#A44 INTEGERS 24 (2024)

ENUMERATING k-NAPLES PARKING FUNCTIONS THROUGH
CATALAN OBJECTS

Joao Pedro Carvalho
Department of Mathematics, University of Michigan, Ann Arbor, Michigan
jpcarv@umich.edu

Pamela E. Harris
Dept. of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin
peharris@uwm.edu

Gordon Rojas Kirby
Department of Mathematics, San Diego State University, San Diego, California
gkirby@sdsu.edu

Nico Tripeny
Haverford College, Haverford, Pennsylvania
ntripeny@haverford.edu

Andrés R. Vindas-Meléndez
Department of Mathematics, University of California, Berkeley, California
and
Department of Mathematics, Harvey Mudd College, Claremont, California
andres.vindas@berkeley.edu; arvm@hmc.edu

Received: 9/10/21, Revised: 11/28/23, Accepted: 4/23/24, Published: 5/20/24

Abstract

This paper studies a generalization of parking functions named k-Naples parking
functions, where backward movement is allowed. One consequence of backward
movement is that the number of ascending k-Naples is not the same as the number of
descending k-Naples. This paper focuses on generalizing the bijections of ascending
parking functions with combinatorial objects enumerated by the Catalan numbers
in the setting of both ascending and descending k-Naples parking functions. These
combinatorial objects include Dyck paths, binary trees, triangulations of polygons,
and non-crossing partitions. Using these bijections, we enumerate both ascending
and descending k-Naples parking functions.

1. Introduction

Parking functions are special types of integer sequences that were proposed inde-
pendently by Ronald Pyke [7] as well as by Alan Konheim and Benjamin Weiss

DOI: 10.5281/zenodo.11221617

INTEGERS: 24 (2024) 2

[6] in order to study hashing problems in computer science. If we have a sequence
of n integers all belonging to [n] := {1,2,...,n}, we call it a parking preference
of length n. A parking function of length n is a special type of parking pref-
erence (aq,as,...,a,), that allows n cars c;,cs,...,c, with respective preferences
ai,as, - - ., 0, to park in a one-way street with n consecutively ordered parking spots
according to the following rules:

1. ¢q parks in its preferred spot;

2. every new car parks in its preferred spot if it is not occupied, otherwise it
parks in the next available spot.

For example, the parking preference (2,2,1,4) is a parking function of length 4,
where ¢; parks in the second spot, ¢y in the third, c¢3 in the first, and ¢, in the
fourth.

Special subsets of parking functions are the monotonic ones, that correspond
to ascending (weakly increasing) or descending (weakly decreasing) parking prefer-
ences. The set of ascending parking functions of length n, as well as the set of de-
scending parking functions of length n, are counted by the Catalan numbers. There
are many well-known bijections between either of these subsets of parking functions
and a variety of Catalan objects, including Dyck paths, binary trees, triangulations
of n-gons, and noncrossing partitions [8]. We remark that the equinumerosity of
ascending and descending parking functions follows from the fact that if a given
parking preference is a parking preference, then so are all of its rearrangements.

Many generalizations to parking functions were proposed throughout the years,
including allowing cars with different lengths and starting with some spots already
filled, and a reader interested in exploring different directions may find [2] a useful
resource. In this paper, we focus our attention on the generalization known as
Naples parking functions. First proposed in [1], Naples parking functions differ
from standard parking functions by the rules in which the cars park. In the Naples
parking scheme, cars ¢y, ¢, . .., ¢, park one at a time by first checking their preferred
spot. If the preferred spot was already occupied, then cars check one spot before,
parking there if available, otherwise cars move forward to the next available spot
if that space is occupied. A parking preference is a Naples parking function if all
cars park successfully according to this Naples parking scheme. Similarly, the k-
Naples parking scheme allows cars to first check their preferred spot, then check up
to k spots preceding their parking preference, in decreasing order, before moving
forward to the next available space. A parking preference is a k-Naples parking
function if all cars park successfully according to this k-Naples parking scheme. For
example, the parking preference (6,6,6,5,5,2,1) is a 2-Naples parking function as
the cars cq, ..., ¢y park in positions 6, 5,4, 3, 7,2, 1, respectively, with the second car
moving back once and the third and fourth cars moving back twice since both their

INTEGERS: 24 (2024) 3

preferred spot and the one directly behind it are taken. Moreover, (6,6,6,5,5,2,1)
is a k-Naples parking function for k = 3, where cars cq,...,c; park in positions
6,5,4,3,2,1,7. We see that this is not a 1-Naples parking function as car ¢5 cannot
park in that setting.

In fact, we have the following proposition, proved in Section 2.

Proposition 1. If a is a k-Naples parking function of length n, then it is also a
(k + 1)-Naples parking function of length n.

Remark 1. As a consequence of Proposition 1, the notion of k-Naples for 0 < k <
n — 1 offers an interpolation between ordinary parking functions when &k = 0 and
all n-tuples of integers belonging to [n] when k = n — 1. We remark that we refer
to 1-Naples parking functions simply as Naples parking functions. However, unless
otherwise specified, we adopt the convention that £ = 1 for all k-Naples functions
considered in this paper.

We now summarize our main results in this paper. As we commented previously,
all rearrangements of a parking function are parking functions. In Section 2 we
answer the analogous question for k-Naples parking functions, by establishing that
given a parking preference, all of its rearrangements are k-Naples parking functions
if and only if its ascending rearrangement is a k-Naples parking function. This
is the statement of Theorem 1. We then restrict our study to ascending and de-
scending k-Naples parking functions, and in Section 3 we present bijections between
ascending and descending k-Naples parking functions and families of Dyck paths.
In Section 4 we use the bijections found in the previous sections to give formulas
to enumerate ascending and descending k-Naples parking functions. These results
give connections to Fine numbers (OIES sequence A000957) and convolution of the
Catalan numbers with the Fine numbers (OIES sequence A000958). We also state
other bijections between ascending and descending k-Naples parking functions and
other Catalan objects. This is the content of Section 5. Following these results, we
conclude the article in Section 6 by detailing some future directions of research on
these topics.

2. k-Naples Parking Functions and Their Rearrangements

Before proving Proposition 1 we note that by adapting the technique from the
recursive formula for k-Naples parking functions from [3] we can inductively show
that a k-Naples parking function of length n is also a (k+1)-Naples parking function
of the same length.

First, we prove the following lemma. It states that if a k-Naples parking function
of length n has the last car ¢, park in space m + 1, then the cars that parked after

https://oeis.org/A000957
https://oeis.org/A000958

INTEGERS: 24 (2024) 4

spot m + 1 will all park somewhere in spots m + 1,...,n according to the (k + 1)-
Naples parking scheme. In order to prove this lemma, consider the following setup.
Let the parking lot be represented by a number line of integers so that cars can
reverse past spot 1 or continue forward past spot n. In this way, we say that a car
parks on Z. For example, for parking preference o = (4,2, 2,2), parking according
to the 2-Naples parking scheme, the cars park on Z as illustrated in Figure 1.

Cq C3 C2 C1

-3-2-101 2 3 4 5 6 7

Figure 1: Parking position of cars with parking preference a = (4,2,2,2).

Lemma 1. Suppose that o € [n]" is a parking preference for which, according
to the k-Naples parking scheme, the n cars cq,...,c, park on Z in spots 1,...,n.
Then each c; parks on Z according to the (k + 1)-Naples parking scheme in a spot
0<s<n.

Proof. We proceed by induction on n. If n = 1, then o = (1). For any k = 0,
according to the k-Naples parking scheme, car ¢; parks on Z in spot 1. Under the
(k + 1)-Naples parking scheme, car c¢; parks on Z in spot s = 1, which satisfies
0 <= s = 1. Suppose the result holds true for all parking preferences of length

less than n. Let o = (aq,...,a,) € [n]" be a parking preference for which n
cars cy,...,c, park, respectively, on Z according to the k-Naples parking scheme
and occupy spots si,...,5, € [n], with s, = m+1and 0 < m < n—1. Then

a, <m+ k+ 1. Define S to be the set of cars parking before spot m + 1 and T to
be the set of cars parking after spot m + 1. Then min(k+1,m +1) < a,,, a; <m
for all i such that ¢; € S, and a; =2 m + 2 for all j such that c; € T..

Observe that cars ¢; € S never check a spot after m, and cars c; € T' never check
a spot before m+2 so that we may consider decomposing « into two disjoint ordered
lists of preferences that do not interact and satisfy our induction hypothesis. That
is, if we allow cars cq,...c, with parking preference a to park on Z according to
the (k + 1)-Naples parking scheme in spots s;, respectively. Then {s; | ¢; € S} C
{0,...,m} and {S'J | ¢; €T} C {m+1,...,n}. Hence, there is some parking spot
between 0 and n that is unoccupied on the lot when ¢, goes to park according to
the (k + 1)-Naples parking scheme.

If a, < k+1, then a,, = m+ 1 and either there is a spot in [m] available in which
¢, parks or ¢, parks in spot 0 according to the (k + 1)-Naples parking scheme. If

a, = k + 1 then there is some spot m + 1,...,n available for ¢, to park in. Hence,
¢, parks in some spot between 0 and n according to the (k + 1)-Naples parking
scheme. O

Remark 2. Note that in the last sentence of the above proof, when a,, = k+1 there

INTEGERS: 24 (2024))

may additionally be a spot m —k—1,...,m open that ¢, parks in according to the
(k+1)-Naples parking scheme before proceeding to the available spot between space
m+ 1 and space n. For example, consider the parking preference (1,2,2,5,7,7,7,3)
of length 8 parking according to the 2-Naples parking scheme on Z. The cars park in
spots 1,2,...8, and the last car parks in spot 4. However, in the 3-Naples scheme
on Z, cars cq,...,cg park in spots 1,2,0,5,7,6,4, and 3, respectively. Specifically,
when cg goes to park it has spot 8 and spot 3 available. It checks spot 3 first so it
parks there.

Proof of Proposition 1. We proceed by induction on n. If n = 1, then a = (1),
which is a k-Naples parking function for all £ = 0, in which car ¢; parks on Z in
spot 1. Under the (k + 1)-Naples parking scheme car ¢; parks on Z in spot s = 1.
Hence « is a (k + 1)-Naples parking function. Suppose that every k-Naples parking
function of length 1 < < n is a (k + 1)-Naples parking function of length . Let
a = (a,...,a,) be a k-Naples parking function of length n with cars cq,...,¢c,
parking in spots sq, So, ..., S,, respectively, with s, = m+1and 0 < m <n - 1.
Then a,, < m + k + 1. Define S to be the set of cars parking before spot m + 1 and
T to be the set of cars parking after spot m + 1. Then a; < m for all ¢ such that
¢; €8, and a; =2 m + 2 for all j such that c¢; € T'.

Observe that cars ¢; € S never check a spot after m, and cars c¢; € T never
check a spot before m + 2, so that we may consider decomposing « into disjoint
ordered lists of preferences. The preferences of cars that parked after spot m + 1
according to the k-Naples parking scheme satisfy Lemma 1, so that they only check
and park in spots m + 1 or after according to the (k + 1)-Naples parking scheme.
Hence, we may consider the preferences of cars in S, those that parked before
spot m + 1 according to the k-Naples scheme, to be a k-Naples parking function
of length m < n, satisfying our induction hypothesis so that they park in spots
1,...,m according to the (k + 1)-Naples parking scheme.

Hence, there is an unoccupied spot between m + 1 and n when ¢,, goes to park.
Since a,, < m + k, it is able to successfully park in the unoccupied space according
to the (k + 1)-Naples parking scheme. Therefore, « is a (k + 1)-Naples parking
function. O

Another interesting question regarding k-Naples parking functions is if all the
rearrangements of k-Naples parking functions remain k-Naples parking functions,
since this is true for traditional parking functions. However, this is not the case, as
we illustrate in Example 1. The bijective correspondence between ascending and
descending parking functions does not hold in the k-Naples case for k > 0. This
motivates us to study both ascending and descending k-Naples parking functions
separately to understand their similarities and differences in the hopes of achieving
a better understanding of general k-Naples parking functions.

INTEGERS: 24 (2024) 6

Example 1. We have (6,6,6,5,5,2,1) as a descending parking preference of length
7 and (1,2,5,5,6,6,6) as its corresponding ascending parking preference. From
above, we see that (6,6,6,5,5,2,1) is a descending 2-Naples parking function. We
also can see that (1,2,5,5,6,6,6) is an ascending 3-Naples parking function but not
an ascending 2-Naples parking function.

As a starting point to begin exploring exactly when rearrangements of a k-Naples
parking function are still k-Naples, we define a slightly modified way of writing
parking preferences that can capture the position of cars step by step as they park.
Then, we prove a lemma that expose small modifications in the parking preference
that conserve its status as a parking function.

Definition 1. An i-filled parking preference of length n is an ordered pair of
sequences in [n], of the form ((di,...,d;),(as1,--.,a,)), such that each d; for
1 < j < i represents the spot in which car ¢; has already parked, and each a; for
i < j < n represents the preference of car c¢; that has yet to park. If all cars can
park using the k-Naples rules we call this an i-filled k-Naples parking function.

Lemma 2. If P = (a;,as,...,a,) is a k-Naples parking function with cars parking
in spots (dy,...,d,) and we consider the i-filled parking preference

P2 = ((pla"'api)y(a’i+l7'"aan))

with p; = d; for all but exactly onel < i where p; < d;, then Py is an i-filled k-Naples
parking function.

Proof. We prove this by induction on n—i. Let n—i =1 or ¢ = n—1. Suppose that
P, is an (n—1)-filled parking preference ((p1,...,pn-1), (a,)) so that, according to
this preference, cars cy,...,c,_1 park in spots py,...p,—1. By assumption, p; = d;
for all j < i except for one 1 <1 < n — 1 where p; < d;. Since all cars must park
in distinct spots we must have d,, = p; < d; so that spot d; is unoccupied when ¢,
goes to park and ¢, is able to park in spot d;. Thus, P, is an (n — 1)-filled parking
preference.

Now, suppose the same is true for every i such that k < i < n and suppose that
P, is a k-filled parking preference ((p1,...,p%), (axs1,---ay)) so that, according to
this preference, cars ¢y, ..., ¢, park in spots pq,...p;. By assumption, p; = d; for
all but exactly one [< ¢, where p; < d;. Thus, p; = d; for some j > k. Now consider
where car ¢j,1 parks according to Ps.

If p; = dj41, then d; is unoccupied when ¢, tries to park. By assumption,
di+1 < d;, which forces ¢, to park at spot d; or earlier. If ¢;,; parks in spot dj,
then when cars ¢j40, ..., ¢, go to park according to P, they find spots di,...,dp+1
occupied and park in spots djy9,...d, respectively. Thus, we may assume that
cr+1 parks between spots di,q1 and d;. Hence, the collection of spots X occupied
by cars ¢q, ..., cgsq differs as a set from X' = {dq,...,dys+1} by one element. Say

INTEGERS: 24 (2024) 7

X\ X' =d' and note X' \ X = d; so that d < d;. Then we can arrange these spots
into a (k + 1)-filled parking preference satisfying our inductive hypothesis so that it
is a (k + 1)-filled k-Naples parking function. But that means that cars cyia,...c,
are able to park based on how cars ¢y, ..., c;+1 have filled the lot according to P, so
that P, is a k-filled Naples parking function.

If p; # dj41 then it must be the case that p; = d; for some j > k + 1. Then when
Cr4+1 goes to park it can either park in d;, dj41, or some earlier spot. If it parks in d;
we fall into the same situation as above of having a (k + 1)-filled k-Naples parking
function. Similarly, if ¢,4q parks in dj.q, then we have a (k + 1)-filled k-Naples
parking function satisfying the induction hypothesis. Lastly, if it parks in some
earlier spot, this spot would have also been available to ¢;,1 when it tried to park
according to P; and thus is a contradiction. O

Lemma 2 plays a key role in the following results about rearrangements of k-
Naples parking functions.

Theorem 1. Given a parking preference, all of its rearrangements are k-Naples
parking functions if and only if its ascending rearrangement is a k-Naples parking
Sfunction.

Proof. Note that if all rearrangements of a parking preference are k-Naples then this
includes the fact that the ascending rearrangement is k-Naples. To prove that all
rearrangements of an ascending k-Naples parking function are k-Naples it suffices
to show that if we have a k-Naples parking function P; = (aq,as,...,a,), with
a; < ;41 for some 4, then the preference P, = (by,bs,...,b,) where b; = a; for
every j & {i,i + 1}, b; = a;41, and b; 41 = a;, is also a k-Naples parking function.

Let car c; park in spot d; in accordance with parking preference P;. We see that
both parking preferences P; and P, result in the first ¢ — 1 cars park identically,
then p; = d;. If ¢; in P, parks in d;,, then ¢; in P, must not pass by d;,; before
parking or it would park there. The two cars take up the same spaces in P, and the
rest of the parking proceeds as in P;. So, we may assume ¢; in P, does not park
in d;;1. But then it must be parking in a spot not open to c¢;;; in P;, namely d;.
Then when c¢;,1 goes to park in Ps, it drives past d; which is now full.

If d;y1 < d;, we see that car ¢;,1 in P; backed up all the way to d;,; and since
biv1 < b;, ;41 in Py backs up to d;;q as well. Otherwise, we have d;,; > d; and ¢;;
in P, clearly parks at or before d;;. So, we know that after the ¢ + 1st car in P,
parks, all the spots the first ¢ cars park in for P; are full, and a car is either parked
in d;41 or in a spot that would be open in P; that is before d;,;. Since this is the
situation in the previous lemma, we see that P, is a k-Naples parking function as
desired. O

Example 2. Observe that (6,6,5,5,3,1) is a 2-Naples parking function, but its
rearrangement (3,5,1,6,6,5) is not. Note that in the ascending rearrangement

INTEGERS: 24 (2024) 8

(1,3,5,5,6,6), no car can park in the second spot according to the 2-Naples parking
scheme. So it is not a 2-Naples parking function. However, we know (1, 3,3,5,6,6)
is an ascending 2-Naples parking function, and all of its rearrangements are also
2-Naples parking functions.

Remark 3. The proof of Theorem 1 defines a hierarchy that is followed when
deciding when rearrangements of a parking preference are k-Naples. If two rear-
rangements differ by just one switch, where the switched car that comes after in
the first rearrangement has a higher preference than the one coming before, then it
is intrinsically harder for the first one to be k-Naples than the second one. This is
because according to the proof, the first being k-Naples implies the second also is,
but the converse is not true.

3. Dyck Paths

One family of Catalan objects that is in bijection with descending parking functions
are Dyck paths. In [3], a generalization of this result is presented that gives a
bijection between descending k-Naples parking functions and a generalization of
Dyck paths called k-Dyck paths. In related work by Colmenarejo et al. [4], the
authors counted k-Naples parking functions through permutations, and they also
defined the k-Naples area statistic. In this section, we explore when a k-Dyck path
corresponds to an ascending k-Naples Parking function, giving a way of finding
all k-Naples parking functions with the property that each of its rearrangements
remains a k-Naples parking function. We then embed k-Dyck paths into a subset of
Dyck paths to help us find other bijections with ascending and descending k-Naples
parking functions.

Definition 2. A Dyck path of length n is a lattice path consisting of Up (1,1) and
Down (1, —1) steps from (0,0) to (2n,0) that never reaches below the line y = 0. A
k-Dyck path of length n is also a lattice path consisting of Up and Down steps from
(0,0) to (2n,0) that never reaches below the line y = —k and ends with a Down
step. Any such path can be represented by a sequence of U’s and D’s corresponding
to its steps.

The following result from [3] connects k-Dyck paths to descending k-Naples park-
ing functions.

Proposition 2 (Theorem 1.3, [3]). The set of descending k-Naples parking func-
tions of length n are in bijective correspondence with k-Dyck paths of length n.

Remark 4. From [3], we have the following correspondence between k-Dyck paths
and increasing parking preferences. A k-Dyck path P of length n uniquely cor-
responds to the parking preference o = (aq,...,a,), where a; equals 1 plus the

INTEGERS: 24 (2024) 9

number of Down steps coming before the ith Up step. Note that « is an ascending
parking preference. In [3], the descending rearrangement of « was shown to be
k-Naples, and it is straightforward to reverse this process to go from decreasing
k-Naples parking functions of length n to k-Dyck paths of length n.

Next, we use this correspondence between ascending parking preferences of length
n and k-Dyck paths of length n to classify which k-Dyck paths correspond to as-
cending k-Naples parking functions.

YANERYAN AN
N NN

Figure 2: The k-Dyck path corresponding to (1,3,3,5,6,6).

Example 3. To go from the 2-Dyck path in Figure 2 to an ascending parking
preference, we see that the first Up step has no previous Down steps making the
first preference 1. The second and third Up steps then correspond to a preference
of 3. Continuing in this manner yields the parking preference (1,3,3,5,6,6).

Theorem 2. A k-Dyck path corresponds to an ascending k-Naples parking function
if and only if every Down step that puts the path below the line y = 0 crosses back
above y = 0 within 2k steps.

Proof. First, we show that if a k-Dyck path always crosses back above the line
y = 0 within 2k steps of it crossing below y = 0, then it corresponds to an ascending
parking function. We justify this by induction on k. We know this is true for
ordinary parking functions, i.e., 0-Naples parking functions, and we assume it is
true for all values up to & — 1. Suppose we have a k-Naples parking function
corresponding to a k-Dyck path that goes below the line y = 0 on step 2¢ + 1. We
may assume that the k-Naples parking function leads to the first ¢ spots being filled
by the first ¢ cars.

By hypothesis, the path must go above the horizontal at or before step 2(i+k)+1.
If the k-Dyck path always goes above y = 0 before step 2(i+k) + 1 after going below
y = 0 on step 24 + 1, then it corresponds to an ascending (k — 1)-Naples parking
function. So, we assume the path goes back above the horizontal for the first time
on step 2(i + k) + 1.

Now, we look at the cars c; and their preferred parking parking spots a; for
i+1 < j <i+k+1 These preferences a; correspond to Up steps below the
horizontal except for a;,;4+1, which corresponds to the last Up step to back above
the horizontal y = 0. For ¢ + 1 < j < i+ k + 1, parking preferences a; satisfy
i+1 < a; <i+k+1. Since each car c; is able to move back k spots and j < i+k+1,

INTEGERS: 24 (2024) 10

we see that these cars fill spots at or before spot ¢ + k+ 1. But that implies the k+1
cars fill up the k£ + 1 spots immediately after what was already filled. So, the first
i+ k+ 1 cars fill the first ¢ + k£ + 1 spots. If the path later goes below the horizontal
at step 2i' + 1, then in the k-Naples parking function we can see the first i spots
are filled. We are now in a similar situation as before, so if the path goes above
the horizontal at step 2(i’ + k) + 1 or before, all the earlier positions will be filled.
Continuing in this manner, we see that all positions are filled, so this does indeed
correspond to a k-Naples parking function.

Assume for the sake of contradiction that P is a k-Dyck path corresponding to
an ascending k-Naples parking function, where P crosses below the line y = 0 and
does not cross back above this line within 2k steps. Let step 2i + 1 be the first
step where the path goes below y = 0 but does not cross back above y = 0 within
2k steps. Now, let us look at car c;.; with 1 < j < k£ + 1. We see that c;,; must
have preference larger than ¢ + j since the path is below the horizontal and there
are more Down than Up steps during this section. For the car to move back to spot
1+ 1, all spots between i + 1 and the parking preference, including the preference,
must be filled. We see that these are spots i + 2,7+ 3,...,7+ j + 1, of which there
are j. However, they could only be filled by cars ¢;41,c142, . .. ¢+j-1, of which there
are j — 1. Hence, one of these spots is open, and c¢;,; cannot fill spot i + 1. We
see that cars ¢; 449 and later must have parking preference larger than or equal to
i+ k + 2. This follows from the fact that the path does not go below the diagonal
until at least step 2(i + k) + 2 by assumption. So no car fills spot ¢ + 1, showing
that the path does not correspond to a k-Naples parking function. O

Corollary 1. FEvery rearrangement of a parking preference is a k-Naples parking
function if and only if whenever its corresponding k-Dyck path has a Down step
which crosses the line y = 0, the following 2k steps have a point where there have
been in total two more Up steps than Down steps so far into the path.

Proof. This follows directly from Theorems 2 and 1. O

Example 4. From Figure 2, we see that (1,3,3,5,6,6) is not a 1-Naples parking
function even though the lattice path is a 1-Dyck path. In fact, we can see that at
step 7 it crosses below y = 0, and then it takes four steps for the lattice path to
cross back above y = 0. Thus, it is a 2-Naples parking function.

Remark 5. In particular, for the 1-Naples case the path cannot be below the
y = 0 line for more than three steps at a time. This means that we cannot have
two consecutive valleys under the y = 0 line. This special case is equivalent to
Conjecture 5 in [3].

Next, we use Proposition 2 to view descending k-Naples parking functions of
length n as k-Dyck paths of the same length, and then embed these into usual Dyck

INTEGERS: 24 (2024) 11

%

> D

T T
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1

NN

Figure 3: The k-Dyck path to Dyck path transformation.

paths of length n + k. This allows us to obtain many similar bijections for both
ascending and descending k-Naples parking functions to other subsets of Catalan
objects.

Proposition 3. Descending k-Naples parking functions are in bijective correspon-
dence with Dyck paths of length n+ k whose first k steps are Up and last k + 1 steps
are Doun.

Proof. This result follows from using the bijection between descending k-Naples
functions and k-Dyck paths and then embedding these k-Dyck paths into the usual
Dyck paths. Specifically, given a descending k-Naples parking function find the
corresponding k-Dyck path. Then, shift this path & units right and &k units up so
that it starts at (k, k) and concatenate this with the lattice path of all Up steps from
(0,0) to (k, k) and the lattice path of all Down steps from (2n+£k, k) to (2n+2k,0).
In terms of Up steps and Down steps, this corresponds to appending k Up steps to
the start of the k-Dyck path and & Down steps to the end of the k-Dyck path.
Moreover, reversing the process results in a k-Naples parking function. O

Remark 6. Figure 3 gives an example of this transformation for our running ex-
ample (6,6,6,5,5,2,1). Notice that for a k-Dyck path, the corresponding Dyck
path represents a descending parking function of length n + k that ends in at least
k cars with preference 1. This leads to the following result.

Corollary 2. Descending k-Naples parking functions of length n are in bijective
correspondence with descending parking functions of length n + k which end with at
least k cars with preference 1.

INTEGERS: 24 (2024) 12

Similar to the transformation in Proposition 3, we see that Dyck paths of length
n + k that do not return to the line y = 0 until the last step are in bijection with
Dyck paths of length n + k£ — 1 by removing the Up step and last Down step. This
motivates the next result.

Definition 3. A parking preference is strictly k-Naples if it is k-Naples but not
(k — 1)-Naples.

Proposition 4. The descending k-Naples parking functions that are not descending
(k —1)-Naples parking functions are in bijective correspondence with Dyck paths of
length n + k whose first k steps are Up and last k + 1 steps are Down and which
return to the line y = 0 sometime before the last step.

Proof. Using the same translation between a k-Dyck path and a Dyck path as
before, observe that Dyck paths that do not return to the horizontal before the
last step correspond to k-Dyck paths that reach at most the line y = —k' for some
0 < k' < k and thus correspond to k;'—Dyck paths. This shows our desired result. [

Finally, we may also use this embedding of k-Dyck paths into Dyck paths to see
which Dyck paths are in correspondence with ascending k-Naples parking functions.
The following corollary follows directly from Theorem 2.

Corollary 3. Ascending k-Naples parking functions are in bijective correspondence
with Dyck paths with length n + k whose first k steps are Up, last k + 1 steps are
Down, and before the last k+ 1 steps, whenever a Down step puts the path below the
line y = k, the following 2k steps have a point with two more Up than Down steps.

4. Enumeration of Monotonic k-Naples Parking Functions

In the previous section we found bijections between either of the two types of mono-
tonic k-Naples parking functions—descending or ascending—and subsets of Dyck
paths. We now use the bijection between k-Naples parking functions and Dyck
paths to give a recursive formula for the number of ascending k-Naples parking
functions and also give results about the generating functions for the sequences
corresponding to these objects. We end the section with closed formulas for their
descending counterparts.
For the rest of this section, we fix the following notation.

e Let I, ;, denote the number of ascending k-Naples parking functions of length
n and define Ij,(x) to be the ordinary generating function of I, .

e Let U, ;, denote the number of ascending k-Naples parking functions of length
n which start with 1 and define Uy (z) to be the ordinary generating function
of In,k'

INTEGERS: 24 (2024) 13
e Let O} denote the kth Catalan number and define C(z) to be the ordinary
generating function of Cj.

e Let F,,; denote the (n + 1)th Fine number (OIES sequence A000957) and
define F'(x) to be the ordinary generating function of Fj, ;.

Theorem 3. Forn—12k =1 and n = 0, we have

n—k

I, =1,5-1+Cy Z (£i j=1)(Up—g-ix) and (1)
=0
n—k
Uppx =Up -1+ Cy Z(Ui,k—l)(Un—k—i,k)- (2)
i=0

Remark 7. Note that I, = C), and Uy = 0, otherwise U, = C,,. Further
observe that the k-Naples parking functions which start with 1 correspond to k-Dyck
paths that start with an Up step. In Theorem 3, if n < k, then both summations
are empty making them 0. This corresponds to there being no new k-Naples for a
fixed length n if k is large enough.

Figure 4: Breakdown for the recurrence for ascending k-Naples parking functions.

Proof. For I, 1, we need to find the new ascending k-Naples parking functions
which are not represented in I, ;1 and add the two together. Recall that I,, o = C),
when n > 0, giving the base for our recurrence. From Theorem 2, we know that an
ascending k-Naples parking function of length n that is not a (k—1)-Naples parking
functions must have a corresponding Dyck path that is below the horizontal for
exactly 2k steps. Let there be 2i steps before the point it goes below the horizontal
for 2k steps. We see that ¢ of these are Up steps since the last step must be to
the horizontal. Also, notice that the last step is a Down step as otherwise the path
would be below the horizontal for at least 2k + 2 steps. So, the number of ways
to get to this point is the number of (k — 1)-Naples parking functions of length 4,
recalling that the last step of the k-Dyck paths corresponding to ascending Naples
parking functions must be Down. So, we see that there are I; ;_; such paths. This
argument corresponds to the first section in Figure 4.

https://oeis.org/A000957

INTEGERS: 24 (2024) 14

Now, once the path has gone below the horizontal, it must stay there for 2k steps.
At this point, it must return to the horizontal. Flipping this across the horizontal
gives regular Dyck paths of length k, leading to C} possibilities. This argument
corresponds to the second section in Figure 4.

Now, the path is at the horizontal after 2(7 + k) steps. It must then go up so as
to not stay below the horizontal for too long. But we see that the final section of
length n — i — k starting with an Up step has U,,_;_j ; options, which can be seen
in the third section of Figure 4.

Summing over all i gives Equation (1) and Equation (2) is proved similarly. [

Given the recursive formulas in Theorem 3, we note a connection between the 1-
Naples paths that start with an Up step and the Fine Numbers, an integer sequence
closely related to the Catalan Numbers. Many interpretations of the Fine Number
sequence can be found in [5]. We then proceed to present more general recursive
formulas for the associated ordinary generating functions of I,, ;, and U, .

Theorem 4. For n 2 0, we have U, 1 = F,,1, where F,,; denotes the (n + 1)th
Fine Number (OIES sequence A000957).

F(x)-1

Proof. Tt suffices to prove that U;(x) = (excluding F; and reindexing). We
know that U, o = C, for all n > 0, and Upg = 0 = Cy — 1; so we have Uy(z) =
C(x) — 1. Now, for any given n > 0 (and k = 1), from (2) we have
n-1)
2"Up1=2"Upo+a Z z'U; g2
i=0

-1
Un-i-11-

Adding these equations for all n > 0 we get

) =) (=) n—1

n n n-1
Z.’E Un,l = ZCE Un,O +£CZ(E Z Ui,OUn—i—l,l'
=1 =1 =1 =0

Noticing that Z?:_ol inLOx"_i_lUn_i_m is the (n — 1)th term in the convolution of

Upo and U, 1, that is, the coefficient of 2" Vin U, (z)Uy(x), we obtain that U;(x) =

%. But we know that F(l’) = #Cz(x)’ and that 102(1') - C(I’) +1= 0,
SO
Cz)-1 F(z) 1 F(z)-1
_ - S O
Ui(z) 1+z—2C(2) z z z

Theorem 5. Forn 20, I,y = CF,, where C'F is the convolution of the Catalan
numbers with the Fine numbers (OIES sequence A000958).

Proof. Let I (x) be the ordinary generating function for I,, ; and Iy(x) be the one
for I,, g. Since Iy = Iy and Ip(z) = C(x) we get, by a very similar argument as
Theorem 4,

F(z)-1

Ii(x) = Io(z) + 2lo(2)Us(2) = C(x) + 2C(2x) —

C(z)F(z). O

https://oeis.org/A000957
https://oeis.org/A000958

INTEGERS: 24 (2024) 15

Theorem 6. Let Uy(x) represent the ordinary generating function for Uy 1, and
define Uy_1(z), I;,(x), and I,_1(x) similarly. Then

Ii(z) = Iy (2) + Cra" i1 (@) Up () and (3)
U(2) = Upy (2) + Crpa" Up_1 (2) Uy (). (4)

Proof. The idea of the proof is identical to Theorem 5, except for a given k we
are only able to use recurrence relations for n = k, otherwise the convolution sum
becomes meaningless. This means that we are never adding the coefficients rep-
resenting degrees smaller than k for both Ij(x) and I;_;(z) in Equation (3) and
conversely for U in Equation (4). But this is not an issue, since for n < k any
ascending parking preference is (k — 1)-Naples (and thus also k-Naples). so the
coefficients are the same and adding them on both sides of the equation do not
change the result, so we can use the exact same reasoning as for Theorem 4. O

For k = 2, the generating functions become increasingly cumbersome to work
with towards finding a closed formula. Using our bijection between k-Naples park-
ing functions and Dyck paths, we can obtain a closed formula for the number of
descending k-Naples parking functions and descending strictly k-Naples parking
functions.

Theorem 7. The total number of descending k-Naples parking functions of length

n is
2n—-1 2n—-1
n Tln+k+1

and the number of descending strictly k-Naples parking functions of length n is
k+1 2n
T(n +k+ 1)'
Proof. We first seek to compute the number of descending k-Naples parking func-
tions of length n. Using the bijective correspondence of Proposition 2, these corre-
spond to the lattice paths from (0,0) to (2n,0) with last step Down that never go
below the line y = —k. We can first compute the number of lattice paths from (0,0)
to (2n — 1,1) that never go below the line y = —k. Using a reflection with respect
to the line y = —k — 1, we obtain that the number of lattice paths from (0,0) to
(2n — 1,1) minus the number of lattice paths from (0,0) to (2n — 1,-2k — 3) is
exactly the desired result.

To obtain the number of descending strictly k-Naples parking functions we sub-
tract the the total number of (k — 1)-Naples parking functions, which is

(7 et)

Simplifying this expression yields our desired result. O

INTEGERS: 24 (2024) 16

5. Other Bijections

In the previous sections, we found a bijection between ascending and descending
k-Naples parking functions of length n and subsets of Dyck paths of length n + k.
Considering there are well-known bijections between Dyck paths, full binary trees,
triangulations of an (n + 2)-gon, and non-crossing partitions of [n] (see [8], for
example), we describe which subsets of these objects are in bijection with descend-
ing strictly k-Naples parking functions. Since these correspondences follow directly
from the bijections between descending parking functions and the various Cata-
lan objects, we omit these proofs and provide an illustration in Figure 5 for the
descending strictly 2-Naples parking function (6,6,6,5,5,2,1).

VN AN
AR VA SN

4 3
N 5 2
6 1
[} [}
__ 7 10
8 9
Figure 5: The Catalan objects corresponding to the descending strictly 2-Naples
parking function (6,6,6,5,5,2,1).

Proposition 5. Descending strictly k-Naples parking functions are in bijection with
binary trees that have n+k nodes and satisfy the properties that the root has at least
k =1 left children in a row, has a right child, and this right child has at least k left
children in a row.

Definition 4. An r-in-s dissection is a dissection of an s-gon into an r-gon and
(s —r) triangles.

Definition 5. An r-rooted non-crossing set partition is a non-crossing set partition
where one of the parts, the root, has size r.

Proposition 6. Descending strictly k-Naples parking functions of length n are
in bijection with (2k + 2)-in-(n + k + 1) dissections, up to rotation, but with a
distinguished edge on the (2k + 2)-gon.

Proposition 7. Descending strictly k-Naples parking functions of length n are in
bijection with (2k + 2)-rooted non-crossing partitions of [n + k + 1], where 1 is in
the root.

INTEGERS: 24 (2024) 17

6. Future Work

As mentioned previously, all rearrangements of parking functions are still parking
functions. Using this fact, it is possible to find simple labeling rules on Dyck paths
and trees that correspond to every parking function [9]. One area of future research
is to explore a way of describing which rearrangements of descending k-Naples
parking functions are still k-Naples parking functions based on a labeling of the
objects with which they are in bijection.

Figure 6: Labeling binary trees for k = 1.

When k = 1, we noticed some patterns when labeling trees that correspond to a
1-Naples parking function as illustrated in Figure 6. Note that in these labelings,
the root is unlabeled as it does not correspond to a car, and a node must have a lower
labeling than its right child. It can be observed that if a direct right descendent of
the root does not have a left child, then it must have a higher labeling than its right
child. Lastly, we consider the final direct right descendent in the section without
a left child. It must have a higher label than its right child, so we consider the
right child that is connected to the original node, depicted in Figure 6 by a dotted
line. If the grandchild has a smaller label than the original, there is no problem
with the rearrangement. Otherwise, the process must begin again. This is a rather
convoluted process, and neither of the rules follow in a satisfying way once k > 1.

A similar direction is to find what labeling conventions correspond to ascending
k-Naples parking functions using our other bijections. We have seen the result
for both Dyck paths and binary trees, but we have not studied the condition on
dissections or rooted non-crossing partitions. Perhaps one of these settings could
better help us understand rearrangements.

Lastly, there are many objects counted by the Catalan numbers and their convo-
lutions that we have not discussed here. Finding and understanding more bijections
could help us better understand the structure of k-Naples parking functions, and
some objects may be better suited for describing rearrangements. One could also
look for bijections for ascending strictly k-Naples parking functions, ascending or
descending parking preferences that are not k-Naples parking functions, or descend-

INTEGERS: 24 (2024) 18

ing k-Naples parking functions whose ascending rearrangements are not k-Naples
parking functions.

Acknowledgements. Part of this research was performed with support from the
Institute for Pure and Applied Mathematics (IPAM), which is supported by the
National Science Foundation (Grant No. DMS-1440415). Pamela E. Harris was
supported through a Karen EDGE Fellowship. Andrés R. Vindas-Meléndez was par-
tially supported by the National Science Foundation under Awards DGE-1247392,
KY-WV LSAMP Bridge to Doctorate HRD-2004710, and DMS-2102921.

References

[1] A. Baumgardner, The Naples Parking Function, Honors Contract-Graph Theory, Florida Gulf
Coast University, 2019.

[2] J. Carlson, A. Christensen, P. E. Harris, Z. Jones, and A. Ramos Rodriguez, Parking functions:
choose your own adventure, College Math. J. 52 (4) (2021), 254-264.

[3] A. Christensen, P. E. Harris, Z. Jones, M. Loving, A. Ramos Rodriguez, J. Rennie, and
G. Rojas Kirby, A generalization of parking functions allowing backward movement, Electron.
J. Combin. 27 (1) (2020), P1.33.

[4] L. Colmenarejo, P. E. Harris, Z. Jones, C. Keller, A. Ramos Rodriguez, E. Sukarto, and
A. R. Vindas-Meléndez, Counting k-Naples parking functions through permutations and the
k-Naples area statistic, Enumer. Comb. Appl. 1 (2) (2021), #S2R11.

[5] E. Deutsch and L. Shapiro, A survey of the Fine numbers Selected papers in honor of Helge
Tverberg, Discrete Math. 241 (1-3) (2001), 241-265.

[6] A. G. Konheim and B. Weiss, An Occupancy Discipline and Applications, SIAM J. Appl.
Math. 14 (6) (1966), 1266-1274.

[7] R. Pyke, The supremum and infimum of the Poisson process, J Ann. Math. Statist. 30 (2)
(1959), 568-576.

[8] R. P. Stanley, Catalan numbers, Cambridge University Press, New York, 2015.

[9] C. H. Yan, Parking functions, in Handbook of enumerative combinatorics, CRC Press, Boca
Raton, FL, 2015.

	Introduction
	k-Naples Parking Functions and Their Rearrangements
	Dyck Paths
	Enumeration of Monotonic k-Naples Parking Functions
	Other Bijections
	Future Work

