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ABSTRACT
Safety analysis of power systems is concerned with the system’s ability to maintain critical variables within specified limits fol-
lowing a disturbance. Frequency control adequacy has become increasingly important as the system inertia decreases due to the
increase in renewable energy penetration. Various controllers for inverters have been proposed to improve the system frequency
response and few are capable to ensure the safety of the response. In this article, a diesel-wind energy system is considered and
modeled as a switching system between normal, faulted, and post-fault modes. A safety feedback controller is designed as a sup-
plementary signal for a wind turbine generator such that the speed of the diesel generator stays within a permissible range in
the presence of a finite energy disturbance. Numerical results on the modified 33-bus microgrid system obtained of the proposed
novel approach indicate that the suggested control configuration can guarantee adequate frequency response without excessive
conservativeness.

1 | Introduction

Renewable resources have been providing an increasing por-
tion of the total generation in power systems, particularly in
islanded microgrids. Since most renewable resources are not
electromechanically coupled to the microgrid, the replacement
of traditional synchronous generators results in a decrease of
system inertia and inadequacy of frequency response [1, 2].
Large transients in frequency can trigger unnecessary relay
actions even though the system has adequate capacity to reach

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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a viable steady-state [3]. Therefore, maintaining the system fre-
quency within permissible ranges is critical to reliable electric-
ity delivery [4], especially in the islanded mode of operation
for microgrids.

Currently, most converters in renewable resources have the
capability to provide grid supportive controls (GSCs), although
they may not be commonly deployed. These controls can be
divided into two categories. The first and most widely stud-
ied methods are to provide an additional signal. On the one
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hand, this signal can be generated as a function of the grid fre-
quency, including grid frequency deviation to emulate primary
response [5–8], rate of change of frequency to emulate inertial
response [9–12], and a mix of both [13–17]. On the other hand,
a pre-specified reference signal (referred to as the power surge
control) to the torque/power [18–21] or a speed reference value
to be tracked [14] is required. These methods can be referred to as
supplementary-signal based methods. The second category uses
power electronic control, either in the phase-lock loop (PLL) [22]
or the active power controller [23, 24], to mimic the power-angle
relation of traditional synchronous generators. Consequently,
the angle used by the Park’s transformation for synchronization
is no longer obtained through the vector alignment, but it is
determined using the swing dynamics.

There are multiple goals for such controls. The simpler objective
is to improve the frequency response under the capacity limits
of the resources, which most microgrid supportive controllers
are designed for. A more challenging control task is to provide
guaranteed control specifications, for example, emulating a given
inertia constant or ensuring an acceptable frequency nadir given
a pre-defined disturbance set. The latter objective is more chal-
lenging and only a few researchers have tackled it. In [3], energy
storage systems are used to avoid unnecessary under-frequency
load shedding (UFLS), where a composite model of system
frequency response (SFR) is built to evaluate the frequency
performance with support. In [8], a safety supervisory control
is designed to switch the mode of a wind turbine generator
between the maximum power point tracking (MPPT) and GSC
mode to ensure frequency adequacy. But, this structure relies on
a fixed GSC and thus, provides guarantees under a limited range
of disturbances. In [25], a commitment strategy for interruptible
loads to ensure adequate response is proposed. However, the
frequency nadir information under different commitments of
interruptible loads needs to be obtained via simulation and
sensitivity prediction. In [26], the available time remaining for
resources to take actions to guarantee a bounded frequency
response given a disturbance is estimated as a function of local
inertia. However, the impact of the supportive control on this
reaction time is not assessed. This could lead to inadequate
responses when the supportive control is not strong enough to
alter the rate of change of frequency. As one can see, most works
that tackle the challenge of performance guarantees are based
on the assumption of a fixed controller.

Motivated by such issues, this article investigates supportive feed-
back control design to guarantee system frequency performance
safety when a disturbance occurs in an islanded microgrid. The
safety region is given and determined by a barrier function as a
metric, such that when the perturbed system reaches the bound-
ary of the region, which has to be determined, the feedback con-
troller will be activated to ensure the system frequency remains
inside the safety region.

The contribution of this article is two-fold as outlined:

• First, this work proposes a control design mechanism to
ensure trajectory performance in an islanded microgird. We
give a necessary and sufficient condition of the existence of
a controller that depends on the barrier function chosen and

the energy of the perturbation. A linearized reduced order
model of the augmented plant is used to drive the theoretic
approach, and the obtained controller is tested on a mod-
ified 33 bus based microgrid in Simulink environment for
validation.

• The second contribution is the estimation of the critical time
available to apply the control law in order to prevent the fre-
quency from reaching the unsafe region.

Note that, in this article we are considering that the perturbation
will occur during a certain period and will be cleared after some
time. The main problem here is not to design a feedback con-
troller that will reject or attenuate the disturbance, as it has been
studied in most of the papers in the literature on disturbances in
linear systems (see [27–31]), but to design a supportive feedback
controller to improve the frequency response by considering its
reaction time.

The article is organized as follows. Section 2 recalls useful
concepts on safety and control barrier function to guarantee fre-
quency performance. Section 3 describes the power system and
the safety problem of the frequency response. In Section 4, the
required conditions are derived to construct a control feedback
that assures the safety of the system in the presence of a finite
energy disturbance with respect to a barrier function and deter-
mine the critical time when the controller needs to be applied
to ensure the safety of the frequency. Illustrative simulations
are given in Section 5 to show the effectiveness of the proposed
method.

2 | Preliminaries

Safety1 is the property that all trajectories of a system stay within
given bounded regions. Consider the following nonlinear dynam-
ical system

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑑(𝑡)) (1)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector and 𝑑(𝑡) ∈ ℝ𝑚 is the distur-
bance. The notion of safety is made concrete by the following
definition.

Definition 1. Given a set of admissible states 𝕏 ⊂ ℝ𝑛, a set
of initial states 0 ⊂ 𝕏, a set of unsafe states 𝑢 ⊂ 𝕏, and a set
of bounded disturbances  ⊂ ℝ𝑚. Let 𝕏(0, 𝑡, 𝑑(𝑡)) be the set of
trajectories initialized in 0. The safety property holds for the
nonlinear system (1) if there exists no time 𝑇 ≥ 0 and no bounded
disturbance 𝑑 ∶ [0, 𝑇] → , such that 𝕏(0, 𝑡, 𝑑(𝑡)) ∩ 𝑢 ≠ ∅,
∀𝑡 ∈ [0, 𝑇].

The Safety property can be verified using a function of state,
termed barrier certificate, which is used to certify that all trajec-
tories of the system starting from a given initial set do not enter
an unsafe region.

Lemma 1. ([32]). Given a nonlinear system 𝑥̇ = 𝑓(𝑥, 𝑑), 𝑥 ∈

𝕏 ⊂ ℝ𝑛, 𝑑 ∈  ⊂ ℝ𝑚, with 𝑓 ∈ 𝐶(𝕏 × ,ℝ𝑛) (the space of con-
tinuous functions). Suppose there exists a differentiable function
𝐵 ∶ ℝ𝑛 → ℝ satisfying (2–4) for the given sets 0 and 𝑢,

𝐵(𝑥) ≤ 0 ∀𝑥 ∈ 0 (2)
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𝐵(𝑥) > 0 ∀𝑥 ∈ 𝑢 (3)

𝜕𝐵

𝜕𝑥
𝑓(𝑥, 𝑑) ≤ 0 ∀(𝑥, 𝑑) ∈ 𝕏 ×  (4)

Then the safety property holds (for proof see [32]).

The function 𝐵 is termed a barrier function for the given system.
The level curve 𝐵(𝑥) = 0, called the barrier certificate, separates
the safe and unsafe regions. By the above conditions, this curve
constitutes a barrier, such that, the trajectories that start from 0
cannot cross toward the unsafe set 𝑢. Usually, the set of unsafe
states 𝑢 is given by some physical constraints on the system
states, for example, UFLS threshold.

To introduce the main result, we review some necessary algebraic
tools. For a matrix 𝑀 ∈ ℂ𝑛×𝑚 with rank 𝑟 < 𝑛, let 𝑀⊥ ∈ ℂ(𝑛−𝑟)×𝑛

be any matrix such that 𝑀⊥𝑀 = 0 and 𝑀⊥(𝑀⊥)∗ > 0 (which can
be computed using the singular value decomposition), where 𝑀∗

is the complex conjugate transpose of 𝑀. Note that such a matrix
𝑀⊥ exists if and only if 𝑀 has linearly dependent rows 𝑟 < 𝑛 (see
[33] for more details).

Theorem 1. ([33]). Let the matrices 𝐵 ∈ ℂ𝑛×𝑚 and 𝑄 = 𝑄∗ ∈

ℂ𝑛×𝑛 be given. The following statements are equivalent.

i. There exists a matrix 𝑋 satisfying

𝐵𝑋 + (𝐵𝑋)∗ + 𝑄 < 0

ii. The following condition holds

𝐵⊥𝑄𝐵⊥∗ < 0 or 𝐵𝐵∗ > 0

Suppose the above statements hold and further assume that 𝐵∗𝐵 >

0. Then all matrices 𝑋 in statement (i) are given by

𝑋 = −𝛾𝐵∗ +
√

𝛾𝐿Ω
1
2 (5)

where 𝐿 is any matrix such that ||𝐿|| < 1 and 𝛾 > 0 is any scalar
such that Ω = (𝛾𝐵𝐵∗ − 𝑄) > 0.

Note that, the equivalence between statements (i) and (ii) is
known as the elimination lemma (see [34, 35] for the proof).

Lemma 2. ([36]). For any positive definite matrix 𝑀 > 0, a
scalar 𝛿 > 0 and a vector function 𝑤 ∶ [0, 𝛿] → ℝ𝑛, then the fol-
lowing inequality holds:(

∫
𝛿

0
𝑤(𝑠)𝑑𝑠

)𝑇

𝑀

(
∫

𝛿

0
𝑤(𝑠)𝑑𝑠

)
≤ 𝛿∫

𝛿

0
𝑤𝑇(𝑠)𝑀𝑤(𝑠)𝑑𝑠 (6)

3 | Problem Statement

When power systems undergo a sudden generation-load
imbalance, synchronous generators will provide an immedi-
ate inertial response. The underlying physical process of the
inertial responses is that the kinetic energy stored in the rotating
mass of synchronous generators is released and converted into
electric energy due to the electromagnetic coupling between
synchronous generators and the electric grid. In turn, the energy
conversion leads to the decline of generator rotational speed, and
therefore system frequency [37]. This process is governed by the
swing equation below

Δ𝜔̇ =
1

2𝐻
Δ𝑃 (7)

where Δ𝑃 denotes the power imbalance with a negative sign
denoting generation shortage and a positive sign denoting gener-
ation surplus. If the converted electric energy is not adequate to
eliminate the power imbalance, the system frequency will con-
tinue declining and exceed the dead-band of primary frequency
control, activating it. The primary frequency control measures
the frequency deviation and sends a proportional signal to the
turbine to increase the mechanical power input, thus eliminating
any power imbalance. During the entire process, (7) indicates
that as long as there still exists a generation shortage, that is, neg-
ative Δ𝑃, the frequency will continue declining and more quickly
when the inertia constant 𝐻 is smaller. Therefore, the goal of
GSCs is to relieve the power imbalance. More importantly, since
most renewable resources are operated under the MPPT mode in
normal operations, the switching time into GSCs is one dominant
factor to ensure a safe frequency response. It is important to inves-
tigate the critical switching time; the maximum allowable time to
switch to the supportive control mode to ensure the safety of the
frequency response [38]. Regarding the critical switching time,
two circumstances may occur, as illustrated in Figure 1. Figure 1a

FIGURE 1 | Frequency response under GSCs with different magnitudes. (a) A strong GSC can immediately alter the power imbalance from gener-
ation shortage to generation surplus. (b) A weak GSC can reduce the generation shortage.
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shows a strong GSC that can immediately alter the power imbal-
ance. In this case, the critical switching time will be equal to the
time when the trajectory reaches the safety limit. If the GSC is
not strong enough to alter the power imbalance, the frequency
will continue declining at a lower rate. In this case, we should
switch to the supportive control mode before reaching the safety
limit (Figure 1b). This critical switching time will be estimated
in this study. In addition, both GSC-induced impact scenarios
shown in Figure 1 should be taken into account [8, 38]. The
proposed control structure is capable of handling both scenarios.

The diesel-wind energy system is one of the most widely deployed
power resources subject to the aforementioned challenges. With-
out loss of generality, we employ a diesel-wind energy system as
the physical plant for control design. Nevertheless, the proposed
methodology can be applied to any microgrid powered by renew-
able energy resources and synchronous generators.

3.1 | Diesel-Wind System Modeling

This section illustrates the mathematical model of the diesel-
wind plant for controller design. Unlike the simulation models
in Section 5 where every component is modeled, this section
focuses on the components related to frequency control. As
pointed out by many researchers, deriving a reduced-order
model for a wind turbine generator (WTG) that represents the
full-order model features is a challenging task. The selective
modal analysis (SMA)-based model reduction has been adopted
in this study to obtain the reduced order model of the augmented
plant, and it will be shown that it is successful in capturing
the active power variation of a WTG. A detailed derivation of
the SMA model reduction is provided in [39]. We will adopt the
SMA-based reduced-order model of the WTG derived in [40]
to design our control and verify it with the nonlinear model in
simulations. However, for the sake of consistency, the derivation
is briefly stated in this subsection.

The dynamics of the DFIG-based wind turbine (defined later)
are represented by a reduced-order model based on the SMA
model reduction method [39]. In this method, the most relevant
dynamic of the WTG to the active power output is the rotor speed
(Δ𝜔𝑟), which has the highest participation to capture the relevant
active power dynamics of the WTG. Therefore, the reduced-order
model of the WTG can be expressed by this state variable, con-
sidered as the most relevant state, and the reduced model of the
DFIG based wind turbine can be represented as the following
1st-order model.

Δ𝜔̇𝑟 = 𝐴𝑟𝑑Δ𝜔𝑟 + 𝐵𝑟𝑑𝑢

Δ𝑃𝑔 = 𝐶𝑟𝑑Δ𝜔𝑟 + 𝐷𝑟𝑑𝑢
(8)

where 𝑢 is the supplementary input of the GSC, and Δ𝑃𝑔

is the active power variation of the WTG due to the inertia
emulation signal 𝑢. The corresponding matrices 𝐴𝑟𝑑, 𝐵𝑟𝑑, 𝐶𝑟𝑑,
and 𝐷𝑟𝑑 are given in Appendix A together with the full-order
differential-algebraic model of the WTG and a detailed presen-
tation of the SMA model reduction (see [40] and [39] for more
details).

A diesel synchronous generator (DSG) is a combustion engine
driven synchronous generator. A complete model consists of

FIGURE 2 | Feedback control of a diesel-wind energy system for fre-
quency.

the synchronous generator, combustion engine, governor, and
exciter. The frequency dynamics of this system can be repre-
sented by the classic SFR model as a simplification of the original
full-order model by (see [40])

2𝐻Δ𝜔̇ = 𝑓

⎛⎜⎜⎜⎝Δ𝑃𝑚 − (Δ𝑃𝑑 − Δ𝑃𝑔
⏟⎴⎴⏟⎴⎴⏟

Δ𝑃𝑒

)

⎞⎟⎟⎟⎠
𝜏𝑑Δ𝑃̇𝑚 = −Δ𝑃𝑚 + Δ𝑃𝑣

𝜏𝑠Δ𝑃̇𝑣 = −Δ𝑃𝑣 −
Δ𝜔

𝑓𝑅𝐷

(9)

where 𝐻 is the inertia constant, Δ𝜔 is the frequency variation,
Δ𝑃𝑚 is the mechanical power deviation, Δ𝑃𝑑 is the measured
power flow variation at the location illustrated in Figure 2 that is
regarded as the disturbance, Δ𝑃𝑔 is the active power variation for
the doubly fed induction generator (DFIG)-based wind turbine,
and Δ𝑃𝑒 = Δ𝑃𝑑 − Δ𝑃𝑔 is the electrical power deviation. Δ𝑃𝑣 is the
valve position deviation, 𝑅𝐷 is the governor droop setting, 𝑓 is the
speed base of the generator, 𝜏𝑑 and 𝜏𝑠 are the engine and governor
time constants respectively.

The state space representation of the reduced-order model, which
is used as an aggregated model of the DFIG-based WTG repre-
sented by (8)) and the DSG represented by (9) with the state feed-
back control strategy illustrated in Figure 2, is defined by

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵2𝑢 + 𝐵1𝑑(𝑡); 𝑦 = 𝐶𝑥(𝑡) (10)

where the state 𝑥 = [Δ𝜔, Δ𝑃𝑚, Δ𝑃𝑣, Δ𝜔𝑟]
𝑇 , the feedback con-

trol input 𝑢 = 𝐾𝑥 (𝐾 is the matrix to be designed), the disturbance
𝑑(𝑡) = Δ𝑃𝑑, and 𝑦 is the output measurement. The system (10) is
described by the following matrices

𝐴 =

⎡⎢⎢⎢⎢⎢⎣

0 𝑓

2𝐻
0 𝑓𝐶𝑟𝑑

2𝐻
0 −1

𝜏

1
𝜏

0
−1

𝑓𝜏𝑠𝑅𝐷

0 −1
𝜏𝑠

0

0 0 0 𝐴𝑟𝑑

⎤⎥⎥⎥⎥⎥⎦
, 𝐵2 =

⎡⎢⎢⎢⎢⎢⎣

𝑓𝐷𝑟𝑑

2𝐻
0
0

𝐵𝑟𝑑

⎤⎥⎥⎥⎥⎥⎦
𝐵1 =

[
−𝑓

2𝐻
0 0 0

]𝑇

, 𝐶 =
[
1 0 0 0

]
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3.2 | Switching Synthesis and Control Design
for Safety Region

A power system, modeled in (10), is considered to go through
changes in configuration in three modes as a switched system.
The first mode is the pre-fault mode when the system is operat-
ing at a steady-state 𝑥𝑠𝑠. For this mode, it is considered that the
system is operating at a known steady-state equilibrium point,
say without loss of generality, 𝑥𝑠𝑠 = 0). Suppose that at time 𝑡𝑠 a
disturbance occurs that changes the structure of the system, but
the support of the DFIG-based wind turbine is not activated and
is described by the second mode which is the fault-on mode. The
third one is the controlled mode, where the supportive control
is activated. The power system becomes then a switched system
described by the following two differential equations:

𝑥̇ =

{
𝐴𝑥 + 𝐵1𝑑(𝑡), for 𝑡𝑠 ≤ 𝑡 ≤ 𝑡1

𝐴𝑥 + 𝐵1𝑑(𝑡) + 𝐵2𝑢, for 𝑡1 < 𝑡 < ∞
(11)

𝑥(𝑡) ∈ ℝ𝑛 is the vector state, 𝐴, 𝐵1, 𝐵2 are constant matrices with
appropriate dimensions, 𝑢 is the control input, and 𝑑(𝑡) ∈  is
the disturbance. The first subsystem is the fault-on mode and the
second one is the controlled mode, where the supportive control
is activated at 𝑡1 to limit the deviation of trajectories following the
perturbation. When the fault occurs, the trajectory of the system
will be driven away from 𝑥𝑠𝑠. At 𝑡1, the supportive control will
be activated and the system is henceforth governed by the sec-
ond dynamics in (11). Note that, 𝑥(𝑡1) will be the initial state of
the controlled mode, and whether or not the system will stay in
a safety region depends on whether 𝑥(𝑡1) belongs to some region
determined according to the post-fault system equation. A crucial
factor in determining how far 𝑥(𝑡1) could be from 𝑥𝑠𝑠 is the time
needed to remove the fault, that is, the time difference (𝑡1 − 𝑡𝑠).
If (𝑡1 − 𝑡𝑠) is very short, then, by the continuity of the solution
for 𝑡, it is very likely that the trajectory does not reach the unsafe
set. However, one needs time to detect the fault and clear it as
shown in Figure 1. In planning such a system, it is valuable to
estimate the critical time, say 𝑡𝑐, such that the controller has to
be activated within this time, that is, 𝑡1 − 𝑡𝑠 ≤ 𝑡𝑐 to prevent the
trajectory to reach the unsafe region. This concept is similar to
the critical clearing time in transient stability analysis. This work
aims to design such a controller and estimate the critical time.

Let the safe set 𝑋𝑆 , where the frequency response is adequate,
that is, 𝜔 ∈ 𝑋𝑆 = {𝑥 ∈ 𝑋 ∶ 𝜔−

𝑙𝑖𝑚
≤ 𝜔 ≤ 𝜔+

𝑙𝑖𝑚
}, and its complemen-

tary, 𝑋𝑈 = {𝑥 ∈ 𝑋 ∶ 𝜔 > 𝜔+
𝑙𝑖𝑚

or 𝜔 < 𝜔−
𝑙𝑖𝑚

}, which is the unsafe
set. Let 𝑠, the set characterized by a safety metric, 𝜇(𝑥, 𝑦) =√

(𝑥 − 𝑦)𝑇𝑃(𝑥 − 𝑦), 𝑃 = 𝑃𝑇 > 0, be

𝑠 = {𝑥 ∈  ∶ 𝜇(𝑥, 0) ≤ 𝑑𝑢} (12)

for some constant 𝑑𝑢 > 0, where  is the state space of the per-
turbed system in (11). For simplicity, 𝜇(𝑥, 0) is abbreviated by
𝜇(𝑥). Note that, the initial states 0 of the controlled system in
(11) may be any subset of 𝑠. Let the barrier function 𝐵(𝑥) =

𝜇2(𝑥) − 𝑑2
𝑢
= 𝑥𝑇𝑃𝑥 − 𝑑2

𝑢
, and the corresponding set be

(𝑃, 𝑑2
𝑢
) = {𝑥 ∈  ∶ 𝑥𝑇𝑃𝑥 ≤ 𝑑2

𝑢
} = {𝑥 ∈  ∶ 𝐵(𝑥) ≤ 0} (13)

The objective is that, when a fault occurs, we have to acti-
vate the WTG supportive mode, at 𝑡1, when the trajectory

reaches the boundary of (𝑃, 𝑑2
𝑢
), so that 𝑥(𝑡1) ∈ 𝜕(𝑃, 𝑑2

𝑢
) =

{𝑥 ∈  ∶ 𝑥𝑇𝑃𝑥 = 𝑑2
𝑢
} to achieve adequate frequency response

(i.e., bounded within the defined safe set 𝑋𝑆). 𝜕(𝑃, 𝑑2
𝑢
) denotes

the boundary of the set (𝑃, 𝑑2
𝑢
).

4 | Main Results

Consider the closed loop switched system (11) with the control
feedback 𝑢 = 𝐾𝑥,

𝑥̇ =

{
𝐴𝑥 + 𝐵1𝑑(𝑡), for 𝑡𝑠 ≤ 𝑡 ≤ 𝑡1

(𝐴 + 𝐵2𝐾)𝑥 + 𝐵1𝑑(𝑡), for 𝑡1 < 𝑡 < ∞
(14)

where 𝑡𝑠 = 0, without loss of generality, and 𝑑(𝑡) ∈  is a
finite-energy disturbance metric such that

∫
𝑡

0
||𝑑(𝑠)||2𝑑𝑠 ≤ 𝛼 < ∞ (15)

Suppose that the safety region of the controlled subsystem is
given by the set:

(𝑃, 𝜌) = {𝑥 ∈ 𝑋 ∶ 𝑥𝑇𝑃𝑥 ≤ 𝜌} (16)

where 𝑃 = 𝑃𝑇 > 0 is a given positive definite matrix and 𝜌 is a
known positive number. The boundary of this set, denoted by
𝜕(𝑃, 𝜌) = {𝑥 ∈ 𝑋 ∶ 𝑥𝑇𝑃𝑥 = 𝜌}, is the ellipsoid that separates the
safe set 𝑋𝑆 and the unsafe set 𝑋𝑈 . We will design a feedback con-
trol law 𝑢(𝑥) = 𝐾𝑥, such that the trajectories of the system (14)
remain in the safety region(𝑃, 𝜌) and never reach the unsafe set.

Note that the original safety region of a power system is described
by boxes since most states should vary between certain lower and
upper bounds. However, box-type constraints are computation-
ally complicated. Hence, we use ellipsoids that are described by
the matrix 𝑃 to approximate the box constraints as close as possi-
ble. The computation of 𝑃 can be performed using the so-called
maximum volume inscribed ellipsoid algorithms that have been
well studied [41]. The benefit is that ellipsoids can be easily incor-
porated into convex optimization for the control design.

4.1 | Control Design

Theorem 2. Consider the switched system (14) with the pertur-
bation satisfying (15). Let the safety region determined by (16) and
the corresponding positive definite function 𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡),
with 𝑃 = 𝑃𝑇 > 0 given. Suppose that for 𝑡 = 𝑡1, 𝑉(𝑥(𝑡1)) ≤ 𝜌 − 𝜀,
for 𝜌 > 𝜀 > 0. If there exists a matrix 𝐾 and a positive constant
𝜂 ≤ 𝜀

𝛼
such that

((𝑃𝐵2)𝐾)𝑇 + (𝑃𝐵2)𝐾 +

[
𝐴𝑇𝑃 + 𝑃𝐴 +

1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃

]
≤ 0 (17)

then the solution of (14) always remains inside the safety region
(𝑃, 𝜌). On the other hand, the matrix 𝐾 satisfying (17) exists if
and only if

(𝑃𝐵2)
⊥

[
𝐴𝑇𝑃 + 𝑃𝐴 +

1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃

]
((𝑃𝐵2)

⊥)∗ < 0 (18)
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or
(𝑃𝐵2)(𝑃𝐵2)

∗ > 0 (19)

Further assume that (𝑃𝐵2)
∗(𝑃𝐵2) > 0. Then all matrices 𝐾 are

given by
𝐾 = −𝛾(𝑃𝐵2)

∗ +
√

𝛾𝐿Ω
1
2 (20)

where 𝐿 is any matrix such that ||𝐿|| ≤ 1 and 𝛾 is a positive scalar
such that

Ω = 𝛾(𝑃𝐵2)(𝑃𝐵2)
∗ −

(
𝐴𝑇𝑃 + 𝑃𝐴 +

1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃

)
> 0 (21)

Proof. Let the positive definite function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥. The
derivative of 𝑉 along the second subsystem’s trajectory in (14) is
given by

𝑉̇(𝑥) = 𝑥𝑇[(𝐴 + 𝐵2𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵2𝐾)]𝑥 + 2𝑥𝑇𝑃𝐵1𝑑(𝑡) (22)

Note that, the following inequality is always satisfied

2𝑥𝑇𝑃𝐵1𝑑(𝑡) ≤ 1
𝜂
𝑥𝑇𝑃𝐵1𝐵

𝑇
1 𝑃𝑥 + 𝜂𝑑(𝑡)𝑇𝑑(𝑡), ∀𝜂 > 0

So, we can derive from (22) the following

𝑉̇(𝑥) ≤ 𝑥𝑇[(𝐴 + 𝐵2𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵2𝐾)]𝑥

+
1
𝜂
𝑥𝑇𝑃𝐵1𝐵

𝑇
1 𝑃𝑥 + 𝜂𝑑(𝑡)𝑇𝑑(𝑡)

= 𝑥𝑇
[
(𝐴 + 𝐵2𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵2𝐾)

+
1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃

]
𝑥 + 𝜂𝑑(𝑡)𝑇𝑑(𝑡)

(23)

Suppose that there exists a matrix 𝐾 satisfying condition (17),
we get

(𝐴 + 𝐵2𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵2𝐾) +
1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃 ≤ 0

which implies that

𝑉̇(𝑥(𝑡)) ≤ 𝜂𝑑(𝑡)𝑇𝑑(𝑡)

By integrating both sides of this inequality for 𝑡1 ≤ 𝑡 < ∞, and by
considering condition (15), we have

𝑉(𝑥(𝑡)) ≤ 𝑉(𝑥(𝑡1)) + 𝜂∫
𝑡

𝑡1

𝑑𝑇(𝜏)𝑑(𝜏) 𝑑𝜏

≤ 𝑉(𝑥(𝑡1)) + 𝜂𝛼, ∀𝑡 ≥ 𝑡𝑐

Since at 𝑡 = 𝑡1, 𝑥(𝑡1) is inside the set (𝑃, 𝜌 − 𝜀), such that
𝑉(𝑥(𝑡1)) ≤ 𝜌 − 𝜀, we obtain

𝑉(𝑥(𝑡)) ≤ 𝜌 − 𝜀 + 𝜂𝛼, ∀𝑡 ≥ 𝑡1

(i.e., 𝑥𝑇(𝑡)𝑃𝑥(𝑡) ≤ 𝜌 − 𝜀 + 𝜂𝛼, ∀𝑡 ≥ 𝑡1) which implies that

𝑥(𝑡) ∈ (𝑃, 𝜌 − 𝜀 + 𝜂𝛼), ∀𝑡 ≥ 𝑡1

We conclude that for 0 ≤ 𝜂 ≤ 𝜀

𝛼
, we have 𝑉(𝑥(𝑡)) ≤ 𝜌 − 𝜀 + 𝜂𝛼 <

𝜌, ∀𝑡 ≥ 𝑡1, which implies that 𝑥(𝑡) ∈ (𝑃, 𝜌 − 𝜀 + 𝜂𝛼) ⊂

(𝑃, 𝜌), ∀𝑡 ≥ 𝑡1. This means that the trajectories of the
closed-loop subsystem starting from 𝑥(𝑡), ∀𝑡𝑠 ≤ 𝑡 ≤ 𝑡1 (i.e.,
from the set (𝑃, 𝜌 − 𝜀)) will remain inside (𝑃, 𝜌) for all 𝑡 > 𝑡1,
and for each finite energy disturbance 𝑑(𝑡) satisfying (15), which
ensures the safety of the system.

On the existence of the matrix 𝐾:

Let 𝐹 = (𝑃𝐵2) and 𝑄 = (𝐴𝑇𝑃 + 𝑃𝐴 + 1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃). The inequality

(17) is equivalent to

(𝐹𝐾) + (𝐹𝐾)𝑇 + 𝑄 ≤ 0

From Theorem 1, the matrix 𝐾 exists if and only if

(𝐹)⊥𝑄(𝐹⊥)𝑇 < 0 or 𝐹𝐹𝑇 > 0

Further, assuming that 𝐹𝑇𝐹 > 0, then 𝐾 is given by

𝐾 = −𝛾𝐹𝑇 +
√

𝛾𝐿Ω
1
2 (24)

where 𝐿 is any matrix, with ||𝐿|| ≤ 1, and 𝛾 is a positive scalar
such that

Ω = 𝛾𝐹𝐹𝑇 − 𝑄 > 0 (25)

which concludes the proof.

The existence of 𝛾 in (25) is ensured by Finsler’s Lemma [42, 43].
Its computation is presented in Appendix B. ◽

Remark 1. If (𝑃𝐵2) is a full rank matrix, then the matrix 𝐾

exists if and only if condition (19) is satisfied.

Remark 2. The previous result is directly related to the barrier
function 𝐵(𝑥). Specifically, it has been shown that the derivative
of 𝑉 = 𝑥𝑇𝑃𝑥 along the trajectories of the controlled system in (14)
satisfies (23), which implies that, and according to (17),

𝑉̇(𝑥) − 𝜂𝑑𝑇(𝑡)𝑑(𝑡) ≤ 𝑥𝑇

[
(𝐴 + 𝐵2𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵2𝐾)

+
1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃

]
𝑥 < 0

(26)

We have

𝑉̇(𝑥) − 𝜂𝑑𝑇(𝑡)𝑑(𝑡) =
𝑑

𝑑𝑡

[
𝑉(𝑥) − 𝜂∫

𝑡

𝑡𝑠

𝑑𝑇(𝑠)𝑑(𝑠) 𝑑𝑠

]
(27)

Let the barrier function 𝐵(𝑥, 𝑑), which depends on the perturba-
tion, be defined as

𝐵(𝑥, 𝑑) =

[
𝑉(𝑥) − 𝜂∫

𝑡

𝑡𝑠

𝑑𝑇(𝑠)𝑑(𝑠) 𝑑𝑠

]
− 𝜌 + 𝜀

≥ 𝑥𝑇𝑃𝑥 − 𝜂𝛼 − 𝜌 + 𝜀

(28)

Let the initial set of the controlled system in (14) be

0 = {𝑥 ∈  ∶ 𝑥𝑇𝑃𝑥 ≤ 𝜌 − 𝜀} (29)

and the unsafe region

𝑢 = {𝑥 ∈ 𝑋 ∶ 𝑥𝑇𝑃𝑥 ≥ 𝜌} (30)

6 of 13 International Journal of Robust and Nonlinear Control, 2024
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FIGURE 3 | Safety limit, safety region, safe and unsafe sets: The controller is applied when the trajectory reaches the boundary 𝑥𝑇𝑃𝑥 = 𝜌 − 𝜀 (or
before) such that the trajectory of the controlled system will remain in the set {𝑥 ∶ 𝑥𝑇𝑃𝑥 ≤ 𝜌 − 𝜀 + 𝜂𝛼}.

The barrier function 𝐵(𝑥, 𝑑) satisfies the safety conditions
described in Lemma 1, such that

1. 𝐵(𝑥, 𝑑) ≤ 0 ⇒ 𝑥𝑇𝑃𝑥 ≤ 𝜌 − 𝜀 + 𝜂𝛼, ∀𝑥 ∈ 0

2. 𝐵(𝑥, 𝑑) > 0 ⇒ 𝑥𝑇𝑃𝑥 > 𝜌 − 𝜀 + 𝜂𝛼, ∀𝑥 ∈ 𝑢

3. 𝜕𝐵(𝑥, 𝑑)

𝜕𝑥
[(𝐴 + 𝐵2𝐾)𝑥 + 𝐵1𝑑(𝑡)] < 0, ∀(𝑥, 𝑑) ∈ ( × )

according to (26) and (27).

Then the safety is guaranteed and 𝐵(𝑥, 𝑑) = 0 represents a barrier
certificate of the system (see Figure 3).

Remark 3. Note that the control matrix 𝐾 depends on 𝜀 and
the energy of the perturbation 𝛼, since it depends on 𝜂. If we
choose 𝜂𝛼 ≈ 𝜀 (i.e., −𝜀 + 𝜂𝛼 ≈ 0), the set 𝜕(𝑃, 𝜌 − 𝜀 + 𝜂𝛼) will
be close to 𝜕(𝑃, 𝜌), and the designed controller will reflect the
case in Figure 1a. If we choose 𝜂𝛼 > 𝜀, the designed controller
will reflect the case in Figure 1b.

4.2 | Estimation of the Critical Time

In this section, we give an estimation of the critical time
𝑡𝑐 = 𝑡1 − 𝑡𝑠 based on the perturbation. This critical time is
described as the time that the trajectories of the perturbed system
take to reach the boundary of 0 so that

𝑥(𝑡1)
𝑇𝑃𝑥(𝑡1) = 𝜌 − 𝜀 (31)

The solution 𝑥(𝑡1) can be derived from the perturbed system (14)
as follows:

𝑥(𝑡1) = 𝑒𝐴(𝑡1−𝑡𝑠)𝑥(𝑡𝑠) + ∫
𝑡1

𝑡𝑠

𝑒𝐴(𝑡1−𝜏)𝐵1𝑑(𝜏) 𝑑𝜏

with 𝑥(𝑡𝑠) = 0. According to Lemma 2, we have

𝑥(𝑡1)
𝑇𝑃𝑥(𝑡1)

=

[
∫

𝑡1

𝑡𝑠

𝑒𝐴(𝑡1−𝜏)𝐵1𝑑(𝜏) 𝑑𝜏

]𝑇

𝑃

[
∫

𝑡1

𝑡𝑠

𝑒𝐴(𝑡1−𝜏)𝐵1𝑑(𝜏) 𝑑𝜏

]
≤ (𝑡1 − 𝑡𝑠)∫

𝑡1

𝑡𝑠

(𝑒𝐴(𝑡1−𝜏)𝐵1𝑑(𝜏))𝑇𝑃(𝑒𝐴(𝑡1−𝜏)𝐵1𝑑(𝜏)) 𝑑𝜏

≤ 𝑡𝑐||𝐵1||2𝛼𝜆max(𝑒
𝐴𝑇𝑡𝑐𝑃𝑒𝐴𝑡𝑐 )

(32)

The above inequality is obtained using integration by parts.
Finally, we get the estimation of the critical time 𝑡𝑐 as

𝑡𝑐||𝐵1||2𝛼𝜆max(𝑒
𝐴𝑇𝑡𝑐𝑃𝑒𝐴𝑡𝑐 ) = 𝜌 − 𝜀 (33)

which can be easily computed. In particular, if 𝑑(𝑡) is a constant
step perturbation, we have

𝑥(𝑡1) = ∫
𝑡1

𝑡𝑠

𝑒𝐴(𝑡1−𝜏)𝐵1𝑑(𝜏) 𝑑𝜏 = [𝑒𝐴(𝑡1−𝑡𝑠) − 𝐼]𝐴−1𝐵1𝑑(𝑡1) (34)

The critical time, in this case, can be estimated as follows:

𝑥(𝑡1)
𝑇𝑃𝑥(𝑡1) = 𝑑𝑇(𝑡1)𝐵

𝑇
1 (𝑒𝐴𝑇(𝑡1−𝑡𝑠) − 𝐼)𝐴−𝑇𝑃𝐴−1

× (𝑒𝐴(𝑡1−𝑡𝑠) − 𝐼)𝐵1𝑑(𝑡1)

≤ 𝜆max(𝐴
−𝑇𝑃𝐴−1)𝑑𝑇(𝑡1)𝐵

𝑇
1 (𝑒𝐴𝑇𝑡𝑐 − 𝐼)

× (𝑒𝐴𝑡𝑐 − 𝐼)𝐵1𝑑(𝑡1)

(35)

and 𝑡𝑐 can be estimated by

𝜆max(𝐴
−𝑇𝑃𝐴−1)𝐵𝑇

1 (𝑒𝐴𝑇𝑡𝑐 − 𝐼)(𝑒𝐴𝑡𝑐 − 𝐼)𝐵1 =
𝜌 − 𝜀

𝑑2(𝑡)
(36)

Remark 4. Intuitively, and according to the critical time esti-
mation given in (33) and Figure 3, we can remark that if we fix the
bounds 𝜌 and 𝜌 − 𝜀 and increase the perturbation, the trajectory
will reach faster the boundary of the ellipsoid 𝑆 = {𝑥 ∶ 𝑥𝑇𝑃𝑥 =

𝜌 − 𝜀}, which means that we will need a shorter critical time.
Inversely, if we make 𝜌 − 𝜀 larger, the trajectory takes more time
to reach the boundary of the ellipsoid 𝑆 = {𝑥 ∶ 𝑥𝑇𝑃𝑥 = 𝜌 − 𝜀},
which means that the critical time here can be longer. To see this,
we can use an equivalent state-space representation for the triplet
(𝐴, 𝐵1, 𝐶), proposed in [44]. The idea is, if ℎ(𝑡) is the impulse
response corresponding to (𝐴, 𝐵1, 𝐶) (i.e., ℎ(𝑡) = 𝐶𝑒𝐴𝑡𝐵1), there
exist continuous matrix functions 𝐵̃(𝑡) and 𝐶̃(𝑡) such that:

ℎ(𝑡) = 𝐶𝑒𝐴𝑡𝐵1 = 𝐶̃(𝑡)𝐵̃(𝑡) (37)

The corresponding equivalent state space realization is then:

̇̃𝑥 = 𝐵̃(𝑡)𝑑(𝑡), 𝑦(𝑡) = 𝐶̃(𝑡)𝑥̃(𝑡) (38)

The merit of this realization is that the state matrix is the zero
matrix, but it is time varying albeit representing the same LTI
system. The matrices 𝐵̃(𝑡) and 𝐶̃(𝑡) are given by the singular val-
ues and the Schmidt pairs of the Hankel operator corresponding
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to (𝐴, 𝐵1, 𝐶) (see [44] for the details.) Now, since 𝐵̃(𝑡) is contin-
uous, ||𝐵̃(𝑡)|| is uniformly bounded over the interval [𝑡𝑠, 𝑡1], so
max𝑡𝑠≤𝑡≤𝑡1

||𝐵̃(𝑡)|| = 𝑏 < ∞, for some finite positive constant 𝑏. An
analogous reasoning to get (33) yields an estimate of the critical
time as follows:

𝜌 > 𝑡𝑐𝑏
2𝛼𝜆max(𝑃) = 𝜌 − 𝜀 ⇒

𝜌

𝑏2𝛼
> 𝑡𝑐 =

𝜌 − 𝜀

𝑏2𝛼𝜆max(𝑃)

This expression shows clearly how the critical time varies as a
function of 𝜌, 𝜀 and the size of the perturbation 𝛼. If the bounds
𝜌 or 𝜌 − 𝜀 increase and 𝛼 is fixed, the critical time 𝑡𝑐 increases,
as more time is allowed to reach the boundary of 𝑆, while if the
perturbation’ size 𝛼 is increased while 𝜌 and 𝜌 − 𝜀 are fixed, the
critical time 𝑡𝑐 decreases.

5 | Numerical Results

The suggested control structure is applied to the modified
33-bus microgrid system in MATLAB Simulink platform. The
closed-loop system performance is tested using the diesel-wind
system described in [40, 45]. The wind turbine generator model
is modified based on the DFIG in the Simulink demo library
by changing the aerodynamic model to the one detailed in [39],
where a two-mass model is reduced to the swing equations with
combined inertia of the turbine and generator.

5.1 | Model Reduction Validation

As described before, the analytical model for the control design
consists of the reduced-order model of the WTG in (8) and
the 3rd-order frequency response model of the diesel genera-
tor in (9). This subsection illustrates the comparative simula-
tions between the full-order and the reduced-order model of the
WTG. Figure 4 illustrates the frequency responses between the
swing-turbine-governor model and a full-order synchronous gen-
erator. Their differences are negligible. The responses of the non-
linear system, full linear, and reduced order linear models of the
WTG are compared in Figure 5 in order to validate the SMA
model reduction technique. As observed, the SMA successfully
captures the active power related dynamics of the full linear sys-
tem, and the induced error by the SMA-based model reduction is
not significant. Hence, the control design procedure can be per-
formed based on the reduced order model with enough accuracy
compared to the detailed nonlinear model as shown in Figure 5.

5.2 | Closed-Loop Verification of the Linearized
System

The overall reduced order model defined in (10) is con-
sidered for the design control procedure with the following
parameters:

𝐻 = 1𝑠, 𝜏𝑠 = 0.1𝑠, 𝜏 = 0.2𝑠, 𝑓 = 60𝐻𝑧, 𝐴𝑟𝑑 = −0.27

𝐵𝑟𝑑 = 0.2624, 𝐶𝑟𝑑 = 0.56, 𝐷𝑟𝑑 = −0.5355, 𝑅𝐷 = 0.05

where we have

𝐴 =

⎡⎢⎢⎢⎣
0 30 0 16.79
0 −5 5 0

−3.333 0 −10 0
0 0 0 −0.27

⎤⎥⎥⎥⎦, 𝐵2 =

⎡⎢⎢⎢⎣
−16.06

0
0

0.262

⎤⎥⎥⎥⎦, 𝐵1 =

⎡⎢⎢⎢⎣
−30

0
0
0

⎤⎥⎥⎥⎦, and

𝐶 =
[
1 0 0 0

]
Here, the disturbance is assumed to be a 𝑑(𝑡) = 0.1𝑀𝑊 = 0.1
(p.u) load change at Bus 18 that occurs at 𝑡 = 3 s and clears at
𝑡 = 8 s, with energy 𝛼 = ∫ 8𝑠

3𝑠 𝑑2(𝑠) 𝑑𝑠 = 0.05. he first objective is to
design a feedback controller to ensure the safety of the frequency
performance. Let the barrier function 𝐵(𝑥, 𝑑), the sets 0 and
𝑢 be as in (28), (29), and (30), respectively, with 𝜌 = 1, 𝜀 = 0.8,

𝜂 = 10 < 𝜀

𝛼
= 16, and 𝑃 =

⎡⎢⎢⎢⎣
4 0 0 0
0 1.2346 0 0
0 0 0.444 0
0 0 0 1

⎤⎥⎥⎥⎦
The barrier function is computed based on the safe operating area
[40] such that |Δ𝜔| < 0.5. For that, the matrix 𝑃 is computed
to get the largest ellipsoid inscribed in the safety limit bounds
(see [41, 46]). Its zero level set is given by the ellipsoid 𝜕 =

{𝑥 ∈ ℝ4 ∶ 𝑥𝑇𝑃𝑥 = 𝜌 − 𝜀 + 𝜂𝛼} as shown in Figure 6. The control
matrix is

𝐾 = −𝛾(𝑃𝐵2)
∗ +

√
𝛾𝐿Ω

1
2 = [0.32 0 0 − 0.0013]

with Ω = 𝛾(𝑃𝐵2)(𝑃𝐵2)
𝑇 − (𝐴𝑇𝑃 + 𝑃𝐴 + 1

𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃), 𝛾 = 0.005,

and 𝐿 = [0.5 0 0 0]. The controller 𝐾 satisfies the safety
condition (17) in Theorem 2 so that

((𝑃𝐵2)𝐾)𝑇 + (𝑃𝐵2)𝐾 +

[
𝐴𝑇𝑃 + 𝑃𝐴 +

1
𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃

]
≤ 0

The frequency responses of the linearized model with and with-
out control at different critical times are shown in Figure 7. Using

FIGURE 4 | Frequency responses of the swing-turbine-governor model and the full-order synchronous generator.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5 | Response comparison of nonlinear, linear and SMA-based first-order WTG model under step input and inertia emulation input. (a)
Step input. (b) Inertia emulation input via washout filter. (c) WTG speed variation under step input. (d) WTG speed variation under inertia emulation
input. (e) WTG active power variation under step input. (f) WTG active power variation under inertia emulation input.

FIGURE 6 | Level sets of the barrier function 𝐵(𝑥, 𝑑).

simulation, we can see that if the controller is applied later than
𝑡𝑐 = 3.179, the frequency reaches the unsafe set. By computing
the critical time analytically according to (36), we get 𝑡𝑐 = 3.09
which approximates well the critical time and guarantees the
safety of the frequency response.

5.3 | Closed-Loop Verification of the Nonlinear
System

The frequency response of the nonlinear system using the con-
troller 𝐾 is shown in Figure 8. The obtained controller is applied
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FIGURE 7 | Closed-loop linearized model response, DSG speed.

FIGURE 8 | DSG speed under feedback control applied at different times with 0.1 (p.u) load change as a disturbances at bus 18.

FIGURE 9 | Modified 33 bus microgrid system configuration.

on the nonlinear full-order model with all detail shown in
Figure 9 [45]. We can see that this controller prevents the fre-
quency from reaching the unsafe set if it is applied before 𝑡𝑐 =

3.218 as the critical time. Three scenarios are considered in the

closed-loop system performance by applying the controller at dif-
ferent times to show the effectiveness of the proposed approach,
including the computation of critical time with performance
guarantees.
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• Scenario 1: The controller is applied at 𝑡 = 3.218 s which
is the critical time obtained from the proposed method.
Clearly, the speed deviation will be tangent to the unsafe
range but it will not cross it.

• Scenario 2: The controller is applied to the system at 𝑡 = 3.1 s
which is less than the computed critical time. In this case,
the performance is still guaranteed since it will not cross the
unsafe range defined for the speed deviation.

• Scenario 3: The controller is applied after the critical time
at 𝑡 = 3.25 s. As seen, the controller can still react to reduce
the speed deviation, but it will pass the safety limit. We can
see that the critical time computed analytically 𝑡𝑐 = 3.09 esti-
mates reasonably the time needed to apply the controller in
order to prevent the frequency to reach the unsafe limit for
the nonlinear system too.

6 | Conclusion

This article deals with a novel safety feedback control design
for islanded microgrids, where the system considered switches
between the normal mode to a faulted mode when a disturbance
occurs, and to a post-fault mode when a supportive controller is
applied. The power system model considered is a DSG connected
to a WTG. The supportive control feedback law from the WTG
is designed to guarantee the safety of the frequency response
and avoid reaching the unsafe region. The critical time has been
estimated analytically and compared to nonlinear full-order
model simulation. The obtained results show the effectiveness
of the proposed approach for guaranteed adequate frequency
performance.
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Endnotes

1 The term safety is adopted from the control literature and in this
context means a well-defined and allowable operating region. A safe
response means the trajectories of all concerned states stay within
the defined safe limits. In this article, safety and adequacy of a
frequency trajectory refer to the same definition and will be used
interchangeably.
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Appendix A

A.1 | DFIG-Based WTG Model

The DFIG-based WTG is defined by the following set of differential-
algebraic equations [39, 40]:

𝜓̇𝑞𝑠 = 𝜔(𝑣𝑞𝑠 − 𝑅𝑠𝑖𝑞𝑠 − 𝜔𝑠𝜓𝑑𝑠) (A1)

𝜓̇𝑑𝑠 = 𝜔(𝑣𝑑𝑠 − 𝑅𝑠𝑖𝑞𝑠 − 𝜔𝑠𝜓𝑞𝑠) (A2)

𝜓̇𝑞𝑟 = 𝜔[𝑣𝑞𝑟 − 𝑅𝑟𝑖𝑞𝑟 − (𝜔𝑠 − 𝜔𝑟)𝜓𝑑𝑟] (A3)

𝜓̇𝑑𝑟 = 𝜔[𝑣𝑑𝑟 − 𝑅𝑟𝑖𝑑𝑟 − (𝜔𝑠 − 𝜔𝑟)𝜓𝑞𝑟] (A4)

𝜔̇𝑟 = (𝑇𝑚 − 𝑇𝑒)∕(2𝐻𝑇) (A5)

𝜔̇∗
𝑓

= 𝜔𝑐(𝜔
∗
𝑟
− 𝜔∗

𝑓
) (A6)

𝑥̇1 = 𝐾𝑇
𝐼
(𝜔∗

𝑓
− 𝜔𝑟 + 𝑢) (A7)

𝑥̇2 = 𝐾𝑄
𝐼
(𝑄∗

𝑔
− 𝑄𝑔) (A8)

𝑥̇3 = 𝐾𝐶
𝐼
(𝑖∗

𝑞𝑟
− 𝑖𝑞𝑟) (A9)

𝑥̇4 = 𝐾𝐶
𝐼
(𝑖∗

𝑑𝑟
− 𝑖𝑑𝑟) (A10)

0 = −𝜓𝑞𝑠 + 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟 (A11)
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0 = −𝜓𝑑𝑠 + 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟 (A12)

0 = −𝜓𝑞𝑟 + 𝐿𝑟𝑖𝑞𝑟 + 𝐿𝑚𝑖𝑞𝑠 (A13)

0 = −𝜓𝑑𝑟 + 𝐿𝑟𝑖𝑑𝑟 + 𝐿𝑚𝑖𝑑𝑠 (A14)

0 = 𝑃𝑔 + (𝑣𝑞𝑠𝑖𝑞𝑠 + 𝑣𝑑𝑠𝑖𝑑𝑠) + (𝑣𝑞𝑟𝑖𝑞𝑟 + 𝑣𝑑𝑟𝑖𝑑𝑟) (A15)

0 = 𝑄𝑔 + (𝑣𝑞𝑠𝑖𝑞𝑠 − 𝑣𝑑𝑠𝑖𝑞𝑠) + (𝑣𝑞𝑟𝑖𝑑𝑟 − 𝑣𝑑𝑟𝑖𝑞𝑟) (A16)

0 = −𝑣𝑞𝑟 + 𝑥3 + 𝐾𝐶
𝑃
(𝑖∗

𝑞𝑟
− 𝑖𝑞𝑟)+

(𝜔𝑠 − 𝜔𝑟)

(
𝜎𝐿𝑟𝑖𝑑𝑟 +

Ψ𝑠𝐿𝑚

𝐿𝑠

) (A17)

0 = −𝑣𝑑𝑟 + 𝑥4 + 𝐾𝐶
𝑃
(𝑖∗

𝑑𝑟
− 𝑖𝑑𝑟) − (𝜔𝑠 − 𝜔𝑟)𝜎𝐿𝑟𝑖𝑞𝑟 (A18)

where 𝜓𝑑𝑟, 𝜓𝑞𝑟, 𝜓𝑑𝑠, 𝜓𝑞𝑠 are the rotor and stator flux linkages in d, q axis,
respectively. 𝑖𝑑𝑟, 𝑖𝑞𝑟, 𝑖𝑑𝑠, 𝑖𝑞𝑟 are the instantenuous rotor and stator currents
in d, q axis. 𝑣𝑑𝑟, 𝑣𝑞𝑟, 𝑖𝑑𝑠 𝑖𝑞𝑠 are the instantaneous rotor and stator volt-
ages in d, q axis. 𝑅𝑠 and 𝑅𝑟 are the stator and rotor resistances. 𝜔, 𝜔𝑠 , 𝜔𝑟 ,
𝜔𝑐 , 𝜔∗

𝑓
are speed bases of WTG, synchronous angular speed, wind turbine

angular speed, cutt-off frequency of low-pass filter and reference speed for
WTG. 𝐾𝑄

𝐼
, 𝐾𝑇

𝐼
, 𝐾𝐶

𝐼
, and 𝐾𝐶

𝑃
are integral gain of reactive power, torque, cur-

rent controllers and proportional gain of current controller. 𝐿𝑟 , 𝐿𝑠 , 𝐿𝑚 are
rotor, stator, mutual inductances. 𝐿𝑙𝑟 and 𝐿𝑙𝑠 are the rotor ans stator leak-
age inductions. 𝑄𝑔 and 𝑃𝑔 are the reactive and active power of the WTG.
𝜎 is the leakage coefficient of induction machines. 𝑇𝑚 is the mechanical
torque and 𝑇𝑒 =

𝐿𝑚

𝐿𝑠

(𝜓𝑞𝑠𝑖𝑑𝑟 − 𝜓𝑑𝑠𝑖𝑞𝑟). Equation (A1–A5) are the dynam-
ics of the induction machine in the synchronous d–q reference frame.
The dynamical model of the rotor side converter (RSC) control is given in
(A6–A10). The algebraic relations of the flux linkages and electric power
are expressed in (A17–A18). The loop of algebraic equations is closed by
the algebraic relations in (A9) and (A10). The state variables 𝑥1, 𝑥2 and
𝑥3, 𝑥4 are related to the speed and the reactive power controllers of the
WTG, respectively.

A.2 | SMA-Based Model Reduction Technique

The differential-algebraic model of WTG in (A1–A18) is linearized
about the equilibrium point to give the state-space model. Let 𝑥𝜔 =

[𝜓𝑞𝑠, 𝜓𝑑𝑠, 𝜓𝑞𝑟, 𝜓𝑑𝑟, 𝜔𝑟, 𝜔
∗
𝑓
, 𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑇 ,

Δ𝑥̇𝜔 = 𝐴𝑠𝑦𝑠Δ𝑥𝜔 + 𝐵𝑠𝑦𝑠𝑢

Δ𝑃𝑔 = 𝐶𝑠𝑦𝑠Δ𝑥𝜔 + 𝐷𝑠𝑦𝑠𝑢
(A19)

Using the SMA-model reduction method, Equation (A19) will be reduced
to a first order system, such that (A19) can be rearranged as[

Δ𝜔̇𝑟

𝑧̇

]
=

[
𝐴11 𝐴12

𝐴21 𝐴22

][
Δ𝜔𝑟

𝑧

]
+

[
𝐵𝑟

𝐵𝑧

]
𝑢

Δ𝑃𝑔 = [𝐶𝑟 𝐶𝑧]

[
Δ𝜔𝑟

𝑧

]
+ 𝐷𝑠𝑦𝑠𝑢

(A20)

The most relevant dynamic is described by [39]

Δ𝜔̇𝑟 = 𝐴11Δ𝜔𝑟 + 𝐴12𝑧 + 𝐵𝑟𝑢 (A21)

The less relevant dynamics are

𝑧̇ = 𝐴22𝑧 + 𝐴21Δ𝜔𝑟 + 𝐵𝑧𝑢 (A22)

𝑧 can be represented by the following expression

𝑧(𝑡) = 𝑒𝐴22(𝑡−𝑡0)𝑧(𝑡0) + ∫
𝑡

𝑡0

𝑒𝐴22(𝑡−𝜏)𝐴21Δ𝜔𝑟(𝜏)𝑑𝜏

+ ∫
𝑡

𝑡0

𝑒𝐴22(𝑡−𝜏)𝐵𝑧𝑢(𝜏)𝑑𝜏

(A23)

The mode where Δ𝜔𝑟 has the highest participation would capture the
relevant active power dynamics and is considered as the most relevant
mode, and Δ𝜔𝑟(𝜏) = 𝑐𝑟𝑣𝑟𝑒

𝜆𝑟𝜏 where 𝜆𝑟 is the most relevant mode, 𝑣𝑟

is the corresponding eigenvector and 𝑐𝑟 is a constant which depends
on the initial state. Since the electrical dynamics related to 𝐴22 are
faster than the electro-mechanical ones, the largest eigenvalue of 𝐴22 is
much smaller than 𝜆𝑟 . Thus, the natural response will decay faster and
can be omitted. So the first two terms in (A23) can be approximated
by (𝜆𝑟𝐼 − 𝐴22)

−1𝐴21Δ𝜔𝑟 and the second integral by 𝑀 = (−𝐴22)
−1𝐵𝑧 +

𝛿. The response of the less relevant dynamics are expressed as 𝑧 ≈

(𝜆𝑟𝐼 − 𝐴22)
−1𝐴21Δ𝜔𝑟 + 𝑀𝑢, and we get from (A20) and (A21)

Δ𝜔̇𝑟 = 𝐴𝑟𝑑Δ𝜔𝑟 + 𝐵𝑟𝑑𝑢

Δ𝑃𝑔 = 𝐶𝑟𝑑Δ𝜔𝑟 + 𝐷𝑟𝑑𝑢

with 𝐴𝑟𝑑 = (𝐴11 + 𝐴12(𝜆𝑟𝐼 − 𝐴22)
−1𝐴21) 𝐵𝑟𝑑 = (𝐴12𝑀 + 𝐵𝑟), 𝐶𝑟𝑑 = (𝐶𝑟 +

𝐶𝑧(𝜆𝑟𝐼 − 𝐴22)
−1𝐴21), and 𝐷𝑟𝑑 = (𝐶𝑧𝑀 + 𝐷𝑠𝑦𝑠) (see [35] for more details).

Appendix B
The computation of 𝛾 satisfying (21) is performed according to the follow-
ing Lemmas

Lemma 3. ([33]). Let 𝑀 = 𝑀𝑇 and 𝑁 = 𝑁𝑇 > 0. Then ∃𝛾 ∈ ℝ, such
that 𝑀 − 𝛾𝑁 < 0. In fact, such 𝛾 is given by

𝛾 =
𝜆max(𝑀) + |𝜆max(𝑀)|

𝜆min(𝑁)
+ 1

where 𝜆max(.) and 𝜆min(.) denote the maximum and the minimum eigenval-
ues, respectively.

Remark 5. If the condition (19) is satisfied, then the existence of the con-
troller 𝐾 is ensured, and 𝛾 can be computed using Lemma 3, such that

𝛾 =
𝜆max(𝑄) + |𝜆max(𝑄)|
𝜆min((𝑃𝐵2)(𝑃𝐵2)

∗)
+ 1, with 𝑄 = 𝐴𝑇𝑃 + 𝑃𝐴 + 1

𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃.

Lemma 4. ([33]). For a matrix 𝐵 ∈ ℝ𝑛×𝑚 with rank 𝑟, let 𝐵⊥ ∈

ℝ(𝑛−𝑟)×𝑛 be any matrix such that 𝐵⊥𝐵 = 0 and 𝐵⊥𝐵⊥∗ > 0. The set of
such matrices can be computed by 𝐵⊥ = 𝑇𝑈∗

2 , where 𝑇 is an arbitrary
non-singular matrix and 𝑈2 is from the singular value decomposition 𝐵 =

[𝑈1 𝑈2]

[∑
1 0

0 0

][
𝑉∗

1
𝑉∗

2

]
. Let 𝑄 = 𝑄𝑇 ∈ ℝ𝑛×𝑛 be given. Let (𝐵𝑙, 𝐵𝑟) be any full

rank factor of 𝐵 that is, 𝐵 = 𝐵𝑙𝐵𝑟 , and define Φ = (𝐵𝑟𝐵
∗
𝑟
)−0.5𝐵+, where

𝐵+ is the Moore-Pseudo inverse of 𝐵. Then, the following statements are
equivalent:

i. ∃𝛾 such that 𝛾𝐵𝐵∗ − 𝑄 > 0.

ii. The following condition holds: 𝐵⊥𝑄𝐵⊥∗ < 0,

and all scalars 𝛾 satisfying (i) are given by

𝛾 > 𝛾min = 𝜆max[Φ(𝑄 − 𝑄𝐵⊥∗(𝐵⊥𝑄𝐵⊥∗)−1𝐵⊥𝑄)Φ∗]

Note that, for a nonsingular matrix Ψ =

[
Φ

𝐵⊥

]
, and by con-

gruence transformation with Ψ, condition (i) is equivalent to[
𝛾𝐼 − Φ𝑄Φ∗ −Φ𝑄𝐵⊥∗

−𝐵⊥𝑄Φ∗ −𝐵⊥𝑄𝐵⊥∗

]
> 0. Using the Shur complement, we get

𝛾𝐼 − Φ(𝑄 − 𝑄𝐵⊥∗(𝐵⊥𝑄𝐵⊥∗)−1𝐵⊥𝑄)Φ∗ > 0, which results in the compu-
tation of 𝛾.

Remark 6. If the condition (18) is satisfied, then the existence of the
controller 𝐾 is guaranteed and 𝛾 can be computed using Lemma 4 by
considering 𝐵 = (𝑃𝐵2) and 𝑄 = 𝐴𝑇𝑃 + 𝑃𝐴 + 1

𝜂
𝑃𝐵1𝐵

𝑇
1 𝑃.
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