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Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic
prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable.
Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions
could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that context-
ually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction mod-
els for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic
architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these
traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breed-
ing values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolon)
and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome
marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities
that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly
connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.
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(LA) and reduced tassel branch number (TBN) not only have sig-
nificant implications for crop management but also enable better
light penetration into the lower canopy. This reduces competition
for sunlight and hence optimizes photosynthetic efficiency. Such
breeding efforts resulted in a higher number of plants per hectare
and, consequently, a substantial increase in crop yields (Duvick
2005).

Plant architectural traits, including LA and inflorescence struc-
ture (e.g. TBN), exhibit high heritability across economically im-

Introduction

The increasingly pressing challenge of feeding the growing global
population, estimated to reach 9 billion by 2050, necessitates a sig-
nificant increase in food production (Hunter et al. 2017). Against
the backdrop of climate change, this challenge underscores a crit-
ical need to explore cutting-edge methods for crop improvement
(Mohd Saad et al. 2022). Plant architecture has been an important
target of selection in crop improvement and central to the huge
gains in productivity from breeding seen throughout the past cen-

tury. With inevitable decreases in arable farmland worldwide and
shifting weather patterns, modern-day crop improvement must
adjust plant ideotypes for diverse environments and thus archi-
tectural traits remain a key target (Huang et al. 2022).

A core breeding objective to accommodate these challenges
has been to increase planting density without compromising
plant fitness. Consequently, modern high-density planting
schemes for cereal crops have been successfully implemented, re-
sulting in significantly increased productivity per unit area
(Cao et al. 2022). In maize (Zea mays), this was realized through
breeding efforts focused on architectural traits such as upright
leaves, minimal branching, and tillering. Narrower leaf angle

portant crops (Upadyayula et al. 2006; Casa et al. 2008; Sary et al.
2022). This allows the opportunity to employ genomic prediction
(GP) models that utilize signatures of genetic architecture cap-
tured by genome-wide marker sets to obtain accurate genomic
estimated breeding values (GEBVs) for plants that have not been
phenotyped (Bernardo 1994; Meuwissen et al. 2001) and therefore
accelerate genetic gain. The most widely used statistical models
for GP (reviewed in de Los Campos et al. 2013) have been
shown to outperform competing marker-assisted selection ap-
proaches that only consider the effects of single, large-effect
genes (Meuwissen et al. 2001; Bernardo and Yu 2007; Heffner
et al. 2010). In addition to its well-established contribution to
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modern plant and animal breeding programs (reviewed in Van
Eenennaam et al. 2014 ; Crossa et al. 2017), GP models that account
for gene families or other genomic features identified in prior
studies can be used to make inferences on their contribution to
the overall genetic architecture of the studied trait. For example,
Turner-Hissong et al. (2020) used a series of fine-tuned GP models
to infer the contributions of several pathways to free amino acids
composition in dry Arabidopsis seeds. The use of GP for making in-
ferences on genetic architecture is crucial because approaches
such as genome-wide association studies (GWAS) and quantita-
tive trait locus (QTL) analyses typically only identify moderate-
large-effect loci (Lipka et al. 2015). This misses the vast majority
of the genomic signal explained by the collective effects of puta-
tively small-effect loci underlying complex traits. Thus, a prac-
tical implication of using GP to make inferences on the genetic
architecture of plant architectural traits is that it could shed im-
portant light on the contributions of genomic effects that tend
to be overlooked by GWAS.
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Prior studies investigated the use of certain genomic features to
reduce genome-wide marker sets, e.g. accessible chromatin re-
gions, capturing a significant portion of the phenotypic variation
(Rodgers-Melnick et al. 2016; Parvathaneni et al. 2020). A recent
study by Bertolini et al. (2023) demonstrated the power of fine-
tuning genotype-to-phenotype models with biological informa-
tion derived from transcriptional networks, which facilitated the
identification of small-effect genetic loci associated with LA and
TBN in maize. This approach defined transcriptional circuitries
in specific developmental contexts (i.e. tassel and leaf develop-
ment) (Fig. 1, left panel) by inferring (1) gene coexpression (GC)
networks to identify groups of genes with similar expression pat-
terns and (2) gene regulatory networks to predict transcription
factor regulation of gene targets. This study revealed that gene
sets derived from specific developmental networks could explain
a significant portion of the narrow-sense heritability (h? for LA
and TBN, which suggests these gene sets form part of the genetic
architecture for these traits (Bertolini et al. 2023). Therefore, we
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Fig. 1. Experimental scheme of GP using transcriptional networks. The left panel represents the identification of transcriptional networks from tassel
primordia and the ligular region (Bertolini et al. 2023). The ball-and-stick diagram, enclosed within the ellipse, represents the 6 selected modules from the
coexpression networks generated using expression data from both tissue types (Bertolini et al. 2023). The two circles represent the tissue-specific 3-node
NMs with an edge number of 3 or more (from A to]). The right panel illustrates the GP approach used in this study. It includes 3 marker sets (WG, GC, and
NM), each comprising markers with MAF < 0.05 and then markers with MAF > 0.05. GP models were trained in the maize Goodman-Buckler diversity
panel and validated in the Ames panel. The arrow indicates the cross-species translation using markers located near sorghum and rice orthologs. Dots
represent phylogenetic distance (million years ago) among the species (Swigonova et al. 2004).
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expect that these sets of network genes should similarly produce
reasonably high predictive abilities in GP models.

The purpose of our study was to use GP to determine the con-
tribution of biological gene networks to the genetic architectures
of LA and TBN, 2 agronomically important architectural traits in
maize. We also tested the ability to translate gene network-based
information from maize to other cereals including sorghum
(Sorghum bicolor), which is closely related to maize, and rice
(Oryza sativa), a more distantly related cereal. We considered 4
prediction scenarios (Fig. 1, right panel): (1) where we predicted
GEBVs within the maize diversity panel from Flint-Garcia et al.
(2005); (2) where the maize diversity panel in (1) was the training
set and a larger maize diversity panel from Romay et al. (2013)
was the validation set; (3) where the predictive abilities for LA
using sorghum orthologs of core network genes from maize
were assessed in a sorghum diversity panel (Casa et al. 2008);
and (4) where a procedure similar to (3) was conducted on a rice
diversity panel (McCouch et al. 2016). For all scenarios, we com-
pared the predictive abilities of markers proximal to network
gene sets to those from a genome-wide marker set, as well as an
empirical distribution of prediction accuracies from randomly se-
lected subsets of markers.

Materials and methods
Genotypic data

We analyzed 2 well-studied maize diversity panels: the Goodman-—
Buckler diversity panel (Flint-Garcia et al. 2005) and the Ames pa-
nel (also known as the North Central Regional Plant Introduction
Station Panel; Romay et al. 2013). We also analyzed the sorghum
association panel (SAP; Casa et al. 2008) and the high-density
rice array (HDRA; McCouch et al. 2016). Genotyping by sequencing
(GBS) data for markers segregating in both the Goodman-Buckler
and Ames maize diversity panels were downloaded from Panzea
(www.panzea.org) and processed following the methodology out-
lined in Bertolini et al. (2023). Specifically, genomic coordinates
were uplifted to the maize reference AGPv4 (Jiao et al. 2017), indels
and nonbiallelic markers were filtered out, and missing data were
imputed using the nearest neighbor method (Money et al. 2015).
Single-nucleotide polymorphisms (SNPs) with a minor allele fre-
quency (MAF)<0.01 were also discarded. The SAP GBS data
(Bouchet et al. 2017) were downloaded from the Dryad Digital
Repository (doi:10.5061/dryad.gm073). The HDRA genotypes data
were downloaded from Rice Diversity (www.ricediversity.org).
All genotype data were then employed to subset markers based
on specific gene network subsets and different MAF cutoffs for
further analysis.

Gene module information

We used transcriptional networks related to tassel branching and
ligule development in maize from the Bertolini et al. (2023) study,
including GC networks representing groups of genes with similar
expression patterns and 3-node network motifs (NMs), which are
elementary gene regulatory circuits of regulatory transcription
factor networks. Markers within genomic coordinates of these 2
gene sets were selected based on genomic windows defined as
within 2 kb from the transcription start site (TSS) and the tran-
scription termination site (TTS) (see Bertolini et al. 2023 for further
details). The maize GC and NM genes were translated to sorghum
and rice using syntenic orthologous gene information retrieved
from Zhang et al. (2017). Due to larger LD blocks relative to maize
(Morris et al. 2013), the sorghum and rice genomic regions were ex-
tended by 10 kb from the TSS and TTS.

Phenotypic data

We used phenotype data for LA and TBN published in Bertolini
et al. (2023) for our analysis. These data were from 231 lines of
the Goodman-Buckler diversity panel and 1,064 lines of the
Ames panel. As described in Bertolini et al. (2023), these data
were grown in a randomized complete block design (RCBD) be-
tween 2018 and 2021. Sorghum LA phenotype data were previous-
ly collected for 296 individuals from the SAP (Casa et al. 2008),
which were planted in a RCBD with 2 replications per location in
2010 and 2012. LA was measured from the leaf below the flag
leaf, and 2 plants per replication were measured using a protract-
or (Mantilla Perez et al. 2014). Similarly, LA phenotype data were
collected from a rice diversity panel of 344 varieties (Huber et al.
2024) using a RCBD with 4 replicates. LA was collected at an early
vegetative stage, between the second and third youngest leaves
and the culm.

GP model used

We employed the ridge regression best linear unbiased prediction
(RR-BLUP; Whittaker et al. 2000; Meuwissen et al. 2001) model to
obtain GEBVs of TBN and LA. This model equates a given trait to
a linear combination of random marker effects and a random er-
ror term, as described previously (e.g. Rice and Lipka 2019), and
the resulting genotype BLUPs are “shrunk” to the mean as a result
of a ridge penalty (Hoerl and Kennard 1970) determined from the
ratio of error variance to genetic variance. The RR-BLUP model
was fitted using the rrBLUP R package (Endelman 2011).

MSTEP and USTEP models for maize

We implemented 2 multilocus stepwise model selection proce-
dures to identify markers exhibiting strong statistical associations
with TBN and LA in maize. The first procedure was the multitrait,
multilocus (MSTEP) procedure, which is described in detail in
Fernandes et al. (2022). Briefly, this procedure fits a series of multi-
trait, multilocus models in a stepwise manner to identify markers
exhibiting strong additive associations with multiple traits. The
specific markers to be included in the model are determined
through a stepwise model selection procedure. In this implemen-
tation, we considered TBN and LA as the 2 response variables. The
second procedure we considered was a single-trait analog of
MSTEP. As done in Fernandes et al. (2022), we abbreviated this pro-
cedure as the univariate stepwise model selection procedure
(USTEP), and we fitted it separately to TBN and then again to LA.
For both of these model selection procedures, stepwise model
selection was conducted in the TASSEL software (Bradbury et al.
2007) until a total of 10 markers were in the final models.

GPs within the Goodman-Buckler maize
diversity panel

Five-fold cross-validation was performed to obtain predictive abil-
ities for LA and TBN in the full marker set (44,930 SNPs), subsets of
markers obtained from GC modules (21,362 SNPs) and from NMs
(466 SNPs) from Bertolini et al. (2023). For each of these subsets,
we also evaluated the predictive abilities of markers with MAF <
0.05 and then markers with MAF > 0.05. This was undertaken
to evaluate the possibility that markers with MAF <0.05 might
capture different causal loci than markers with MAF > 0.05.
Predictive abilities of models including only markers selected
from MSTEP and USTEP as explanatory variables (and fitted to
the appropriate training sets) were also evaluated through 5-fold
cross-validation. We utilized the R packages rTBLUP (Endelman
2011) and GAPIT (Lipka et al. 2012) along with in-house R scripts
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for GP using the RR-BLUP model. For all subsets of markers, the
predictive ability was calculated as the sample mean Pearson
product moment correlation coefficient (r) between observed trait
values and GEBVs across all validation sets.

Using the Goodman-Buckler diversity panel to
train models for GP in the Ames maize panel

We undertook another cross-validation study in which all 231
lines in the Goodman-Buckler diversity panel with available
phenotypic data were used as the training set, and a subset of
1,064 lines of the Ames panel that maximize diversity in TBN
and LA (Bertolini et al. 2023) were used as the validation set. For
each of the aforementioned categories of marker sets, predictive
ability was again determined by calculating the Pearson product
moment correlation coefficient between observed trait values of
the 1,064 lines in the Ames panel and their corresponding GEBVSs.

GP within the SAP in sorghum
and the HDRA in rice

A 5-fold cross-validation procedure, very similar to that described
for the Goodman-Buckler maize diversity panel, was used to
evaluate the predictive ability of markers in the vicinity of sor-
ghum and rice syntenic orthologs of the GC and NM genes. For
the SAP, this resulted in a total of 59,995 markers in the vicinity
of the GC orthologs and 2,695 markers in the vicinity of NM ortho-
logs. For the HDRA, we similarly obtained a total of 293,509 mar-
kers in the vicinity of GC orthologs and 10,970 markers in the
vicinity of NM orthologs.

Procedure for obtaining an empirical null
distribution to test for contribution of gene
modules to genomic signals underlying traits

We used these GP models to make inferences on the contributions
of GC and NM to the genetic architecture of TBN and LA. We fol-
lowed a procedure similar to Parvathaneni et al. (2020) to derive
an empirical distribution of prediction accuracies under the null
hypothesis that the genes underlying the signals captured in the
2 gene set categories (l.e. GC and NM) are not important. For
each category in each of the above GP experiments, we generated
1,000 random subsets by randomly selecting genes. Each of these
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subsets contained the same number of genes as those included in
the selected category. Within each random subset, we then selected
SNP markers using the genomic coordinates as described in the pre-
vious sections. This approach was undertaken because the maize
GBS data used in this work are not able to target specific genomic
regions, such as promoters and coding genes that probably contain
causative variations associated with the phenotypic variability.
Furthermore, given that the overarching null hypothesis focuses
on gene sets, we felt that it was critical to ensure that each random
subset was selected based on genes, not SNPs. We then fitted an
RR-BLUP model in the respective training sets using only the SNP
markers included in the random subset. Consequently, we obtained
an empirical distribution of predictive abilities under this null hy-
pothesis. The predictive ability of the given gene set was then com-
pared with this empirical null distribution, and a P-value was
subsequently calculated. Lower P-values provide stronger evidence
against the null hypothesis that the tested gene setis not important.
We considered statistical significance at a=0.05.

Results

Predictive abilities of TBN and LA traits using
gene network informed marker sets were almost
as high as those from whole-genome marker set

To assess the ability of the NM and GC marker sets to accurately
predict GEBVs of TBN and LA for 231 accessions in the
Goodman-Buckler maize diversity panel (Flint-Garcia et al
2005), we conducted a 5-fold cross-validation procedure. Our re-
sults suggested that SNPs in the vicinity of GC genes had similar
predictive ability to the entire whole-genome marker set (Fig. 2)
with a mean predictive ability of 0.60 and 0.56 for TBN and
LA, respectively. This could imply that for both traits, the variance
explained by the GC marker set is similar to that of the whole-
genome marker set. The predictive abilities observed in markers
around GC genes were significantly greater than those derived
from markers near randomly selected genes for both traits
(Fig. 3). We also noted that the predictive ability of the GC set
did not drop severely when using only low-MAF (MAF <0.05)
SNPs (Supplementary Table 1), potentially suggesting that both
high- and low-MAF GC sets are tagging similar causal variants.
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Fig. 2. Predictive ability in the Goodman-Buckler diversity panel. The image depicts the prediction accuracies in the training set. The boxplots illustrate
the results of the 5-fold cross-validation tests conducted on the genome-wide (GW), the NM, and the GC marker sets at different MAF cutoffs. Y-axis
represents the correlation coefficient (r) between observed trait values and GEBVs; a) and b) show results on TBN and LA, respectively.
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Fig. 3. Predictive performance of NM and GC marker setsin the training set. The density plots illustrate the empirical null distributions, above and below 0
density, generated based on 1,000 iterations of randomly selected genes and the subsequent selection of the colocalizing markers. Prediction results for
TBN and LA are presented for the NM set a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the 5-fold

cross-predictive ability (average) for the NM and GC set, and the whole-genome set of markers conducted using the Goodman-Buckler diversity panel.
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Fig. 4. Predictive ability of NM and GC marker sets in the validation set. The image represents the predictive ability results in the validation set for TBN
a) and LA b) in the Ames diversity panel. Each dot represents the correlation coefficient (r) of different maker sets: genome-wide (GW), NM, and the GC

markers at different MAF cutoffs.

Notably, markers associated with NM genes, despite account-
ing for only 10% of the whole-genome SNPs, showed only slightly
lower predictive abilities for both traits (Fig. 2) relative to the
whole-genome markers. When compared with the respective em-
pirical null distribution, we observed that markers near the NM
genes showed greater ability to predict TBN than was expected
under the null hypothesis. In contrast, the predictability of LA
by markers near the NM genes was not substantially greater
than the range of predictive abilities observed across the corre-
sponding empirical null distribution of predictive abilities
(Fig. 3). For both traits, the predictive ability of the markers iden-
tified by MSTEP and USTEP were similar to those from the
genome-wide marker set, highlighting a potentially strong signal
derived from markers selected from these approaches. This could
support previous findings, where LA was dominated by 2 major

QTLs (Tian et al. 2011). However, the results suggested that rela-
tive to a genome-wide set of markers, MSTEP and USTEP have po-
tential to increase the variability (and hence uncertainty) in
prediction accuracies.

Markers near NM genes captured unique genomic
signals in the Ames diversity panel

We next assessed the ability of GP models trained in the
Goodman-Buckler diversity panel to predict GEBVs in the Ames
panel. The predictive ability of GC markers was 0.55 for TBN and
0.46 for LA, while the whole-genome set achieved an accuracy of
0.57 and 0.47, respectively, for TBN and LA (Fig. 4). These relatively
high predictive abilities suggest the genomic signals underlying
TBN and LA in the Ames panel are similar to those underlying
these 2 traits in the Goodman-Buckler panel. Interestingly, we
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noted that low-MAF GC markers yielded virtually identical LA pre-
dictive abilities as the low-MAF subset of whole-genome markers,
but not for TBN. We observed that the predictive abilities
of markers near GC genes exceeded those of markers near NM
genes in the Ames panel (Supplementary Table 1 and Fig. 4).
These outcomes closely mirrored those observed during cross-
validation experiments conducted within the Goodman-Buckler
diversity panel (Supplementary Table 1). However, when com-
pared with their respective empirical null distribution of predict-
ive abilities of markers near randomly selected genes, the
predictive ability of the markers near GC fell below the 95th per-
centile (Fig. 5a). In comparison, the predictive ability of NM genes
was substantially higher than what would be expected under the
null hypothesis that the NM genes are not making a meaningful

contribution to the genomic signal of TBN and LA (Fig. 5b).
Finally, we observed that the predictive abilities of the markers
identified from MSTEP and USTEP in the Goodman-Buckler diver-
sity panel were notably lower than those for any other considered
subset of markers.

Markers near NM orthologs in sorghum

showed higher predictive abilities for LA

than expected by chance

To test whether context-specific biological data from maize could
be used for accurately predicting parallel phenotypes in sorghum,
a closely related cereal crop, we used the GC and NM genes in
maize to predict LA in sorghum. We observed that the ability of
markers proximal to sorghum syntenic orthologs of GC genes to
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Fig. 5. Predictive performance of NM and GC markers in the validation set. The density plots illustrate the empirical null distributions, above and below 0
density, generated based on 1,000 iterations of randomly selected genes and the subsequent selection of the colocalizing markers. Prediction results for
TBN and LA are presented for the NM set a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the predictive ability
for the NM and GC set, and the whole-genome set of markers conducted using the Ames diversity panel. A represents the difference in predictive ability

between the WG and the marker subsets, NM or GC.
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Fig. 6. Cross-species predictive ability between maize and sorghum. The density plots illustrate the empirical null distributions generated based on 1,000
iterations of randomly selected sorghum genes and the subsequent selection of the colocalizing markers. LA prediction results are represented for the
NM set a) and the GC set b). Arrows indicate the 95th percentile of the empirical null distributions, the 5-fold cross-predictive ability (average) for the NM
and GC set and the whole-genome set of markers conducted using the SAP.
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predict GEBVs of LA was similar to those in the vicinity of ortholo-
gous NM genes (Supplementary Table 2 and Fig. 6), with a mean
predictive ability of 0.50 and 0.51 for GC and NV, respectively.
This similarity suggests that the GC and NM ortholog marker
sets might be tagging similar subsets underlying causal variants
of LA in sorghum. However, we also noted that the empirical
null distribution of predictive abilities from randomly selected
genes corresponding to the GC set tended to be larger than a com-
parable distribution corresponding to the NM set (Fig. 6). These re-
sults suggest that markers associated with NM genes play a more
substantial role in the genomic signal underlying LA variance in
the SAP. These overall findings closely match those from the ana-
lysis of the maize lines in the Ames diversity panel.

Cross-species predictive ability for LA between
maize and rice was not statistically significant
We further assessed the cross-species translatability of markers as-
sociated with network genes and their applicability between more
distantly related grass species, i.e. maize and rice. As done in sor-
ghum, we predicted GEBVs of rice LA based on SNPs near rice syn-
tenic orthologs of GC and NM genes. The whole-genome marker set
yielded a mean predictive ability of 0.27. Given the low trait herit-
ability (h? = 0.32; see Huber et al. 2024), this level of prediction was
expected. However, the predictive abilities of the GC and NM sets
tended to be less than those from selected markers used to gener-
ate the null distribution (Supplementary Table 3 and Fig. 7).

Discussion

We assessed the ability of markers located within and around 2 bio-
logical network-informed gene sets from maize to predict breeding
values of plant architectural traits in 3 agronomically important
crops. We observed that the set of transcription factor-encoding
genes associated with recurrent NMs gave higher predictive abil-
ities in maize and sorghum than expected by chance, but not in
rice. This suggests that regulatory networks derived from 1 species
(i.e. maize) can be used to inform loci contributing to the genetic
architecture in a closely related species (sorghum). Our results
also showed that this did not hold up when translating to rice, a
more distantly related species; however, there are other factors
that may have confounded this analysis, as described below.

NMs can capture information underlying the
genetic architecture of LA important for
cross-species inferences

Ourresults support our hypothesis on the contributions of context-
specific gene regulatory networks to the genetic architecture of LA
and TBN. This suggests that finely tuned GP models including only
markers in the vicinity of NM genes can effectively infer elements
of the genetic architecture of complex traits. Results from our
cross-species analyses are likely attributed to a shared set of
functionally constrained regulators that play important roles in
the genotype-phenotype relationship underlying LA genetic
architecture in maize and sorghum, but not in rice. This could
be indicative of the close evolutionary distance between maize
and sorghum (Wang et al. 2015) and aligns with prior findings
showing gene regulatory conservation among syntenic orthologs
in these species (Zhang et al. 2017).

However, in the case of rice, we must account for differences
in the developmental stage at the time of phenotype collection
(these were collected at an early vegetative growth stage), en-
hanced tillering compared with the other species, and the differ-
ent methods used for quantifying LA in the rice data set (Huber
et al. 2024). All of these factors may have confounded our results.
Ideally, GP models in rice should be trained on LA data from ma-
ture rice plants as was done for maize and sorghum. Accounting
for these differences could rule out the possibility that the ob-
served low prediction accuracies for markers near synthetic rice
orthologs of maize NM features arose because the key transcrip-
tion factors underlying LA in rice change across growth stages.

GC networks sufficiently capture meaningful
contributions to genetic architecture within the
panel where the traits were quantified

In contrast to our results with the NM gene sets, the only situation
where we saw evidence of markers surrounding GC network genes
yielding higher prediction accuracies than expected by chance
was within the Goodman-Buckler diversity panel. This suggests
that the causal variability captured by the GC networks could be
very specific to the data set being analyzed, and is potentially
prone to overfitting to such an extent that they cannot capture sig-
natures of genetic architecture, even for different panels within
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Fig. 7. Cross-species predictive ability between maize and rice. The density plots illustrate the empirical null distributions generated based on 1,000
iterations of randomly selected rice genes and the subsequent selection of the colocalizing markers. LA prediction results are represented for the NM set
a) and the GC setb). Arrows indicate the 95th percentile of the empirical null distributions, the 5-fold cross-predictive ability (average) for the NM and GC

set, and the whole-genome set of markers conducted using the HDRA panel.
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the same species. More broadly, this result implies that using cor-
relations between gene expressions is insufficient for capturing
markers that have high accuracy when predicting unrelated
individuals. This could reflect the coexpression network rewiring
influenced by specific selective pressures. NMs instead capture
building block patterns within the complex networks of recurrent
transcription factors that might preserve functional conservation
intra/interspecies. Therefore, the identification of recurring tran-
scription factors associated with 3-node NMs helps prioritize
genes that are more likely to serve as key regulators, as well as
subset markers linked to genes that contribute to the genetic
architecture in unrelated individuals and environments.

Using predictive abilities from GP to infer genetic
architecture

This study demonstrated the potential for using GP to make infer-
ences on genetic architecture. In practice, GP is almost over-
whelmingly used to predict GEBVs of crops or livestock using
whole-genome marker data, as opposed to inferring which gen-
omic regions are likely to contain features that biologically control
trait variability (Rice and Lipka 2021). Indeed, the application of GP
to make such inferences should be discouraged because the num-
ber of markers in a typical data set vastly exceeds the number of
individuals (see de Los Campos et al. 2013 for an overview of GP
models). This “p >>n" scenario leads to the priors and/or penalties
used in GP having such a major influence on marker effect esti-
mates that different penalties and/or priors could identify differ-
ent regions of strong statistical associations for the same trait
(see e.g. Gianola 2013 for an in-depth description). Similar to
other studies (e.g. Turner-Hissong et al. 2020), we circumvented
this problem by comparing the predictive abilities of several GP
models, each that focus on biologically informed subsets of the gen-
ome. Given the general similarities in predictive abilities between
the whole-genome sets and the GC and NM sets, our work has far
greater potential to facilitate inferences on basic biology than to
change the justifiably accepted use of genome-wide markers to pre-
dict GEBVs. Nevertheless, follow-up studies should be conducted to
determine the extent to which the proportions of trait variance ex-
plained by both of the marker sets differ from the whole-genome
marker sets for a wider set of plant architectural traits. If these
follow-up studies confirm our findings on the predictive abilities
of the NM sets, they would underscore that substantial insight
into genomic architecture can be made by fitting off-the-shelf GP
models to a priori biologically informed marker subsets.

This work also highlighted how running existing GP models on
subsets of markers can be used to compare and contrast genetic
architecture between 2 traits within the same species. For instance,
Figs. 2 and 4 show that there are differences in predictive ability
across LA and TBN in both of the maize panels. These differences
could highlight specific areas of genetic architecture that are dis-
tinct for the 2 traits. Conversely, Figs. 2 and 4 also highlight areas
where the genetic architectures are comparable between LA and
TBN; for example, the contributions of GC to the overall genetic
architecture appear to be similar for LA and TBN within each panel.
In general, the ability to make such inferences suggests that it is
possible to gain insight into contrasting features of genetic archi-
tecture between traits by comparing predictive abilities of marker
subsets near genomic features identified in a priori studies.

Conclusion

We used an innovative GP approach informed by gene regulatory
circuitries to study the genetic architecture of complex traits. Our

analyses suggest that NM facilitates the translation of biological
information related to plant architecture across different diver-
sity panels within a species, as well as between closely related spe-
cies, as illustrated for maize and sorghum. This suggestive
convergence of functionally constrained regulators underlying
plant architectural traits opens up promising avenues for targeted
breeding practices for both maize and sorghum, which can lead to
optimized plant architecture for high-density planting and en-
hanced agricultural productivity.
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