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In this article, we present a three-dimensional anisotropic ℎ𝑝-mesh refinement strategy for ultraweak 
discontinuous Petrov–Galerkin (DPG) formulations with optimal test functions. The refinement strategy utilizes 
the built-in residual-based error estimator accompanying the DPG discretization. The refinement strategy is a 
two-step process: (a) use the built-in error estimator to mark and isotropically ℎ𝑝-refine elements of the (coarse) 
mesh to generate a finer mesh; (b) use the reference solution on the finer mesh to compute optimal ℎ- and 
𝑝-refinements of the selected elements in the coarse mesh. The process is repeated with coarse and fine mesh 
being generated in every adaptation cycle, until a prescribed error tolerance is achieved. We demonstrate the 
performance of the proposed refinement strategy using several numerical examples on hexahedral meshes.
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1. Introduction

Automatic ℎ𝑝-mesh refinement algorithms are powerful tools that 
aid finite element discretizations in computing solutions of partial dif-
ferential equations (PDEs) in an efficient and accurate manner. They 
achieve this efficiency and accuracy by constructing meshes with opti-
mally distributed element size ℎ and polynomial order of approximation 
𝑝 [2,3]. Finite element meshes with optimal element size and poly-
nomial distribution are critical for resolving solution features such as 
boundary layers in convection-dominated diffusion problems or point 
and edge singularities in problems with re-entrant corners. In such prob-
lems, optimal ℎ𝑝-meshes are indispensable for achieving exponential 
convergence [4–8]. Designing algorithms capable of generating a se-
quence of optimal ℎ𝑝-meshes that deliver optimal convergence rates 
in a problem-agnostic manner has been a significant challenge in fi-
nite element research over the past few decades [6,9–17]. Typically, 
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1 See Section 2 for a detailed explanation.

automatic mesh refinement strategies are driven by computable error 
estimates. These error estimates are computed using the approximate 
solution delivered by the discretization scheme. Therefore, the accuracy 
and stability of the underlying numerical discretization are paramount 
for the effectiveness of the mesh refinement strategy.

The discontinuous Petrov–Galerkin (DPG) method with optimal 
test functions, first introduced by Demkowicz and Gopalakrishnan in 
[18–20], has emerged as a critical technology in terms of robustness and 
stability over the past decade. Given a stable variational formulation of 
an underlying PDE and a trial approximation space, the DPG method 
computes a test space so that the resulting discretization is inf–sup sta-
ble. The methodology delivers an orthogonal projection in the so-called 
energy norm. Another significant advantage of the DPG methodology is 
the presence of a built-in residual-based error estimator, also known as 
the energy error estimate. This makes the DPG method an ideal candi-
date for automatic mesh optimization algorithms.

In this article, we focus on the ultraweak DPG finite element for-
mulation with optimal test functions and propose a problem-agnostic 
anisotropic ℎ𝑝-mesh refinement strategy. It is critical to mention that, 
for the ultraweak DPG method, the energy norm is equivalent to the 
𝐿2-error [21]. Consequently, the method delivers essentially the 𝐿2-

projection of the unknown solution.1
The proposed refinement strategy consists of the following steps:
https://doi.org/10.1016/j.camwa.2024.05.025
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• Step 1: Solve the problem on the current coarse mesh.
• Step 2: Utilize the computed DPG residual to mark coarse mesh 
elements for refinements.

• Step 3: Isotropically ℎ𝑝-refine the marked elements to generate a 
fine mesh.

• Step 4: Solve the problem on the fine mesh to obtain the fine mesh 
solution 𝑢.

• Step 5: Use the fine mesh solution 𝑢 as a reference solution to de-
termine optimal (anisotropic) ℎ𝑝-refinements of the selected coarse 
grid elements.

• Step 6: Restore the coarse mesh and execute the optimal ℎ𝑝-
refinements.

We essentially use the ℎ𝑝-algorithm from [2,3]. Optimizing the mesh in 
the 𝐿2-space greatly simplifies the original procedure. There is no need 
for mesh optimization on edges and faces; the Projection-Based Interpo-
lation reduces to the 𝐿2-projection performed on elements only. The 
optimal refinements of a coarse element 𝐾 are determined by maximiz-
ing the rate (𝑒ℎ𝑝) with which the projection error decreases,

𝑒ℎ𝑝 ∶=
‖𝑢− 𝑃coarse𝑢‖2 − ‖𝑢− 𝑃opt𝑢‖2

𝑁opt −𝑁coarse
.

Here, 𝑃coarse denotes the 𝐿2-projection onto the coarse mesh, 𝑃opt is the 
projection onto the optimal mesh to be determined, 𝑁opt and 𝑁coarse de-
note the number of degrees of freedom (dofs) of the optimal and coarse 
grid elements, respectively. As the 𝐿2-projection onto discontinuous 
polynomial spaces is a purely local operation, the mesh optimization 
can be trivially performed in parallel.

The main contributions of this paper are: (1) An anisotropic ℎ𝑝-mesh 
refinement strategy that greatly simplifies the algorithm proposed in 
[2,3] as it relies solely on 𝐿2 projections, thereby significantly reduc-
ing the implementation complexity of the proposed strategy compared 
to the approach in [2,3]; (2) Employing the DPG method, and dis-
cretization of ultraweak DPG finite element formulations in particular, 
to enable a robust and reliable 𝐿2 projection-based anisotropic ℎ𝑝-mesh 
refinement strategy that is applicable to any well-posed variational prob-
lem; (3) Utilizing the DPG residual-based error estimator in Step 3 of 
the proposed algorithm to compute intermediary fine mesh solutions, 
which is computationally much more efficient than the global refine-
ment strategy employed in [2,3]; and (4) 3D numerical experiments to 
demonstrate the efficacy of the proposed anisotropic ℎ𝑝-adaptive refine-
ment strategy for problems involving boundary layers and geometric 
singularities.

The article is organized as follows. Section 2 briefly introduces the 
ultraweak DPG finite element discretization with optimal test functions. 
Section 3 provides the details of the mesh optimization algorithm. In 
Section 4, numerical results show the efficacy of the proposed refine-
ment strategy. Finally, we conclude with a short discussion in Section 5.

2. DPG methodology

The core idea behind the (ideal) DPG method is to automatically 
generate a stable discretization for a given well-posed variational for-
mulation and an approximate trial space. The method achieves stability 
by computing an optimal discrete test space [19,22] corresponding to 
the approximate trial space in such a way that the supremum over the 
continuous test space in the discrete inf–sup [23] is automatically at-
tained over the discrete test space. The optimal test space is obtained 
by inverting the Riesz map corresponding to the test inner product over 
a discontinuous or broken2 test space. Unfortunately, inverting the Riesz 
operator exactly is impossible due to the infinite-dimensional nature of 
the continuous test space. Thus, in practical realizations of DPG meth-
ods, we approximate the inverse of the Riesz operator by inverting 

2 Hence the “D” in the DPG method.
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the Gram matrix induced by the test norm on a larger, but finite-
dimensional enriched discontinuous test space.3 The use of broken test 
spaces enables element-wise inversion of the Gram matrix, but it also 
introduces trace variables defined on the mesh skeleton [24].

We consider a model Poisson problem. Let Ω ⊂ ℝ3 be a bounded 
Lipschitz domain with boundary Γ split into two disjoint parts: Γ𝑢 and 
Γ𝜎 . The first-order formulation of the Poisson problem is given by:

⎧⎪⎨⎪⎩
𝝈 −∇𝑢 = 𝟎 in Ω,
−∇ ⋅ 𝝈 = 𝑓 in Ω,

𝑢 = 𝑢0 on Γ𝑢,
𝝈 ⋅ 𝒏 = 𝜎0 on Γ𝜎,

(2.1)

where 𝑓 ∈𝐿2(Ω) represents the source term and 𝒏 denotes the outward 
normal. Before presenting the ultraweak variational formulation, we 
briefly introduce the energy spaces used in this article. We define the 
standard energy spaces as:

𝐿2(Ω) = {𝑢 ∶ Ω→ℝ ∶ ‖𝑢‖ <∞} ,

𝐻1(Ω) =
{
𝑣 ∶ Ω→ℝ ∶ 𝑣 ∈ 𝐿2(Ω),∇𝑣 ∈

(
𝐿2(Ω)

)3}
, (2.2)

𝑯(div,Ω) =
{
𝒘 ∶ Ω→ℝ3 ∶𝒘 ∈ (𝐿2(Ω))3,∇ ⋅𝒘 ∈ 𝐿2(Ω)

}
.

In the DPG method, discontinuous energy spaces are used for the test 
functions. Thus, we must define broken equivalents of 𝐻1(Ω) and 
𝑯(div, Ω) spaces for the finite element mesh (Ωℎ):

𝐻1(Ωℎ) ∶=
{
𝑣 ∶ Ω→ℝ ∶ 𝑣|||𝐾 ∈𝐻1(𝐾) ∀𝐾 ∈ Ωℎ

}
,

𝑯(div,Ωℎ) ∶=
{
𝒘 ∶ Ω→ℝ3 ∶𝒘|||𝐾 ∈𝑯(div,𝐾) ∀𝐾 ∈ Ωℎ

}
,

(2.3)

where 𝐾 ∈Ωℎ represents an element of the finite element mesh. Use of 
the broken test spaces [24] leads to the introduction of additional trace 
unknowns on the mesh skeleton. The traces spaces are defined as:

𝐻1∕2(Γℎ) ∶=
{
𝑢̂ ∶ ∃𝑢 ∈ 𝐻1(Ω) such that 𝑢̂ = 𝛾𝐾 (𝑢|||𝐾 )on𝜕𝐾 ∀𝐾 ∈Ωℎ

}
,

𝐻−1∕2(Γℎ) ∶=
{
𝜎̂𝑛 ∶ ∃𝝈 ∈𝑯(div,Ω) such that 𝜎̂𝑛 = 𝛾𝐾

𝑛
(𝝈|||𝐾 )on𝜕𝐾 ∀𝐾 ∈Ωℎ

}
,

(2.4)

where 𝛾𝐾 and 𝛾𝐾
𝑛
represent continuous and normal trace operators, 

respectively [25].

Ultraweak formulation. Let (𝑈, 𝑈̂ ) be the approximation trial space, 𝑉
the test space, and 𝑉 ′ the dual space of 𝑉 . Then, the ultraweak DPG 
formulation of the Poisson problem can be stated as: Given 𝑙 ∈ 𝑉 ′, find 
𝔲 ∈ 𝑈 and 𝔲̂ ∈ 𝑈̂ satisfying:

𝑏(𝔲,𝔳) + 𝑏̂(𝔲̂,𝔳) = 𝑙(𝔳) ∀𝔳 ∈ 𝑉 , (2.5)

where

𝔲 = (𝑢,𝝈) ∈ 𝑈 ∶= 𝐿2(Ω) × (𝐿2(Ω))3,

𝔲̂ = (𝑢̂, 𝜎̂𝑛) ∈ 𝑈̂ ∶= 𝐻1∕2(Γℎ) ×𝐻−1∕2(Γℎ) ∶

𝑢̂ = 𝑢0 onΓ𝑢, 𝜎̂𝑛 = 𝜎0 onΓ𝜎,

𝔳 = (𝑣,𝝉) ∈ 𝑉 ∶= 𝐻1(Ωℎ) ×𝑯(div,Ωℎ),

𝑏(𝔲,𝔳) = (𝝈,∇𝑣)Ωℎ
+ (𝝈,𝝉)Ωℎ

+ (𝑢,∇ ⋅ 𝝉)Ωℎ
,

𝑏̂(𝔲̂,𝔳) = −⟨𝑢̂,𝝉 ⋅ 𝒏⟩Γℎ − ⟨𝜎̂𝑛, 𝑣⟩Γℎ ,
𝑙(𝔳) = (𝑓, 𝑣)Ωℎ

.

(2.6)

In (2.6), ⟨⋅, ⋅⟩Γℎ represents duality pairings defined over mesh skeleton 
Γℎ,

3 We then refer to it as the practical DPG method.
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⟨𝑢̂,𝝉 ⋅ 𝒏⟩Γℎ ∶= ∑
𝐾∈Ωℎ

⟨𝑢̂,𝝉 ⋅ 𝒏𝐾⟩𝜕𝐾 ,

⟨𝜎̂ℎ, 𝑣⟩Γℎ ∶= ∑
𝐾∈Ωℎ

⟨𝜎̂ℎ, 𝑣⟩𝜕𝐾 ,
(2.7)

and

(⋅, ⋅)Ωℎ
=

∑
𝐾 ∈Ωℎ

(⋅, ⋅)𝐿2(𝐾) . (2.8)

The broken test space is equipped with the adjoint graph norm [26,27]:

‖𝔳‖2
𝑉
∶= ‖𝐴⋆

ℎ
𝔳‖2 + 𝛼‖𝔳‖2 (2.9)

where 𝛼 > 0 is a scaling constant, and 𝐴⋆
ℎ
𝔳 = (∇ ⋅ 𝝉 ,∇𝑣+ 𝝉)Ωℎ

is 
the (formal) adjoint operator of 𝐴ℎ𝔲 = (𝝈 −∇𝑢,−∇ ⋅ 𝝈)Ωℎ

computed 
element-wise. In this paper, all numerical experiments use 𝛼 = 1.

Another point of view—useful for implementation of the DPG 
method (see below)—is to reinterpret problem (2.5) with DPG as 
a mixed method [28,29,22]. Let 𝑉ℎ ⊂ 𝑉 denote the enriched finite-

dimensional test space4 and let

𝑅𝑉 ,𝐾 ∶ 𝑉 (𝐾)→ (𝑉 (𝐾))′ (2.10)

denote the element-wise Riesz operator corresponding to the test inner 
product. By identifying the residual defined in the (broken) test space 
(using the fact that the element-wise Riesz map 𝑅𝑉 ,𝐾 is an isometry) 
𝜓𝐾 ∶= 𝑅−1

𝑉 ,𝐾
(𝑙𝐾 (⋅) − 𝑏𝐾 (𝔲ℎ, ⋅) − 𝑏̂𝐾 (𝔲̂ℎ, ⋅)) as a new unknown, we can 

solve a mixed problem of the form

⎧⎪⎨⎪⎩
𝜓ℎ ∈ 𝑉ℎ, 𝔲ℎ ∈𝑈ℎ, 𝔲̂ℎ ∈𝑈ℎ,

(𝜓ℎ,𝔳)𝑉 − 𝑏(𝔲ℎ,𝔳) − 𝑏̂(𝔲̂ℎ,𝔳) = 𝑙(𝔳) 𝔳 ∈ 𝑉ℎ
𝑏(𝛿𝔲ℎ,𝜓ℎ) = 0 𝛿𝔲ℎ ∈𝑈ℎ

𝑏̂(𝛿𝔲̂ℎ,𝜓ℎ) = 0 𝛿𝔲̂ℎ ∈ 𝑈̂ℎ

(2.11)

where trial spaces 𝑈 and 𝑈̂ are discretized with conforming finite-
dimensional spaces 𝑈ℎ ⊂ 𝑈 , 𝑈̂ℎ ⊂ 𝑈̂ .5

Implementation of the DPG method. Next, we briefly discuss the algebraic 
structure of the resulting linear system and the built-in error estimator. 
The basis functions for 𝑉ℎ, 𝑈ℎ and 𝑈̂ℎ are denoted by 𝜑𝑖, 𝜓𝑖 and 𝜓̂𝑖

respectively. From (2.6), we construct the following matrices for an 
element 𝐾 ∈Ωℎ,

G𝐾,𝑙𝑗 = (𝜑𝑙,𝜑𝑗 )𝑉 ,

B𝐾,𝑖𝑗 = 𝑏𝐾 (𝜑𝑖,𝜓𝑗 ) ,

B̂𝐾,𝑖𝑗 = 𝑏̂𝐾 (𝜑𝑖, 𝜓̂𝑗 ) ,

l𝐾,𝑖 = 𝑙𝐾 (𝜑𝑖),

(2.12)

where G𝐾,𝑙𝑗 represents the element Gram matrix corresponding to 
the test inner product and approximates the Riesz operator when dis-
cretized over 𝑉ℎ(𝐾). B𝐾,𝑖𝑗 represents the element stiffness matrix cor-
responding to the 𝐿2 variables, B̂𝐾,𝑖𝑗 represents the element stiffness 
matrix corresponding to the trace variables, and l𝐾,𝑖 is the element load 
vector. As usual, 𝑏𝐾 (⋅, ⋅), 𝑏̂𝐾 (⋅, ⋅) and 𝑙𝐾 (⋅) denote element 𝐾 contribu-

tions to bilinear forms 𝑏(𝔲, 𝔳), ̂𝑏(𝔲̂, 𝔳), and linear form 𝑙(𝔳), respectively. 
From (2.12), we obtain a symmetric positive definite linear system for 
each element 𝐾 ,

⎡⎢⎢⎣
G𝐾 B𝐾 B̂𝐾

B𝑇
𝐾

0 0
B̂𝑇
𝐾

0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
Ψ𝐾

u𝐾
û𝐾

⎤⎥⎥⎦ =
⎡⎢⎢⎣
l𝐾
0
0

⎤⎥⎥⎦ , (2.13)

4 The enriched test space is discretized with broken (discontinuous) exact 
sequence spaces of order 𝑝 + 1.
5 In this article, we employ orientation-embedded exact sequence elements 
[30] of order 𝑝 for discretization of the trial space.
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where [u𝐾, ̂u𝐾 ]𝑇 and [Ψ𝐾 ] are respectively the solution dofs and the 
residual dofs associated with element 𝐾 . In a practical implementation, 
the mixed system (2.13) is reduced by statically condensing the residual 
dofs, giving an element-local DPG linear system of the form[
B𝐾 B̂𝐾

]𝑇G−1
𝐾

[
B𝐾 B̂𝐾

] [
u𝐾 û𝐾

]𝑇 =
[
B𝐾 B̂𝐾

]𝑇G−1
𝐾
l𝐾 . (2.14)

A crucial point for discretization with the DPG method is the fact that 
the DPG formulations can be implemented within a standard Galerkin 
finite element code, as long as the code supports conforming discretiza-
tion of the exact sequence energy spaces [30,31]. Indeed, in terms of 
implementation, the entire DPG method comes down to setting up the 
DPG linear system (2.14) for each element in the mesh; both the com-
putation of optimal test functions as well as the DPG residual-based 
error estimator are local to each element and thus easily parallelizable. 
After the solution dofs have been obtained by solving the globally as-
sembled system, the element-local DPG residual is easily computed for 
each element 𝐾 :

Ψ𝐾 =G−1
𝐾
(l𝐾 −B𝐾u𝐾 − B̂𝐾 û𝐾 ) . (2.15)

An in-depth exposition of the algebraic structure of the linear system 
induced by DPG formulation for a diffusion problem can be found in 
[19,32].

The built-in energy error estimate for a mesh element 𝐾 in the finite 
element mesh (Ωℎ) is given by:

‖(𝔲, 𝔲̂) − (𝔲ℎ, 𝔲̂ℎ)‖2𝐸,𝐾
∶= ‖𝑅−1

𝑉 ,𝐾

(
𝑙𝐾 (⋅) − 𝑏𝐾 (𝔲ℎ, ⋅) − 𝑏̂𝐾 (𝔲̂ℎ, ⋅)

)‖2
𝑉 (𝐾)

. (2.16)

One important aspect of the ultraweak DPG formulation is that the en-
ergy norm (2.16), computed with test norm (2.9), is equivalent with the 
𝐿2-norm.6 With the element test space 𝑉 (𝐾) approximated by a finite-
dimensional enriched subspace 𝑉ℎ(𝐾), the element error indicators are 
then computed as7:

𝜂𝐾 ∶= ‖Ψ𝐾‖2
𝑉 (𝐾) = ‖G−1

𝐾
(l𝐾 −B𝐾u𝐾 − B̂𝐾 û𝐾 )‖2𝑉 (𝐾) . (2.17)

Equivalence of norms. The ultraweak formulation using DPG methodol-
ogy involves three groups of variables: the 𝐿2 field variables (𝔲), the 
trace variables (𝔲̂), and the Riesz representation of the residual (Ψ). 
Considering an idealized semidiscrete problem where Ψ remains undis-
cretized leads to the ideal DPG method. This approach is justified if one 
discretizes the variables with higher-order elements (enriched spaces). 
This is indeed the case in the practical DPG method, where the error 
in Ψ is of higher order, as can be demonstrated by the construction of 
appropriate Fortin operators. Correspondingly, we can consider an ide-
alized setting where both Ψ and 𝔲̂ remain undiscretized. In this case, 
the DPG method can be viewed as a practical realization of a weakly 
conforming discretization of the test space. In one-dimensional prob-
lems, the trace variables are scalar values, automatically leading to the 
best approximation error of traces being zero. In the present work, for 
three-dimensional problems solved using the practical DPG method, we 
assume that if we discretize the Riesz representation and the trace vari-
ables with higher-order elements, the best approximation error of the 
traces and the Riesz representation can be neglected compared to the 
best approximation error of the field variables. In such a case, the en-
ergy error corresponding to the adjoint graph norm is indeed equivalent 

6 The energy norm does not coincide with the 𝐿2-norm only because the 
adjoint test norm is not localizable, hence the test norm (2.9) is an adjoint 
graph norm with an 𝐿2 component scaled with coefficient 𝛼; however, with 
sufficiently small 𝛼, the energy norm is tightly equivalent with the 𝐿2-norm.
7 The energy norm computed on the finite-dimensional enriched test space 
is equivalent with the 𝐿2-norm; however, in addition to scaling coefficient 𝛼, 
the equivalence constants depend on the continuity constant of the problem-
dependent Fortin operator [33].
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to the 𝐿2 error in the field. By restricting ourselves to the ideal DPG 
method, we can bound the 𝐿2 norm of the field variable with its energy 
norm as follows:

‖𝔲‖ = sup
𝔳∈𝑉 (Ω)

|(𝔲,𝐴⋆𝔳)|‖𝐴⋆𝔳‖
≤
(
1 + 𝛼

𝛾2

) 1
2

sup
𝔳∈𝑉 (Ω)

|(𝔲,𝐴⋆𝔳)|
(‖𝐴⋆𝔳‖2 + 𝛼‖𝔳‖2) 12

=
(
1 + 𝛼

𝛾2

) 1
2

sup
𝔳∈𝑉 (Ω)

|(𝔲,𝐴⋆𝔳) + ⟨𝔲̂,𝔳⟩|
(‖𝐴⋆𝔳‖2 + 𝛼‖𝔳‖2) 12

≤
(
1 + 𝛼

𝛾2

) 1
2

sup
𝔳∈𝑉 (Ωℎ)

|(𝔲,𝐴⋆
ℎ
𝔳) + ⟨𝔲̂,𝔳⟩|

(‖𝐴⋆
ℎ
𝔳‖2 + 𝛼‖𝔳‖2) 12 =

(
1 + 𝛼

𝛾2

) 1
2 ‖(𝔲, 𝔲̂)‖𝐸 ,

(2.18)

where 𝛾 is the global boundedness below constant, 𝐴⋆ is the continuous 
adjoint operator, and 𝑉 (Ω) denotes the globally conforming (unbroken) 
test space. Conversely, element 𝐾 ’s contribution to the energy norm is 
bounded by the sum of the 𝐿2 norm of the field variable 𝔲 and the 
minimum energy extension norm of the trace variable 𝔲̂:

‖(𝔲, 𝔲̂)‖𝐸,𝐾 = sup
𝔳∈𝑉 (𝐾)

|(𝔲,𝐴⋆𝔳) + ⟨𝔲̂,𝔳⟩|
(‖𝐴⋆𝔳‖2 + 𝛼‖𝔳‖2) 12

≤ sup
𝔳∈𝑉 (𝐾)

|(𝔲,𝐴⋆𝔳)|
(‖𝐴⋆𝔳‖2 + 𝛼‖𝔳‖2) 12 + sup

𝔳∈𝑉 (𝐾)

|⟨𝔲̂,𝔳⟩|
(‖𝐴⋆𝔳‖2 + 𝛼‖𝔳‖2) 12

≤ ‖𝔲‖+ ‖𝔲̂‖𝑈̂
(2.19)

where ‖ ⋅ ‖𝑈̂ denotes the minimum energy extension norm. In the 
present work, we optimize the mesh by minimizing only the 𝐿2 er-

ror in the fields, assuming that the optimal mesh will also produce an 
adequate quality approximation of the trace variables. A mesh opti-
mization strategy that also accounts for the trace variables would have 
significantly higher computational cost and be problem-dependent.

3. Determining optimal 𝒉𝒑 refinements

The ℎ𝑝-algorithm described in this section is exactly the algorithm 
from [2,3], but specialized to the 𝐿2-energy space. The corresponding 
algorithms for the 𝐻1, 𝐻(curl), and 𝐻(div) energy spaces, all based 
on minimizing the Projection-Based (PB) interpolation error, are signifi-
cantly more intricate and consist of several steps reflecting the nature 
of the particular energy space. For instance, the algorithms for 𝐻1 and 
𝐻(curl) spaces consist of three stages involving mesh optimization on 
(interiors of) edges, faces and, finally, elements. The optimal mesh de-
termined in each step serves as a starting point for the optimization in 
the subsequent step.

In the case of the 𝐿2-energy space, there are no global conformity 
requirements; the PB interpolation reduces to just the 𝐿2-projection, 
and the mesh optimization takes place over elements only. The imple-
mentation of the algorithm is thus much simpler. The second difference 
between the presented and the original ℎ𝑝-algorithm lies in the involved 
elements. In the original algorithm, the optimization takes place over all 
elements, whereas here it only does for elements marked for refinement 
by the DPG residual. The number of elements entering the mesh opti-
mization is thus much smaller.8 The fine mesh providing the reference 
solution for the mesh optimization is also much smaller than the glob-
ally ℎ𝑝-refined mesh used in [2,3]. Fig. 1 illustrates a two-dimensional 

8 Dependent upon the parameter in the Dörfler strategy [34].
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Fig. 1. Isotropic ℎ𝑝-refinement of the marked elements: the elements marked 
for refinement are shaded in red on the coarse mesh.

case of mesh elements being marked by the DPG residual, followed by 
their isotropic ℎ𝑝-refinement9 to generate the fine mesh.

The ℎ𝑝-algorithm consists of three steps: the first and third step are 
purely local (can be done trivially in parallel) while the second step 
requires a global reduction over the elements preselected for refinement 
by the DPG residual.

3.1. Step 1: Staging a Competition of Refinements

In the first step of the algorithm, we stage a competition between 
𝑝- and various anisotropic ℎ-refinements, by computing the so-called 
guaranteed error reduction rate. The comparison between the various 
candidate refinements is based on the error reduction rate (𝑒ℎ𝑝) defined 
as:

𝑒ℎ𝑝 ∶=
‖𝑢− 𝑃old𝑢‖2 − ‖𝑢− 𝑃new𝑢‖2

𝑁new −𝑁old
, (3.20)

where 𝑢 represents the reference solution obtained with the ℎ𝑝-refined 
mesh generated using the DPG residual, 𝑃old is the 𝐿2-projection onto 
the original coarse mesh element (space), 𝑃new is the 𝐿2-projection onto 
a refined element (space), 𝑁new and 𝑁old are the dimensions of the new 
and old spaces (number of dofs), respectively, and ‖ ⋅ ‖ denotes the 
𝐿2-norm over the considered element 𝐾 .

The optimal element refinement is determined by staging a com-
petition among various candidate refinements. For hexahedral ele-
ments considered in this paper, there are eight possibilities: no ℎ-
refinement (i.e. 𝑝-refinement only), three anisotropic ℎ2-refinements, 
three anisotropic ℎ4-refinements, and the isotropic ℎ8-refinement. Fig. 2
illustrates all possible ℎ-refinement candidates. Each of the eight refine-
ments is accompanied with the determination of the optimal distribu-
tion of polynomial degrees. This leads to a catastrophically large num-
ber of possible cases for ℎ𝑝-refinement. With 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 ∈ {1, … , 10}, 
there are “only” 103 scenarios for the just 𝑝-refined element, but a stag-
gering total of 1024 cases for the ℎ8-refined element. Clearly, a simple 
search through all possible cases is not feasible. Instead we rely on the 
classical 𝑝-refinement strategy, see e.g. [35], based on increasing the 
polynomial order in the subelement with the maximum error. This re-
duces the discrete search to the so-called maximum error reduction path
through the vast discrete space of potentially possible refinements.

Maximum error reduction path for a 𝑝-refined element. We begin the dis-
cussion with the simplest case: 𝑝-refinement only. Assuming that the 
polynomial order can only increase (by one order), there are only a to-
tal of 23 − 1 = 7 possible scenarios. The direct search is then possible 
but can be replaced with a slightly faster dynamic search, as illus-
trated in Fig. 3. To choose the optimal 𝑝-refinement, we traverse from 

9 For a three-dimensional hexahedral element, isotropic ℎ𝑝-refinement de-
notes an isotropic ℎ8-refinement followed by an isotropic 𝑝-refinement of order 
1.
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Fig. 2. Various possible ℎ-refinements for a hexahedral element, depicted in (a): (b–d) anisotropic ℎ2-refinements; (e–g) anisotropic ℎ4-refinements; and (h) isotropic 
ℎ8-refinement.

Fig. 3. Maximum error reduction path for the 𝑝-refined element: traversing from (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) to (𝑝𝑥 + 1, 𝑝𝑦 + 1, 𝑝𝑧 + 1) for a hexahedral element.
(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) to (𝑝𝑥 +1, 𝑝𝑦 +1, 𝑝𝑧 +1) by increasing the order in directions 
that maximize 𝑒ℎ𝑝. For a hexahedral element, the path of traversal has 
two stages. The first stage has three branches corresponding to 𝑝𝑥, 𝑝𝑦, 
and 𝑝𝑧. The second stage has two branches corresponding to the remain-
ing directions, with the final configuration being (𝑝𝑥 + 1, 𝑝𝑦 + 1, 𝑝𝑧 + 1). 
In Fig. 3, the arrows in red represent the branches corresponding to the 
highest values of 𝑒ℎ𝑝 at each stage, and the polynomial order marked in 
red indicates the polynomial order increased after each stage.

Following the path, we select the 𝑝-refinement that delivers the 
largest error reduction rate. In the case of an affine element, the ele-
ment Jacobian (jac) is constant, and the 𝐿2-Piola transform (pullback 
map) reduces to a scaling with the Jacobian:

𝜙𝑗 (𝑥) =
1
jac

𝜙̂𝑗 (𝜉), jac =
|||||𝜕𝑥𝑖𝜕𝜉𝑗

||||| , (3.21)

where 𝜙𝑗 is an element 𝐿2 shape function corresponding to a master 
element shape function 𝜙̂𝑗 . Consequently, the 𝐿2 mass matrix,
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𝑀𝑖𝑗 ∶= ∫
𝐾

𝜙𝑖𝜙𝑗 𝑑𝑥 =
1
jac ∫̂

𝐾

𝜙̂𝑖𝜙̂𝑗 𝑑𝜉 , (3.22)

is diagonal, and the evaluation of the 𝐿2 projection of a function 𝑢 onto 
a subspace spanned by functions 𝜙1, … , 𝜙𝑁 , reduces to the evaluation 
of the load vector:

𝑃𝑁𝑢 =
𝑁∑
𝑗=1

𝑢𝑗𝜙𝑗 , 𝑢𝑗 =
1

𝑀𝑗𝑗
∫
𝐾

𝑢𝜙𝑗 𝑑𝑥 . (3.23)

Raising the polynomial order in one direction amounts to adding extra 
orthogonal shape functions 𝜙𝑁+𝑙 with 𝑙 = 1, ...., 𝑛. Consequently, evalu-
ation of the error reduction rate reduces to:

‖𝑢− 𝑃𝑁𝑢‖2 − ‖𝑢− 𝑃𝑁+1𝑢‖2
𝑛

=
‖𝑃𝑁+1𝑢‖2 − ‖𝑃𝑁𝑢‖2

𝑛
(3.24)

= 1
𝑛

𝑛∑|𝑢𝑁+𝑙|2𝑀𝑁+𝑙,𝑁+𝑙 =
1
𝑛

𝑛∑( ∫
𝐾
𝑢𝜙𝑁+𝑙 𝑑𝑥

𝑀𝑁+𝑙,𝑁+𝑙

)2

𝑀𝑁+𝑙,𝑁+𝑙

𝑙=1 𝑙=1
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Fig. 4. Staging a competition between the 𝑝-refined and ℎ-refined element. The maximum error reduction path for the ℎ-refined element traverses from (𝑝𝐾1
, 𝑝𝐾2

) =
(1, 1) to the winning refinement (𝑝𝐾1

, 𝑝𝐾2
) = (4, 1).
= 1
𝑛

𝑛∑
𝑙=1

𝑀−1
𝑁+𝑙,𝑁+𝑙

⎛⎜⎜⎝∫𝐾 𝑢𝜙𝑁+𝑙 𝑑𝑥
⎞⎟⎟⎠
2

.

In the case of a general curvilinear element, the 𝐿2 mass matrix is not 
diagonal, and we use the telescopic solver based on the Cholesky de-
composition described in [3, p. 140].

Maximum error reduction path for an ℎ-refined element. Contrary to the 
pure 𝑝-refinement, we always start with a trilinear element where 
𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 = 1. The reference solution 𝑢 is projected onto the subele-
ment mesh and, based on the distribution of the error, subelements are 
selected for refinement using a greedy strategy with a 70% factor. Once 
the subelements have been identified for 𝑝-refinement, the routine de-
scribed above is employed to determine the optimal 𝑝-refinement for 
each subelement.

Fig. 4 shows the simple case of a 1D element 𝐾 , starting with poly-
nomial order 𝑝𝐾 = 4. The subelements of the ℎ-refined element 𝐾 are 
denoted 𝐾1 and 𝐾2, and their respective polynomial orders 𝑝𝐾1

and 
𝑝𝐾2

. The maximum error reduction path for this case (illustrated in 
Fig. 4c) leads to the winning refinement (𝑝𝐾1

, 𝑝𝐾2
) = (4, 1) with the ap-

proximate solution shown in Fig. 4b.

The optimal refinement. The selection of the optimal refinement is carried 
out by comparing the best error reduction rates delivered by the eight 
differently ℎ-refined meshes. The highest error reduction rate, delivered 
by the optimal refinement, is called the guaranteed error reduction rate
and denoted by 𝑒∗

ℎ𝑝
.

3.2. Step 2: Determining Which Elements to Refine

We loop over all considered coarse mesh elements to determine the 
element with the best guaranteed error reduction rate 𝑒∗

ℎ𝑝,max
. In principle, 

one could then refine only this one element. However, to accelerate 
the refinements (i.e. reduce the number of refinement steps), a greedy 
strategy is employed selecting all elements that deliver a rate greater 
than or equal to 25% of the best guaranteed error reduction rate. Note 
that this strategy implies that there may be elements initially marked 
for refinement by the DPG residual which ultimately remain unrefined.

3.3. Step 3: Determining the Final Refinements

For each element selected for refinement in Step 2, we could simply 
execute the corresponding optimal refinement determined in Step 1; 
and we do this indeed for the purely 𝑝-refined elements. However, when 
performing ℎ-refinements we typically choose to invest additional dofs 
by considering the already-performed 𝑝-refinements that followed the 
optimal refinement while investigating error reduction rates in Step 1.

In particular, in Step 1 we recorded the error reduction rates for 
all subelement meshes following the maximum error reduction path. 
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On this path, we select the maximum investment (in terms of new dofs) 
that still delivers 25% of the best guaranteed error reduction rate (mean-
ing it would still satisfy the Step 2 criterion). The rational for doing so 
is to reduce the overall number of outer-loop iterations (number of re-
finement steps) by maximizing the investment in each step as long as it 
pays off sufficiently (delivering a sufficiently high error reduction rate, 
as determined by Step 2).

For example, in the 1D case illustrated in Fig. 4, the refinement 
shown in Fig. 4b won the competition with the 𝑝-refinement (Fig. 4a) 
but, dependent upon the threshold value used in the greedy strategy, 
we may choose to invest additional dofs in one of the subelements.

Next, we consolidate Steps 1–3 and present the mesh optimization 
algorithm. In Algorithm 1, tol denotes the user-provided tolerance value 
for the DPG residual.

Algorithm 1 Mesh Optimization Algorithm.
1: Start with an initial trial mesh
2: while 𝜂Ωℎ

> tol do

3: Solve the problem on the current mesh.
4: Compute the DPG residual for the current mesh: 𝜂Ωℎ

=
(∑

𝐾∈Ωℎ
𝜂𝐾

)1∕2
.

5: Use the element residuals (𝜂𝑘) to mark elements for refinements (Dörfler 
strategy).

6: Isotropically ℎ𝑝-refine marked elements to generate the fine mesh.
7: Compute the reference solution 𝑢 using the fine mesh.
8: Step 1: For each refined element 𝐾 :
9: Determine the best possible 𝑝-refinement using the maximum er-
ror reduction path.

10: Determine the best possible ℎ-refinement using the maximum er-
ror reduction path.

11: Use error reduction rates to decide between 𝑝- and ℎ-refinement.
12: Determine the element guaranteed error reduction rate (𝑒∗

ℎ𝑝,𝐾
).

13: Step 2: Determine the best guaranteed error reduction rate (𝑒∗
ℎ𝑝,max

).
14: Unrefine the mesh.
15: Step 3: For each element 𝐾 marked for refinement:
16: if 𝑒∗

ℎ𝑝,𝐾
≥ 0.25 𝑒∗

ℎ𝑝,max
then

17: Perform the optimal ℎ𝑝-refinement.
18: end if

19: end while

3.4. Mesh closure

The ℎ𝑝 algorithm is implemented in ℎ𝑝3D, a general-purpose finite 
element code supporting hybrid meshes consisting of elements of all 
shapes (hexas, tets, prisms, pyramids), conforming discretizations of the 
exact-sequence spaces (𝐻1-, 𝐻(curl)-, 𝐻(div)-, and 𝐿2-conforming ele-
ments), solution of coupled multiphysics problems, and anisotropic ℎ𝑝-
refinements [36,37]. ℎ𝑝3D supports MPI/OpenMP parallelism [38,39]
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and is available under BSD-3 license.10 In the code, any ℎ-refinement 
is executed in two steps. Given a list of elements to refine (along with 
the requested, possibly anisotropic, ℎ-refinement flags), we proceed as 
follows.

Closure step 1 (local): Refine the elements from the list in the pro-
vided order, enforcing two rules:
• Compatibility with existing face refinements: upgrade the re-
quested element refinement flag to accommodate existing face 
refinements.

• One-irregularity rule for faces: employ the standard shelf or 
queue algorithm ([19, p. 71]) to ensure that no face is refined 
unless the face11 is unconstrained.

If one of the element faces is constrained, the element is placed on 
the shelf, and a necessary refinement of the neighbor across the 
face is executed, to eliminate the constraint. If the one-irregularity 
rule for faces prohibits the refinement, the corresponding neighbor 
is placed on the shelf and so on. Once the refinement of the pro-
cessed element is possible, it is executed and the process resumes 
with the last element from the shelf. The algorithm proceeds until 
the shelf is empty. All mesh manipulations (refinements) are sup-
ported for meshes that satisfy the one-irregularity rule for faces 
(not necessary for edges and vertices).

Closure step 2 (global): Loop through all elements and perform addi-
tional necessary refinements to eliminate edges and vertices with 
multiple constraints.

We refer to [39] for a more formal exposition of the algorithms. In the 
end, in both steps, a number of additional, unwanted refinements may 
be executed. These refinements can be isotropic or anisotropic, reflecting 
minimal requirements to eliminate the nodes with multiple constraints. 
In the ‘global’ ℎ𝑝-refinement driven by the DPG residual, all unwanted 
refinements are chosen to be isotropic. This is motivated by the fact that 
an unwillingly refined element (in Step 1) may, in fact, be on the DPG 
list of wanted refinements. However, once the optimal ℎ𝑝-refinements 
are determined, all unwanted refinements are executed in a minimal, 
anisotropic way.

All unwillingly ℎ-refined elements retain their respective polynomial 
order. In principle, one could attempt to find the corresponding optimal 
distribution of polynomial orders, but this has been not done in our 
current implementation. Hence, the presented meshes may be slightly 
overrefined.

4. Numerical results

4.1. A boundary layer problem

Sharp boundary layers are among the most commonly encountered 
flow features in computational fluid dynamics. Our first numerical ex-
periment demonstrates the proposed algorithm’s efficacy in resolving 
such boundary layers. In this test case, we solve a Poisson problem with 
a manufactured solution containing boundary layers. The manufactured 
solution is a three-dimensional extension of the solution of the Egger-
Schöberl problem [40]. In particular, we solve

−∇2𝑢 = 𝑓 (𝑥, 𝑦, 𝑧) in Ω ∶= (0,1)3,

𝑢 = 0 on Γ𝑢,

∇𝑢 ⋅ 𝒏 = 𝑔(𝑥, 𝑦, 𝑧) on Γ𝜎,

(4.25)

where

10 https://github .com /Oden -EAG /hp3d.
11 More precisely, the mid-face node.
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Γ𝑢 = ([0,1) × [0,1) × {0}) ∪ ([0,1) × {0} × [0,1)) ∪ ({0} × [0,1) × [0,1)) ,

Γ𝜎 = ([0,1] × [0,1] × {1}) ∪ ([0,1] × {1} × [0,1]) ∪ ({1} × [0,1] × [0,1]) .

(4.26)

In (4.25), 𝒏 is the outward normal, and 𝑓 and 𝑔 are generated using 
the exact solution. The exact solution is given by

𝑢(𝑥, 𝑦, 𝑧) =
(
𝑥+ 𝑒𝑥∕𝜖 − 1

1 − 𝑒1∕𝜖

)(
𝑦+ 𝑒𝑦∕𝜖 − 1

1 − 𝑒1∕𝜖

)(
𝑧+ 𝑒𝑧∕𝜖 − 1

1 − 𝑒1∕𝜖

)
. (4.27)

The solution exhibits a boundary layer near 𝑥 ≈ 1, 𝑦 ≈ 1 and 𝑧 ≈ 1. 
The strength of the boundary layer is inversely proportional to 𝜖. In this 
numerical experiment, 𝜖 = 0.005. The ℎ𝑝-adaptation is initialized with a 
mesh comprising only eight elements with a constant polynomial order 
of (2, 2, 2).12

Figs. 5a and 5b display the cross-section of an adapted mesh and the 
corresponding solution contour, respectively. Fig. 6 depicts the poly-
nomial distribution around the boundary layers on an anisotropically 
adapted ℎ𝑝-mesh. Fig. 7 presents the convergence results, comparing 
isotropic ℎ-adaptation and the proposed ℎ𝑝-refinement strategy. The 
Dörfler parameter for both isotropic and ℎ𝑝-refinement is 0.75. In Fig. 7, 
the depicted error is the combined relative error in all 𝐿2 variables.

Fig. 6 clearly illustrates the strong anisotropy and grading in the 
element size and the polynomial distribution. The anisotropy and the 
grading in element size are paramount for resolving strong boundary 
layers efficiently. The algorithm also prescribes an anisotropic polyno-
mial distribution in the boundary layers instead of an isotropic one. 
This directional preference of prescribing polynomial orders showcases 
a significant advantage of the proposed ℎ𝑝-refinement strategy: the 
ability to complement an anisotropic ℎ-refinement with an anisotropic 
𝑝-refinement. This approach makes the refinement strategy highly ef-
ficient in terms of allocating dofs when the solution exhibits strong 
anisotropic features. The algorithm does not waste any dofs in direc-
tions where the solution variables do not exhibit significant variations.

From Fig. 7, it is evident that anisotropic ℎ𝑝-refinements outper-
form isotropic ℎ-refinements by orders of magnitude. The convergence 
plots show the error and the residual against 3

√
ndof (where ndof repre-

sents the number of dofs), verifying exponential convergence. In Fig. 7, 
a reduction in the convergence rate for the ℎ𝑝-refinement can be ob-
served. The slowdown in convergence occurs due to the limiting of the 
highest polynomial order in the numerical experiments to 𝑝 = 6. The 
adaptation cycles are initially dominated by ℎ-refinements. Once the 
boundary layers are resolved, the algorithm starts preferring both 𝑝-
refinements along with ℎ-refinements. This behavior is expected, since, 
increasing the polynomial order on coarse meshes while approximating 
solutions with high gradients can induce spurious oscillations. In Fig. 8, 
we plot the effectivity index, defined as the ratio of the DPG residual-
based built-in error estimator and the composite 𝐿2 error of the field 
variables 𝑢 and 𝝈.

4.2. Fichera cube problem

To demonstrate the efficacy of the proposed refinement strategy in 
the presence of multiple singularities, we solve the well-known Fichera 
cube problem and perform ℎ𝑝-adaptations using the proposed refine-
ment strategy. The variant of the Fichera cube problem being solved 
here is given by:

∇2𝑢 = 0 in Ω ∶= (−1,1)3 ⧵ [0,1]3,

𝑢 = 0 on Γ𝑢,

∇𝑢 ⋅ 𝒏 = 𝑔(𝑥, 𝑦, 𝑧) on Γ𝜎.

(4.28)

12 In ℎ𝑝3D, we employ exact-sequence spaces [31]. Hence, an order of 
(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) denotes 𝐿2 shape functions of order (𝑝𝑥 − 1, 𝑝𝑦 − 1, 𝑝𝑧 − 1).

https://github.com/Oden-EAG/hp3d
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Fig. 5. Boundary layer problem: (a) cross-section of the mesh showing anisotropic elements required to resolve the boundary layers; and (b) contour plot illustrating 
the boundary layers on the 𝑦𝑧-plane. The boundary layers are along right and top faces of the cross-section.

Fig. 6. Boundary layer problem: an adapted mesh with 855 532 dofs; coloring indicates the polynomial distributions 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 in 𝑥-, 𝑦-, 𝑧-direction, respectively. 
The algorithm prescribes higher-order polynomials anisotropically corresponding to each boundary layer along the 𝑥-, 𝑦-, and 𝑧-axis.

Fig. 7. Boundary layer problem: convergence of relative 𝐿2 error and DPG residual. Even though there is a marginal decrease in the rate of convergence for the ℎ𝑝-
refinements (due to limiting 𝑝 ≤ 6 in the numerical experiments), both the error and the residual are 2–3 orders of magnitude lower compared to the ℎ-refinements 
for approximately the same number of dofs.
The domain is created by subdividing a large cube (−1,1)3 into eight 
smaller cubes and then removing one of the cubes. The Dirichlet data 
𝑢 = 0 is imposed on the three square faces aligned with planes of coor-
dinate axes, i.e.

Γ𝑢 =([0,1] × [0,1] × {0}) ∪ ([0,1] × {0} × [0,1])

∪ ({0} × [0,1] × [0,1]) . (4.29)

The volumetric load for the problem is zero. The problem is driven by 
the Neumann boundary condition on Γ𝜎 composed of the remaining 
faces of the cube. The data 𝑔 correspond to the sum of two-dimensional 
exact solutions of the L-shaped domain problem on 𝑥𝑦-, 𝑦𝑧-, and 𝑥𝑧-
planes. The exact solution of the L-shaped domain problem is given by:
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𝑢𝜂,𝜉 = 𝑟
2
3 cos(𝜃), 𝑟 =

√
𝜂2 + 𝜉2, 𝜃 = tan−1

(
𝜉

𝜂

)
, (4.30)

where (𝜂, 𝜉) denote (𝑥, 𝑦), (𝑦, 𝑧), or (𝑥, 𝑧) axes, respectively. These 
boundary conditions generate a solution with features analogous to an 
L-shaped domain problem but comprising multiple edge and vertex sin-
gularities. While the exact solution for the problem is unknown, the 
convergence of the DPG residual is shown in Fig. 13.

Figs. 9 and 10 depict the solution contour and the corresponding 
adapted mesh, respectively. Figs. 11 and 12 illustrate the polynomial 
distribution associated with the adapted mesh. Fig. 10 shows that the re-
finement algorithm performs highly anisotropic ℎ-refinements along the 
edge singularities, generating graded meshes. The anisotropic refine-
ments propagate through the volume to the opposing boundary faces 
on Γ𝜎 . The propagation of refinements happens in conjunction to the 
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Fig. 8. Boundary layer problem: effectivity index, defined as the ratio of the DPG residual-based error estimator and the composite 𝐿2 error of field variables 𝑢 and 
𝝈.

Fig. 9. Fichera cube problem: solution contour. The problem is driven by the Neumann boundary conditions on the L-shaped faces in (a) and the three visible square 
faces in (b). The faces aligned along the coordinate planes in (a) have the Dirichlet boundary conditions.

Fig. 10. Fichera cube problem: an anisotropically adapted ℎ𝑝-mesh with 1.3M dofs.
323
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Fig. 11. Fichera cube problem: polynomial distribution on the adapted ℎ𝑝-mesh. The algorithm prescribes low-order polynomials anisotropically around each edge 
singularity along 𝑥-, 𝑦- and 𝑧-axis. Fig. 12 presents a magnified view of the polynomial distribution and anisotropic mesh elements around the singularities.

Fig. 12. Fichera cube problem: magnified view of the mesh and the polynomial distribution near the edge and vertex singularities.
singularities arising from the faces with Neumann boundary conditions. 
Figs. 11 and 12 clearly indicate that the algorithm chooses lowest order 
polynomials around the singularities. Moving away from the singular-
ities, the algorithm prescribes higher order polynomials underscoring 
the smoothness of the solution variables. In Fig. 13, one can observe the 
exponential convergence of the residual on performing ℎ𝑝-refinements, 
whereas isotropic ℎ-refinements suffer from a loss of convergence due 
to the lack of required grading in size and polynomial distribution.

4.3. Eriksson–Johnson problem

We consider a convection-dominated diffusion problem motivated 
by the Eriksson–Johnson model problem [41]. Here, we extend the ex-
act solution of the two-dimensional problem by multiplying it with a 
sinusoidal term along 𝑧. In particular, we solve
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𝜕𝑢

𝜕𝑥
− 𝜖∇2𝑢 = 𝑓 (𝑥, 𝑦, 𝑧) in Ω ∶= (0,1)3,

𝑢 = 0 on Γ𝑢𝑎 ,

𝑢 = sin(𝜋𝑦) sin(𝜋𝑧) on Γ𝑢𝑏 ,

(4.31)

where

Γ𝑢𝑎 = 𝜕Ω ⧵ {0} × [0,1] × [0,1] and Γ𝑢𝑏 = {0} × [0,1] × [0,1]. (4.32)

The source 𝑓 and the boundary conditions are computed using the 
exact solution given by

𝑢(𝑥, 𝑦, 𝑧) = 𝑒𝑠1(𝑥−1) − 𝑒𝑠2(𝑥−1)

𝑒𝑠1 − 𝑒𝑠2
sin(𝜋𝑦) sin(𝜋𝑧), (4.33)

where

𝑠1 =
1 +

√
1 + 4𝜋2𝜖2

and 𝑠2 =
1 −

√
1 + 4𝜋2𝜖2

. (4.34)

2𝜖 2𝜖
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Fig. 13. Fichera cube problem: convergence of the DPG residual.

Fig. 14. Eriksson–Johnson problem: an adapted mesh and solution contour.
In this numerical experiments, 𝜖 = 0.01. Fig. 14 depicts the cross-
section of an adapted mesh and the corresponding solution contour at 
𝑧 = 0.5. The solution exhibits a boundary layer along the 𝑥-axis with si-
nusoidal variations along 𝑦 and 𝑧. The variation in the solution is also 
reflected in the ℎ𝑝-refinements executed by the algorithm. In order to 
capture the boundary layer, the algorithm generates anisotropic ele-
ments parallel to the 𝑦𝑧-plane and assigns the highest polynomial order 
along the 𝑥-axis inside the boundary layer. Since the boundary layer 
is weighted with sinusoidal variations in 𝑦 and 𝑧, the majority of the 
ℎ-refined elements in the boundary layer are positioned near 𝑦 = 0.5
and 𝑧 = 0.5. Fig. 15 illustrates the adapted mesh with the polynomial 
distribution along the 𝑥-axis. Fig. 16 presents the convergence plots for 
the relative 𝐿2 error and the residual, demonstrating the efficacy of the 
proposed ℎ𝑝-refinement strategy for this problem. Finally, Fig. 17 de-
picts the effectivity index defined as the ratio of the DPG residual-based 
built-in error estimator and the composite 𝐿2 error of the field variables 
𝑢 and 𝝈.

5. Conclusion

The anisotropic ℎ𝑝-refinement strategy presented in this article uti-
lizes the built-in DPG error-estimator and 𝐿2 projection-based error 
estimates for the ultraweak variational formulation. The efficacy of 
the proposed algorithm is demonstrated through numerical experiments 
containing boundary layers and singularities. The algorithm is able to 
generate a sequence of meshes that provide exponential convergence. 
Since the maximum polynomial order in our numerical experiments 
was capped at 𝑝 = 6 for practical (computational) reasons, we observe 
a slight loss of optimal convergence rate. Nonetheless, the accuracy of 
the solutions on the anisotropically refined ℎ𝑝-meshes remains orders of 
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magnitude better than that on isotropically refined meshes for approx-
imately the same number of dofs. The proposed ℎ𝑝-refinement strategy 
complements anisotropic ℎ-refinements with anisotropic 𝑝-refinements, 
which allows the algorithm to avoid any superfluous investment (in 
terms of dofs). In its current form, the proposed adaptation framework is 
primarily applicable to problems where the location of boundary layers 
and singularities is known a-priori. It allows one to initiate the adap-
tation cycles with tensor-product meshes aligned with the layers. For 
problems where the location of an internal layer or singularity is un-
known a-priori, a structured methodological framework is proposed in 
[42]. In this article, we have avoided the problem of accurately approxi-
mating the optimal test functions by performing numerical experiments 
only with modestly small diffusion constant 𝜖 = 10−2 and 𝜖 = 10−3. For 
alternative strategies to handle smaller values of 𝜖, see [26,27,43,44].

Future work. To accelerate the computation of the fine-grid solution 
and apply the ℎ𝑝-refinement strategy to large-scale multiphysics prob-
lems, we intend to integrate the proposed ℎ𝑝-refinement strategy with 
a scalable DPG multigrid solver [45] used for modeling nonlinear op-
tical waveguides [46,47] and other high-frequency wave applications 
[48]. Additionally, we aim to extend the proposed refinement strategy 
to other element types, such as tets, prisms, and pyramids, in order to 
leverage ℎ𝑝3D’s capability to handle hybrid meshes.

Data availability

No data was used for the research described in the article.
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Fig. 15. Eriksson–Johnson problem: an adapted mesh with 209737 dofs; coloring indicates the corresponding polynomial distribution along the 𝑥-axis.

Fig. 16. Eriksson–Johnson problem: convergence of relative 𝐿2 error and DPG residual.
Fig. 17. Eriksson–Johnson problem: effectivity index, defined as the ratio of the 
DPG residual-based error estimator and the composite 𝐿2 error of field variables 
𝑢 and 𝝈.
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