyayula et al. 2006; Casa et al. 2008; Sary et al. 

2022). This allows the opportunity to employ genomic prediction 

(GP) models that utilize signatures of genetic architecture cap

tured by genome-wide marker sets to obtain accurate genomic 

estimated breeding values (GEBVs) for plants that have not been 

phenotyped (Bernardo 1994; Meuwissen et al. 2001) and therefore 

accelerate genetic gain. The most widely used statistical models 

for GP (reviewed in de Los Campos et al. 2013) have been 

shown to outperform competing marker-assisted selection ap

proaches that only consider the effects of single, large-effect 

genes (Meuwissen et al. 2001; Bernardo and Yu 2007; Heffner 

et al. 2010). In addition to its well-established contribution to 
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modern plant and animal breeding programs (reviewed in Van 
Eenennaam et al. 2014 ; Crossa et al. 2017), GP models that account 
for gene families or other genomic features identified in prior 
studies can be used to make inferences on their contribution to 
the overall genetic architecture of the studied trait. For example, 
Turner-Hissong et al. (2020) used a series of fine-tuned GP models 
to infer the contributions of several pathways to free amino acids 
composition in dry Arabidopsis seeds. The use of GP for making in
ferences on genetic architecture is crucial because approaches 
such as genome-wide association studies (GWAS) and quantita
tive trait locus (QTL) analyses typically only identify moderate– 
large-effect loci (Lipka et al. 2015). This misses the vast majority 
of the genomic signal explained by the collective effects of puta
tively small-effect loci underlying complex traits. Thus, a prac
tical implication of using GP to make inferences on the genetic 
architecture of plant architectural traits is that it could shed im
portant light on the contributions of genomic effects that tend 
to be overlooked by GWAS.

Prior studies investigated the use of certain genomic features to 
reduce genome-wide marker sets, e.g. accessible chromatin re
gions, capturing a significant portion of the phenotypic variation 
(Rodgers-Melnick et al. 2016; Parvathaneni et al. 2020). A recent 
study by Bertolini et al. (2023) demonstrated the power of fine- 
tuning genotype-to-phenotype models with biological informa
tion derived from transcriptional networks, which facilitated the 
identification of small-effect genetic loci associated with LA and 
TBN in maize. This approach defined transcriptional circuitries 
in specific developmental contexts (i.e. tassel and leaf develop
ment) (Fig. 1, left panel) by inferring (1) gene coexpression (GC) 
networks to identify groups of genes with similar expression pat
terns and (2) gene regulatory networks to predict transcription 
factor regulation of gene targets. This study revealed that gene 
sets derived from specific developmental networks could explain 
a significant portion of the narrow-sense heritability (h2) for LA 
and TBN, which suggests these gene sets form part of the genetic 
architecture for these traits (Bertolini et al. 2023). Therefore, we 

Fig. 1. Experimental scheme of GP using transcriptional networks. The left panel represents the identification of transcriptional networks from tassel 
primordia and the ligular region (Bertolini et al. 2023). The ball-and-stick diagram, enclosed within the ellipse, represents the 6 selected modules from the 
coexpression networks generated using expression data from both tissue types (Bertolini et al. 2023). The two circles represent the tissue-specific 3-node 
NMs with an edge number of 3 or more (from A to J). The right panel illustrates the GP approach used in this study. It includes 3 marker sets (WG, GC, and 
NM), each comprising markers with MAF < 0.05 and then markers with MAF > 0.05. GP models were trained in the maize Goodman–Buckler diversity 
panel and validated in the Ames panel. The arrow indicates the cross-species translation using markers located near sorghum and rice orthologs. Dots 
represent phylogenetic distance (million years ago) among the species (Swigonová et al. 2004).
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expect that these sets of network genes should similarly produce 
reasonably high predictive abilities in GP models.

The purpose of our study was to use GP to determine the con
tribution of biological gene networks to the genetic architectures 
of LA and TBN, 2 agronomically important architectural traits in 
maize. We also tested the ability to translate gene network-based 
information from maize to other cereals including sorghum 
(Sorghum bicolor), which is closely related to maize, and rice 
(Oryza sativa), a more distantly related cereal. We considered 4 
prediction scenarios (Fig. 1, right panel): (1) where we predicted 
GEBVs within the maize diversity panel from Flint-Garcia et al. 
(2005); (2) where the maize diversity panel in (1) was the training 
set and a larger maize diversity panel from Romay et al. (2013)
was the validation set; (3) where the predictive abilities for LA 
using sorghum orthologs of core network genes from maize 
were assessed in a sorghum diversity panel (Casa et al. 2008); 
and (4) where a procedure similar to (3) was conducted on a rice 
diversity panel (McCouch et al. 2016). For all scenarios, we com
pared the predictive abilities of markers proximal to network 
gene sets to those from a genome-wide marker set, as well as an 
empirical distribution of prediction accuracies from randomly se
lected subsets of markers.

Materials and methods
Genotypic data
We analyzed 2 well-studied maize diversity panels: the Goodman– 
Buckler diversity panel (Flint-Garcia et al. 2005) and the Ames pa
nel (also known as the North Central Regional Plant Introduction 
Station Panel; Romay et al. 2013). We also analyzed the sorghum 
association panel (SAP; Casa et al. 2008) and the high-density 
rice array (HDRA; McCouch et al. 2016). Genotyping by sequencing 
(GBS) data for markers segregating in both the Goodman–Buckler 
and Ames maize diversity panels were downloaded from Panzea 
(www.panzea.org) and processed following the methodology out
lined in Bertolini et al. (2023). Specifically, genomic coordinates 
were uplifted to the maize reference AGPv4 (Jiao et al. 2017), indels 
and nonbiallelic markers were filtered out, and missing data were 
imputed using the nearest neighbor method (Money et al. 2015). 
Single-nucleotide polymorphisms (SNPs) with a minor allele fre
quency (MAF) < 0.01 were also discarded. The SAP GBS data 
(Bouchet et al. 2017) were downloaded from the Dryad Digital 
Repository (doi:10.5061/dryad.gm073). The HDRA genotypes data 
were downloaded from Rice Diversity (www.ricediversity.org). 
All genotype data were then employed to subset markers based 
on specific gene network subsets and different MAF cutoffs for 
further analysis.

Gene module information
We used transcriptional networks related to tassel branching and 
ligule development in maize from the Bertolini et al. (2023) study, 
including GC networks representing groups of genes with similar 
expression patterns and 3-node network motifs (NMs), which are 
elementary gene regulatory circuits of regulatory transcription 
factor networks. Markers within genomic coordinates of these 2 
gene sets were selected based on genomic windows defined as 
within 2 kb from the transcription start site (TSS) and the tran
scription termination site (TTS) (see Bertolini et al. 2023 for further 
details). The maize GC and NM genes were translated to sorghum 
and rice using syntenic orthologous gene information retrieved 
from Zhang et al. (2017). Due to larger LD blocks relative to maize 
(Morris et al. 2013), the sorghum and rice genomic regions were ex
tended by 10 kb from the TSS and TTS.

Phenotypic data
We used phenotype data for LA and TBN published in Bertolini 
et al. (2023) for our analysis. These data were from 231 lines of 
the Goodman–Buckler diversity panel and 1,064 lines of the 
Ames panel. As described in Bertolini et al. (2023), these data 
were grown in a randomized complete block design (RCBD) be
tween 2018 and 2021. Sorghum LA phenotype data were previous
ly collected for 296 individuals from the SAP (Casa et al. 2008), 
which were planted in a RCBD with 2 replications per location in 
2010 and 2012. LA was measured from the leaf below the flag 
leaf, and 2 plants per replication were measured using a protract
or (Mantilla Perez et al. 2014). Similarly, LA phenotype data were 
collected from a rice diversity panel of 344 varieties (Huber et al. 
2024) using a RCBD with 4 replicates. LA was collected at an early 
vegetative stage, between the second and third youngest leaves 
and the culm.

GP model used
We employed the ridge regression best linear unbiased prediction 
(RR-BLUP; Whittaker et al. 2000; Meuwissen et al. 2001) model to 
obtain GEBVs of TBN and LA. This model equates a given trait to 
a linear combination of random marker effects and a random er
ror term, as described previously (e.g. Rice and Lipka 2019), and 
the resulting genotype BLUPs are “shrunk” to the mean as a result 
of a ridge penalty (Hoerl and Kennard 1970) determined from the 
ratio of error variance to genetic variance. The RR-BLUP model 
was fitted using the rrBLUP R package (Endelman 2011).

MSTEP and USTEP models for maize
We implemented 2 multilocus stepwise model selection proce
dures to identify markers exhibiting strong statistical associations 
with TBN and LA in maize. The first procedure was the multitrait, 
multilocus (MSTEP) procedure, which is described in detail in 
Fernandes et al. (2022). Briefly, this procedure fits a series of multi
trait, multilocus models in a stepwise manner to identify markers 
exhibiting strong additive associations with multiple traits. The 
specific markers to be included in the model are determined 
through a stepwise model selection procedure. In this implemen
tation, we considered TBN and LA as the 2 response variables. The 
second procedure we considered was a single-trait analog of 
MSTEP. As done in Fernandes et al. (2022), we abbreviated this pro
cedure as the univariate stepwise model selection procedure 
(USTEP), and we fitted it separately to TBN and then again to LA. 
For both of these model selection procedures, stepwise model 
selection was conducted in the TASSEL software (Bradbury et al. 
2007) until a total of 10 markers were in the final models.

GPs within the Goodman–Buckler maize 
diversity panel
Five-fold cross-validation was performed to obtain predictive abil
ities for LA and TBN in the full marker set (44,930 SNPs), subsets of 
markers obtained from GC modules (21,362 SNPs) and from NMs 
(466 SNPs) from Bertolini et al. (2023). For each of these subsets, 
we also evaluated the predictive abilities of markers with MAF <  
0.05 and then markers with MAF > 0.05. This was undertaken 
to evaluate the possibility that markers with MAF < 0.05 might 
capture different causal loci than markers with MAF > 0.05. 
Predictive abilities of models including only markers selected 
from MSTEP and USTEP as explanatory variables (and fitted to 
the appropriate training sets) were also evaluated through 5-fold 
cross-validation. We utilized the R packages rrBLUP (Endelman 
2011) and GAPIT (Lipka et al. 2012) along with in-house R scripts 
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for GP using the RR-BLUP model. For all subsets of markers, the 
predictive ability was calculated as the sample mean Pearson 
product moment correlation coefficient (r) between observed trait 
values and GEBVs across all validation sets.

Using the Goodman–Buckler diversity panel to 
train models for GP in the Ames maize panel
We undertook another cross-validation study in which all 231 
lines in the Goodman–Buckler diversity panel with available 
phenotypic data were used as the training set, and a subset of 
1,064 lines of the Ames panel that maximize diversity in TBN 
and LA (Bertolini et al. 2023) were used as the validation set. For 
each of the aforementioned categories of marker sets, predictive 
ability was again determined by calculating the Pearson product 
moment correlation coefficient between observed trait values of 
the 1,064 lines in the Ames panel and their corresponding GEBVs.

GP within the SAP in sorghum 
and the HDRA in rice
A 5-fold cross-validation procedure, very similar to that described 
for the Goodman–Buckler maize diversity panel, was used to 
evaluate the predictive ability of markers in the vicinity of sor
ghum and rice syntenic orthologs of the GC and NM genes. For 
the SAP, this resulted in a total of 59,995 markers in the vicinity 
of the GC orthologs and 2,695 markers in the vicinity of NM ortho
logs. For the HDRA, we similarly obtained a total of 293,509 mar
kers in the vicinity of GC orthologs and 10,970 markers in the 
vicinity of NM orthologs.

Procedure for obtaining an empirical null 
distribution to test for contribution of gene 
modules to genomic signals underlying traits
We used these GP models to make inferences on the contributions 
of GC and NM to the genetic architecture of TBN and LA. We fol
lowed a procedure similar to Parvathaneni et al. (2020) to derive 
an empirical distribution of prediction accuracies under the null 
hypothesis that the genes underlying the signals captured in the 
2 gene set categories (i.e. GC and NM) are not important. For 
each category in each of the above GP experiments, we generated 
1,000 random subsets by randomly selecting genes. Each of these 

subsets contained the same number of genes as those included in 
the selected category. Within each random subset, we then selected 
SNP markers using the genomic coordinates as described in the pre
vious sections. This approach was undertaken because the maize 
GBS data used in this work are not able to target specific genomic 
regions, such as promoters and coding genes that probably contain 
causative variations associated with the phenotypic variability. 
Furthermore, given that the overarching null hypothesis focuses 
on gene sets, we felt that it was critical to ensure that each random 
subset was selected based on genes, not SNPs. We then fitted an 
RR-BLUP model in the respective training sets using only the SNP 
markers included in the random subset. Consequently, we obtained 
an empirical distribution of predictive abilities under this null hy
pothesis. The predictive ability of the given gene set was then com
pared with this empirical null distribution, and a P-value was 
subsequently calculated. Lower P-values provide stronger evidence 
against the null hypothesis that the tested gene set is not important. 
We considered statistical significance at  α= 0.05.

Results
Predictive abilities of TBN and LA traits using 
gene network informed marker sets were almost 
as high as those from whole-genome marker set
To assess the ability of the NM and GC marker sets to accurately 
predict GEBVs of TBN and LA for 231 accessions in the 
Goodman–Buckler maize diversity panel (Flint-Garcia et al. 
2005), we conducted a 5-fold cross-validation procedure. Our re
sults suggested that SNPs in the vicinity of GC genes had similar 
predictive ability to the entire whole-genome marker set (Fig. 2) 
with a mean predictive ability of 0.60 and 0.56 for TBN and 
LA, respectively. This could imply that for both traits, the variance 
explained by the GC marker set is similar to that of the whole- 
genome marker set. The predictive abilities observed in markers 
around GC genes were significantly greater than those derived 
from markers near randomly selected genes for both traits 
(Fig. 3). We also noted that the predictive ability of the GC set 
did not drop severely when using only low-MAF (MAF < 0.05) 
SNPs (Supplementary Table 1), potentially suggesting that both 
high- and low-MAF GC sets are tagging similar causal variants.

Fig. 2. Predictive ability in the Goodman–Buckler diversity panel. The image depicts the prediction accuracies in the training set. The boxplots illustrate 
the results of the 5-fold cross-validation tests conducted on the genome-wide (GW), the NM, and the GC marker sets at different MAF cutoffs. Y-axis 
represents the correlation coefficient (r) between observed trait values and GEBVs; a) and b) show results on TBN and LA, respectively.
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Notably, markers associated with NM genes, despite account
ing for only 10% of the whole-genome SNPs, showed only slightly 
lower predictive abilities for both traits (Fig. 2) relative to the 
whole-genome markers. When compared with the respective em
pirical null distribution, we observed that markers near the NM 
genes showed greater ability to predict TBN than was expected 
under the null hypothesis. In contrast, the predictability of LA 

by markers near the NM genes was not substantially greater 
than the range of predictive abilities observed across the corre

sponding empirical null distribution of predictive abilities 
(Fig. 3). For both traits, the predictive ability of the markers iden

tified by MSTEP and USTEP were similar to those from the 
genome-wide marker set, highlighting a potentially strong signal 

derived from markers selected from these approaches. This could 
support previous findings, where LA was dominated by 2 major 

QTLs (Tian et al. 2011). However, the results suggested that rela
tive to a genome-wide set of markers, MSTEP and USTEP have po
tential to increase the variability (and hence uncertainty) in 
prediction accuracies.

Markers near NM genes captured unique genomic 
signals in the Ames diversity panel
We next assessed the ability of GP models trained in the 
Goodman–Buckler diversity panel to predict GEBVs in the Ames 
panel. The predictive ability of GC markers was 0.55 for TBN and 
0.46 for LA, while the whole-genome set achieved an accuracy of 
0.57 and 0.47, respectively, for TBN and LA (Fig. 4). These relatively 
high predictive abilities suggest the genomic signals underlying 
TBN and LA in the Ames panel are similar to those underlying 
these 2 traits in the Goodman–Buckler panel. Interestingly, we 

Fig. 3. Predictive performance of NM and GC marker sets in the training set. The density plots illustrate the empirical null distributions, above and below 0 
density, generated based on 1,000 iterations of randomly selected genes and the subsequent selection of the colocalizing markers. Prediction results for 
TBN and LA are presented for the NM set a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the 5-fold 
cross-predictive ability (average) for the NM and GC set, and the whole-genome set of markers conducted using the Goodman–Buckler diversity panel.

Fig. 4. Predictive ability of NM and GC marker sets in the validation set. The image represents the predictive ability results in the validation set for TBN 
a) and LA b) in the Ames diversity panel. Each dot represents the correlation coefficient (r) of different maker sets: genome-wide (GW), NM, and the GC 
markers at different MAF cutoffs.
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noted that low-MAF GC markers yielded virtually identical LA pre
dictive abilities as the low-MAF subset of whole-genome markers, 
but not for TBN. We observed that the predictive abilities 
of markers near GC genes exceeded those of markers near NM 
genes in the Ames panel (Supplementary Table 1 and Fig. 4). 
These outcomes closely mirrored those observed during cross- 

validation experiments conducted within the Goodman–Buckler 

diversity panel (Supplementary Table 1). However, when com

pared with their respective empirical null distribution of predict

ive abilities of markers near randomly selected genes, the 

predictive ability of the markers near GC fell below the 95th per

centile (Fig. 5a). In comparison, the predictive ability of NM genes 

was substantially higher than what would be expected under the 

null hypothesis that the NM genes are not making a meaningful 

contribution to the genomic signal of TBN and LA (Fig. 5b). 
Finally, we observed that the predictive abilities of the markers 
identified from MSTEP and USTEP in the Goodman–Buckler diver
sity panel were notably lower than those for any other considered 
subset of markers.

Markers near NM orthologs in sorghum 
showed higher predictive abilities for LA 
than expected by chance
To test whether context-specific biological data from maize could 
be used for accurately predicting parallel phenotypes in sorghum, 
a closely related cereal crop, we used the GC and NM genes in 
maize to predict LA in sorghum. We observed that the ability of 
markers proximal to sorghum syntenic orthologs of GC genes to 

Fig. 5. Predictive performance of NM and GC markers in the validation set. The density plots illustrate the empirical null distributions, above and below 0 
density, generated based on 1,000 iterations of randomly selected genes and the subsequent selection of the colocalizing markers. Prediction results for 
TBN and LA are presented for the NM set a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the predictive ability 
for the NM and GC set, and the whole-genome set of markers conducted using the Ames diversity panel. Δ represents the difference in predictive ability 
between the WG and the marker subsets, NM or GC.

Fig. 6. Cross-species predictive ability between maize and sorghum. The density plots illustrate the empirical null distributions generated based on 1,000 
iterations of randomly selected sorghum genes and the subsequent selection of the colocalizing markers. LA prediction results are represented for the 
NM set a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the 5-fold cross-predictive ability (average) for the NM 
and GC set and the whole-genome set of markers conducted using the SAP.
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predict GEBVs of LA was similar to those in the vicinity of ortholo
gous NM genes (Supplementary Table 2 and Fig. 6), with a mean 
predictive ability of 0.50 and 0.51 for GC and NM, respectively. 
This similarity suggests that the GC and NM ortholog marker 
sets might be tagging similar subsets underlying causal variants 
of LA in sorghum. However, we also noted that the empirical 
null distribution of predictive abilities from randomly selected 
genes corresponding to the GC set tended to be larger than a com
parable distribution corresponding to the NM set (Fig. 6). These re
sults suggest that markers associated with NM genes play a more 
substantial role in the genomic signal underlying LA variance in 
the SAP. These overall findings closely match those from the ana
lysis of the maize lines in the Ames diversity panel.

Cross-species predictive ability for LA between 
maize and rice was not statistically significant
We further assessed the cross-species translatability of markers as
sociated with network genes and their applicability between more 
distantly related grass species, i.e. maize and rice. As done in sor
ghum, we predicted GEBVs of rice LA based on SNPs near rice syn
tenic orthologs of GC and NM genes. The whole-genome marker set 
yielded a mean predictive ability of 0.27. Given the low trait herit
ability (h2 = 0.32; see Huber et al. 2024), this level of prediction was 
expected. However, the predictive abilities of the GC and NM sets 
tended to be less than those from selected markers used to gener
ate the null distribution (Supplementary Table 3 and Fig. 7).

Discussion
We assessed the ability of markers located within and around 2 bio
logical network-informed gene sets from maize to predict breeding 
values of plant architectural traits in 3 agronomically important 
crops. We observed that the set of transcription factor-encoding 
genes associated with recurrent NMs gave higher predictive abil
ities in maize and sorghum than expected by chance, but not in 
rice. This suggests that regulatory networks derived from 1 species 
(i.e. maize) can be used to inform loci contributing to the genetic 
architecture in a closely related species (sorghum). Our results 
also showed that this did not hold up when translating to rice, a 
more distantly related species; however, there are other factors 
that may have confounded this analysis, as described below.

NMs can capture information underlying the 
genetic architecture of LA important for 
cross-species inferences
Our results support our hypothesis on the contributions of context- 
specific gene regulatory networks to the genetic architecture of LA 
and TBN. This suggests that finely tuned GP models including only 
markers in the vicinity of NM genes can effectively infer elements 
of the genetic architecture of complex traits. Results from our 
cross-species analyses are likely attributed to a shared set of 
functionally constrained regulators that play important roles in 
the genotype–phenotype relationship underlying LA genetic 
architecture in maize and sorghum, but not in rice. This could 
be indicative of the close evolutionary distance between maize 
and sorghum (Wang et al. 2015) and aligns with prior findings 
showing gene regulatory conservation among syntenic orthologs 
in these species (Zhang et al. 2017).

However, in the case of rice, we must account for differences 
in the developmental stage at the time of phenotype collection 
(these were collected at an early vegetative growth stage), en
hanced tillering compared with the other species, and the differ
ent methods used for quantifying LA in the rice data set (Huber 
et al. 2024). All of these factors may have confounded our results. 
Ideally, GP models in rice should be trained on LA data from ma
ture rice plants as was done for maize and sorghum. Accounting 
for these differences could rule out the possibility that the ob
served low prediction accuracies for markers near synthetic rice 
orthologs of maize NM features arose because the key transcrip
tion factors underlying LA in rice change across growth stages.

GC networks sufficiently capture meaningful 
contributions to genetic architecture within the 
panel where the traits were quantified
In contrast to our results with the NM gene sets, the only situation 
where we saw evidence of markers surrounding GC network genes 
yielding higher prediction accuracies than expected by chance 
was within the Goodman–Buckler diversity panel. This suggests 
that the causal variability captured by the GC networks could be 
very specific to the data set being analyzed, and is potentially 
prone to overfitting to such an extent that they cannot capture sig
natures of genetic architecture, even for different panels within 

Fig. 7. Cross-species predictive ability between maize and rice. The density plots illustrate the empirical null distributions generated based on 1,000 
iterations of randomly selected rice genes and the subsequent selection of the colocalizing markers. LA prediction results are represented for the NM set 
a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the 5-fold cross-predictive ability (average) for the NM and GC 
set, and the whole-genome set of markers conducted using the HDRA panel.
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the same species. More broadly, this result implies that using cor
relations between gene expressions is insufficient for capturing 
markers that have high accuracy when predicting unrelated 
individuals. This could reflect the coexpression network rewiring 
influenced by specific selective pressures. NMs instead capture 
building block patterns within the complex networks of recurrent 
transcription factors that might preserve functional conservation 
intra/interspecies. Therefore, the identification of recurring tran
scription factors associated with 3-node NMs helps prioritize 
genes that are more likely to serve as key regulators, as well as 
subset markers linked to genes that contribute to the genetic 
architecture in unrelated individuals and environments.

Using predictive abilities from GP to infer genetic 
architecture
This study demonstrated the potential for using GP to make infer
ences on genetic architecture. In practice, GP is almost over
whelmingly used to predict GEBVs of crops or livestock using 
whole-genome marker data, as opposed to inferring which gen
omic regions are likely to contain features that biologically control 
trait variability (Rice and Lipka 2021). Indeed, the application of GP 
to make such inferences should be discouraged because the num
ber of markers in a typical data set vastly exceeds the number of 
individuals (see de Los Campos et al. 2013 for an overview of GP 
models). This “p >> n” scenario leads to the priors and/or penalties 
used in GP having such a major influence on marker effect esti
mates that different penalties and/or priors could identify differ
ent regions of strong statistical associations for the same trait 
(see e.g. Gianola 2013 for an in-depth description). Similar to 
other studies (e.g. Turner-Hissong et al. 2020), we circumvented 
this problem by comparing the predictive abilities of several GP 
models, each that focus on biologically informed subsets of the gen
ome. Given the general similarities in predictive abilities between 
the whole-genome sets and the GC and NM sets, our work has far 
greater potential to facilitate inferences on basic biology than to 
change the justifiably accepted use of genome-wide markers to pre
dict GEBVs. Nevertheless, follow-up studies should be conducted to 
determine the extent to which the proportions of trait variance ex
plained by both of the marker sets differ from the whole-genome 
marker sets for a wider set of plant architectural traits. If these 
follow-up studies confirm our findings on the predictive abilities 
of the NM sets, they would underscore that substantial insight 
into genomic architecture can be made by fitting off-the-shelf GP 
models to a priori biologically informed marker subsets.

This work also highlighted how running existing GP models on 
subsets of markers can be used to compare and contrast genetic 
architecture between 2 traits within the same species. For instance, 
Figs. 2 and 4 show that there are differences in predictive ability 
across LA and TBN in both of the maize panels. These differences 
could highlight specific areas of genetic architecture that are dis
tinct for the 2 traits. Conversely, Figs. 2 and 4 also highlight areas 
where the genetic architectures are comparable between LA and 
TBN; for example, the contributions of GC to the overall genetic 
architecture appear to be similar for LA and TBN within each panel. 
In general, the ability to make such inferences suggests that it is 
possible to gain insight into contrasting features of genetic archi
tecture between traits by comparing predictive abilities of marker 
subsets near genomic features identified in a priori studies.

Conclusion
We used an innovative GP approach informed by gene regulatory 
circuitries to study the genetic architecture of complex traits. Our 

analyses suggest that NM facilitates the translation of biological 
information related to plant architecture across different diver
sity panels within a species, as well as between closely related spe
cies, as illustrated for maize and sorghum. This suggestive 
convergence of functionally constrained regulators underlying 
plant architectural traits opens up promising avenues for targeted 
breeding practices for both maize and sorghum, which can lead to 
optimized plant architecture for high-density planting and en
hanced agricultural productivity.
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