
Geoderma Regional 37 (2024) e00780

Available online 6 March 2024
2352-0094/© 2024 Elsevier B.V. All rights reserved.

Predicting soil organic carbon with different approaches and spatial 
resolutions for the southern Iberian Peninsula, Spain 

Pilar Durante a,b, Mario Guevara c, Rodrigo Vargas d,*, Cecilio Oyonarte b,e 

a Agresta Cooperative Society, c/Duque Fernán Núñez 2, 28012 Madrid, Spain, 
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A B S T R A C T   

Quantification and monitoring of soil organic carbon (SOC) stocks across local-to-global scales are needed to 
assess soil resource management practices and adapt environmental policies. Multiple SOC estimates are 
available worldwide; however, verification and validation are required to quantify the discrepancies and provide 
improved estimates. Here, we evaluated four different digital soil mapping (DSM) approaches (i.e., linear models, 
support vector machine, random forest, and quantile regression forest) to estimate SOC concentration (SOCc) and 
SOC stocks (SOCs) in the Region of Murcia (11,313 km2), a complex topographic and climatic area in the 
southern Iberian Peninsula, at three spatial resolutions (100, 250, and 1000 m). We estimated SOC spatially 
using a local harmonized database of 255 soil profiles for modeling and 1100 topsoils for external validation. We 
found that the quantile regression forest (QRF) approach had the best data-model agreement at 100 m spatial 
resolution, with the highest accuracy percentage (79%), external validation (correlation coefficient of 52%), and 
spatial interpretability of patterns, especially for SOCc. The QRF model showed a mean SOCc of 12.18 g/kg with 
an overall uncertainty of 10.54 g/kg and an accuracy percentage of 79%, whereas the total SOCs was 27,572 GgC 
with an uncertainty of 0.016 GgC. Our results showed that using local environmental covariates and local soil 
information to predict SOC within this region resulted in a relative improvement in the prediction accuracy of 
~40% for SOCc and ~ 65% for SOCs compared to the SOC products derived from national and global databases. 
Our results showed a large discrepancy between the national and global estimates for reporting SOC locally. 
Consequently, local-to-regional efforts are needed to describe SOC spatial variability better to reduce uncertainty 
and improve the assessment of soil resources. We provide the resulting SOC maps with associated spatial un
certainty on the public Environmental Data Initiative Repository at https://portal.edirepository.org/nis 
/mapbrowse?packageid=edi.1238.2.   

1. Introduction 

Global environmental changes disrupt biodiversity, structure, and 
function of terrestrial ecosystems (Pecl et al., 2017). Sustainable land- 
use management, specifically soil carbon management, is crucial for 
adaptation to global change and climate regulation (Jobbágy et al., 
2000; Wiesmeier et al., 2019). Therefore, quantifying and monitoring 
soil organic carbon (SOC) across scales is essential for soil management, 
adaptation of local policies, and assessment of potential impacts (Richer- 
de-Forges et al., 2019; Vargas-Rojas et al., 2019). Unfortunately, there is 
still a need to address local-to-regional knowledge gaps in SOC dynamics 

to inform management practices at an appropriate spatial scale (Cash 
and Moser, 2000; Wiesmeier et al., 2019). 

A current research challenge is to accurately predict SOC stocks at a 
high spatial resolution, including the whole soil profile (e.g., >30 cm 
soil depth). Owing to operational complexity, costs, and lack of temporal 
replication, research efforts are challenged to reproduce the potential 
high spatial variability of SOC and other soil-related variables (Smith 
et al., 2020; Vargas et al., 2017). To upscale information from soil sur
veys, soil mapping has traditionally included a framework considering 
soil forming processes assessed from soil-landscape and vegetation as
sociations (Hiederer and Köchy, 2012), and, in the last decade, digital 
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soil mapping (DSM) has enabled large-scale implementation of this 
framework while providing local information on soil properties (Brus 
et al., 2011; McBratney et al., 2003; Savin et al., 2019; Searle et al., 
2021). Recent DSM efforts have combined data-driven models relying 
on direct measurements (i.e., in situ pedon information) to provide local 
(Filippi et al., 2021), national (Vitharana et al., 2019), continental 
(Guevara et al., 2018), and global (Hengl et al., 2017) estimates of 
different soil properties (Chen et al., 2022). Moreover, these approaches 
have shown that the integration of single or multitemporal remote 
sensing information can improve the prediction of SOC, even when there 
is limited information to parameterize the models (Fathololoumi et al., 
2020; Liang et al., 2020; Schillaci et al., 2017; Zhou et al., 2023). 
Consequently, DSM offers the possibility of using different digital re
sources to enhance the spatial representation of SOC from the local to 
global scales. 

Critical regional-to-global efforts have been made to compile soil 
information worldwide, such as the Profile Analytical Database for 
Europe (SPADE), Harmonized World Soil Database (HWSD), World Soil 
Information Service (WoSIS), and the International Soil Carbon Network 
(ISCN; Harden et al., 2017). However, these efforts have three critical 
limitations: a) differences in data density or structured information (e.g., 
map units or point/pedon information) that contribute to biases in 
representing spatial variability (Kibblewhite et al., 2008; Smith et al., 
2020; Trnka et al., 2011; Willaarts et al., 2016), b) low interoperability 
(Vargas et al., 2017), and b) lack of information on concomitant soil 
properties (Poeplau et al., 2017). The latter is required because the 
estimation of SOC stocks (SOCs) is dependent on information on SOC 
concentration (SOCc), bulk density (BD), and coarse fragment content 
(CRF) of the target soil depth. While SOCc is usually measured with 
precision in elemental analyzers, BD and CRF are often missing, which 
results in added uncertainty in predictions (Durante et al., 2020; Poe
plau et al., 2017). Because of these limitations in most available soil 
databases, comparing and validating derived products (e.g., SOC maps) 
are needed to better understand their limitations and properly interpret 
them (Han et al., 2022; Lemercier et al., 2022). 

Soil spatial inference is a common approach for generating contin
uous maps from point data and estimating SOCs across spatial scales 
(Wang et al., 2018). The SCORPAN approach infers SOC as a function of 
soil-forming environmental factors, such as climate, topography, vege
tation, or land use (McBratney et al., 2003). Numerous strategies have 
been developed for statistical prediction models to correlate SOC with 
these forming factors (Kravchenko and Bullock, 1999; Omran, 2012; 
Robinson and Metternicht, 2006). For example, linear regression ap
proaches are popular because of their computational simplicity and 
interpretability (Thompson et al., 2006); however, the relationships 
between soil properties and environmental variables are usually com
plex and nonlinear (Manning et al., 2015; Moni et al., 2010; Wiesmeier 
et al., 2019). Recent studies have proposed alternative techniques 
adapted from data mining, machine learning, and multi-model ensemble 
methods to account for these nonlinear relationships and improve the 
predictive capacity of the DSM (Shangguan et al., 2017; Wang et al., 
2018). That said, there is no unique or perfect empirical approach as 
there are multiple limitations with model assumptions, data availability, 
and spatial scale of the soil predictions (Arrouays et al., 2020; Guevara 
et al., 2018). 

One practical challenge is that the spatial resolution of the SOC 
variable must be consistent with the spatial scales of both the input 
covariates and land management (Hartemink, 2006). Therefore, SOC 
variability must be represented differently across spatial resolutions and 
management strategies must interpret this information carefully at 
reliable scales (Lark, 2006; Vargas et al., 2017). Arguably, scales from 
1:50,000 to 1:500,000 are recommended to ensure consistency in na
tional and local management strategies (Montanarella, 2015; Pásztor 
et al., 2019), where the corresponding pixel resolution ranges from 25 m 
to 250 m (Tobler, 1988). Several efforts have been made to map soil 
properties worldwide using different spatial domains. For example, the 

Global SOC Map (GSOC, at approximately 1 km resolution) of the Global 
Soil Partnership is derived from a country-driven approach to produce 
the final product as part of the Global Soil Information System (GLOSIS) 
(Yigini et al., 2018). An alternative global initiative (i.e., Soil- 
Grids250m; at 250 m spatial resolution) was derived using WoSIS- 
standardized data (Hengl et al., 2017). Finally, a third global project is 
GlobalSoilMap, a consortium conducted by the International Union of 
Soil Sciences (IUSS) (Arrouays et al., 2014) to create global digital maps 
of crucial soil properties at a finer spatial resolution (approximately 100 
m). These efforts are valuable for their contribution at the global level 
and for deriving information across areas with limited soil data. How
ever, the application of SOC estimates performed for a broad spatial 
level to a smaller area (i.e., global or continental information at the 
national or local level) may not be able to capture SOC heterogeneity, 
especially for soil databases collected over different time periods and 
using a variety of soil analytical methods (Vitharana et al., 2019). 
Hence, locally derived benchmark information is required for the eval
uation, applicability, and interpretability of these global efforts (Han 
et al., 2022, Villarreal et al., 2018). 

Our overarching goal was to evaluate different DSM approaches and 
environmental covariates derived from remote sensing data to improve 
local SOC predictions. We focused on a local Mediterranean area (Re
gion of Murcia, 11,313 km2) with complex climatology and topography 
in the southeastern Iberian Peninsula, and used a local SOC database to 
derive SOC estimates. Because of the spatial heterogeneity of SOC in the 
study area (Conant et al., 2011; Minasny et al., 2017; Xiong et al., 2016), 
we hypothesized that data-driven models parameterized using local soil 
information and environmental covariates would capture SOC spatial 
variation better than available global estimates. To do this, we (1) 
compared SOC from six available products for the study area (at the 
national and local levels) and validated them with an independent 
dataset, and (2) produced a local SOC map testing different data, sta
tistical models, and spatial (i.e., pixel) resolution (100, 250, and 1000 
m). 

2. Materials and methods 

2.1. Study area 

The study area is located in the southeastern Iberian Peninsula in the 
Region of Murcia (Spain). This region is about 11,313 km2 and presents 
a complex topography including mountains (reaching 2000 m altitude), 
high plateaus (500–1000 m), and advanced degradation zones or bad
lands (> 14% of the territory). This topographic diversity results in 
contrasting climatic zones. For example, the southeastern area is influ
enced by the hot, dry winds of the Sahara Desert, which causes a NW to 
SE line of aridity. Overall, the study area has a mean annual temperature 
of 18 ◦C, annual rainfall of 300–350 mm/year distributed in torrential 
events, and mean annual evapotranspiration of about 900 mm (Alba
ladejo et al., 2009). 

Most of the Region of Murcia (70%) is influenced by human activity 
occupied by cultivated areas; approximately 20% is covered by shrub
land and 10% by pine forest. The soil typology is represented by un
derdeveloped soils with a wide variety of soil-landscape patterns and a 
predominance of codominant or associated soils (Alias and Ortiz, 1986). 
According to the World Reference Base (WRB-IUSS, 2014) the dominant 
soils are: Calcisols (43%), Leptosols (23%), Regosols (17%), and Fluvi
sols (9%), followed by Gipsisols, Solonchaks and Kastanozems (Alias and 
Ortiz, 1986). 

2.2. Available SOC products across the study area 

A methodological scheme that outlines each step involved in this 
study is depicted in Fig. 2. 

In this study, we included six SOC products derived from DSM 
frameworks as benchmarks for comparison. Four products correspond to 
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Global and European approaches; one is a national map, and the last is a 
local SOC estimate for the Region of Murcia (Table 1). These products 
provide one or both organic carbon variables: soil organic carbon con
centration (SOCc, % or g/kg) and soil organic carbon stock (SOCs, tC/ 
ha). The global approach included the following products: (1) Global 
Soil Organic Carbon (Hiederer and Köchy, 2012), where the SOC for the 
topsoil (0 - 30 cm) and the subsoil layer (30–100 cm) were obtained 
using information from the HWSD and generalized linear techniques. (2) 
SoilGrids250m system of WoSIS (SG; Hengl et al., 2017), which used 
random forest-kriging and a global compilation of soil profile data 
(WoSIS) and environmental layers. 

The European approach included the following products. (3) Organic 
Carbon Content in Topsoils for Europe (OCTOP; Jones et al., 2004), 
which uses information from the European Soil Database and combines 
refined pedo-transfer rules and spatially continuous data layers to 
generate a digital soil mapping by regression kriging approach. (4) The 
Top Soil Organic Carbon map in EU-25 is based on the Land Use/Cover 
Area frame statistical Survey 2009 (LUCAS) (ocCont-LUCAS; de Brog
niez et al., 2015), which uses a generalized additive model between 
organic carbon measurements from the LUCAS survey (dependent var
iable) and selected environmental covariates. Urban areas, large water 
bodies, and areas above 1000 m altitude were masked. 

The national-level effort includes the (5) Soil Organic Carbon Stock 
in Spain (SCSS, Rodríguez Martín et al., 2016), which uses topsoil 
samples from 4401 locations and ordinary kriging for spatial interpo
lation in Spain. Finally, the local effort is the (6) Soil Organic Carbon 
Map in the Region of Murcia (OCMRM, Blanco, 2015), which predicts 
SOC using random forest and support vector machine algorithms with 
bootstrapping methods for validation. This last product used over 1000 
topsoil samples for the analysis from the LUCDEME (Fight against 
desertification in the Mediterranean, by its initials in Spanish) database. 

To generate comparable information among available DSM products, 
we extracted the provided values of SOCc and/or SOCs at 30 cm depth 
for the target area. We excluded the ocCont product, which only has data 
for the uppermost 20 cm, and urban areas, large water bodies, and areas 
above 1000 m altitude were masked. For SOCc estimates in SG, we 
weighted the average of the generated predictions within the depth in
terval (i.e., 0–30 cm) using the trapezoidal rule for the numerical inte
gration described by Hengl et al., 2017. 

First, we performed a qualitative description and a quantitative 
comparison of the SOC estimates of the six available products at 30 cm. 
To evaluate the influence of applying SOC estimates performed for the 
wide spatial area to a smaller area, we compared the available products 

at two different levels of the spatial domain, from now on referred to as 
the national spatial domain (Spain) and local spatial domain (Murcia). 
We computed descriptive statistical parameters of SOCs and SOCc for 
comparisons: sum (in GgC) for SOCs and mean (in g/kg) for SOCc. To 
analyze the statistical significance of the mean values of the SOC 
products, we performed the Tukey plot interval using the ‘graphics’ 
package in R (Copenhaver and Holland, 1988). 

Second, we tested the product estimates with an independent local 
database of 255 soil profiles (see section 2.3.12.3) using general statis
tical comparisons (‘graphics’ and ‘stats’ packages in R) and the deter
mination criteria (R2) and root mean squared error (RMSE) as 
information criteria. 

2.3. Generated local spatial prediction of SOC and its uncertainty 

2.3.1. Local soil database and SOC calculation 
The independent local database was derived from the LUCDEME 

Project generated between the years 1986–2004 by the “Ministerio de 
Medio Ambiente de España“ and the support of “Dirección General de 
Medio Ambiente de la Región de Murcia” (Alias and Ortiz, 1986). This 
legacy database consists of 255 soil profiles representative of soil ty
pologies over a topographic range of 0–1700 m in altitude. Each profile 
has morphological and analytical data for each horizon (903 horizons). 
In addition, 1100 topsoils (0–20/30 cm soil depth) were sampled on a 
regular 3 × 3 km grid, except the southeast quadrant, distributed in an 
altitudinal range of 0–1950 m. 

We harmonized and revised this soil database following published 
guidelines (Dobos et al., 2010). To validate the benchmark products, we 
generated synthetic profiles of 0–30 cm depth from the soil local data
base for SOCc and SOCs data. The aggregation of horizons depth was 
done using the equal-area spline technique through the mass-preserving 
spline (‘mpspline’) function to generate the synthetic profiles. This 
technique is based on fitting continuous depth functions for modeling 
the variability of carbon soil (Bishop et al., 1999). The estimation of 
SOCs in each soil profile was calculated as follows: 

SOCs
(
Kg • m2)

= SOC (g/Kg) • BD
(
Kg • m3)

•

[

1 −

(
CRFVOL

100

) ]

• HSIZE(cm) (1)  

were BD is bulk density, CRFVOL is the percentage of coarse fragments 
(above 2 mm in diameter), and HSIZE is the thickness of the horizons. 
Due to data gaps, BD was estimated using a pedotransfer function 

Table 1 
Description of available SOC products for the study area.  

Acronym Product Publisher Publication 
date 

Soil Database Spatial 
resolution 

Data Units 

GLOBAL PRODUCTS 

GSOC Global soil organic carbon JRC 2012 HWSDB 1 km 
2 horizons: 
0–30 cm 
30–100 m 

tC/ 
ha 

SG 
SoilGrids250m: 
7 horizons and 
Individuals soil layers 

ISRIC 2017 WoSIS 250 m 

7 horizons: 
0–200 cm 
Top soil: 
0–30 cm 

g/kg 
tC/ 
ha 

EUROPEAN PRODUCTS 

OCTOP Organic Carbon Content in Topsoils JRC 2004 ESDB 1 km Top soil: 
0–30 cm 

% 

ocCont 
(LUCAS) Topsoil Soil Organic Carbon Content JRC 2014 

LUCAS (Land Use/ 
Cover) 500 m 

Top soil: 
0–20 cm g/kg 

NATIONAL PRODUCTS (Spain) 

SCSS 
Soil Organic Carbon and soil organic carbon 
stock in Spain INIA 2015 

Spanish topsoil 
database 100 m 

Top soil (0_30 
cm) 

% 
tC/ 
ha 

LOCAL PRODUCTS (Murcia) 

OCMRM Soil Organic Carbon Map in Region of Murcia University of 
Murcia 

2014 LUCDEME 25 m top soil: 
0–30 cm 

g/kg  
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adapted from a regional study (Barahona and Santos, 1981). We used 
the R package GSTAT for the stock estimates and ‘mpspline’ function, 
where the propagated error was estimated by the Taylor Series Method 
(Hengl and Mendes de Jesus, 2016; Heuvelink, 1998; Malone et al., 
2009). 

To evaluate the SOC spatial distribution of the local predicted 
products, we log-transformed the SOC original values of the local soil 
database to generate a normal distribution (Yigini et al., 2018). We 
tested the correlation between log SOC values with the prediction fac
tors and compared them to SOC original ones. We also provided statis
tical data from the semivariograms of SOCc and SOCs for 30 cm depth, 
log-transformed and original ones. 

2.3.2. Local spatial covariates 
Our DSM approach was based on the SCORPAN conceptual model 

using the soil forming environmental factors as soil spatial prediction 
function (McBratney et al., 2003). We generated a covariate stack based 
on 34 environmental factors to predict SOC (Table 2). 

We used dynamic and static variables as predictors for SOC. The 
static variables were 16 topographic parameters derived from a local 
digital elevation model (DEM) using the Terrain Analyst functions in the 
SAGA GIS software (Conrad et al., 2015). The DEM is available from the 
Geographic Information National Centre (Spain), resulting from inter
polating LiDAR national images with a 25 m spatial resolution. We re- 
sampled the DEM into 100, 250, and 1000 m pixel sizes and calcu
lated the basic terrain parameters to perform the local model at different 
spatial resolutions. 

The dynamic variables included climatic variables (precipitation and 
temperature) (Ninyerola et al., 2005); land cover (IGN, 2012) reclassi
fied into 13 classes; forest structural variables, aboveground biomass of 

forest trees cover from LiDAR data (Durante et al., 2019); and vegetation 
indexes (VIs). The calculated VIs were The Normalized Difference 
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which 
are associated with ecosystem functional attributes related to seasonal 
dynamics of net primary productivity. These indices were derived from 
mean annual time series images (2001–2016) of MODIS-Terra images 
satellite using Google Earth Engine as described in (Arenas-Castro et al., 
2019). 

These covariates were layer-stacked to build three different harmo
nized covariate stacks (at 100, 250, and 1000 m spatial resolutions) with 
the same projection, extent, and pixel size. The covariates were re-scale, 
re-projected, or, in the case of categorical covariates, rasterized when 
appropriate. All the statistical and geo-information analyses in this 
section were performed using R Statistical Software (v4.1.0, R Core 
Team, 2021), the raster (v3.4–13; Hijmans, 2021), the rgeos (v0.5–3, 
Bivand and Rundel, 2020), the rgdal (v1.5–22, Bivand, 2021) and the 
GISTools (v 0.7–4) (Brunsdon and Chen, 2014) R packages. 

2.3.3. Model fitting, spatial prediction, and uncertainty assessment 
To analyze the influence of different methodological criteria for 

estimating SOC spatial variability, we tested different empirical models 
at three different spatial (i.e., pixel) resolutions: 100, 250, and 1000 m. 

Before model building, a regression matrix included the best corre
lated environmental factors with SOC local data as covariates. To select 
them, we considered a balance among higher Pearson coefficient of 
multiple linear regression, lower error (RMSE), and lower variance 
inflation factor (VIF) to identify the statistical redundancy (Heiberger 
et al., 2005). We used the Akaike information criterion (AIC) to deter
mine the best compromise between model accuracy and model parsi
mony (Rossel and Behrens, 2010). 

We tested different models to predict SOCc and SOCs. We fitted 
linear models (LM,(Chambers et al., 1990) using SOC as the response 
variable and the regression matrix of covariates as predictors. We used 
the ‘stats’ (R Core Team, 2021) R package to perform LM. The support 
vector machine (SVM) (Weston and Watkins, 1999) was also performed. 
This algorithm creates a line or a hyperplane, which separates the data 
into classes. Before performing this model, the qualitative variables 
were transformed into factors. We used the SVM with the linear kernel 
method (svmLinear) Kernel since a non-linear decision surface can be 
converted into a linear equation in a higher dimensional space. This 
method was implemented in the train function of the ‘caret’ (v6.0–88; 
(Kuhn, 2019) R package in R software. The tested random forest (Brei
man, 2001) is an ensemble learning method (bagging) of decision trees. 
Decision trees learn how to best split the dataset into smaller subsets 
based on different conditions (or nodes) to predict the target value. The 
RF algorithm operates by constructing many decision trees at training 
time and outputting the mean of prediction of the individual trees. The 
number of variables available for splitting at each tree node (mtry) was 
set 1/3 of the total variables used in the model, and the total number of 
trees to grow (ntree) was 500. We implemented this method in ‘ran
domForest’ (Liaw and Wiener, 2002) package in R software. Finally, the 
quantile regression forest (qrf) model was performed; since it estimates 
an approximation of the full conditional distribution of the response 
variable, the inferred conditional quantiles to build prediction intervals 
were estimated as surrogates of the value of uncertainty associated with 
the response variable (Meinshausen, 2006). We used the ‘qrf’ algorithm 
implemented in R software for statistical computing in two different 
packages: ‘quantregForest’ (QRF) (Meinshausen, 2006) and’ ‘GSIF’ 
(QRF_G) (Hengl and MacMillan, 2019). QRF validation was calculated 
from out-of-bag error, and QRF_G model validation was calculated from 
n-fold cross-validation. In addition, the latter combines predictions by 
qrf regression and interpolation of residuals (kriging) via the Regression- 
Kriging (RK) techniques. The information criteria to assess the fit of the 
different models were RMSE and R2. 

The observed values of the LUCDEME topsoil database were graph
ically compared with the estimate of the qrf generated local models and 

Table 2 
Description of prediction factors used in statistical modeling of soil organic 
carbon (SOC).  

Variables* Source Spatial 
resolution 

Description 

DEM 
IGN 
(Spain) 25 m 

Terrain altitude variability, 
basis of topographic variables. 

PP 
ACDPI 
University of 
Barcelona 

200 m Mean annual precipitation 
(mm), period 1951–1999. 

TP 
ACDPI 
University of 
Barcelona 

200 m 
Mean, minimum and 
maximum annual temperature 
(◦C), period 1951–1999. 

NDVI and 
CV_NDVI 

MODIS-Terra 
(MOD13Q1) 230 m 

Mean annual and coefficient of 
variation of Normalized 
Difference Vegetation Index 
(NDVI), period 2001–2016. 

EVI and 
CV_EVI 

MODIS-Terra 
(MOD13Q1) 

230 m 

Mean annual and coefficient of 
variation of Enhanced 
Vegetation Index (EVI), period 
2001–2016. 

Lithology 
IGME 
(Spain) 1:200000 

Lithological units and their 
associations. 

Soil types 
SEIS.net Project 
(MIMAM- CSIC) 1:100000 

Digitized soil map from the 
National Atlas of Spain (1: 
2000,000), IGN 1992). 

Land cover 
IGN-Corine Land 
Cover 
(Spain) 

1:100000 Inventory of land covers. 

MFE 
MAPAMA 
(Spain) 1:25000 

Forest structural types and 
cover canopy area. 

LiDAR 
(Tree 
biomass) 

IGN 
(Spain) 

5 m 
(0.5 pt./ 
m2) 

High-precision of vegetation 
cover altitude from Light 
detection and ranging (LiDAR) 
data.  

* DEM: Digital elevation model. PP: Precipitation. TP: Temperature. NDVI: 
Normalized difference vegetation index. CV_NDVI: Coefficient of variation of 
NDVI. EVI: Enhanced vegetation index. CV_EVI: Coefficient of variation of EVI. 
MFE: Map of forests in Spain. LiDAR: Light detection and ranging. 
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available SOC products of the study area using Taylor diagrams (Carslaw 
and Ropkins, 2012; Taylor, 2001). In these diagrams, the similarity 
between two patterns is quantified in terms of their correlation, their 
centered root-mean-square difference, and the amplitude of their vari
ations (represented by their standard deviations). 

2.3.4. Validation and local map selection 
An independent, external database was used for model validation. 

The validation data were based on the 1100 topsoil legacy local dataset 
described in 2.3.1 section (Fig. 1). Due to the local validation database 
presented large gaps in bulk density and coarse fragments data, so only 
the SOCc maps were validated. The agreement between predicted and 
observed data was measured by the accuracy percentage within the 
interval of SOC prediction (i.e., the interval corresponding to predicted 
values and their associated uncertainty). The balance between the pre
dictive model performance and the validation determined the model 
selection for the final maps of the SOCc and SOCs. 

We calculated the relative improvement (RI, Eq. (2) of prediction 
accuracy of generated SOCc and SOCs maps relying on OCMRM and SG 
stock maps (i.e., the maps with the most accurate balance of model 
validation criteria in the external validation). 

RI = RMSEAP − RMSEQRF/RMSEAP (2)  

where RMSEAP and RMSEQRF are the root mean square errors of a given 
available product and the maps generated in this study (SOCc and 
SOCs), respectively. 

Once the model was selected, a scatter plot of the predicted SOC 
values versus their associated relative uncertainty was used to visualize 
the spatial distribution of SOC uncertainty related to their values. 

3. Results 

3.1. Available SOC products, comparison, and validation 

We compared the available SOC products at two different spatial 
domains (national and local) to evaluate their influence on predictions 
in a smaller area. Our results showed substantial differences on the 
predictions (Table 3). 

The SOCs estimates derived from available SOC products applied at 
the national spatial domain showed a large diversity among stock values 
(coefficient of variation CV = 0.35), with a range from 1892 Tg C (by 
LUCAS map) to 5068 Tg C (by SG map), representing a difference of 

63%. At the local spatial domain, the results showed slightly smaller 
differences than at the national spatial domain (CV =0.28), ranging 
from 39,984 Gg C to 73,364 Gg C (46% difference), according to LUCAS 
and SG maps, respectively. We found the opposite pattern in SOCc, 
where the values remained less variable at the national than at the local 
domain (CV = 0.07 and CV = 0.22, respectively). The OCTOP map 
showed the lowest concentration value (22.71 g/kg at the national 
domain and 11.6 g/kg at the local domain) versus the highest values in 
the SG map (26.62 g/kg) at the national domain (14%), and the SCSS 
map (19.51 g/kg) local domain (40%). Therefore, despite the high data 
variability at the local spatial domain, the CV values are smaller in SOCc 
than in SOCs data. 

The qualitative comparison of the maps at the local level domain 
derived from the available SOC products depicted different spatial pat
terns (Fig. 3, Fig. 4). The SOCc maps showed better agreement in the 
distribution of carbon values than SOCc maps, especially in the higher 
carbon values across the northeast of the area. The SCSS product showed 
the least detailed spatial distribution of SOC. 

The independent validation of the available SOC products with the 
local soil dataset revealed a lower data-model agreement for SOCs than 
for SOCc (Table 4). The best data-model agreement in SOCs corre
sponded to the SG map with R2 = 0.06 and RMSE = 25.73 GgC, and the 
best data-model agreement in SOCc values compared to the local 
OCMRM map with R2 = 0.53 and RMSE = 14.74 GgC. For the Region of 
Murcia area, a pairwise comparison with a Tukey’s test, using a stu
dentized range distribution at a 95% confidence interval, indicated that 
the differences between the means of stock available products and the 
profile samples were statistically significant. Nevertheless, we found no 
statistically significant differences in the carbon concentration values in 
the SG and OCMRM maps (Fig. S 1). 

3.2. Generated local SOC map: model fitting, spatial prediction, and 
uncertainty assessment 

3.2.1. Local SOC values and spatial covariates 
The statistical description of the SOC average profile (Fig. S 2) from 

the local database (Alias and Ortiz, 1986) showed that most of the SOCc 
is in upper horizons (0–30 cm) and decreases with soil depth. The total 
mean SOCc was 8.22 g/kg (10.49 SD) and 12.22 g/kg (12.52 SD) for the 
0–30 cm depth. The mean SOCs was 26.71 kg/m2 (16.96 SD) for the 
upper horizons (0–30 cm). Regarding the probability distribution, both 
SOCc and SOCs revealed a log-normal distribution with a right-skew. 

Fig. 1. Spatial distribution of samples derived from the LUCDEME Project in the Region of Murcia (Spain). Dots represent 255 soil profiles and “+” represent 1100 
topsoil samples (0–20 or 0–30 cm depth). 
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However, their spatial autocorrelation behavior differed from SOCc and 
SOCs at 0–30 cm depth with a nugget-to-sill ratio (NSR) <25% for SOCc 
(Fig. S 3), which indicates a strong spatial structure. Conversely, SOCs 
presented no significant spatial autocorrelation structure. 

The selected environmental drivers to describe the spatial variability 
of SOC at 30 cm depth and the three spatial resolutions (100, 250, and 
1000 m) were mainly related to topographic and vegetation variables 
(Table S 1). Specifically, the most consistent variables for predicting 
SOCs and SOCc were slope, plane curvature, and vegetation index (EVI) 
at 100 m pixel size. For the middle spatial resolution (250 m), the ver
tical distance to the channel network (related to vertical valley depth) 
and vegetation index (NDVI) were the most consistent. The coarsest 
spatial resolution (1000 m) showed that relative slope position, vege
tation indexes (NDVI and EVI), and canopy cover (shrubland and total 
vegetation) were the most consistent variables. Moreover, precipitation, 
vegetation indexes, tree biomass, and different topographic variables 
are the most correlated covariates common to the three spatial resolu
tions in SOCs. Vertical distance to channel network, topographic vari
ables, and vegetation indexes were for SOCc. 

3.2.2. Evaluation of SOC model fitting 
The comparison among the generated local models of SOC spatial 

prediction based on the R2 and RMSE as model information criteria 
revealed large differences in accuracy (Fig. 5; Table S1). The QRF_G 
model showed the most accurate information criteria values for both 
SOCc and SOCs models. In SOCc, the R2 ranged from 0.90 to 0.93 and 
RMSE 3.38–3.93 g/kg. In SOCs, the values varied from 0.91 to 0.94 and 
4.08–5.16 GgC for R2 and RMSE, respectively. The rest of the models 
showed a prediction accuracy much lower in stock than concentration 
values at the three spatial resolutions (100 m, 250 m, and 1000 m). Both 

information criteria (R2 and RMSE) varied from 0.26 to 0.41 and 
9.65–11.76 g/kg for SOCc and 0.03–0.17 and 15.45–17.66 GgC for 
SOCs. The LM and QRF showed the best model performances, with the 
lower accuracy values at 1000 m spatial resolution. 

The SOCc qrf approaches (QRF_G and QRF) had the best balance 
between R2 and RMSE values and had the advantage of reporting model 
uncertainty. 

The comparison of SOCc estimates (from both generated models and 
available products) with the local topsoil samples (LUCDEME database) 
representing the “observed” values showed that the 25 m spatial reso
lution map (OCMRM product) had the best model-data agreement and 
the lowest RMSE, but a greater standard deviation (Fig. 6). Next in order 
were the QRF models, specifically those at 100 m spatial resolution. The 
QRF_G models showed lower accuracy of the amplitude of the variations 
(i.e., the standard deviation), lower correlation, and higher RMSE than 
QRF models (Fig. 5). Regarding model performance, SCSSc had the 
lowest correlation and the highest RMSE models. 

Estimates of the covariate importance in the QRF models revealed 
the slope as the highest value, followed by maximum temperature and 
plane curvature for the 100 m spatial resolution model. The most 
important covariates at 250 m spatial resolution were also linked to 
topography (vertical distance to channel network, plane curvature, and 
Ls-factor, listed in decreasing order), followed by climatic variables 
(maximum temperature) (Fig. S 4). 

3.2.3. Local SOC spatial prediction and uncertainty assessment 
The summary of data prediction and uncertainty associated with 

SOCc and SOCs showed small differences across spatial resolutions be
tween the quantregForest (QRF) and GSIF (QRF_G) algorithms. The QRF 
predictions and uncertainty generally had lower values than those from 

Fig. 2. Workflow describing the steps to produce the local map of soil organic carbon concentration (SOCc) and soil organic carbon stock (SOCs). 
Note: (*) Global soil organic carbon (GSOC), SoilGrids250m (SG), Organic Carbon Content in Topsoils (OTCOP), Topsoil Soil Organic Carbon Content (ocCont), Soil 
Organic Carbon Stock in Spain (SCSS), Soil Organic Carbon Map in Region of Murcia (OCMRM). (**) Linear model (LM); support vector machine (SVM). quantile 
regression forest, random forest (RF). 
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QRF_G for SOCs along the three spatial resolutions. However, the pre
dicted values for SOCc were slightly higher in QRF than QRF_G across 
spatial resolutions (Table 5). All available SOC products derived from 
global databases generally showed higher SOC values than those pre
dicted by the local models. Specifically, the SCSS national map showed 
about 1.5 times of SOCc (19.50 vs. 12.18 and 11.20 g/kg C in QRF and 
QRF_G, respectively) and the SG global map about 2.6 times in SOCs: 
73,364 vs. 27,646 and 28,435 Gg C in QRF and QRF_G, respectively. 

3.2.4. Validation and final model selection 
Overall, the QRF had a better data-model agreement than QRF_G 

using the external-independent topsoil data validation (Table S2). The 
largest prediction errors of both RMSE and mean absolute error (MAE) 
were at coarsest spatial resolution (12,19 g/kg and 7.85 g/kg for QRF; 
and 12,21 g/kg and 8.01 g/kg for QRF_G at 1000 m spatial resolution, 
for RMSE and MAE respectively). The accuracy percentage (i.e., the 
interval corresponding to predicted values and their associated uncer
tainty) was substantially higher in QRF than in QRF_G, especially at 100 
m spatial resolution (79% in QRF versus 49% in QRF_G, Table 6). 

The QRF model at 100 m spatial resolution achieved a better balance 
considering model performance, agreement with the reference soil in
formation (i.e., topsoil local database), and independent external vali
dation. The analysis of the residuals of the QRF model at 100 m spatial 
resolution confirmed the absence of spatial autocorrelation structure in 
both SOCc and SOCs. In general, the values of the QRF maps ranged from 

5.1 to 21.8 g/kg and 4.1 to 31.1 tC /ha for SOCc and SOCs, respectively 
(Fig. 7). Both maps were consistent in the areas with low SOC located at 
low elevation (0 to 300 m), gentle slopes (<2%), and cultivated land. 
This area corresponds to the driest part of the Region with less mean 
annual rainfall (< 200 mm) and high mean annual temperature 
(>15 ◦C). The highest SOC values were found in coniferous forests in 
steeper and humid areas. Overall, the available SOC products derived 
from national-to-global databases showed higher ranges with a consid
erable overestimation of values, especially for SOCs. 

The relative uncertainty analysis of the QRF model revealed an 
inversely proportional relationship with SOC-predicted data, empha
sizing the extreme values. This pattern was more pronounced for SOCc, 
where the lower values presented very high uncertainty (0). The relative 
improvement in the prediction accuracy of the SOCc and SOCs maps 
produced in this study from the QRF model at 100 m spatial resolution 
compared to the available SOC products of the OCMRM and SG maps 
were 40.8% and 63.8%, respectively. 

The final selected QRF model at 100 m spatial resolution for SOCs 
and SOCc and their associated uncertainties maps will be available on 
the public Environmental Data Initiative Repository at https://portal. 
edirepository.org/nis/mapbrowse?packageid=edi.1238.2 

Fig. 3. Predictions of soil organic carbon concentration (SOCc) for the region of interest including SoilGrids250m (SG), Organic Carbon Content in Topsoils 
(OTCOP), Soil Organic Carbon Stock in Spain (SCSS), and Soil Organic Carbon Map in Region of Murcia (OCMRM). Data display was stretched by the cumulative 
pixel count cut method (default range 2%–98%). 
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Fig. 4. Predictions of soil organic carbon stocks (SOCs) for the region of interest including SoilGrids250m (SG), Global soil organic carbon (GSOC), Soil Organic 
Carbon Stock in Spain (SCSS). Data display was stretched by the cumulative pixel count cut method (default range 2%–98%). 

Fig. 5. Bar graph of R-squared and residual error (i.e., error bars) of the statistical local modeling of SOCs and SOCc (g/kg) at 30 cm depth and different spatial 
resolutions (100 m, 250 m and 1000 m). 
Note. Predictive models are: linear model (LM); quantile regression forest (QRF = QuantregForest R package; QRF_G = Gstat R package); random forest (RF = Caret R 
package); support vector machine (SVM = Caret R package). 
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4. Discussion 

4.1. Comparison of available SOC products 

Different available soil dataset collections, spatial resolutions, and 
spatial predictive modeling for SOC estimates led to varying in
terpretations of SOCc and SOCs across the study area. These differences 
highlight the challenges associated with predicting SOC across hetero
geneous semiarid regions. Discrepancies in SOCs were larger than those 
in SOCc among the products analyzed. This is probably due to the 
generalized absence of bulk density and coarse soil material (> 2 mm) in 
most soil databases, which are the main parameters required for esti
mating SOCs. These important variables are often derived from pedo
transfer or extrapolation functions (Jalabert et al., 2010), resulting in 
additional bias and systematic errors in the calculation of SOCs (Durante 
et al., 2020; Poeplau et al., 2017). Therefore, we echo the call for 
including bulk density and coarse fragment information in future soil 
surveys or recovering it from legacy datasets (Hendriks et al., 2019). 

There was no clear consistency among the tested products in terms of 
spatial domain and spatial resolution. Our results do not support the 
expectation that local products and a higher spatial resolution will better 
agree with locally derived SOC information. We highlight that the SOCc 
maps from SG (global domain, 250 m spatial resolution) and OCMRM 
(local domain, 25 m spatial resolution) had the most similar estimates 
(g/kg) and balance of model validation criteria (R2 and RMSE) with the 
independent data for external validation. However, the estimates for the 
SG map were extrapolated from global information, as none of the 43 
soil samples used for peninsular Spain in SG were from our study area. 
Both maps were modeled using a similar machine learning technique (i. 
e., random forest); however, while the selected covariates in the 
OCMRM map referred to climate, land cover, soil types, and terrain 
morphology, the SG prediction model included environmental layers 
from remote sensing data. Therefore, our results suggest that applying 
machine learning approaches combined with single and/or multi
temporal remotely sensed satellite indices can result in comparable 

predictions of the spatial distribution of SOC. Therefore, we emphasize 
that there must be a balance between soil training data, statistical 
models, and covariates (Fathololoumi et al., 2020; Lemercier et al., 
2022; Liang et al., 2020; Schillaci et al., 2017), and adding new infor
mation in regions with sparse training data could result in higher model 
uncertainty until the spatial bias of information is reduced (Stell et al., 
2021; Smith et al., 2022). 

We postulate that the SG map could be considered the best available 
SOC product for the study area, with a moderate spatial pixel resolution 
(i.e., 250 m). However, we clarified that this product has some limita
tions, as several studies that compared estimated SOCs showed wide 
discrepancies and overestimation (Han et al., 2022), especially in areas 
with low SOCs (Silatsa et al., 2020; Vitharana et al., 2019). This over
estimation may be due to the absence of profile observations (i.e., 
training data), resulting in biased training data and spatial predictions 
(Lombardo et al., 2018; Stell et al., 2021; Vitharana et al., 2019). In our 
results, the SG map estimated the highest SOCc compared with the 
available SOC products. These observations confirm the need to reassess 
local-domain estimates of soil SOCs to gain insights into the effects of 
different methodological criteria in estimating SOC spatial variability. 

4.2. Generated local prediction of SOC 

We tested the available SOC products using locally derived infor
mation and empirical models at three spatial resolutions to provide a 
critical assessment. The QRF approach had the best data-model agree
ment at a spatial resolution of 100 m, with the best accuracy and 
external validation. The relative improvement in the prediction accu
racy of the local SOCc and SOCs maps produced in this study was 
approximately 40% and 65%, respectively, in comparison to the avail
able SOC products with the most accurate balance of model validation 
criteria in the independent, external validation (i.e., OCMRM for SOCc 
and SG for SOCs). 

The QRF approach approximates the full conditional distribution of 
the SOC values. Therefore, it has the advantage of reporting the model 
uncertainty. This allows the building of a spatially explicit uncertainty 
map associated with the SOC values. The QRF performs the uncertainty 
and interpretation of its patterns better than other modeling methods, 
especially in Mediterranean areas with low SOC values and sparse 
spatial sampling, such as in the present study (Lombardo et al., 2018). 
However, the interpretability of the relationships between covariates 
and target variables must be improved to provide a better understanding 
of the model. 

Consistent with other studies, local sampling distribution was more 
relevant than density in capturing SOC variation (Zeraatpisheh et al., 
2019). The two maps derived using the local database showed low dif
ferences in prediction accuracy despite their different sampling densities 
(i.e., 1922 systematic sampling vs. 255 representative profiles of soil 
taxonomic for OCMRM and QRF_100 maps, respectively). The accuracy 
of the generated local models was higher for SOCc than for SOCs, and 
this difference can also be attributed to the error propagation of 
extrapolated parameters (i.e., bulk density and coarse fragments) that 
may have a stronger influence on predicting SOCs (Poeplau et al., 2017). 

Our results showed that the regression-kriging technique (i.e., pre
dictions plus kriging of the residuals) can lead to overfitting when var
iogram modeling is undersampled. It has been reported that a well- 
represented multivariate feature space should preferably have 300 
sample points and at least ten observations per covariate (Hengl et al., 
2017; Webster and Oliver, 2001). This could explain the discrepancies in 
the QRF_G models, which showed the best model performance but the 
lowest accuracy in external validation at the three spatial resolutions 
tested (100, 250, and 1000 m). Our results highlight the importance of 
model external validation to better evaluate model performance and 
avoid spurious data-model agreements influenced by over
parameterization (Zeraatpisheh et al., 2019). 

The errors of the local models produced in this study were relatively 

Fig. 6. Taylor diagram illustrating performance of generated local models and 
available soil organic carbon concentration (SOCc) products compared with the 
local topsoil samples (LUCDEME database) representing the “observed” values. 
Note: SoilGrids250m (SG), Organic Carbon Content in Topsoils (OTCOP), 
Topsoil Soil Organic Carbon Content (ocCont), Soil Organic Carbon Stock in 
Spain (SCSS), Soil Organic Carbon Map in Region of Murcia (OCMRM), quantile 
regression forest (QRF = QuantregForest R package; QRF_G = Gstat R package. 
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similar for all tested spatial resolutions. This is probably related to the 
complex challenge of estimating SOC across highly heterogeneous 
semiarid regions with complex terrain (Hoffmann et al., 2014; Hounk
patin et al., 2018; Jobbágy et al., 2000; Kulmatiski et al., 2004; Kunkel 
et al., 2011). Calvo de Anta et al. (2020) also revealed this heterogeneity 

in a national-level study where the semiarid Region of Murcia showed 
the highest coefficient of variation in both SOCc (76%) and SOCs (61%) 
at 0–30 cm depth. 

Our results showed that the SOCc and SOCs maps at 100 m spatial 
resolution of the QRF model had the best balance among accuracy, 

Soil Organic Carbon concentration (SOCc)

Soil Organic Carbon stock (SOCs)

Fig. 7. Generated prediction maps of soil organic carbon concentration (SOCc) and SOC stocks (SOCs), and their uncertainties at 100 m. 
Note: QRF = quantile regression forest models estimate by QuantregForest R package. Data display was stretched by the cumulative pixel count cut method (default 
range 2%–98%). 

Table 3 
Comparison of available products of soil organic carbon concentration (SOCc) and soil organic carbon stock (SOCs) at national (Spain) and local (Región de Murcia) 
domains.  

AVAILABLE PRODUCTS* GSOC SG OTCOP ocCont (LUCAS) SCSS OCMRM 

Spatial domain (Global) (Global) (Europe) (Europe) (Spain) (Murcia) 

National (Spain) 

SOCs 
(GgC) 

Sum 3.19⋅106 5.07⋅106 3.50⋅106 1.89⋅106 2.82⋅106 – 
Mean ± SD 0.06 ± 0.02 0.10 ± 0.03 0.07 0.04 ± 0.03 0.06 ± 0.04 – 

SOCc 
(g/kg) 

Mean – 26.62 22.71 24.38 25.89 – 
SD – 17.94 23.69 16.62 20.47 – 

Local (Murcia) 

SOCs 
(GgC) 

Sum 52,689.62 73,364.37 – 39,983.88 44,421.16 – 
Mean ± SD 0.05 ± 0.01 0.07 ± 0.01 – 0.04 ± 0.02 0.04 ± 0.01 – 

SOCc 
(g/kg) 

Mean – 13.78 11.6 18.88 19.51 14.07 
SD – 5.87 7.15 7.85 6.06 14.88  

* The available SOC products in the area refer to: Global soil organic carbon (GSOC), SoilGrids250m (SG), Organic Carbon Content in Topsoils (OTCOP), Topsoil Soil 
Organic Carbon Content (ocCont), Soil Organic Carbon Stock in Spain (SCSS), Soil Organic Carbon Map in Region of Murcia (OCMRM). 
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external validation, and interpretability of results. The largest spatial 
disagreement between SOCc and SOCs maps at 100 m spatial resolution 
was in areas with low soil sampling density, where SOCc maps depicted 
a spatial variability coherent with land use and landscape patterns 
(Albaladejo et al., 2009). These areas represent the highest altitude for 
forested regions (>1400 m) in the northwestern and central zones, and 
have an upper horizon rich in organic matter with natural grassland and 
tree forest over Lithosols that, although shallow (≤ 10 cm), are covered 
by abundant vegetation. The eastern area of the Region of Murcia also 

showed disagreements, where the main vegetation cover type was 
sclerophyllous vegetation and rainfed crops over regosols, with scarce 
incorporation of organic matter. The highest uncertainty in SOCc and 
SOCs was associated with low values corresponding to areas with an 
advanced process of soil degradation. Therefore, our results highlight 
that predicting SOC across degraded soils is challenging because pro
cesses associated with environmental degradation may alter the ex
pected relationships between the training data and environmental 
covariates, resulting in higher bias and prediction errors (Brungard 
et al., 2015; Stell et al., 2021). To better capture the representativeness 
of SOC spatial variability, stratified sampling of homogeneous sub-areas 
(Zeraatpisheh et al., 2019) or optimization of future soil surveys (Smith 
et al., 2022) could reduce model uncertainty. 

5. Conclusions 

In this study, we tested six available SOC products derived from 
local, regional, and global approaches, and provided a locally derived 
map for a Mediterranean area in the southeastern Iberian Peninsula. The 
available SOC products with different spatial resolutions showed large 
differences among their values regardless of the spatial domain (CV =
0.35 and CV = 0.28 at the national and local domains, respectively). We 
observed a lower accuracy (R2 = 0.06, RMSE = 25.73 GgC for external 
validation) and an overestimation (ranging from 44% to 164% over the 
estimates of the generated local maps) in SOCs predictions compared 
with SOCc predictions. These differences are likely due to missing in
formation on key soil parameters in the databases (e.g., bulk density and 
coarse fragments). We observed that SOCc predictions are less sensitive 
to these missing key soil parameters; therefore, these model predictions 
may be more relevant to inform the environmental policies of soil car
bon management. 

Our high-resolution SOC map framework for the generated local 
prediction was based on local legacy soil data, environmental covariates 
(including single and/or multitemporal remote sensing indices), DMS 
modeling, and spatially explicit uncertainty quantification. This latter 
aspect and independent external validation are essential to interpret the 
soil carbon property distribution, especially in SOC complex quantifi
cation areas. Our results show the potential to improve the representa
tion of national domain SOC estimates, especially in Mediterranean 
areas. This is important to respond to the challenges of land manage
ment and climate change adaptation/mitigation policies and strategies. 
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Table 4 
External validation of the available SOC products (SOCs and SOCc) using syn
thetic profile values (255 soil samples) calculated from the LUCDEME local 
database (MurDB). The available SOC products in the area refer to Global soil 
organic carbon (GSOC), SoilGrids250m (SG), Organic Carbon Content in Top
soils (OTCOP), Organic Carbon Stock in Spain (SCSS), and Soil Organic Carbon 
Map in Region of Murcia (OCMRM).  

AVAILABLE PRODUCTS SOCs 
(tC/ha) 

SOCc 
(g/kg) 

R2 RMSE 
(GgC) 

R2 RMSE 
(GgC) 

MurDB vs. SG (Global) 0.055 25.73 0.211 11.316 
MurDB vs. GSOC (Global) 0.004⋅10− 1 20.88 – – 
MurDB vs. OCTOP 

(Europe) 
– – 0.067 12.74 

MurDB vs. SCSS (Spain) 0.033 21.86 0.017 14.90 
MurDB vs. OCMRM (Mur) – – 0.525 14.740  

Table 5 
Predicted values and associated uncertainty of Soil Organic Carbon (SOC) stock 
and the SOC concentration estimated by quantile regression forest (QRF =

QuantregForest R package; QRF_G = Gstat R package) at different spatial reso
lutions for the Region of Murcia, Spain.  

QRF (QuantregForest)   

Spatial Resolution 

Variable  100 m 250 m 1000 m 

SOC stock 
(GgC) 

Predicted 
values Sum 27,572 27,646 28,071 

Uncertainty Mean 0.02 0.02 0.02 

SOC concentration (g/ 
kg) 

Predicted 
values 

Mean 12.18 12.89 10.28 

Uncertainty Mean 10.54 9.99 8.87   

QRF_G (GSIF)   

Spatial Resolution 

Variable  100 m 250 m 1000 m 

SOC stock 
(GgC) 

Predicted 
values Sum 28,911 28,435 28,937 

Uncertainty Mean 0.03 0.03 0.03 

SOC concentration (g/ 
kg) 

Predicted 
values 

Mean 11.20 10.68 10.81 

Uncertainty Mean 9.46 8.81 8.79  

Table 6 
Accuracy percentage (the interval corresponding to predicted values and their 
associated uncertainty, expressed as a decimal) of qrf models estimates (QRF =
QuantregForest R package; QRF_G = GSIF R package). Local values of SOCc of 
LUCDEME topsoil database were compared with the interval corresponding to 
predicted values and their associated uncertainty.  

MODEL Spatial Resolution  

100 m 250 m 1000 m 

QRF 0.787 0.722 0.692 
QRF_G 0.490 0.438 0.445  
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