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Keywords: In this article, we present a three-dimensional anisotropic hp-mesh refinement strategy for ultraweak
DPG discontinuous Petrov-Galerkin (DPG) formulations with optimal test functions. The refinement strategy utilizes
Anisotropy

hp-adaptivity

the built-in residual-based error estimator accompanying the DPG discretization. The refinement strategy is a
two-step process: (a) use the built-in error estimator to mark and isotropically sp-refine elements of the (coarse)

mesh to generate a finer mesh; (b) use the reference solution on the finer mesh to compute optimal - and
p-refinements of the selected elements in the coarse mesh. The process is repeated with coarse and fine mesh
being generated in every adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate the
performance of the proposed refinement strategy using several numerical examples on hexahedral meshes.
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1. Introduction

Automatic hp-mesh refinement algorithms are powerful tools that
aid finite element discretizations in computing solutions of partial dif-
ferential equations (PDEs) in an efficient and accurate manner. They
achieve this efficiency and accuracy by constructing meshes with opti-
mally distributed element size 4 and polynomial order of approximation
p [2,3]. Finite element meshes with optimal element size and poly-
nomial distribution are critical for resolving solution features such as
boundary layers in convection-dominated diffusion problems or point
and edge singularities in problems with re-entrant corners. In such prob-
lems, optimal hp-meshes are indispensable for achieving exponential
convergence [4-8]. Designing algorithms capable of generating a se-
quence of optimal hp-meshes that deliver optimal convergence rates
in a problem-agnostic manner has been a significant challenge in fi-
nite element research over the past few decades [6,9-17]. Typically,
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automatic mesh refinement strategies are driven by computable error
estimates. These error estimates are computed using the approximate
solution delivered by the discretization scheme. Therefore, the accuracy
and stability of the underlying numerical discretization are paramount
for the effectiveness of the mesh refinement strategy.

The discontinuous Petrov-Galerkin (DPG) method with optimal
test functions, first introduced by Demkowicz and Gopalakrishnan in
[18-20], has emerged as a critical technology in terms of robustness and
stability over the past decade. Given a stable variational formulation of
an underlying PDE and a trial approximation space, the DPG method
computes a test space so that the resulting discretization is inf-sup sta-
ble. The methodology delivers an orthogonal projection in the so-called
energy norm. Another significant advantage of the DPG methodology is
the presence of a built-in residual-based error estimator, also known as
the energy error estimate. This makes the DPG method an ideal candi-
date for automatic mesh optimization algorithms.

In this article, we focus on the ultraweak DPG finite element for-
mulation with optimal test functions and propose a problem-agnostic
anisotropic hp-mesh refinement strategy. It is critical to mention that,
for the ultraweak DPG method, the energy norm is equivalent to the
L2-error [21]. Consequently, the method delivers essentially the L2-
projection of the unknown solution.’

The proposed refinement strategy consists of the following steps:
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+ Step 1: Solve the problem on the current coarse mesh.

+ Step 2: Utilize the computed DPG residual to mark coarse mesh
elements for refinements.

« Step 3: Isotropically hp-refine the marked elements to generate a
fine mesh.

« Step 4: Solve the problem on the fine mesh to obtain the fine mesh
solution u.

 Step 5: Use the fine mesh solution u as a reference solution to de-
termine optimal (anisotropic) hp-refinements of the selected coarse
grid elements.

» Step 6: Restore the coarse mesh and execute the optimal hp-
refinements.

We essentially use the hp-algorithm from [2,3]. Optimizing the mesh in
the L?-space greatly simplifies the original procedure. There is no need
for mesh optimization on edges and faces; the Projection-Based Interpo-
lation reduces to the L2-projection performed on elements only. The
optimal refinements of a coarse element K are determined by maximiz-
ing the rate (e,,) with which the projection error decreases,

2 2
. ”u_Pcua_rscu” _”u_Poptu”
ehp = N _N .
opt coarse
Here, P.,... denotes the L?-projection onto the coarse mesh, Pypy is the

projection onto the optimal mesh to be determined, Ny and Ny de-
note the number of degrees of freedom (dofs) of the optimal and coarse
grid elements, respectively. As the L2-projection onto discontinuous
polynomial spaces is a purely local operation, the mesh optimization
can be trivially performed in parallel.

The main contributions of this paper are: (1) An anisotropic ~p-mesh
refinement strategy that greatly simplifies the algorithm proposed in
[2,3] as it relies solely on L? projections, thereby significantly reduc-
ing the implementation complexity of the proposed strategy compared
to the approach in [2,3]; (2) Employing the DPG method, and dis-
cretization of ultraweak DPG finite element formulations in particular,
to enable a robust and reliable L? projection-based anisotropic Ap-mesh
refinement strategy that is applicable to any well-posed variational prob-
lem; (3) Utilizing the DPG residual-based error estimator in Step 3 of
the proposed algorithm to compute intermediary fine mesh solutions,
which is computationally much more efficient than the global refine-
ment strategy employed in [2,3]; and (4) 3D numerical experiments to
demonstrate the efficacy of the proposed anisotropic hp-adaptive refine-
ment strategy for problems involving boundary layers and geometric
singularities.

The article is organized as follows. Section 2 briefly introduces the
ultraweak DPG finite element discretization with optimal test functions.
Section 3 provides the details of the mesh optimization algorithm. In
Section 4, numerical results show the efficacy of the proposed refine-
ment strategy. Finally, we conclude with a short discussion in Section 5.

2. DPG methodology

The core idea behind the (ideal) DPG method is to automatically
generate a stable discretization for a given well-posed variational for-
mulation and an approximate trial space. The method achieves stability
by computing an optimal discrete test space [19,22] corresponding to
the approximate trial space in such a way that the supremum over the
continuous test space in the discrete inf-sup [23] is automatically at-
tained over the discrete test space. The optimal test space is obtained
by inverting the Riesz map corresponding to the test inner product over
a discontinuous or broken? test space. Unfortunately, inverting the Riesz
operator exactly is impossible due to the infinite-dimensional nature of
the continuous test space. Thus, in practical realizations of DPG meth-
ods, we approximate the inverse of the Riesz operator by inverting

2 Hence the “D” in the DPG method.
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the Gram matrix induced by the test norm on a larger, but finite-
dimensional enriched discontinuous test space.® The use of broken test
spaces enables element-wise inversion of the Gram matrix, but it also
introduces trace variables defined on the mesh skeleton [24].

We consider a model Poisson problem. Let Q C R? be a bounded
Lipschitz domain with boundary I' split into two disjoint parts: I', and
I',.. The first-order formulation of the Poisson problem is given by:

c—Vu =0 in Q,
V.o =f in Q,
u=uy, on I, (21
oc-n=0, on [,

where f € L?(Q) represents the source term and n denotes the outward
normal. Before presenting the ultraweak variational formulation, we
briefly introduce the energy spaces used in this article. We define the
standard energy spaces as:

LXQ)={u: Q>R : ||lu| <o},

H\(Q) = {u ‘Q5R:ve LXQ), Ve (LZ(Q))3}, 2.2)

Hdiv,Q)={w:Q->R:we (L* Q) V-we L}(Q)}.

In the DPG method, discontinuous energy spaces are used for the test
functions. Thus, we must define broken equivalents of H'(Q) and
H (div, Q) spaces for the finite element mesh (€2;,):

H‘(Qh):={u:§z—>R:u) e H'(K) VKth},
K

2.3)
H(div,sz,,):={w:9—>uq<3:w)KeH(div,K) VKth},

where K € Q,, represents an element of the finite element mesh. Use of
the broken test spaces [24] leads to the introduction of additional trace
unknowns on the mesh skeleton. The traces spaces are defined as:

HVAT,) = {ﬁ :3u e H'(Q)such thatﬁ:yK(u|K)ondK VKth},

H2@T,) = {&,, : 36 € H(div,Q)such thats, = yf(a|K)onaK VK EeQ, }
2.4)

where yX and y,{( represent continuous and normal trace operators,
respectively [25].

Ultraweak formulation. Let (U,U) be the approximation trial space, V
the test space, and V' the dual space of V. Then, the ultraweak DPG
formulation of the Poisson problem can be stated as: Given / € V', find
u € U and i € U satisfying:

b(u,0) + b({i,v) = I(v) VveV, (2.5)
where
u=(@uo) €U := LX(Q)x(L*(Q)),
=6, €U := H2T,)xH 2T, :
i=ugonl',,6,=0y0onl,
v=(v.7) € V:= HY(Q,) x H(div,Q),), (2.6)

b(u,v) = (o, Vu)gh + (O‘,T)Qh + W, V- T)Qh,
b(#,v) = —(@,7 - n)r, = (6, V),
1(0) = (f.V)g,-

In (2.6), (-, -)l-h represents duality pairings defined over mesh skeleton
Iy,

3 We then refer to it as the practical DPG method.
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<'2=T'">r,, = Z (@, -ng)y

KeQ,
2.7)
(6p.0)r, 1= Z (6h, Vx>
KeQy
and
¢, ')Qh = Z (¢, ')LZ(K) . (2.8)
KeQ,

The broken test space is equipped with the adjoint graph norm [26,27]:

2
Ioll3, :=llAF®]l” +allv]l (2.9)

where « > 0 is a scaling constant, and AZD = (V'T,VU+T)Qh is
the (formal) adjoint operator of A,u = (6 — Vu,-V :0)q ., computed
element-wise. In this paper, all numerical experiments use a = 1.

Another point of view—useful for implementation of the DPG
method (see below)—is to reinterpret problem (2.5) with DPG as
a mixed method [28,29,22]. Let ¥, C V' denote the enriched finite-
dimensional test space* and let

Ry g : V(K) = (V(K)Y (2.10)

denote the element-wise Riesz operator corresponding to the test inner
product. By identifying the residual defined in the (broken) test space
(using the fact that the element-wise Riesz map Ry g is an isometry)
Yg = RI‘,}K(IK(-) — bg(uy,-) — BK(ﬁh,-)) as a new unknown, we can
solve a mixed problem of the form

v, €V, u, €U, i, €U,

(Wp: D)y = b(it,0) = b(it,0) =1(0)  vEV, @.11)
b(81ty, yy) =0 su, €U, '
b8t wy) =0 s, €U,

where trial spaces U and U are discretized with conforming finite-
dimensional spaces U, cU, U, cU.%

Implementation of the DPG method. Next, we briefly discuss the algebraic
structure of the resulting linear system and the built-in error estimator.
The basis functions for V},, U, and U,, are denoted by ¢;, w; and ,
respectively. From (2.6), we construct the following matrices for an
element K € Q,

G](Jj = ((Pp(Pj)V ,
BK,ij =bg(@;, lllj)a 2.12)
Bk,ij :IA)K((P,’,VA/!'),

g =1k(®),

where Gy ; represents the element Gram matrix corresponding to
the test inner product and approximates the Riesz operator when dis-
cretized over V;,(K). By ;; represents the element stiffness matrix cor-
responding to the L? variables, B k,ij represents the element stiffness
matrix corresponding to the trace variables, and 1 ; is the element load
vector. As usual, bg(-,-), b x (-,+) and /g (-) denote element K contribu-
tions to bilinear forms b(1t, b), b(ii, v), and linear form /(v), respectively.
From (2.12), we obtain a symmetric positive definite linear system for
each element K,

GK BK AK TK 1K
Bl 0 0 |lug[=[0], (2.13)
BL 0 0|0k 0

4 The enriched test space is discretized with broken (discontinuous) exact
sequence spaces of order p + 1.

5 In this article, we employ orientation-embedded exact sequence elements
[301 of order p for discretization of the trial space.
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where [ug,lx]7 and [Wx] are respectively the solution dofs and the
residual dofs associated with element K. In a practical implementation,
the mixed system (2.13) is reduced by statically condensing the residual
dofs, giving an element-local DPG linear system of the form

]T

[Bx Bx] G [Bx Bi][ux k] =[Bx Bx] Glg. (214)

A crucial point for discretization with the DPG method is the fact that
the DPG formulations can be implemented within a standard Galerkin
finite element code, as long as the code supports conforming discretiza-
tion of the exact sequence energy spaces [30,31]. Indeed, in terms of
implementation, the entire DPG method comes down to setting up the
DPG linear system (2.14) for each element in the mesh; both the com-
putation of optimal test functions as well as the DPG residual-based
error estimator are local to each element and thus easily parallelizable.
After the solution dofs have been obtained by solving the globally as-
sembled system, the element-local DPG residual is easily computed for
each element K:

¥y =Gyl —Bgug —Bylg). (2.15)

An in-depth exposition of the algebraic structure of the linear system
induced by DPG formulation for a diffusion problem can be found in
[19,32].

The built-in energy error estimate for a mesh element K in the finite
element mesh (Q,) is given by:

llae, ) = (o )5 ¢
= IR g (I () = by (wp, ) = by (fip, ) |l

One important aspect of the ultraweak DPG formulation is that the en-
ergy norm (2.16), computed with test norm (2.9), is equivalent with the
L?-norm.° With the element test space V' (K) approximated by a finite-
dimensional enriched subspace V,(K), the element error indicators are
then computed as’:

2

VK (2.16)

2

LK) (2.17)

— A 2
ni 1= I ) = 16 Uk = Byug =Bl -

Equivalence of norms. The ultraweak formulation using DPG methodol-
ogy involves three groups of variables: the L? field variables (1), the
trace variables (ii), and the Riesz representation of the residual (¥).
Considering an idealized semidiscrete problem where ¥ remains undis-
cretized leads to the ideal DPG method. This approach is justified if one
discretizes the variables with higher-order elements (enriched spaces).
This is indeed the case in the practical DPG method, where the error
in ¥ is of higher order, as can be demonstrated by the construction of
appropriate Fortin operators. Correspondingly, we can consider an ide-
alized setting where both ¥ and {i remain undiscretized. In this case,
the DPG method can be viewed as a practical realization of a weakly
conforming discretization of the test space. In one-dimensional prob-
lems, the trace variables are scalar values, automatically leading to the
best approximation error of traces being zero. In the present work, for
three-dimensional problems solved using the practical DPG method, we
assume that if we discretize the Riesz representation and the trace vari-
ables with higher-order elements, the best approximation error of the
traces and the Riesz representation can be neglected compared to the
best approximation error of the field variables. In such a case, the en-
ergy error corresponding to the adjoint graph norm is indeed equivalent

6 The energy norm does not coincide with the L?-norm only because the
adjoint test norm is not localizable, hence the test norm (2.9) is an adjoint
graph norm with an L? component scaled with coefficient a; however, with
sufficiently small «, the energy norm is tightly equivalent with the L?>-norm.

7 The energy norm computed on the finite-dimensional enriched test space
is equivalent with the L?>-norm; however, in addition to scaling coefficient «,
the equivalence constants depend on the continuity constant of the problem-
dependent Fortin operator [33].
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to the L? error in the field. By restricting ourselves to the ideal DPG
method, we can bound the L? norm of the field variable with its energy
norm as follows:

(1, A*p)|

llull =
lA* |

«

sup
veV (@)
1
2 A*
1+ g) (1, A* )|
%)

sup —————————
PV (A% + alo?)?

o=

_<1+ a)' [(1, A*D) + (i, v)]
= - - 1
7@ (A%l + alol?)?
1 1
3 |(, A¥p) + (i1, p)| 3
§<1+%> sup h—l=<1+%) I, D g,
Y Y

V) (|| A7 bl + a o))
(2.18)

where v is the global boundedness below constant, A* is the continuous
adjoint operator, and V() denotes the globally conforming (unbroken)
test space. Conversely, element K’s contribution to the energy norm is
bounded by the sum of the L? norm of the field variable 1 and the
minimum energy extension norm of the trace variable fi:

. (1, A*D) + (i, 0)
@)l = sup
PV (A% + allo][2)?

u, A*p i, p 2.19
< oap WAL KL @a9)
vV (A%l +allo]?)? €V (4% + allolP)2
<llull+ N4l
where || - ||; denotes the minimum energy extension norm. In the

present work, we optimize the mesh by minimizing only the L? er-
ror in the fields, assuming that the optimal mesh will also produce an
adequate quality approximation of the trace variables. A mesh opti-
mization strategy that also accounts for the trace variables would have
significantly higher computational cost and be problem-dependent.

3. Determining optimal hp refinements

The hp-algorithm described in this section is exactly the algorithm
from [2,31, but specialized to the L?-energy space. The corresponding
algorithms for the H!, H(curl), and H(div) energy spaces, all based
on minimizing the Projection-Based (PB) interpolation error, are signifi-
cantly more intricate and consist of several steps reflecting the nature
of the particular energy space. For instance, the algorithms for H' and
H (curl) spaces consist of three stages involving mesh optimization on
(interiors of) edges, faces and, finally, elements. The optimal mesh de-
termined in each step serves as a starting point for the optimization in
the subsequent step.

In the case of the L2-energy space, there are no global conformity
requirements; the PB interpolation reduces to just the L2-projection,
and the mesh optimization takes place over elements only. The imple-
mentation of the algorithm is thus much simpler. The second difference
between the presented and the original sp-algorithm lies in the involved
elements. In the original algorithm, the optimization takes place over all
elements, whereas here it only does for elements marked for refinement
by the DPG residual. The number of elements entering the mesh opti-
mization is thus much smaller.® The fine mesh providing the reference
solution for the mesh optimization is also much smaller than the glob-
ally hp-refined mesh used in [2,3]. Fig. 1 illustrates a two-dimensional

8 Dependent upon the parameter in the Dérfler strategy [34].
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Coarse Mesh Fine Mesh

Fig. 1. Isotropic hp-refinement of the marked elements: the elements marked
for refinement are shaded in red on the coarse mesh.

case of mesh elements being marked by the DPG residual, followed by
their isotropic hp-refinement® to generate the fine mesh.

The hp-algorithm consists of three steps: the first and third step are
purely local (can be done trivially in parallel) while the second step
requires a global reduction over the elements preselected for refinement
by the DPG residual.

3.1. Step 1: Staging a Competition of Refinements

In the first step of the algorithm, we stage a competition between
p- and various anisotropic h-refinements, by computing the so-called
guaranteed error reduction rate. The comparison between the various
candidate refinements is based on the error reduction rate (e;,) defined
as:

e, = ”M_Poldullz_”u_Pnewu”2
e N, N |

new

(3.20)

where u represents the reference solution obtained with the hp-refined
mesh generated using the DPG residual, P, is the L?-projection onto
the original coarse mesh element (space), P,.,, is the L2-projection onto
a refined element (space), N, and N, are the dimensions of the new
and old spaces (number of dofs), respectively, and || - || denotes the
L2-norm over the considered element K.

The optimal element refinement is determined by staging a com-
petition among various candidate refinements. For hexahedral ele-
ments considered in this paper, there are eight possibilities: no -
refinement (i.e. p-refinement only), three anisotropic h,-refinements,
three anisotropic i,-refinements, and the isotropic /g-refinement. Fig. 2
illustrates all possible h-refinement candidates. Each of the eight refine-
ments is accompanied with the determination of the optimal distribu-
tion of polynomial degrees. This leads to a catastrophically large num-
ber of possible cases for hp-refinement. With p,,p,.p, € {1,...,10},
there are “only” 10° scenarios for the just p-refined element, but a stag-
gering total of 10%* cases for the hg-refined element. Clearly, a simple
search through all possible cases is not feasible. Instead we rely on the
classical p-refinement strategy, see e.g. [35], based on increasing the
polynomial order in the subelement with the maximum error. This re-
duces the discrete search to the so-called maximum error reduction path
through the vast discrete space of potentially possible refinements.

Maximum error reduction path for a p-refined element. We begin the dis-
cussion with the simplest case: p-refinement only. Assuming that the
polynomial order can only increase (by one order), there are only a to-
tal of 2> — 1 =7 possible scenarios. The direct search is then possible
but can be replaced with a slightly faster dynamic search, as illus-
trated in Fig. 3. To choose the optimal p-refinement, we traverse from

° For a three-dimensional hexahedral element, isotropic hp-refinement de-
notes an isotropic hg-refinement followed by an isotropic p-refinement of order
1.
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©) (@
L7
(2) (h)

Fig. 2. Various possible s-refinements for a hexahedral element, depicted in (a): (b—d) anisotropic h,-refinements; (e-g) anisotropic h,-refinements; and (h) isotropic

hg-refinement.

I p,*+1
P

Py v

e

~

.

I p,+1
p,+1

Py

1

Fig. 3. Maximum error reduction path for the p-refined element: traversing from (p,. p,.,p,) to (p, + 1,p, + 1, p, + 1) for a hexahedral element.

(Pxspyp) to (p+1,p,+Lp, +1) by increasing the order in directions
that maximize ej,. For a hexahedral element, the path of traversal has
two stages. The first stage has three branches corresponding to p,.p,,
and p.. The second stage has two branches corresponding to the remain-
ing directions, with the final configuration being (p, + 1,p, + 1,p, + 1).
In Fig. 3, the arrows in red represent the branches corresponding to the
highest values of ¢, at each stage, and the polynomial order marked in
red indicates the polynomial order increased after each stage.

Following the path, we select the p-refinement that delivers the
largest error reduction rate. In the case of an affine element, the ele-
ment Jacobian (jac) is constant, and the L2-Pjola transform (pullback
map) reduces to a scaling with the Jacobian:

X
9&;

where ¢; is an element L? shape function corresponding to a master

6,0 = —¢,©),  jac= ||, 3.21)
jac

element shape function ¢ ;- Consequently, the L? mass matrix,

319

M :=/¢f¢j dx:%/d;;d;j dég, (3.22)
jac
K K

is diagonal, and the evaluation of the L? projection of a function u onto
a subspace spanned by functions ¢, ..., ¢, reduces to the evaluation

of the load vector:

al 1

PNu:Zuj i ujzm/uqudx.
j=1 iy

(3.23)

Raising the polynomial order in one direction amounts to adding extra
orthogonal shape functions ¢, with / =1,....,n. Consequently, evalu-
ation of the error reduction rate reduces to:

u—Pyul|? = |lu—= Py, qul? Py qull? = || Pyull?

I wull nll N4l _ | Py 1 IIn (| Py ul| (3.24)
lil M IZn‘, St

=- UN4i N+LN+l =~ N+ILN+I
nig n=\ My
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p P 6
9 9
8 8 ° g
5
7 Z 4 °l=
6 z &
2 =
5 5 &8 ‘s
35
4 4 2 Winning refinement *lEE
3 3 gc
2 1 . . . . | 2%
> EvQ
1 ! 0
0 1 2 3 4 5 6
Pr,

(a) Purely p-refined element:
PK =95
enp = 0.01952

(b) Winning h-refined element:

(Pry,PE,) = (4,1)
enp = 0.23196

(c) Refinement path of the

h-refined element

Fig. 4. Staging a competition between the p-refined and h-refined element. The maximum error reduction path for the h-refined element traverses from (px, , pg,) =

(1,1) to the winning refinement (p,(1 ’pKz) =(4,1).

/ Uy dx

K

2
n

1 -1
N+HLN+H

g
In the case of a general curvilinear element, the L? mass matrix is not
diagonal, and we use the telescopic solver based on the Cholesky de-
composition described in [3, p. 140].

Maximum error reduction path for an h-refined element. Contrary to the
pure p-refinement, we always start with a trilinear element where
Px =Py = p, = 1. The reference solution u is projected onto the subele-
ment mesh and, based on the distribution of the error, subelements are
selected for refinement using a greedy strategy with a 70% factor. Once
the subelements have been identified for p-refinement, the routine de-
scribed above is employed to determine the optimal p-refinement for
each subelement.

Fig. 4 shows the simple case of a 1D element K, starting with poly-
nomial order pyx = 4. The subelements of the h-refined element K are
denoted K; and K, and their respective polynomial orders pg, and
Pk, The maximum error reduction path for this case (illustrated in
Fig. 4c) leads to the winning refinement (p K, P Kz) = (4, 1) with the ap-
proximate solution shown in Fig. 4b.

The optimal refinement. The selection of the optimal refinement is carried
out by comparing the best error reduction rates delivered by the eight
differently h-refined meshes. The highest error reduction rate, delivered
by the optimal refinement, is called the guaranteed error reduction rate
and denoted by e;‘w.

3.2. Step 2: Determining Which Elements to Refine

We loop over all considered coarse mesh elements to determine the
element with the best guaranteed error reduction rate ezp,max. In principle,
one could then refine only this one element. However, to accelerate
the refinements (i.e. reduce the number of refinement steps), a greedy
strategy is employed selecting all elements that deliver a rate greater
than or equal to 25% of the best guaranteed error reduction rate. Note
that this strategy implies that there may be elements initially marked
for refinement by the DPG residual which ultimately remain unrefined.

3.3. Step 3: Determining the Final Refinements

For each element selected for refinement in Step 2, we could simply
execute the corresponding optimal refinement determined in Step 1;
and we do this indeed for the purely p-refined elements. However, when
performing h-refinements we typically choose to invest additional dofs
by considering the already-performed p-refinements that followed the
optimal refinement while investigating error reduction rates in Step 1.

In particular, in Step 1 we recorded the error reduction rates for
all subelement meshes following the maximum error reduction path.
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On this path, we select the maximum investment (in terms of new dofs)
that still delivers 25% of the best guaranteed error reduction rate (mean-
ing it would still satisfy the Step 2 criterion). The rational for doing so
is to reduce the overall number of outer-loop iterations (number of re-
finement steps) by maximizing the investment in each step as long as it
pays off sufficiently (delivering a sufficiently high error reduction rate,
as determined by Step 2).

For example, in the 1D case illustrated in Fig. 4, the refinement
shown in Fig. 4b won the competition with the p-refinement (Fig. 4a)
but, dependent upon the threshold value used in the greedy strategy,
we may choose to invest additional dofs in one of the subelements.

Next, we consolidate Steps 1-3 and present the mesh optimization
algorithm. In Algorithm 1, tol denotes the user-provided tolerance value
for the DPG residual.

Algorithm 1 Mesh Optimization Algorithm.

1: Start with an initial trial mesh
2: while 7o > tol do
3: Solve the problem on the current mesh.

1/2
4 Compute the DPG residual for the current mesh: n, = (Z kea, M K) .
5: Use the element residuals (77, ) to mark elements for refinements (Dorfler
strategy).

Isotropically hp-refine marked elements to generate the fine mesh.

Compute the reference solution « using the fine mesh.

Step 1: For each refined element K:

Determine the best possible p-refinement using the maximum er-

ror reduction path.

© %N

10: Determine the best possible A-refinement using the maximum er-
ror reduction path.

11: Use error reduction rates to decide between p- and h-refinement.

12: Determine the element guaranteed error reduction rate (ej‘lp’ K-

13: Step 2: Determine the best guaranteed error reduction rate (e;‘lp.max).

14: Unrefine the mesh.

15: Step 3: For each element K marked for refinement:

16: if e,*m 2025 ezﬂ’max then

17: Perform the optimal Ap-refinement.

18: end if

19: end while

3.4. Mesh closure

The hp algorithm is implemented in 4p3D, a general-purpose finite
element code supporting hybrid meshes consisting of elements of all
shapes (hexas, tets, prisms, pyramids), conforming discretizations of the
exact-sequence spaces (H'-, H(curl)-, H(div)-, and L?-conforming ele-
ments), solution of coupled multiphysics problems, and anisotropic hp-
refinements [36,37]. hp3D supports MPI/OpenMP parallelism [38,39]
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and is available under BSD-3 license.'” In the code, any h-refinement
is executed in two steps. Given a list of elements to refine (along with
the requested, possibly anisotropic, h-refinement flags), we proceed as
follows.

Closure step 1 (local): Refine the elements from the list in the pro-
vided order, enforcing two rules:

- Compatibility with existing face refinements: upgrade the re-
quested element refinement flag to accommodate existing face
refinements.

* One-irregularity rule for faces: employ the standard shelf or
queue algorithm ([19, p. 71]) to ensure that no face is refined
unless the face!! is unconstrained.

If one of the element faces is constrained, the element is placed on

the shelf, and a necessary refinement of the neighbor across the

face is executed, to eliminate the constraint. If the one-irregularity
rule for faces prohibits the refinement, the corresponding neighbor
is placed on the shelf and so on. Once the refinement of the pro-
cessed element is possible, it is executed and the process resumes
with the last element from the shelf. The algorithm proceeds until
the shelf is empty. All mesh manipulations (refinements) are sup-
ported for meshes that satisfy the one-irregularity rule for faces

(not necessary for edges and vertices).

Closure step 2 (global): Loop through all elements and perform addi-
tional necessary refinements to eliminate edges and vertices with
multiple constraints.

We refer to [39] for a more formal exposition of the algorithms. In the
end, in both steps, a number of additional, unwanted refinements may
be executed. These refinements can be isotropic or anisotropic, reflecting
minimal requirements to eliminate the nodes with multiple constraints.
In the ‘global’ hp-refinement driven by the DPG residual, all unwanted
refinements are chosen to be isotropic. This is motivated by the fact that
an unwillingly refined element (in Step 1) may, in fact, be on the DPG
list of wanted refinements. However, once the optimal hp-refinements
are determined, all unwanted refinements are executed in a minimal,
anisotropic way.

All unwillingly h-refined elements retain their respective polynomial
order. In principle, one could attempt to find the corresponding optimal
distribution of polynomial orders, but this has been not done in our
current implementation. Hence, the presented meshes may be slightly
overrefined.

4. Numerical results
4.1. A boundary layer problem

Sharp boundary layers are among the most commonly encountered
flow features in computational fluid dynamics. Our first numerical ex-
periment demonstrates the proposed algorithm’s efficacy in resolving
such boundary layers. In this test case, we solve a Poisson problem with
a manufactured solution containing boundary layers. The manufactured
solution is a three-dimensional extension of the solution of the Egger-
Schober] problem [40]. In particular, we solve

-Vu=f(x,y,z) in Q:=(0,1)7

u=0 on I, (4.25)
Vu-n=g(x,y,z) on I,

where

10 https://github.com/Oden-EAG/hp3d.
11 More precisely, the mid-face node.
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I, =(0,1)x[0,1)x {0} u ([0, 1) x {0} X [0, 1)) U ({0} x [0,1) X [0, 1)),
T, =([0,1]x [0, 11X {1}) U ([0,1]x {1} x [0, 1]) U ({1} X [0,1] x [0, 1]).
(4.26)

In (4.25), n is the outward normal, and f and g are generated using
the exact solution. The exact solution is given by

) (o) o+

The solution exhibits a boundary layer near x ~ 1, y~ 1 and z~ 1.
The strength of the boundary layer is inversely proportional to €. In this
numerical experiment, € = 0.005. The hp-adaptation is initialized with a
mesh comprising only eight elements with a constant polynomial order
of (2,2,2).12

Figs. 5a and 5b display the cross-section of an adapted mesh and the
corresponding solution contour, respectively. Fig. 6 depicts the poly-
nomial distribution around the boundary layers on an anisotropically
adapted hp-mesh. Fig. 7 presents the convergence results, comparing
isotropic h-adaptation and the proposed hp-refinement strategy. The
Dorfler parameter for both isotropic and sp-refinement is 0.75. In Fig. 7,
the depicted error is the combined relative error in all L? variables.

Fig. 6 clearly illustrates the strong anisotropy and grading in the
element size and the polynomial distribution. The anisotropy and the
grading in element size are paramount for resolving strong boundary
layers efficiently. The algorithm also prescribes an anisotropic polyno-
mial distribution in the boundary layers instead of an isotropic one.
This directional preference of prescribing polynomial orders showcases
a significant advantage of the proposed hp-refinement strategy: the
ability to complement an anisotropic A-refinement with an anisotropic
p-refinement. This approach makes the refinement strategy highly ef-
ficient in terms of allocating dofs when the solution exhibits strong
anisotropic features. The algorithm does not waste any dofs in direc-
tions where the solution variables do not exhibit significant variations.

From Fig. 7, it is evident that anisotropic hp-refinements outper-
form isotropic h-refinements by orders of magnitude. The convergence

ev/e —1
1—el/e

efle -1
1—el/e

x/€ _
u(x,y,z)= <x+ ¢ !

Y > . (4.27)

plots show the error and the residual against V/ndof (where ndof repre-
sents the number of dofs), verifying exponential convergence. In Fig. 7,
a reduction in the convergence rate for the hp-refinement can be ob-
served. The slowdown in convergence occurs due to the limiting of the
highest polynomial order in the numerical experiments to p = 6. The
adaptation cycles are initially dominated by h-refinements. Once the
boundary layers are resolved, the algorithm starts preferring both p-
refinements along with A-refinements. This behavior is expected, since,
increasing the polynomial order on coarse meshes while approximating
solutions with high gradients can induce spurious oscillations. In Fig. 8,
we plot the effectivity index, defined as the ratio of the DPG residual-
based built-in error estimator and the composite L? error of the field
variables u and o.

4.2. Fichera cube problem

To demonstrate the efficacy of the proposed refinement strategy in
the presence of multiple singularities, we solve the well-known Fichera
cube problem and perform hp-adaptations using the proposed refine-
ment strategy. The variant of the Fichera cube problem being solved
here is given by:

VZu=0 in Q:=(-1,1%\[0,17%,

u=0 on T, (4.28)

Vu-n=g(x,y,z) on I.

12 In hp3D, we employ exact-sequence spaces [31]. Hence, an order of
(Px> Py, ,) denotes L? shape functions of order (p, — Lp,—Lp,—1.
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0.00

(b) Contour plot of the solution at = 0.95

Fig. 5. Boundary layer problem: (a) cross-section of the mesh showing anisotropic elements required to resolve the boundary layers; and (b) contour plot illustrating
the boundary layers on the yz-plane. The boundary layers are along right and top faces of the cross-section.

(a) Polynomial order pg

(b) Polynomial order py

(¢) Polynomial order p,

Fig. 6. Boundary layer problem: an adapted mesh with 855532 dofs; coloring indicates the polynomial distributions p,, p,, p, in x-, y-, z-direction, respectively.
The algorithm prescribes higher-order polynomials anisotropically corresponding to each boundary layer along the x-, y-, and z-axis.
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Fig. 7. Boundary layer problem: convergence of relative L? error and DPG residual. Even though there is a marginal decrease in the rate of convergence for the hp-
refinements (due to limiting p < 6 in the numerical experiments), both the error and the residual are 2-3 orders of magnitude lower compared to the A-refinements

for approximately the same number of dofs.

The domain is created by subdividing a large cube (—1,1) into eight
smaller cubes and then removing one of the cubes. The Dirichlet data
u =0 is imposed on the three square faces aligned with planes of coor-
dinate axes, i.e.

[, =([0,11x[0,11x {0} u ([0, 1] x {0} X [0, 1])

U ({0} x[0,11x[0,1]). (4.29)

The volumetric load for the problem is zero. The problem is driven by
the Neumann boundary condition on I', composed of the remaining
faces of the cube. The data g correspond to the sum of two-dimensional
exact solutions of the L-shaped domain problem on xy-, yz-, and xz-
planes. The exact solution of the L-shaped domain problem is given by:
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2
Uy =ricos(0), r=vVnt+é2, 6 =tan™! <§>,
’ n

where (,£) denote (x,y), (y,z), or (x,z) axes, respectively. These
boundary conditions generate a solution with features analogous to an
L-shaped domain problem but comprising multiple edge and vertex sin-
gularities. While the exact solution for the problem is unknown, the
convergence of the DPG residual is shown in Fig. 13.

Figs. 9 and 10 depict the solution contour and the corresponding
adapted mesh, respectively. Figs. 11 and 12 illustrate the polynomial
distribution associated with the adapted mesh. Fig. 10 shows that the re-
finement algorithm performs highly anisotropic h-refinements along the
edge singularities, generating graded meshes. The anisotropic refine-
ments propagate through the volume to the opposing boundary faces
on I',. The propagation of refinements happens in conjunction to the

(4.30)
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Residual
L? error

20 40 60 80

+/ndof

Fig. 8. Boundary layer problem: effectivity index, defined as the ratio of the DPG residual-based error estimator and the composite L? error of field variables u and
c.

100

(a) Isometric view along (—1,—1,—1) (b) Isometric view along (1,1,1)

Fig. 9. Fichera cube problem: solution contour. The problem is driven by the Neumann boundary conditions on the L-shaped faces in (a) and the three visible square
faces in (b). The faces aligned along the coordinate planes in (a) have the Dirichlet boundary conditions.

(a) Isometric view along (—1,—1,—1)

(b) Isometric view along (1,1,1)

Fig. 10. Fichera cube problem: an anisotropically adapted sp-mesh with 1.3M dofs.
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(a) Polynomial order py

(b) Polynomial order py
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(c) Polynomial order p.

Fig. 11. Fichera cube problem: polynomial distribution on the adapted hp-mesh. The algorithm prescribes low-order polynomials anisotropically around each edge
singularity along x-, y- and z-axis. Fig. 12 presents a magnified view of the polynomial distribution and anisotropic mesh elements around the singularities.

(c) Polynomial order p,

(d) Polynomial order p.

Fig. 12. Fichera cube problem: magnified view of the mesh and the polynomial distribution near the edge and vertex singularities.

singularities arising from the faces with Neumann boundary conditions.
Figs. 11 and 12 clearly indicate that the algorithm chooses lowest order
polynomials around the singularities. Moving away from the singular-
ities, the algorithm prescribes higher order polynomials underscoring
the smoothness of the solution variables. In Fig. 13, one can observe the
exponential convergence of the residual on performing Ap-refinements,
whereas isotropic h-refinements suffer from a loss of convergence due
to the lack of required grading in size and polynomial distribution.

4.3. Eriksson—Johnson problem

We consider a convection-dominated diffusion problem motivated
by the Eriksson-Johnson model problem [41]. Here, we extend the ex-
act solution of the two-dimensional problem by multiplying it with a
sinusoidal term along z. In particular, we solve
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g—“ —eViu= f(x,y,2) in Q:=(0,1)7,

X
u=0 on Fua, (4.31)
u = sin(ry)sin(rz) on Fub,

where

Fua =0Q\ {0} x[0,1]x[0,1] and Fub ={0}x[0,1]x[0,1]. (4.32)

The source f and the boundary conditions are computed using the
exact solution given by

eS1=1) _ oso(x=1)

u(x,y,z) = sin(zy) sin(zz), (4.33)
es1 —e%2
where
L ViTama |- ViTaa
sj=—————ands; = ——————. (4.34)

2e 2e
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Fichera cube problem: convergence of the DPG residual.

Up,
1.00

0.75

0.25

0.00

(b) Solution contour at z = 0.5

Fig. 14. Eriksson-Johnson problem: an adapted mesh and solution contour.

In this numerical experiments, ¢ = 0.01. Fig. 14 depicts the cross-
section of an adapted mesh and the corresponding solution contour at
z =0.5. The solution exhibits a boundary layer along the x-axis with si-
nusoidal variations along y and z. The variation in the solution is also
reflected in the hp-refinements executed by the algorithm. In order to
capture the boundary layer, the algorithm generates anisotropic ele-
ments parallel to the yz-plane and assigns the highest polynomial order
along the x-axis inside the boundary layer. Since the boundary layer
is weighted with sinusoidal variations in y and z, the majority of the
h-refined elements in the boundary layer are positioned near y = 0.5
and z =0.5. Fig. 15 illustrates the adapted mesh with the polynomial
distribution along the x-axis. Fig. 16 presents the convergence plots for
the relative L? error and the residual, demonstrating the efficacy of the
proposed hp-refinement strategy for this problem. Finally, Fig. 17 de-
picts the effectivity index defined as the ratio of the DPG residual-based
built-in error estimator and the composite L? error of the field variables
uand o.

5. Conclusion

The anisotropic hp-refinement strategy presented in this article uti-
lizes the built-in DPG error-estimator and L? projection-based error
estimates for the ultraweak variational formulation. The efficacy of
the proposed algorithm is demonstrated through numerical experiments
containing boundary layers and singularities. The algorithm is able to
generate a sequence of meshes that provide exponential convergence.
Since the maximum polynomial order in our numerical experiments
was capped at p = 6 for practical (computational) reasons, we observe
a slight loss of optimal convergence rate. Nonetheless, the accuracy of
the solutions on the anisotropically refined s#p-meshes remains orders of
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magnitude better than that on isotropically refined meshes for approx-
imately the same number of dofs. The proposed hp-refinement strategy
complements anisotropic h-refinements with anisotropic p-refinements,
which allows the algorithm to avoid any superfluous investment (in
terms of dofs). In its current form, the proposed adaptation framework is
primarily applicable to problems where the location of boundary layers
and singularities is known a-priori. It allows one to initiate the adap-
tation cycles with tensor-product meshes aligned with the layers. For
problems where the location of an internal layer or singularity is un-
known a-priori, a structured methodological framework is proposed in
[42]. In this article, we have avoided the problem of accurately approxi-
mating the optimal test functions by performing numerical experiments
only with modestly small diffusion constant € = 1072 and e = 10~3. For
alternative strategies to handle smaller values of €, see [26,27,43,44].

Future work. To accelerate the computation of the fine-grid solution
and apply the hp-refinement strategy to large-scale multiphysics prob-
lems, we intend to integrate the proposed hp-refinement strategy with
a scalable DPG multigrid solver [45] used for modeling nonlinear op-
tical waveguides [46,47] and other high-frequency wave applications
[48]. Additionally, we aim to extend the proposed refinement strategy
to other element types, such as tets, prisms, and pyramids, in order to
leverage hp3D’s capability to handle hybrid meshes.

Data availability

No data was used for the research described in the article.
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(a) Isometric view of the mesh.
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(b) Polynomial order along x direction: ps

Fig. 15. Eriksson-Johnson problem: an adapted mesh with 209737 dofs; coloring indicates the corresponding polynomial distribution along the x-axis.
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Fig. 16. Eriksson-Johnson problem: convergence of relative L? error and DPG residual.
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Fig. 17. Eriksson-Johnson problem: effectivity index, defined as the ratio of the
DPG residual-based error estimator and the composite L? error of field variables
uand o.

References

[1] D. Stanzione, J. West, R.T. Evans, T. Minyard, O. Ghattas, D.K. Panda, Frontera: The
Evolution of Leadership Computing at the National Science Foundation, in: Prac-
tice and Experience in Advanced Research Computing, Association for Computing
Machinery, 2020, pp. 106-111.

[2] L. Demkowicz, Computing with hp-Adaptive Finite Elements. Vol. I: One and Two
Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, 2006.

[3] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, A. Zdunek, Comput-
ing with hp-Adaptive Finite Elements. Vol. II. Frontiers: Three Dimensional Elliptic
and Maxwell Problems with Applications, Chapman and Hall/CRC, 2007.

326

[4] L. Babuska, B. Guo, The h,p and hp-version of the finite element method; basis
theory and applications, Adv. Eng. Softw. 15 (3) (1992) 159-174.

[5] 1. Babuska, W. Gui, The h,p and hp-versions of the finite element method in 1
dimension. Part III. The adaptive hp-version, Numer. Math. 49 (1986) 659-684.

[6] W. Rachowicz, D. Pardo, L. Demkowicz, Fully automatic hp-adaptivity in three di-
mensions, Comput. Methods Appl. Mech. Eng. 195 (37) (2006) 4816-4842.

[7] C. Schwab, p- and hp-Finite Element Methods: Theory and Applications in Solid and
Fluid Mechanics, Clarendon Press, 1998.

[8] I Babuska, T. Strouboulis, K. Copps, hp optimization of finite element approxima-

tions: analysis of the optimal mesh sequences in one dimension, Comput. Methods

Appl. Mech. Eng. 150 (1) (1997) 89-108.

J. Oden, L. Demkowicz, W. Rachowicz, T. Westermann, Toward a universal hp adap-

tive finite element strategy. Part 2: a posteriori error estimation, Comput. Methods

Appl. Mech. Eng. 77 (1) (1989) 113-180.

L. Demkowicz, J. Oden, W. Rachowicz, O. Hardy, Toward a universal hp adaptive

finite element strategy. Part 1: constrained approximation and data structure, Com-

put. Methods Appl. Mech. Eng. 77 (1) (1989) 79-112.

W. Rachowicz, J. Oden, L. Demkowicz, Toward a universal hp adaptive finite el-

ement strategy. Part 3: design of hp meshes, Comput. Methods Appl. Mech. Eng.

77 (1) (1989) 181-212.

J.T. Oden, W. Wu, V. Legat, An hp adaptive strategy for finite element approxima-

tions of the Navier-Stokes equations, Int. J. Numer. Methods Fluids 20 (8-9) (1995)

831-851.

P. Devloo, J. Tinsley Oden, P. Pattani, An h-p adaptive finite element method for

the numerical simulation of compressible flow, Comput. Methods Appl. Mech. Eng.

70 (2) (1988) 203-235.

[14] C. Duarte, J. Oden, An h-p adaptive method using clouds, Comput. Methods Appl.
Mech. Eng. 139 (1) (1996) 237-262.

[15] P. Houston, B. Senior, E. Siili, Sobolev regularity estimation for hp-adaptive finite
element methods, in: F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Eds.), Numerical
Mathematics and Advanced Applications, Springer, Milan, 2003, pp. 631-656.

[16] P. Houston, E. Siili, hp-adaptive discontinuous Galerkin finite element methods for
first-order hyperbolic problems, SIAM J. Sci. Comput. 23 (4) (2001) 1226-1252.

[17] A. Chakraborty, Optimal approximation spaces for discontinuous Petrov-Galerkin
schemes with optimal test functions, Ph.D. thesis, Rheinisch-Westfdlische Technis-
che Hochschule Aachen, 2022.

[9]

[10]

[11]

[12]

[13]


http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9C3591F1EA413A920A860BD134590762s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9C3591F1EA413A920A860BD134590762s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9C3591F1EA413A920A860BD134590762s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9C3591F1EA413A920A860BD134590762s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibD77E0A900C788464B245FC8E51C5A02Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibD77E0A900C788464B245FC8E51C5A02Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66AEF1490C069C2087A18F18D7864230s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66AEF1490C069C2087A18F18D7864230s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66AEF1490C069C2087A18F18D7864230s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib20460706B985820D551BD0A44E17471Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib20460706B985820D551BD0A44E17471Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib94740597E7B8B1428BDC1B44D7FA0A0Bs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib94740597E7B8B1428BDC1B44D7FA0A0Bs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9D5C73E0E19C3D73505E91CBC8529F0Ds1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9D5C73E0E19C3D73505E91CBC8529F0Ds1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib413A7427D7F35C1A9122DA7F893E036Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib413A7427D7F35C1A9122DA7F893E036Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib20CD37955C9F7CB761A19642B8F94EB7s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib20CD37955C9F7CB761A19642B8F94EB7s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib20CD37955C9F7CB761A19642B8F94EB7s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibB64377283B27515B5A1257C82C2B4F08s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibB64377283B27515B5A1257C82C2B4F08s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibB64377283B27515B5A1257C82C2B4F08s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3E4E123B1FA6CD48F0097409C4C6E9B9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3E4E123B1FA6CD48F0097409C4C6E9B9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3E4E123B1FA6CD48F0097409C4C6E9B9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66B600B9991686326CA921D07D6E97D8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66B600B9991686326CA921D07D6E97D8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66B600B9991686326CA921D07D6E97D8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib733BF15D10DF00D8C420C541805A0C44s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib733BF15D10DF00D8C420C541805A0C44s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib733BF15D10DF00D8C420C541805A0C44s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5365D9B83A9FB1FEB32502CA45C44C30s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5365D9B83A9FB1FEB32502CA45C44C30s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5365D9B83A9FB1FEB32502CA45C44C30s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib06B076E38B80168864BB23E713758ED5s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib06B076E38B80168864BB23E713758ED5s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib1B28CC656997F09F44C9C22A40533139s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib1B28CC656997F09F44C9C22A40533139s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib1B28CC656997F09F44C9C22A40533139s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib65B7C6EE923148B2E94C3875590C62E9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib65B7C6EE923148B2E94C3875590C62E9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib6E745E66F2BAA34D741A0DC57C6670ADs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib6E745E66F2BAA34D741A0DC57C6670ADs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib6E745E66F2BAA34D741A0DC57C6670ADs1

A. Chakraborty, S. Henneking and L. Demkowicz

[18] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov—-Galerkin meth-
ods. Part I: The transport equation, Comput. Methods Appl. Mech. Eng. 199 (23)
(2010) 1558-1572.

[19] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov—-Galerkin meth-
ods. II. Optimal test functions, Numer. Methods Partial Differ. Equ. 27 (1) (2011)
70-105.

[20] L. Demkowicz, J. Gopalakrishnan, A. Niemi, A class of discontinuous Petrov—
Galerkin methods. Part III: Adaptivity, Appl. Numer. Math. 62 (4) (2012) 396-427.

[21] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, V. Calo, A class of
discontinuous Petrov-Galerkin methods. Part IV: the optimal test norm and time-
harmonic wave propagation in 1D, J. Comput. Phys. 230 (7) (2011) 2406-2432.

[22] L. Demkowicz, J. Gopalakrishnan, Discontinuous Petrov-Galerkin (DPG) method,
in: Encyclopedia of Computational Mechanics Second Edition, 2017, pp. 1-15.

[23] 1. Babuska, Error-bounds for finite element method, Numer. Math. 16 (1971)
322-333.

[24] C. Carstensen, L. Demkowicz, J. Gopalakrishnan, Breaking spaces and forms for the
DPG method and applications including Maxwell equations, Comput. Math. Appl.
72 (3) (2016) 494-522.

[25] L. Demkowicz, Energy Spaces, Lecture Notes, The University of Texas at Austin,
2018.

[26] L. Demkowicz, N. Heuer, Robust DPG method for convection-dominated diffusion
problems, SIAM J. Numer. Anal. 51 (5) (2013) 2514-2537.

[27] J. Chan, N. Heuer, T. Bui-Thanh, L. Demkowicz, A robust DPG method for
convection-dominated diffusion problems II: adjoint boundary conditions and mesh-
dependent test norms, Comput. Math. Appl. 67 (4) (2014) 771-795.

[28] A. Cohen, W. Dahmen, G. Welper, Adaptivity and variational stabilization for
convection-diffusion equations, ESAIM: Math. Model. Numer. Anal. 46 (5) (2012)
1247-1273.

[29] W. Dahmen, C. Huang, C. Schwab, G. Welper, Adaptive Petrov—Galerkin methods
for first order transport equations, SIAM J. Numer. Anal. 50 (5) (2012) 2420-2445.

[30] F. Fuentes, B. Keith, L. Demkowicz, S. Nagaraj, Orientation embedded high order
shape functions for the exact sequence elements of all shapes, Comput. Math. Appl.
70 (4) (2015) 353-458.

[31] L. Demkowicz, Mathematical theory of finite elements, Soc. Ind. Appl. Math. (2023).

[32] A. Vaziri Astaneh, F. Fuentes, J. Mora, L. Demkowicz, High-order polygonal discon-
tinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations, Comput.
Methods Appl. Mech. Eng. 332 (2018) 686-711.

[33] J. Gopalakrishnan, W. Qiu, An analysis of the practical DPG method, Math. Comput.
83 (286) (2014) 537-552.

327

Computers and Mathematics with Applications 167 (2024) 315-327

[34] W. Dorfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer.
Anal. 33 (3) (1996) 1106-1124.

[35] L. Demkowicz, J.T. Oden, T. Strouboulis, Adaptive finite elements for flow problems
with moving boundaries. Part 1: Variational principles and a posteriori estimates,
Comput. Methods Appl. Mech. Eng. 46 (1984) 217-251.

[36] S. Henneking, L. Demkowicz, ~p3D user manual, arXiv:2207.12211.

[37] S. Henneking, S. Petrides, F. Fuentes, J. Badger, L. Demkowicz, hp3D: a scalable
MPI/OpenMP hp-adaptive finite element software library for complex multiphysics
applications, J. Open Sour. Softw. 9 (95) (2024) 5946.

[38] S. Henneking, A scalable hp-adaptive finite element software with applications in
fiber optics, Ph.D. thesis, The University of Texas at Austin, 2021.

[39] S. Henneking, L. Demkowicz, S. Petrides, F. Fuentes, B. Keith, P. Gatto, Computing
with hp Finite Elements. III. Parallel ~p3D Code, 2024, in preparation.

[40] H. Egger, J. Schoberl, A hybrid mixed discontinuous Galerkin finite element method
for convection—diffusion problems, IMA J. Numer. Anal. 30 (4) (2009) 1206-1234.

[41] K. Eriksson, C. Johnson, Adaptive streamline diffusion finite element methods for
stationary convection-diffusion problems, Math. Comput. 60 (201) (1993) 167-188.

[42] M. Harris, Flow feature aligned mesh generation and adaptation, Ph.D. thesis, Uni-
versity of Sheffield, 2013.

[43] L. Demkowicz, T. Fiihrer, N. Heuer, X. Tian, The double adaptivity paradigm: (how
to circumvent the discrete inf-sup conditions of Brezzi), Comput. Math. Appl. 95
(2021) 41-66.

[44] J. Salazar, J. Mora, L. Demkowicz, Alternative enriched test spaces in the DPG
method for singular perturbation problems, Comput. Methods Appl. Math. 19 (3)
(2019) 603-630.

[45] J. Badger, S. Henneking, S. Petrides, L. Demkowicz, Scalable DPG multigrid solver
for Helmholtz problems: a study on convergence, Comput. Math. Appl. 148 (2023)
81-92.

[46] S. Henneking, L. Demkowicz, A numerical study of the pollution error and DPG
adaptivity for long waveguide simulations, Comput. Math. Appl. 95 (2021) 85-100.

[47] S. Henneking, J. Grosek, L. Demkowicz, Model and computational advancements to
full vectorial Maxwell model for studying fiber amplifiers, Comput. Math. Appl. 85
(2021) 30-41.

[48] S. Petrides, L. Demkowicz, An adaptive multigrid solver for DPG methods with ap-
plications in linear acoustics and electromagnetics, Comput. Math. Appl. 87 (2021)
12-26.


http://refhub.elsevier.com/S0898-1221(24)00244-X/bib870DA22C4195AB6FF93172F0E96D2504s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib870DA22C4195AB6FF93172F0E96D2504s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib870DA22C4195AB6FF93172F0E96D2504s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3E29E462041C227A21C4ECD79DE599F3s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3E29E462041C227A21C4ECD79DE599F3s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3E29E462041C227A21C4ECD79DE599F3s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA66F87AE0BD7A1F0D464ED626493DE25s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA66F87AE0BD7A1F0D464ED626493DE25s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA8D31458C66897BC37178E0777D1F2C3s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA8D31458C66897BC37178E0777D1F2C3s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA8D31458C66897BC37178E0777D1F2C3s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib2D75DD06716CCC06D955DB2261C53C46s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib2D75DD06716CCC06D955DB2261C53C46s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibE71A8A85F312A954A14DA850454632EDs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibE71A8A85F312A954A14DA850454632EDs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA00C4F078B3651B84437A1FB8137E2A4s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA00C4F078B3651B84437A1FB8137E2A4s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA00C4F078B3651B84437A1FB8137E2A4s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibABE62AC70BDB6954AE70638490D6487Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibABE62AC70BDB6954AE70638490D6487Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibBCC317DD498079E73617358858C20E90s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibBCC317DD498079E73617358858C20E90s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA61BF4FC11827AEE13B45CEF136C5CB4s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA61BF4FC11827AEE13B45CEF136C5CB4s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibA61BF4FC11827AEE13B45CEF136C5CB4s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9AF2069921DB0F15F511DFC05421D76Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9AF2069921DB0F15F511DFC05421D76Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib9AF2069921DB0F15F511DFC05421D76Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibF29CDCCAD56369A96021E7CAED420132s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibF29CDCCAD56369A96021E7CAED420132s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibC96618A1BC4FDCFBC3990A209F70D202s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibC96618A1BC4FDCFBC3990A209F70D202s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibC96618A1BC4FDCFBC3990A209F70D202s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5C554695DA71CC420E42B633D08FF515s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCA840E1B2AF9F8FDECA8D564146271C9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCA840E1B2AF9F8FDECA8D564146271C9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCA840E1B2AF9F8FDECA8D564146271C9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib835E997A97F4236B27705DF4D50FCF9Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib835E997A97F4236B27705DF4D50FCF9Fs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib387D8C2D461F9AC8C27680D107BDE9C2s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib387D8C2D461F9AC8C27680D107BDE9C2s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib69762FF15730BA9235E5E7E832D6A1A9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib69762FF15730BA9235E5E7E832D6A1A9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib69762FF15730BA9235E5E7E832D6A1A9s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib3EB7855AB36AEF06BEC7EDB1E062367Es1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCA104611917CFCE18543D306099BC132s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCA104611917CFCE18543D306099BC132s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCA104611917CFCE18543D306099BC132s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib782A9CE20E6D434BA635E2439EB0C42Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib782A9CE20E6D434BA635E2439EB0C42Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib28281A872CA8346020E399F012AC2275s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib28281A872CA8346020E399F012AC2275s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCC2D6C20D43F38492723D0F5DC3EF997s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCC2D6C20D43F38492723D0F5DC3EF997s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibE59DC9536786F724EFFA3AB65383CE2Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibE59DC9536786F724EFFA3AB65383CE2Cs1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib15AB0540FBBBAC9EC52A8B2475057BE8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib15AB0540FBBBAC9EC52A8B2475057BE8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib15AB0540FBBBAC9EC52A8B2475057BE8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5BC06F5800D415CC95E1349EDBACA425s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5BC06F5800D415CC95E1349EDBACA425s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib5BC06F5800D415CC95E1349EDBACA425s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib0F814BECA553C3EC50AA2F972356C679s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib0F814BECA553C3EC50AA2F972356C679s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib0F814BECA553C3EC50AA2F972356C679s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCD02EE353C74F03E711C6FF0EF5A2F63s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibCD02EE353C74F03E711C6FF0EF5A2F63s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66136C6C523D2FCF18BAD340AEBD3AA1s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66136C6C523D2FCF18BAD340AEBD3AA1s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bib66136C6C523D2FCF18BAD340AEBD3AA1s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibFCD5874514BD5F1E0A1004B37D3694F8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibFCD5874514BD5F1E0A1004B37D3694F8s1
http://refhub.elsevier.com/S0898-1221(24)00244-X/bibFCD5874514BD5F1E0A1004B37D3694F8s1

	An anisotropic hp-adaptation framework for ultraweak discontinuous Petrov--Galerkin formulations
	1 Introduction
	2 DPG methodology
	3 Determining optimal hp refinements
	3.1 Step 1: Staging a Competition of Refinements
	3.2 Step 2: Determining Which Elements to Refine
	3.3 Step 3: Determining the Final Refinements
	3.4 Mesh closure

	4 Numerical results
	4.1 A boundary layer problem
	4.2 Fichera cube problem
	4.3 Eriksson--Johnson problem

	5 Conclusion
	Data availability
	References


