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Quantification and monitoring of soil organic carbon (SOC) stocks across local-to-global scales are needed to
assess soil resource management practices and adapt environmental policies. Multiple SOC estimates are
available worldwide; however, verification and validation are required to quantify the discrepancies and provide
improved estimates. Here, we evaluated four different digital soil mapping (DSM) approaches (i.e., linear models,
support vector machine, random forest, and quantile regression forest) to estimate SOC concentration (SOCc) and
SOC stocks (SOCs) in the Region of Murcia (11,313 km?), a complex topographic and climatic area in the
southern Iberian Peninsula, at three spatial resolutions (100, 250, and 1000 m). We estimated SOC spatially
using a local harmonized database of 255 soil profiles for modeling and 1100 topsoils for external validation. We
found that the quantile regression forest (QRF) approach had the best data-model agreement at 100 m spatial
resolution, with the highest accuracy percentage (79%), external validation (correlation coefficient of 52%), and
spatial interpretability of patterns, especially for SOCc. The QRF model showed a mean SOCc of 12.18 g/kg with
an overall uncertainty of 10.54 g/kg and an accuracy percentage of 79%, whereas the total SOCs was 27,572 GgC
with an uncertainty of 0.016 GgC. Our results showed that using local environmental covariates and local soil
information to predict SOC within this region resulted in a relative improvement in the prediction accuracy of
~40% for SOCc and ~ 65% for SOCs compared to the SOC products derived from national and global databases.
Our results showed a large discrepancy between the national and global estimates for reporting SOC locally.
Consequently, local-to-regional efforts are needed to describe SOC spatial variability better to reduce uncertainty
and improve the assessment of soil resources. We provide the resulting SOC maps with associated spatial un-
certainty on the public Environmental Data Initiative Repository at https://portal.edirepository.org/nis
/mapbrowse?packageid=edi.1238.2.

1. Introduction

Global environmental changes disrupt biodiversity, structure, and
function of terrestrial ecosystems (Pecl et al., 2017). Sustainable land-
use management, specifically soil carbon management, is crucial for
adaptation to global change and climate regulation (Jobbagy et al.,
2000; Wiesmeier et al., 2019). Therefore, quantifying and monitoring
soil organic carbon (SOC) across scales is essential for soil management,
adaptation of local policies, and assessment of potential impacts (Richer-
de-Forges et al., 2019; Vargas-Rojas et al., 2019). Unfortunately, there is
still a need to address local-to-regional knowledge gaps in SOC dynamics

to inform management practices at an appropriate spatial scale (Cash
and Moser, 2000; Wiesmeier et al., 2019).

A current research challenge is to accurately predict SOC stocks at a
high spatial resolution, including the whole soil profile (e.g., >30 cm
soil depth). Owing to operational complexity, costs, and lack of temporal
replication, research efforts are challenged to reproduce the potential
high spatial variability of SOC and other soil-related variables (Smith
et al., 2020; Vargas et al., 2017). To upscale information from soil sur-
veys, soil mapping has traditionally included a framework considering
soil forming processes assessed from soil-landscape and vegetation as-
sociations (Hiederer and Kochy, 2012), and, in the last decade, digital
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soil mapping (DSM) has enabled large-scale implementation of this
framework while providing local information on soil properties (Brus
et al., 2011; McBratney et al., 2003; Savin et al., 2019; Searle et al.,
2021). Recent DSM efforts have combined data-driven models relying
on direct measurements (i.e., in situ pedon information) to provide local
(Filippi et al., 2021), national (Vitharana et al., 2019), continental
(Guevara et al., 2018), and global (Hengl et al., 2017) estimates of
different soil properties (Chen et al., 2022). Moreover, these approaches
have shown that the integration of single or multitemporal remote
sensing information can improve the prediction of SOC, even when there
is limited information to parameterize the models (Fathololoumi et al.,
2020; Liang et al., 2020; Schillaci et al., 2017; Zhou et al., 2023).
Consequently, DSM offers the possibility of using different digital re-
sources to enhance the spatial representation of SOC from the local to
global scales.

Critical regional-to-global efforts have been made to compile soil
information worldwide, such as the Profile Analytical Database for
Europe (SPADE), Harmonized World Soil Database (HWSD), World Soil
Information Service (WoSIS), and the International Soil Carbon Network
(ISCN; Harden et al., 2017). However, these efforts have three critical
limitations: a) differences in data density or structured information (e.g.,
map units or point/pedon information) that contribute to biases in
representing spatial variability (Kibblewhite et al., 2008; Smith et al.,
2020; Trnka et al., 2011; Willaarts et al., 2016), b) low interoperability
(Vargas et al., 2017), and b) lack of information on concomitant soil
properties (Poeplau et al., 2017). The latter is required because the
estimation of SOC stocks (SOCs) is dependent on information on SOC
concentration (SOCc), bulk density (BD), and coarse fragment content
(CRF) of the target soil depth. While SOCc is usually measured with
precision in elemental analyzers, BD and CRF are often missing, which
results in added uncertainty in predictions (Durante et al., 2020; Poe-
plau et al., 2017). Because of these limitations in most available soil
databases, comparing and validating derived products (e.g., SOC maps)
are needed to better understand their limitations and properly interpret
them (Han et al., 2022; Lemercier et al., 2022).

Soil spatial inference is a common approach for generating contin-
uous maps from point data and estimating SOCs across spatial scales
(Wang et al., 2018). The SCORPAN approach infers SOC as a function of
soil-forming environmental factors, such as climate, topography, vege-
tation, or land use (McBratney et al., 2003). Numerous strategies have
been developed for statistical prediction models to correlate SOC with
these forming factors (Kravchenko and Bullock, 1999; Omran, 2012;
Robinson and Metternicht, 2006). For example, linear regression ap-
proaches are popular because of their computational simplicity and
interpretability (Thompson et al., 2006); however, the relationships
between soil properties and environmental variables are usually com-
plex and nonlinear (Manning et al., 2015; Moni et al., 2010; Wiesmeier
et al., 2019). Recent studies have proposed alternative techniques
adapted from data mining, machine learning, and multi-model ensemble
methods to account for these nonlinear relationships and improve the
predictive capacity of the DSM (Shangguan et al., 2017; Wang et al.,
2018). That said, there is no unique or perfect empirical approach as
there are multiple limitations with model assumptions, data availability,
and spatial scale of the soil predictions (Arrouays et al., 2020; Guevara
et al., 2018).

One practical challenge is that the spatial resolution of the SOC
variable must be consistent with the spatial scales of both the input
covariates and land management (Hartemink, 2006). Therefore, SOC
variability must be represented differently across spatial resolutions and
management strategies must interpret this information carefully at
reliable scales (Lark, 2006; Vargas et al., 2017). Arguably, scales from
1:50,000 to 1:500,000 are recommended to ensure consistency in na-
tional and local management strategies (Montanarella, 2015; Pasztor
etal., 2019), where the corresponding pixel resolution ranges from 25 m
to 250 m (Tobler, 1988). Several efforts have been made to map soil
properties worldwide using different spatial domains. For example, the
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Global SOC Map (GSOC, at approximately 1 km resolution) of the Global
Soil Partnership is derived from a country-driven approach to produce
the final product as part of the Global Soil Information System (GLOSIS)
(Yigini et al, 2018). An alternative global initiative (i.e., Soil-
Grids250m; at 250 m spatial resolution) was derived using WoSIS-
standardized data (Hengl et al., 2017). Finally, a third global project is
GlobalSoilMap, a consortium conducted by the International Union of
Soil Sciences (IUSS) (Arrouays et al., 2014) to create global digital maps
of crucial soil properties at a finer spatial resolution (approximately 100
m). These efforts are valuable for their contribution at the global level
and for deriving information across areas with limited soil data. How-
ever, the application of SOC estimates performed for a broad spatial
level to a smaller area (i.e., global or continental information at the
national or local level) may not be able to capture SOC heterogeneity,
especially for soil databases collected over different time periods and
using a variety of soil analytical methods (Vitharana et al., 2019).
Hence, locally derived benchmark information is required for the eval-
uation, applicability, and interpretability of these global efforts (Han
et al., 2022, Villarreal et al., 2018).

Our overarching goal was to evaluate different DSM approaches and
environmental covariates derived from remote sensing data to improve
local SOC predictions. We focused on a local Mediterranean area (Re-
gion of Murcia, 11,313 km?) with complex climatology and topography
in the southeastern Iberian Peninsula, and used a local SOC database to
derive SOC estimates. Because of the spatial heterogeneity of SOC in the
study area (Conant et al., 2011; Minasny et al., 2017; Xiong et al., 2016),
we hypothesized that data-driven models parameterized using local soil
information and environmental covariates would capture SOC spatial
variation better than available global estimates. To do this, we (1)
compared SOC from six available products for the study area (at the
national and local levels) and validated them with an independent
dataset, and (2) produced a local SOC map testing different data, sta-
tistical models, and spatial (i.e., pixel) resolution (100, 250, and 1000
m).

2. Materials and methods
2.1. Study area

The study area is located in the southeastern Iberian Peninsula in the
Region of Murcia (Spain). This region is about 11,313 km? and presents
a complex topography including mountains (reaching 2000 m altitude),
high plateaus (500-1000 m), and advanced degradation zones or bad-
lands (> 14% of the territory). This topographic diversity results in
contrasting climatic zones. For example, the southeastern area is influ-
enced by the hot, dry winds of the Sahara Desert, which causes a NW to
SE line of aridity. Overall, the study area has a mean annual temperature
of 18 °C, annual rainfall of 300-350 mm/year distributed in torrential
events, and mean annual evapotranspiration of about 900 mm (Alba-
ladejo et al., 2009).

Most of the Region of Murcia (70%) is influenced by human activity
occupied by cultivated areas; approximately 20% is covered by shrub-
land and 10% by pine forest. The soil typology is represented by un-
derdeveloped soils with a wide variety of soil-landscape patterns and a
predominance of codominant or associated soils (Alias and Ortiz, 1986).
According to the World Reference Base (WRB-IUSS, 2014) the dominant
soils are: Calcisols (43%), Leptosols (23%), Regosols (17%), and Fluvi-
sols (9%), followed by Gipsisols, Solonchaks and Kastanozems (Alias and
Ortiz, 1986).

2.2. Available SOC products across the study area

A methodological scheme that outlines each step involved in this
study is depicted in Fig. 2.

In this study, we included six SOC products derived from DSM
frameworks as benchmarks for comparison. Four products correspond to
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Global and European approaches; one is a national map, and the last is a
local SOC estimate for the Region of Murcia (Table 1). These products
provide one or both organic carbon variables: soil organic carbon con-
centration (SOCc, % or g/kg) and soil organic carbon stock (SOCs, tC/
ha). The global approach included the following products: (1) Global
Soil Organic Carbon (Hiederer and Kochy, 2012), where the SOC for the
topsoil (0 - 30 cm) and the subsoil layer (30-100 cm) were obtained
using information from the HWSD and generalized linear techniques. (2)
SoilGrids250m system of WoSIS (SG; Hengl et al., 2017), which used
random forest-kriging and a global compilation of soil profile data
(WoSIS) and environmental layers.

The European approach included the following products. (3) Organic
Carbon Content in Topsoils for Europe (OCTOP; Jones et al., 2004),
which uses information from the European Soil Database and combines
refined pedo-transfer rules and spatially continuous data layers to
generate a digital soil mapping by regression kriging approach. (4) The
Top Soil Organic Carbon map in EU-25 is based on the Land Use/Cover
Area frame statistical Survey 2009 (LUCAS) (ocCont-LUCAS; de Brog-
niez et al., 2015), which uses a generalized additive model between
organic carbon measurements from the LUCAS survey (dependent var-
iable) and selected environmental covariates. Urban areas, large water
bodies, and areas above 1000 m altitude were masked.

The national-level effort includes the (5) Soil Organic Carbon Stock
in Spain (SCSS, Rodriguez Martin et al., 2016), which uses topsoil
samples from 4401 locations and ordinary kriging for spatial interpo-
lation in Spain. Finally, the local effort is the (6) Soil Organic Carbon
Map in the Region of Murcia (OCMRM, Blanco, 2015), which predicts
SOC using random forest and support vector machine algorithms with
bootstrapping methods for validation. This last product used over 1000
topsoil samples for the analysis from the LUCDEME (Fight against
desertification in the Mediterranean, by its initials in Spanish) database.

To generate comparable information among available DSM products,
we extracted the provided values of SOCc and/or SOCs at 30 cm depth
for the target area. We excluded the ocCont product, which only has data
for the uppermost 20 cm, and urban areas, large water bodies, and areas
above 1000 m altitude were masked. For SOCc estimates in SG, we
weighted the average of the generated predictions within the depth in-
terval (i.e., 0-30 cm) using the trapezoidal rule for the numerical inte-
gration described by Hengl et al., 2017.

First, we performed a qualitative description and a quantitative
comparison of the SOC estimates of the six available products at 30 cm.
To evaluate the influence of applying SOC estimates performed for the
wide spatial area to a smaller area, we compared the available products
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at two different levels of the spatial domain, from now on referred to as
the national spatial domain (Spain) and local spatial domain (Murcia).
We computed descriptive statistical parameters of SOCs and SOCc for
comparisons: sum (in GgC) for SOCs and mean (in g/kg) for SOCc. To
analyze the statistical significance of the mean values of the SOC
products, we performed the Tukey plot interval using the ‘graphics’
package in R (Copenhaver and Holland, 1988).

Second, we tested the product estimates with an independent local
database of 255 soil profiles (see section 2.3.12.3) using general statis-
tical comparisons (‘graphics’ and ‘stats’ packages in R) and the deter-
mination criteria (R?) and root mean squared error (RMSE) as
information criteria.

2.3. Generated local spatial prediction of SOC and its uncertainty

2.3.1. Local soil database and SOC calculation

The independent local database was derived from the LUCDEME
Project generated between the years 1986-2004 by the “Ministerio de
Medio Ambiente de Espana“ and the support of “Direccion General de
Medio Ambiente de la Region de Murcia” (Alias and Ortiz, 1986). This
legacy database consists of 255 soil profiles representative of soil ty-
pologies over a topographic range of 0-1700 m in altitude. Each profile
has morphological and analytical data for each horizon (903 horizons).
In addition, 1100 topsoils (0-20/30 c¢m soil depth) were sampled on a
regular 3 x 3 km grid, except the southeast quadrant, distributed in an
altitudinal range of 0-1950 m.

We harmonized and revised this soil database following published
guidelines (Dobos et al., 2010). To validate the benchmark products, we
generated synthetic profiles of 0-30 cm depth from the soil local data-
base for SOCc and SOCs data. The aggregation of horizons depth was
done using the equal-area spline technique through the mass-preserving
spline (‘mpspline’) function to generate the synthetic profiles. This
technique is based on fitting continuous depth functions for modeling
the variability of carbon soil (Bishop et al., 1999). The estimation of
SOCs in each soil profile was calculated as follows:

SOCs (Kg e m?) = SOC (g/Kg)  BD(Kg e m’) [1 - (W> }

100
® HSIZE(cm) @

were BD is bulk density, CRFVOL is the percentage of coarse fragments
(above 2 mm in diameter), and HSIZE is the thickness of the horizons.
Due to data gaps, BD was estimated using a pedotransfer function

Table 1
Description of available SOC products for the study area.
Acronym Product Publisher Publication Soil Database Spatial Data Units
date resolution
GLOBAL PRODUCTS
2 horizons: </
GSOC Global soil organic carbon JRC 2012 HWSDB 1 km 0-30 cm ha
30-100 m
o 7 horizons:
SoilGrids250m: 0-200 em g/kg
SG 7 horizons and ISRIC 2017 WoSIS 250 m . tC/
Individuals soil layers Top sol: ha
0-30 cm
EUROPEAN PRODUCTS
. . . Top soil:
OCTOP Organic Carbon Content in Topsoils JRC 2004 ESDB 1 km 0-30 cm %
ocCont s . LUCAS (Land Use/ Top soil:
(LUCAS) Topsoil Soil Organic Carbon Content JRC 2014 Cover) 500 m 0-20 em g/kg
NATIONAL PRODUCTS (Spain)
. . . . . . . %
scss Soil O.rgamc‘ Carbon and soil organic carbon INIA 2015 Spanish topsoil 100 m Top soil (0_30 ey
stock in Spain database cm) ha
LOCAL PRODUCTS (Murcia)
. . . . . University of top soil:
MRM 1 bon M f M 201 LUCDEME 2! k
OCMRI Soil Organic Carbon Map in Region of Murcia Murcia 014 UC 5 m 0-30 cm g/kg
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adapted from a regional study (Barahona and Santos, 1981). We used
the R package GSTAT for the stock estimates and ‘mpspline’ function,
where the propagated error was estimated by the Taylor Series Method
(Hengl and Mendes de Jesus, 2016; Heuvelink, 1998; Malone et al.,
2009).

To evaluate the SOC spatial distribution of the local predicted
products, we log-transformed the SOC original values of the local soil
database to generate a normal distribution (Yigini et al., 2018). We
tested the correlation between log SOC values with the prediction fac-
tors and compared them to SOC original ones. We also provided statis-
tical data from the semivariograms of SOCc and SOCs for 30 cm depth,
log-transformed and original ones.

2.3.2. Local spatial covariates

Our DSM approach was based on the SCORPAN conceptual model
using the soil forming environmental factors as soil spatial prediction
function (McBratney et al., 2003). We generated a covariate stack based
on 34 environmental factors to predict SOC (Table 2).

We used dynamic and static variables as predictors for SOC. The
static variables were 16 topographic parameters derived from a local
digital elevation model (DEM) using the Terrain Analyst functions in the
SAGA GIS software (Conrad et al., 2015). The DEM is available from the
Geographic Information National Centre (Spain), resulting from inter-
polating LiDAR national images with a 25 m spatial resolution. We re-
sampled the DEM into 100, 250, and 1000 m pixel sizes and calcu-
lated the basic terrain parameters to perform the local model at different
spatial resolutions.

The dynamic variables included climatic variables (precipitation and
temperature) (Ninyerola et al., 2005); land cover (IGN, 2012) reclassi-
fied into 13 classes; forest structural variables, aboveground biomass of

Table 2
Description of prediction factors used in statistical modeling of soil organic
carbon (SOCQ).

Variables* Source Spatial Description
resolution
DEM IGN ) 25m Terfain altitude vaAriabil%ty,
(Spain) basis of topographic variables.
PP GCPPI . Mean annual precipitation
niversity of 200m (mm), period 1951-1999.
Barcelona
ACDPI Mean, minimum and
TP University of 200 m maximum annual temperature
Barcelona (°C), period 1951-1999.
Mean annual and coefficient of
NDVI and MODIS-Terra 230 m variation of Normalized
CV_NDVI (MOD13Q1) Difference Vegetation Index
(NDVI), period 2001-2016.
Mean annual and coefficient of
EVI and MODIS-Terra 230 m variation of Enhanced
CV_EVI (MOD130Q1) Vegetation Index (EVI), period
2001-2016.
Lithology IGM].E 1:200000 Litho!ogical units and their
(Spain) associations.
. Digitized soil map from the
Soil types (SISIII?V[I:;/II—)?;(IE(CZ; 1:100000 National Atlas of Spain (1:
2000,000), IGN 1992).
IGN-Corine Land
Land cover Cover 1:100000 Inventory of land covers.
(Spain)
MFE MAPfAMA 1:25000 Forest structural types and
(Spain) cover canopy area.
LiDAR 5m High-pre.cision of veg'etation
(Tree IGN ) ©.5pt./ cover :altltude froml nght'
biomass) (Spain) m?) detection and ranging (LiDAR)

data.

" DEM: Digital elevation model. PP: Precipitation. TP: Temperature. NDVI:
Normalized difference vegetation index. CV_.NDVI: Coefficient of variation of
NDVI. EVI: Enhanced vegetation index. CV_EVI: Coefficient of variation of EVI.
MFE: Map of forests in Spain. LiDAR: Light detection and ranging.
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forest trees cover from LiDAR data (Durante et al., 2019); and vegetation
indexes (VIs). The calculated VIs were The Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which
are associated with ecosystem functional attributes related to seasonal
dynamics of net primary productivity. These indices were derived from
mean annual time series images (2001-2016) of MODIS-Terra images
satellite using Google Earth Engine as described in (Arenas-Castro et al.,
2019).

These covariates were layer-stacked to build three different harmo-
nized covariate stacks (at 100, 250, and 1000 m spatial resolutions) with
the same projection, extent, and pixel size. The covariates were re-scale,
re-projected, or, in the case of categorical covariates, rasterized when
appropriate. All the statistical and geo-information analyses in this
section were performed using R Statistical Software (v4.1.0, R Core
Team, 2021), the raster (v3.4-13; Hijmans, 2021), the rgeos (v0.5-3,
Bivand and Rundel, 2020), the rgdal (v1.5-22, Bivand, 2021) and the
GISTools (v 0.7-4) (Brunsdon and Chen, 2014) R packages.

2.3.3. Model fitting, spatial prediction, and uncertainty assessment

To analyze the influence of different methodological criteria for
estimating SOC spatial variability, we tested different empirical models
at three different spatial (i.e., pixel) resolutions: 100, 250, and 1000 m.

Before model building, a regression matrix included the best corre-
lated environmental factors with SOC local data as covariates. To select
them, we considered a balance among higher Pearson coefficient of
multiple linear regression, lower error (RMSE), and lower variance
inflation factor (VIF) to identify the statistical redundancy (Heiberger
et al., 2005). We used the Akaike information criterion (AIC) to deter-
mine the best compromise between model accuracy and model parsi-
mony (Rossel and Behrens, 2010).

We tested different models to predict SOCc and SOCs. We fitted
linear models (LM,(Chambers et al., 1990) using SOC as the response
variable and the regression matrix of covariates as predictors. We used
the ‘stats’ (R Core Team, 2021) R package to perform LM. The support
vector machine (SVM) (Weston and Watkins, 1999) was also performed.
This algorithm creates a line or a hyperplane, which separates the data
into classes. Before performing this model, the qualitative variables
were transformed into factors. We used the SVM with the linear kernel
method (svmLinear) Kernel since a non-linear decision surface can be
converted into a linear equation in a higher dimensional space. This
method was implemented in the train function of the ‘caret’ (v6.0-88;
(Kuhn, 2019) R package in R software. The tested random forest (Brei-
man, 2001) is an ensemble learning method (bagging) of decision trees.
Decision trees learn how to best split the dataset into smaller subsets
based on different conditions (or nodes) to predict the target value. The
RF algorithm operates by constructing many decision trees at training
time and outputting the mean of prediction of the individual trees. The
number of variables available for splitting at each tree node (mtry) was
set 1/3 of the total variables used in the model, and the total number of
trees to grow (ntree) was 500. We implemented this method in ‘ran-
domForest’ (Liaw and Wiener, 2002) package in R software. Finally, the
quantile regression forest (qrf) model was performed; since it estimates
an approximation of the full conditional distribution of the response
variable, the inferred conditional quantiles to build prediction intervals
were estimated as surrogates of the value of uncertainty associated with
the response variable (Meinshausen, 2006). We used the ‘qrf’ algorithm
implemented in R software for statistical computing in two different
packages: ‘quantregForest’” (QRF) (Meinshausen, 2006) and’ ‘GSIF’
(QRF_G) (Hengl and MacMillan, 2019). QRF validation was calculated
from out-of-bag error, and QRF_G model validation was calculated from
n-fold cross-validation. In addition, the latter combines predictions by
qrf regression and interpolation of residuals (kriging) via the Regression-
Kriging (RK) techniques. The information criteria to assess the fit of the
different models were RMSE and R

The observed values of the LUCDEME topsoil database were graph-
ically compared with the estimate of the qrf generated local models and
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available SOC products of the study area using Taylor diagrams (Carslaw
and Ropkins, 2012; Taylor, 2001). In these diagrams, the similarity
between two patterns is quantified in terms of their correlation, their
centered root-mean-square difference, and the amplitude of their vari-
ations (represented by their standard deviations).

2.3.4. Validation and local map selection

An independent, external database was used for model validation.
The validation data were based on the 1100 topsoil legacy local dataset
described in 2.3.1 section (Fig. 1). Due to the local validation database
presented large gaps in bulk density and coarse fragments data, so only
the SOCc maps were validated. The agreement between predicted and
observed data was measured by the accuracy percentage within the
interval of SOC prediction (i.e., the interval corresponding to predicted
values and their associated uncertainty). The balance between the pre-
dictive model performance and the validation determined the model
selection for the final maps of the SOCc and SOCs.

We calculated the relative improvement (RI, Eq. (2) of prediction
accuracy of generated SOCc and SOCs maps relying on OCMRM and SG
stock maps (i.e., the maps with the most accurate balance of model
validation criteria in the external validation).

RI = RMSEp — RMSE orr /RMSE sp 2)

where RMSEap and RMSEqgr are the root mean square errors of a given
available product and the maps generated in this study (SOCc and
SOCs), respectively.

Once the model was selected, a scatter plot of the predicted SOC
values versus their associated relative uncertainty was used to visualize
the spatial distribution of SOC uncertainty related to their values.

3. Results
3.1. Available SOC products, comparison, and validation

We compared the available SOC products at two different spatial
domains (national and local) to evaluate their influence on predictions
in a smaller area. Our results showed substantial differences on the
predictions (Table 3).

The SOCs estimates derived from available SOC products applied at
the national spatial domain showed a large diversity among stock values
(coefficient of variation CV = 0.35), with a range from 1892 Tg C (by
LUCAS map) to 5068 Tg C (by SG map), representing a difference of

REGION OF MURCIA
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63%. At the local spatial domain, the results showed slightly smaller
differences than at the national spatial domain (CV =0.28), ranging
from 39,984 Gg C to 73,364 Gg C (46% difference), according to LUCAS
and SG maps, respectively. We found the opposite pattern in SOCc,
where the values remained less variable at the national than at the local
domain (CV = 0.07 and CV = 0.22, respectively). The OCTOP map
showed the lowest concentration value (22.71 g/kg at the national
domain and 11.6 g/kg at the local domain) versus the highest values in
the SG map (26.62 g/kg) at the national domain (14%), and the SCSS
map (19.51 g/kg) local domain (40%). Therefore, despite the high data
variability at the local spatial domain, the CV values are smaller in SOCc
than in SOCs data.

The qualitative comparison of the maps at the local level domain
derived from the available SOC products depicted different spatial pat-
terns (Fig. 3, Fig. 4). The SOCc maps showed better agreement in the
distribution of carbon values than SOCc maps, especially in the higher
carbon values across the northeast of the area. The SCSS product showed
the least detailed spatial distribution of SOC.

The independent validation of the available SOC products with the
local soil dataset revealed a lower data-model agreement for SOCs than
for SOCc (Table 4). The best data-model agreement in SOCs corre-
sponded to the SG map with R? = 0.06 and RMSE = 25.73 GgC, and the
best data-model agreement in SOCc values compared to the local
OCMRM map with R? = 0.53 and RMSE = 14.74 GgC. For the Region of
Murcia area, a pairwise comparison with a Tukey’s test, using a stu-
dentized range distribution at a 95% confidence interval, indicated that
the differences between the means of stock available products and the
profile samples were statistically significant. Nevertheless, we found no
statistically significant differences in the carbon concentration values in
the SG and OCMRM maps (Fig. S 1).

3.2. Generated local SOC map: model fitting, spatial prediction, and
uncertainty assessment

3.2.1. Local SOC values and spatial covariates

The statistical description of the SOC average profile (Fig. S 2) from
the local database (Alias and Ortiz, 1986) showed that most of the SOCc
is in upper horizons (0-30 cm) and decreases with soil depth. The total
mean SOCc was 8.22 g/kg (10.49 SD) and 12.22 g/kg (12.52 SD) for the
0-30 cm depth. The mean SOCs was 26.71 kg/m2 (16.96 SD) for the
upper horizons (0-30 cm). Regarding the probability distribution, both
SOCc and SOCs revealed a log-normal distribution with a right-skew.

Fig. 1. Spatial distribution of samples derived from the LUCDEME Project in the Region of Murcia (Spain). Dots represent 255 soil profiles and “+” represent 1100

topsoil samples (0-20 or 0-30 cm depth).
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COMPARISON GENERETED LOCAL MAPS
AVAILABLE PRDUCTS (*) Soil profile observations Spatial Covariates
(255 plots)
('sOCc and/or 2S0Cs) starget variables:
SOCc, SOCs
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Overiay <
< —/

Regression matrix A
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MODIS land products,
DEM, vegetation maps,
climatic images,
lithological data...

Fit prediction
models

Features selection
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estatistical parameters
eexternal validation
(255 soil profiles)

g -8

SOC prediction maps
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Fig. 2. Workflow describing the steps to produce the local map of soil organic carbon concentration (SOCc) and soil organic carbon stock (SOCs).
Note: (*) Global soil organic carbon (GSOC), SoilGrids250m (SG), Organic Carbon Content in Topsoils (OTCOP), Topsoil Soil Organic Carbon Content (ocCont), Soil
Organic Carbon Stock in Spain (SCSS), Soil Organic Carbon Map in Region of Murcia (OCMRM). (**) Linear model (LM); support vector machine (SVM). quantile

regression forest, random forest (RF).

However, their spatial autocorrelation behavior differed from SOCc and
SOCs at 0-30 cm depth with a nugget-to-sill ratio (NSR) <25% for SOCc
(Fig. S 3), which indicates a strong spatial structure. Conversely, SOCs
presented no significant spatial autocorrelation structure.

The selected environmental drivers to describe the spatial variability
of SOC at 30 cm depth and the three spatial resolutions (100, 250, and
1000 m) were mainly related to topographic and vegetation variables
(Table S 1). Specifically, the most consistent variables for predicting
SOCs and SOCc were slope, plane curvature, and vegetation index (EVI)
at 100 m pixel size. For the middle spatial resolution (250 m), the ver-
tical distance to the channel network (related to vertical valley depth)
and vegetation index (NDVI) were the most consistent. The coarsest
spatial resolution (1000 m) showed that relative slope position, vege-
tation indexes (NDVI and EVI), and canopy cover (shrubland and total
vegetation) were the most consistent variables. Moreover, precipitation,
vegetation indexes, tree biomass, and different topographic variables
are the most correlated covariates common to the three spatial resolu-
tions in SOCs. Vertical distance to channel network, topographic vari-
ables, and vegetation indexes were for SOCc.

3.2.2. Evaluation of SOC model fitting

The comparison among the generated local models of SOC spatial
prediction based on the R? and RMSE as model information criteria
revealed large differences in accuracy (Fig. 5; Table S1). The QRF_G
model showed the most accurate information criteria values for both
SOCc and SOGs models. In SOCc, the R? ranged from 0.90 to 0.93 and
RMSE 3.38-3.93 g/kg. In SOCs, the values varied from 0.91 to 0.94 and
4.08-5.16 GgC for R? and RMSE, respectively. The rest of the models
showed a prediction accuracy much lower in stock than concentration
values at the three spatial resolutions (100 m, 250 m, and 1000 m). Both

information criteria (R?> and RMSE) varied from 0.26 to 0.41 and
9.65-11.76 g/kg for SOCc and 0.03-0.17 and 15.45-17.66 GgC for
SOCs. The LM and QRF showed the best model performances, with the
lower accuracy values at 1000 m spatial resolution.

The SOCc qrf approaches (QRF_G and QRF) had the best balance
between R? and RMSE values and had the advantage of reporting model
uncertainty.

The comparison of SOCc estimates (from both generated models and
available products) with the local topsoil samples (LUCDEME database)
representing the “observed” values showed that the 25 m spatial reso-
lution map (OCMRM product) had the best model-data agreement and
the lowest RMSE, but a greater standard deviation (Fig. 6). Next in order
were the QRF models, specifically those at 100 m spatial resolution. The
QRF_G models showed lower accuracy of the amplitude of the variations
(i.e., the standard deviation), lower correlation, and higher RMSE than
QRF models (Fig. 5). Regarding model performance, SCSSc had the
lowest correlation and the highest RMSE models.

Estimates of the covariate importance in the QRF models revealed
the slope as the highest value, followed by maximum temperature and
plane curvature for the 100 m spatial resolution model. The most
important covariates at 250 m spatial resolution were also linked to
topography (vertical distance to channel network, plane curvature, and
Ls-factor, listed in decreasing order), followed by climatic variables
(maximum temperature) (Fig. S 4).

3.2.3. Local SOC spatial prediction and uncertainty assessment

The summary of data prediction and uncertainty associated with
SOCc and SOCs showed small differences across spatial resolutions be-
tween the quantregForest (QRF) and GSIF (QRF_G) algorithms. The QRF
predictions and uncertainty generally had lower values than those from
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Fig. 3. Predictions of soil organic carbon concentration (SOCc) for the region of interest including SoilGrids250m (SG), Organic Carbon Content in Topsoils
(OTCOP), Soil Organic Carbon Stock in Spain (SCSS), and Soil Organic Carbon Map in Region of Murcia (OCMRM). Data display was stretched by the cumulative

pixel count cut method (default range 2%-98%).

QRF_G for SOCs along the three spatial resolutions. However, the pre-
dicted values for SOCc were slightly higher in QRF than QRF_G across
spatial resolutions (Table 5). All available SOC products derived from
global databases generally showed higher SOC values than those pre-
dicted by the local models. Specifically, the SCSS national map showed
about 1.5 times of SOCc (19.50 vs. 12.18 and 11.20 g/kg C in QRF and
QRF_G, respectively) and the SG global map about 2.6 times in SOCs:
73,364 vs. 27,646 and 28,435 Gg C in QRF and QRF_G, respectively.

3.2.4. Validation and final model selection

Overall, the QRF had a better data-model agreement than QRF_G
using the external-independent topsoil data validation (Table S2). The
largest prediction errors of both RMSE and mean absolute error (MAE)
were at coarsest spatial resolution (12,19 g/kg and 7.85 g/kg for QRF;
and 12,21 g/kg and 8.01 g/kg for QRF_G at 1000 m spatial resolution,
for RMSE and MAE respectively). The accuracy percentage (i.e., the
interval corresponding to predicted values and their associated uncer-
tainty) was substantially higher in QRF than in QRF_G, especially at 100
m spatial resolution (79% in QRF versus 49% in QRF_G, Table 6).

The QRF model at 100 m spatial resolution achieved a better balance
considering model performance, agreement with the reference soil in-
formation (i.e., topsoil local database), and independent external vali-
dation. The analysis of the residuals of the QRF model at 100 m spatial
resolution confirmed the absence of spatial autocorrelation structure in
both SOCc and SOCs. In general, the values of the QRF maps ranged from

5.1 to 21.8 g/kg and 4.1 to 31.1 tC /ha for SOCc and SOCs, respectively
(Fig. 7). Both maps were consistent in the areas with low SOC located at
low elevation (0 to 300 m), gentle slopes (<2%), and cultivated land.
This area corresponds to the driest part of the Region with less mean
annual rainfall (< 200 mm) and high mean annual temperature
(>15 °C). The highest SOC values were found in coniferous forests in
steeper and humid areas. Overall, the available SOC products derived
from national-to-global databases showed higher ranges with a consid-
erable overestimation of values, especially for SOCs.

The relative uncertainty analysis of the QRF model revealed an
inversely proportional relationship with SOC-predicted data, empha-
sizing the extreme values. This pattern was more pronounced for SOCc,
where the lower values presented very high uncertainty (0). The relative
improvement in the prediction accuracy of the SOCc and SOCs maps
produced in this study from the QRF model at 100 m spatial resolution
compared to the available SOC products of the OCMRM and SG maps
were 40.8% and 63.8%, respectively.

The final selected QRF model at 100 m spatial resolution for SOCs
and SOCc and their associated uncertainties maps will be available on
the public Environmental Data Initiative Repository at https://portal.
edirepository.org/nis/mapbrowse?packageid=edi.1238.2
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Fig. 4. Predictions of soil organic carbon stocks (SOCs) for the region of interest including SoilGrids250m (SG), Global soil organic carbon (GSOC), Soil Organic
Carbon Stock in Spain (SCSS). Data display was stretched by the cumulative pixel count cut method (default range 2%-98%).
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Fig. 5. Bar graph of R-squared and residual error (i.e., error bars) of the statistical local modeling of SOCs and SOCc (g/kg) at 30 cm depth and different spatial

resolutions (100 m, 250 m and 1000 m).

Note. Predictive models are: linear model (LM); quantile regression forest (QRF = QuantregForest R package; QRF_G = Gstat R package); random forest (RF = Caret R

package); support vector machine (SVM = Caret R package).
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Fig. 6. Taylor diagram illustrating performance of generated local models and
available soil organic carbon concentration (SOCc) products compared with the
local topsoil samples (LUCDEME database) representing the “observed” values.
Note: SoilGrids250m (SG), Organic Carbon Content in Topsoils (OTCOP),
Topsoil Soil Organic Carbon Content (ocCont), Soil Organic Carbon Stock in
Spain (SCSS), Soil Organic Carbon Map in Region of Murcia (OCMRM), quantile
regression forest (QRF = QuantregForest R package; QRF_G = Gstat R package.

4. Discussion
4.1. Comparison of available SOC products

Different available soil dataset collections, spatial resolutions, and
spatial predictive modeling for SOC estimates led to varying in-
terpretations of SOCc and SOCs across the study area. These differences
highlight the challenges associated with predicting SOC across hetero-
geneous semiarid regions. Discrepancies in SOCs were larger than those
in SOCc among the products analyzed. This is probably due to the
generalized absence of bulk density and coarse soil material (> 2 mm) in
most soil databases, which are the main parameters required for esti-
mating SOCs. These important variables are often derived from pedo-
transfer or extrapolation functions (Jalabert et al., 2010), resulting in
additional bias and systematic errors in the calculation of SOCs (Durante
et al., 2020; Poeplau et al., 2017). Therefore, we echo the call for
including bulk density and coarse fragment information in future soil
surveys or recovering it from legacy datasets (Hendriks et al., 2019).

There was no clear consistency among the tested products in terms of
spatial domain and spatial resolution. Our results do not support the
expectation that local products and a higher spatial resolution will better
agree with locally derived SOC information. We highlight that the SOCc
maps from SG (global domain, 250 m spatial resolution) and OCMRM
(local domain, 25 m spatial resolution) had the most similar estimates
(g/kg) and balance of model validation criteria (R2 and RMSE) with the
independent data for external validation. However, the estimates for the
SG map were extrapolated from global information, as none of the 43
soil samples used for peninsular Spain in SG were from our study area.
Both maps were modeled using a similar machine learning technique (i.
e., random forest); however, while the selected covariates in the
OCMRM map referred to climate, land cover, soil types, and terrain
morphology, the SG prediction model included environmental layers
from remote sensing data. Therefore, our results suggest that applying
machine learning approaches combined with single and/or multi-
temporal remotely sensed satellite indices can result in comparable
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predictions of the spatial distribution of SOC. Therefore, we emphasize
that there must be a balance between soil training data, statistical
models, and covariates (Fathololoumi et al., 2020; Lemercier et al.,
2022; Liang et al., 2020; Schillaci et al., 2017), and adding new infor-
mation in regions with sparse training data could result in higher model
uncertainty until the spatial bias of information is reduced (Stell et al.,
2021; Smith et al., 2022).

We postulate that the SG map could be considered the best available
SOC product for the study area, with a moderate spatial pixel resolution
(i.e., 250 m). However, we clarified that this product has some limita-
tions, as several studies that compared estimated SOCs showed wide
discrepancies and overestimation (Han et al., 2022), especially in areas
with low SOCs (Silatsa et al., 2020; Vitharana et al., 2019). This over-
estimation may be due to the absence of profile observations (i.e.,
training data), resulting in biased training data and spatial predictions
(Lombardo et al., 2018; Stell et al., 2021; Vitharana et al., 2019). In our
results, the SG map estimated the highest SOCc compared with the
available SOC products. These observations confirm the need to reassess
local-domain estimates of soil SOCs to gain insights into the effects of
different methodological criteria in estimating SOC spatial variability.

4.2. Generated local prediction of SOC

We tested the available SOC products using locally derived infor-
mation and empirical models at three spatial resolutions to provide a
critical assessment. The QRF approach had the best data-model agree-
ment at a spatial resolution of 100 m, with the best accuracy and
external validation. The relative improvement in the prediction accu-
racy of the local SOCc and SOCs maps produced in this study was
approximately 40% and 65%, respectively, in comparison to the avail-
able SOC products with the most accurate balance of model validation
criteria in the independent, external validation (i.e., OCMRM for SOCc
and SG for SOCs).

The QRF approach approximates the full conditional distribution of
the SOC values. Therefore, it has the advantage of reporting the model
uncertainty. This allows the building of a spatially explicit uncertainty
map associated with the SOC values. The QRF performs the uncertainty
and interpretation of its patterns better than other modeling methods,
especially in Mediterranean areas with low SOC values and sparse
spatial sampling, such as in the present study (Lombardo et al., 2018).
However, the interpretability of the relationships between covariates
and target variables must be improved to provide a better understanding
of the model.

Consistent with other studies, local sampling distribution was more
relevant than density in capturing SOC variation (Zeraatpisheh et al.,
2019). The two maps derived using the local database showed low dif-
ferences in prediction accuracy despite their different sampling densities
(i.e., 1922 systematic sampling vs. 255 representative profiles of soil
taxonomic for OCMRM and QRF_100 maps, respectively). The accuracy
of the generated local models was higher for SOCc than for SOCs, and
this difference can also be attributed to the error propagation of
extrapolated parameters (i.e., bulk density and coarse fragments) that
may have a stronger influence on predicting SOCs (Poeplau et al., 2017).

Our results showed that the regression-kriging technique (i.e., pre-
dictions plus kriging of the residuals) can lead to overfitting when var-
iogram modeling is undersampled. It has been reported that a well-
represented multivariate feature space should preferably have 300
sample points and at least ten observations per covariate (Hengl et al.,
2017; Webster and Oliver, 2001). This could explain the discrepancies in
the QRF_G models, which showed the best model performance but the
lowest accuracy in external validation at the three spatial resolutions
tested (100, 250, and 1000 m). Our results highlight the importance of
model external validation to better evaluate model performance and
avoid spurious data-model agreements influenced by over-
parameterization (Zeraatpisheh et al., 2019).

The errors of the local models produced in this study were relatively
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Fig. 7. Generated prediction maps of soil organic carbon concentration (SOCc) and SOC stocks (SOCs), and their uncertainties at 100 m.
Note: QRF = quantile regression forest models estimate by QuantregForest R package. Data display was stretched by the cumulative pixel count cut method (default

range 2%-98%).

Table 3
Comparison of available products of soil organic carbon concentration (SOCc) and soil organic carbon stock (SOCs) at national (Spain) and local (Regién de Murcia)
domains.
AVAILABLE PRODUCTS* GSOC SG OTCOP ocCont (LUCAS) SCSS OCMRM
Spatial domain (Global) (Global) (Europe) (Europe) (Spain) (Murcia)
SOCs Sum 3.19-10° 5.07-10° 3.50-10° 1.89-10° 2.82.10° -
National (Spain) (GgO) Mean + SD 0.06 + 0.02 0.10 + 0.03 0.07 0.04 + 0.03 0.06 + 0.04 -
P SOCc Mean - 26.62 22.71 24.38 25.89 -
(g/kg) SD - 17.94 23.69 16.62 20.47 -
SOCs Sum 52,689.62 73,364.37 - 39,983.88 44,421.16 -
Local (Murcia) (GgO) Mean + SD 0.05 + 0.01 0.07 £ 0.01 - 0.04 £+ 0.02 0.04 + 0.01 -
SOCc Mean - 13.78 11.6 18.88 19.51 14.07
(g/kg) SD - 5.87 7.15 7.85 6.06 14.88

“ The available SOC products in the area refer to: Global soil organic carbon (GSOC), SoilGrids250m (SG), Organic Carbon Content in Topsoils (OTCOP), Topsoil Soil
Organic Carbon Content (ocCont), Soil Organic Carbon Stock in Spain (SCSS), Soil Organic Carbon Map in Region of Murcia (OCMRM).

similar for all tested spatial resolutions. This is probably related to the
complex challenge of estimating SOC across highly heterogeneous
semiarid regions with complex terrain (Hoffmann et al., 2014; Hounk-
patin et al., 2018; Jobbagy et al., 2000; Kulmatiski et al., 2004; Kunkel
etal., 2011). Calvo de Anta et al. (2020) also revealed this heterogeneity
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in a national-level study where the semiarid Region of Murcia showed
the highest coefficient of variation in both SOCc (76%) and SOCs (61%)
at 0-30 cm depth.

Our results showed that the SOCc and SOCs maps at 100 m spatial
resolution of the QRF model had the best balance among accuracy,
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Table 4

External validation of the available SOC products (SOCs and SOCc) using syn-
thetic profile values (255 soil samples) calculated from the LUCDEME local
database (MurDB). The available SOC products in the area refer to Global soil
organic carbon (GSOC), SoilGrids250m (SG), Organic Carbon Content in Top-
soils (OTCOP), Organic Carbon Stock in Spain (SCSS), and Soil Organic Carbon
Map in Region of Murcia (OCMRM).

AVAILABLE PRODUCTS SOCs SOCc

(tC/ha) (g/kg)

R? RMSE R? RMSE

(GgC) (GgQ)
MurDB vs. SG (Global) 0.055 25.73 0.211  11.316
MurDB vs. GSOC (Global) 0.004-10"  20.88 - -
MurDB vs. OCTOP - - 0.067 12.74
(Europe)

MurDB vs. SCSS (Spain) 0.033 21.86 0.017  14.90
MurDB vs. OCMRM (Mur) - - 0.525 14.740

Table 5

Predicted values and associated uncertainty of Soil Organic Carbon (SOC) stock
and the SOC concentration estimated by quantile regression forest (QRF =
QuantregForest R package; QRF_G = Gstat R package) at different spatial reso-
lutions for the Region of Murcia, Spain.

QRF (QuantregForest)

Spatial Resolution

Variable 100m  250m  1000m
SOC stock Predicted Sum 27,572 27,646 28,071
(62O values
g Uncertainty Mean  0.02 0.02 0.02
SOC concentration (g/  _redicted Mean 1218  12.89  10.28
ke) values
g Uncertainty Mean 10.54  9.99 8.87
QRF_G (GSIF)
Spatial Resolution
Variable 100m  250m  1000m
SOC stock Predicted Sum 28,911 28435 28,937
(G20 values
g Uncertainty Mean  0.03 0.03 0.03
SOC concentration (g/  redicted Mean 11.20  10.68  10.81
ke) values
g Uncertainty Mean  9.46 8.81 8.79
Table 6

Accuracy percentage (the interval corresponding to predicted values and their
associated uncertainty, expressed as a decimal) of qrf models estimates (QRF =
QuantregForest R package; QRF_G = GSIF R package). Local values of SOCc of
LUCDEME topsoil database were compared with the interval corresponding to
predicted values and their associated uncertainty.

MODEL Spatial Resolution

100 m 250 m 1000 m
QRF 0.787 0.722 0.692
QRF_G 0.490 0.438 0.445

external validation, and interpretability of results. The largest spatial
disagreement between SOCc and SOCs maps at 100 m spatial resolution
was in areas with low soil sampling density, where SOCc maps depicted
a spatial variability coherent with land use and landscape patterns
(Albaladejo et al., 2009). These areas represent the highest altitude for
forested regions (>1400 m) in the northwestern and central zones, and
have an upper horizon rich in organic matter with natural grassland and
tree forest over Lithosols that, although shallow (< 10 cm), are covered
by abundant vegetation. The eastern area of the Region of Murcia also
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showed disagreements, where the main vegetation cover type was
sclerophyllous vegetation and rainfed crops over regosols, with scarce
incorporation of organic matter. The highest uncertainty in SOCc and
SOCs was associated with low values corresponding to areas with an
advanced process of soil degradation. Therefore, our results highlight
that predicting SOC across degraded soils is challenging because pro-
cesses associated with environmental degradation may alter the ex-
pected relationships between the training data and environmental
covariates, resulting in higher bias and prediction errors (Brungard
et al., 2015; Stell et al., 2021). To better capture the representativeness
of SOC spatial variability, stratified sampling of homogeneous sub-areas
(Zeraatpisheh et al., 2019) or optimization of future soil surveys (Smith
et al., 2022) could reduce model uncertainty.

5. Conclusions

In this study, we tested six available SOC products derived from
local, regional, and global approaches, and provided a locally derived
map for a Mediterranean area in the southeastern Iberian Peninsula. The
available SOC products with different spatial resolutions showed large
differences among their values regardless of the spatial domain (CV =
0.35 and CV = 0.28 at the national and local domains, respectively). We
observed a lower accuracy (R? = 0.06, RMSE = 25.73 GgC for external
validation) and an overestimation (ranging from 44% to 164% over the
estimates of the generated local maps) in SOCs predictions compared
with SOCc predictions. These differences are likely due to missing in-
formation on key soil parameters in the databases (e.g., bulk density and
coarse fragments). We observed that SOCc predictions are less sensitive
to these missing key soil parameters; therefore, these model predictions
may be more relevant to inform the environmental policies of soil car-
bon management.

Our high-resolution SOC map framework for the generated local
prediction was based on local legacy soil data, environmental covariates
(including single and/or multitemporal remote sensing indices), DMS
modeling, and spatially explicit uncertainty quantification. This latter
aspect and independent external validation are essential to interpret the
soil carbon property distribution, especially in SOC complex quantifi-
cation areas. Our results show the potential to improve the representa-
tion of national domain SOC estimates, especially in Mediterranean
areas. This is important to respond to the challenges of land manage-
ment and climate change adaptation/mitigation policies and strategies.
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