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CHARACTERIZATION OF THE LEAST SQUARES ESTIMATOR : MIS-SPECIFIED
MULTIVARIATE ISOTONIC REGRESSION MODEL WITH DEPENDENT ERRORS

PRAMITA BAGCHI AND SUBHRA SANKAR DHAR

ABSTRACT. This article investigates some nice properties of the least squares estimator of mul-
tivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and
the errors are β-mixing stationary random variables. Under mild conditions, it is observed that the
least squares estimator converges uniformly to a certain monotone function, which is closest to the
original function in an appropriate sense.

1. INTRODUCTION

Monotonicity is one of the most widely used assumptions imposed on functions explain-
ing the relation between natural processes and has various applications in basic science, social
science, and other important research areas. For instance, [23] studied monotone comparative
statics, which has been a topic of interest in Economics for many years. [15] investigated the
lack of monotonicity to make out certain phenomena related to the strategic behavior of eco-
nomic agents, and this topic is well-known in industrial management. For various applications
of monotonicity in Econometric theory, the readers are referred to [21]. In medical science, the
growth curves are generally monotone. In Environmental science, it is an established fact that
the number of days until the freezing of Lake Mendota can be considered as a monotone function
over the years (see, e.g., [6]). Besides, the concept of monotonicity has been used in capacity
reduction problems in information theory as well (see, e.g., [12]). Such monotonicity property
is very often visible when the covariates are multivariate as well. As [4] pointed out that blood
pressure is a monotone function of the use of tobacco and the body weight (see, e.g., [25]).

However, it may very often happen that the real data obtained for the examples in the preced-
ing paragraph are generated from a complex stochastic model, and there is no prior guarantee that
the original function is a monotone function. In fact, this situation may likely happen more when
the covariate is multivariate, which is of interest in this article. In the literature, such a model is
called a mis-specified model; for details on mis-specified models, see [7] and a few references
therein. In this article, our theory allows the model to be mis-specified with dependent error
random variables and investigates the large-sample properties of the least square isotonic regres-
sion estimator (LSEMIR) when the actual multivariate function is not componentwise isotonic.
For such mis-specified multivariate isotonic regression models, we establish that the LSEMIR
uniformly converges almost surely to a certain multivariate isotonic function, which is closest to
the original function in a certain sense.

1.1. Literature Review and Major Contribution. There are several articles in the literature
regarding monotonicity constraint on univariate regression function (see, e.g., [8], [1], [3], [5],
[14], [19], [16] and the references therein). However, the number of research articles on mul-
tivariate isotonic regression models is not too many. In the 1970s, [20] and [28] studied the
consistency property of the least squares estimator when the number of covariates is more than
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one. To the best of our knowledge, after a gap of almost forty years, the work on multivariate
isotonic regression function was revamped in the last decade. [11] studied the risk bound of
the least squares estimator for bivariate isotonic regression function, and [17] also investigated a
similar problem for general dimension. Recently, [4] derived the pointwise asymptotic distribu-
tion of the least squares estimator of multivariate isotonic regression function after appropriate
normalization and developed a consistent test based on the least squares estimator. However,
none of the above research articles considered the mis-specified model and the dependent error
random variables, unlike this research article.

The main contribution of this article to the literature is the characterization of the least squares
estimator of multivariate isotonic regression function when the model is mis-specified, and the
errors belong to a certain stationary process. In this context, the almost sure convergence of the
LSEMIR is established under mild conditions on the regression function and the dependent error
random variables. The connection between the original function and the limiting function is well
characterized. Apart from the aforementioned issues related to the mis-specified multivariate
regression model and the dependent errors, one of the advantages of the LSEMIR is that one
does not need to deal with any smoothing parameter to implement this methodology.

1.2. Mathematical Challenges. To characterize the LSEMIR for mis-specified multivariate
isotonic regression models with dependent errors, there are three fold mathematical challenges.
The first fold is related to the domain of the covariates. For instance, when the marginal co-
variates are defined on R, and the unknown regression function is a real-valued multivariate
continuous function, we cannot use the projection theorem of Hilbert space to characterize the
closest monotone approximation, as the space of continuous functions is not a Hilbert space. In
order to have the structure of Hilbert space, one possibility is to assume that the covariates are
randomly distributed as some d-dimensional (d ≥ 1) random variable U , and E[m2(U)] < ∞,
where m is the unknown true regression function. However, the condition E[m2(U)] <∞ may
not be satisfied for many cases. To avoid such problems, we here consider the unknown regres-
sion function is defined on [0, 1]d, which has one-to-one correspondence with any compact set
[a, b]d for any a ∈ R and b ∈ R. This structure enables us to use the projection theorem in
Hilbert space, which has a key role in our theoretical study.

The second fold is related to the working formula of the least squares estimator. The min-max
representation of the least squares estimator (see, e.g., [20]) is common across the literature of
isotonic regression. However, as pointed out in [4], this representation is difficult to work with
due to the complicated structure of the sets. In order to derive the pointwise asymptotic distri-
bution of the least squares estimator, [4] established a geometric structure of the least squares
estimator based on greatest d-convex minorant (GCM). This geometric characterization of the
least squares estimator helps us to crack a major part of the proof, which may be more difficult
for min-max representation of the least squares estimator.

The third fold is involved with the dependence of the error random variables. In most of the
papers on isotonic regression mentioned in the earlier paragraphs, it is assumed that the error
random variables are i.i.d. random variables. Inference for univariate isotonic regression under
dependent errors have been studied in [2], [30] and [3]. However, to the best of our knowledge,
there have not been any studies on multivariate isotonic regression under dependence. We here
assume that the collection of error random variables is a weak-dependent stationary processes,
and under this set up, we use modern results of the law of large numbers and the central limit the-
orem for such process in various places of the proofs. On the cost of these technical difficulties,
such dependence structures among the error random variables widen the range of applications of
the proposed methodology.

1.3. Organization of the Article. The article is organized as follows. In Section 2, we describe
the model and define the LSEMIR estimator along with a continuous version of the LSEMIR
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estimator. Section 2.2 explains the concept related to projection in Hilbert space in the context
of this problem, and the ideas β-mixing stochastic process and its related issues are discussed
in Section 2.3. The uniformly almost sure convergence of the LSEMIR is studied, and the char-
acterization of the limiting function is thoroughly explored in Section 2.4. Some concluding
remarks are discussed in Section 3, and at the end, all technical details are provided in Section 4.

2. MODEL AND MAIN RESULT

2.1. Model and Its Estimator. Consider a collection of points xi, where the index i is a d-tuple
(i1, i2, . . . , id) such that ik = 1, . . . , nk and xik,k = ik−1

nk−1 . In particular, the collection of xi’s
constitute a grid on [0, 1]d of size n1 × n2 × . . . × nd with equidistant points. Consider data
yi ∈ R observed on this grid following the regression model

yi = m(xi) + εi.

Equivalently, we can write the regression model as

(2.1) yi1...id = m(xi1,1, . . . , xid,d) + εi1...id ,

for ik = 1, 2, . . . , nk and k = 1, 2, . . . , d. Let n =
∏d
i=1 ni be the total sample size. We assume

that the regression function m : [0, 1]d 7→ R is a continuously differentiable function, and εis
are stationary random variables with zero mean and finite variance generated from an absolutely
regular random process or β mixing process. In this context, we would like to emphasize that
the function m may not be co-ordinatewise non-decreasing function. Apart from the aforesaid
assumptions, a few more assumptions are also required, which are stated formally before the
statement of the results.

Let us now define the least squares estimator of m(.) explicitly. The construction of our
estimator has two steps. In the first step, we define the least squares estimator defined on the
design points and extend it to a piecewise constant function, and in the second step, we construct
a continuous version of the estimator on [0, 1]d. The formal definition is as follows :
Step 1 : Let m̂n(.) be the least squares estimator of m(.) on the design points, i.e.,

m̂n = arg min
m∈M

n1∑
i1=1

· · ·
nd∑
id=1

(yi1...id −m((xi1,1, . . . , xid,d))
2
,(2.2)

where M is the class of co-ordinate wise non-decreasing functions on Rd. The solution of
this optimization problem can be obtained by multivariate pooled adjacent violators algorithm
(PAVA) described is [18], and the solution is a piece-wise constant left-continuous function. This
is in fact a widely used traditional isotonic regression estimator.
Step 2 : In this step, we construct a continuous version of m̂n. To explicitly construct this con-
tinuous version, m̃n, we interpolate it sequentially across each coordinate. First define m̃n(x) =
m̂n(x) if x is a design point, i.e., x = (xi1,1, xi2,2, . . . , xid,d) where xik,k = (ik − 1)/(nk − 1)
for ik = 1, . . . , nk and k = 1, . . . , d.

Now, consider the interpolation across the first coordinate, i.e., we want to define m̃n for
x = (x1, xi2,2, . . . , xid,d) with x1 ∈ (0, 1), xik,k = ik−1

nk−1 for ik = 1, . . . , nk and k = 2, . . . , d.
At this point, fix x. Given this point and its first coordinate x1 ∈ (0, 1), let xl and xr be the grid
points on the first coordinate at the immediate left and right of x1. In particular, let j ∈ N be
such that j/n1 < x1 ≤ (j + 1)/n1, then xl,1 = j/n1 and xr,1 = (j + 1)/n1. With this, we
define m̃n

(2.3) m̃n(x) = m̂n(xl) + (m̂n(xr)− m̂n(xl))
(x1 − xl,1)

(xr,1 − xl,1)
,

where xl = (xl,1, xi2,2, . . . , xid,d) and xr = (xr,1, xi2,2, . . . , xid,d).
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Given we have already interpolated across coordinates 1, . . . , (d0−1), consider now interpola-
tion across coordinate 1 < d0 ≤ d. At this step, we fix a point x = (x1, . . . , xd0 , xid0+1,d0+1, . . . , xid,d),
where x1, . . . , xd0 ∈ (0, 1) and xik,k = (ik − 1)/(nk − 1) for ik = 1, 2, . . . , nk and k =
(d0 + 1), . . . , d. Pick xl,d0 and xr,d0 as the immediate left and right points on the d0-th coordi-
nate grid of xd0 . Finally, define

(2.4) m̃n(x) = m̂n(xl) + (m̂n(xr)− m̂n(xl))
(xd0 − xl,d0)

(xr,d0 − xl,d0)
,

where we use the notations xl = (x1, . . . , xd0−1, xl,d0 , xid0+1,d0+1, . . . , xid,d), and
xr = (x1, . . . , xd0−1, xr,d0 , xid0+1,d0+1, . . . , xid,d).

Remark 2.1. Note that it is immediate from the construction that m̃n(.) is a continuous and co-
ordinatewise non-decreasing function on Rd. Further, m̃n(xi) = m̂n(xi), where xi is a design
point. Therefore, m̃n is in fact a solution of (2.2).

The construction of m̃n is primarily an artifact of our technical derivations, as the continuity
of m̃n provides more mathematical flexibility. However, this also gives a continuous version of
the traditional estimator. We later show both these constructions are asymptotically equivalent
(Proposition 4.1), and m̃n does not provide any particular advantage over the traditional estimator
for point-wise inference.

2.2. Basic Concepts. In this article, we investigate various statistical properties of the classical
estimator m̂n, i.e., the LSEMIR defined in Step 1, and the similar results for m̃n (proposed
in Step 2) will be discussed subsequently. Before stating the theoretical results, we need to
introduce a new function m∗, which is the closest monotone approximation of m in some sense
under appropriate assumptions. Let us consider the Hilbert space

H =

g : [0, 1]d 7→ R,
∫

[0,1]d

g2(x)dx <∞


with the inner product

〈g, f〉 =

∫
g(x)f(x)dx,

and the induced norm

‖g‖2 = 〈g, g〉 =

∫
g2(x)dx, for all g ∈ H.

Observe thatM (defined in Step 1 in Section 2.1) is a closed convex subset of H (see Lemma
4.3). Now, an application of projection theorem (see [29], p. 312–313) implies that given any
function m ∈ H, there exists a unique m∗ inM, such that

(2.5) m∗ = arg min
f∈M

‖m− f‖2.

Moreover, m∗ can be characterized by the following equations: (see [10], Corollary 2.3)

(2.6) 〈m−m∗,m∗〉 = 0, & 〈m−m∗, g〉 ≤ 0, for all g ∈M.

In particular, in the regression context, m∗ is the element in M, that is closest to the true re-
gression function m in terms of the norm distance as in (2.5). Specifically, if m ∈ H is a co-
ordinatewise non-decreasing function itself, i.e., the model is properly specified, we then have
m = m∗.

As suggested by a reviewer, we discuss an explicit example to see how a mis-specified regres-
sion model m ∈ H but m 6∈ M and the corresponding m∗ ∈M differ from each other.
Example : The example is constructed using the idea of shifted Legendre polynomials (see,
e.g., [26]) and the aforementioned projection theorem. The notations used in this example are
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FIGURE 1. The graphs of m and m∗ for different values of x ∈ (0, 1) and y ∈ (0, 1).

self-standing only for this example. Let us consider m(x, y) = (2x − 1) − (6x2 − 6x + 1) +
(2y − 1) − (6y2 − 6y + 1), where (x, y) ∈ (0, 1) × (0, 1). Note that m ∈ H but not co-
ordinatewise non-decreasing, i.e., m 6∈ M. Using the concept of Legendre polynomials, we
have m∗(x, y) = (2x− 1) + (2y− 1) since for any x ∈ (0, 1), 〈(2x− 1),−(6x2− 6x+ 1)〉 = 0
and 〈−(6x2−6x+1), g〉 < 0 for any g ∈M (when d = 1). The similar argument holds for d = 2
as well. Also, note that m∗ ∈ H and co-ordinatewise non-decreasing as well, i.e., m∗ ∈ M.
For the purpose of illustration, Figure 1 plots m(x, y) and m∗(x, y) for (x, y) ∈ (0, 1) × (0, 1).
In this context, we would like to mention that one can construct many more examples using the
concept of Legendre or such orthogonal polynomials along with the fact of projection theorem.

2.3. Dependence Structure: β-mixing. We now want to briefly discuss the mixing stochastic
process as we mentioned that the error random variables follow β-mixing stochastic process, and
hence, it is needless to say that this dependence structure has noteworthy impact on our theo-
retical study. Strictly speaking, we consider data generated from an absolutely regular mixing
stochastic process.

Definition 2.2. The β-mixing coefficients between two sigma-algebras A and B is defined as

β(A,B) = sup
A1,A2,...Ar∈A
B1,B2,...,Bs∈B

]ri=1Ai=]
s
j=1Bj=Ω

1

2

r∑
i=1

s∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|,

where Ω is the sample space, A1, . . . , Ar are r many arbitrary events in A, and B1, . . . , Bs are
s many arbitrary events in B.

For a collection of random variables {εi1...id} indexed by ik ∈ Z, k = 1, 2, . . . , d, define the
β-mixing coefficients as
(2.7)
βk1,...,kd = sup

(l1,...,ld)∈Zd
β(σ({εi1...id : ij ≤ lj−kj , j = 1, . . . , d}), σ({εi1...id : ij ≥ lj , j = 1, . . . , d})),

and the sequence is said to be β-mixing or absolutely regular mixing sequence if βk1,...,kd → 0
as kj → ∞ for at least one j = 1, 2, . . . , d. Here σ(.) denotes the smallest σ-field generated
by the collection of random variables inside the parenthesis. Observe that βk1,...,kd measures
the dependence in the error sequence at lag kj at the j-th coordinate. As we know, for most
of the natural processes, the nearer observations are more dependent than the further ones, and
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therefore, βk1,...,kd is expected to decrease as kj → ∞ for any j. Moreover, if the sequence

βk1,k2,...,kd is absolutely summable, one can show that Var
(

1√
n

∑n1

i1=1 · · ·
∑nd
id=1 εi1...id

)
<∞,

and the sequence {εi1...id} exhibits weak-dependence or short-memory dependence (see [27]).
The assumption of β-mixing is quite common in the literature. [13] showed that Markov

chains under Harris recurrence conditions are geometrically β-mixing. For example, if (Xt, σt)t∈Z
is a stationary GARCH process with appropriate parameters such that the distribution of noise
sequence {ε}i≥0 is absolutely continuous with Lebesgue measure being strictly positive in a
neighborhood of zero and E|ε0|s < ∞ for some s > 0, then both the sequences (Xt)t∈Z and
(X2

t )t∈Z are geometrically β-mixing (see [9]). [24] showed that stationary vector valued ARMA
processes with innovations from an absolutely continuous distribution with respect to Lebesgue
measure are geometrically β-mixing. These various applications of β-mixing stochastic pro-
cesses motivated us to study this problem with dependent errors, which can be defined through a
certain β-mixing.

2.4. Almost sure Convergence : Characterization. We start by stating a few assumptions that
will be required to establish the results related to the almost sure convergence of m̂n.
(C1) The true regression function m : [0, 1]d → R is a continuously differentiable function.
(C2) Let {εi1...id} be second-order stationary across each coordinate with zero mean and β-
mixing coefficients βn1,...,nd satisfying either one of the following two conditions:

(a) (geometrical β-mixing) E(ε2i1...id) < ∞ and βn1...nd =
∏d
j=1O(anj ) for some 0 <

a < 1.
(b) (polynomial β-mixing)E(|εi1...id |2r) <∞ for some r > 1 and βn1...nd =

∏d
j=1O(n−Lj )

for some L > r/(r − 1).

Remark 2.3. Note that condition (C1) is trivially true for many choices of m in practice. Condi-
tion (C2) needs attention since there is a trade-off between the existence of the moments of the
error random variables and the strength of the dependence. In particular, the existence of higher
moments allows stronger dependence among the errors. Observe that the moment conditions
stated in (a) and (b) will hold for many distributions, such as Gaussian and Laplace distributions.
To be summarized, the conditions are realistic; in particular, (C2) ensures that one does not need
even i.i.d. sequence of error random variables to implement this methodology, which broadens
the applicability of the methodology.

We now state the result on uniformly almost sure convergence of m̂n, which is one of the
major characterizations of m̂n.

Theorem 2.4. Assume that m̂n is the solution of (2.2), and m∗ is the same as defined in (2.5).
Under (C1) and (C2), we have

(2.8) sup
x∈(0,1)d

|m̂n(x)−m∗(x)| → 0, almost surely as n→∞.

The assertion of Theorem 2.4 implies that the LSEMIR, i.e., m̂n uniformly converges almost
surely to a function, which is a co-ordinatewise non-decreasing function and the closest to the
true function m (see (2.5)) as the true function m ∈ H (see Lemma 4.2). In this context,
we would like to recall the alternative continuous version of the classical estimator, i.e., m̃n

introduced in Step 2 earlier in this section. In the following proposition, we state the result
related to m̃n as well.

Proposition 2.1. Let m̃n be the same as defined in (2.4), and m∗ is the same as defined in (2.5).
Then for any 0 < a < b < 1, under (C1)–(C2), we have

(2.9) sup
x∈[a,b]d

|m̃n(x)−m∗(x)| → 0, almost surely as n→∞.



MIS-SPECIFIED MULTIVARIATE ISOTONIC REGRESSION MODEL 7

Proposition 2.1 asserts that m̃n has the same characterization property as the classical estimator
m̂n.

Remark 2.5. The results in Theorem 2.4 and Proposition 2.1 are established for the design points
defined on a regular grid. If the design points are random, such consistency results can be ex-
tended using similar techniques. However, for random design points, the limiting regression
function won’t be the same as m∗ obtained for the equidistant design points. It is expected that
the limiting regression function depends on the distribution of the design points when the design
points are random.

3. CONCLUDING REMARKS

This article studies the least squares estimator of the multivariate isotonic regression function
when the model is mis-specified, and the errors are dependent random variables. Under mild
conditions, we observe that the least squares estimator converges uniformly to a certain monotone
function, which is closest to the original function in some sense. Apart from the issues related
to the large sample properties, the performance of the least squares estimator is also investigated
for various models when the sample size is finite.

The “mis-specified” or the ”wrong” model perspective has important implications for practice
since strictly speaking, any model cannot be a “correct” model for a given data, and it is needless
to mention that this view is one of the major motivator of creating the research field like model
selection. However, the literature has not paid much attention to the mis-specified model, and the
reason lies in the fact related to technical difficulties. The study on mis-specified models will be
more available in the literature once the associated technical difficulties are overcome to a large
extent.
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4. TECHNICAL DETAILS AND PROOFS

4.1. Geometric Characterization of Isotonic Regression Estimator. We begin with briefly
reviewing the geometric characterization of the isotonic regression estimator, which will be ex-
tensively used to prove our main results. A detailed description can be found in Section 2.1 of
[4].

Let us start with the concept of the left-slope of a multivariate function. For a real-valued
function G defined on Rd, let ∂`G(x) denote the mixed left partial derivative with respect to
x ∈ Rd. More precisely, if x = (x1, x2, . . . , xd), we have

∂`G(x) = ∂`G(x1, . . . , xd) =
∂dG(x1−, . . . , xd−)

∂x1 . . . ∂xd
,

where ∂f(x0,1, . . . , x0,d)/∂xk denotes the partial derivative of f with respect to k-th coordinate
xk at the point x0 = (x0,1, . . . , x0,d). The right-slope ∂rG can be defined similarly.

Definition 4.1. We define the class of d-convex functions on I ⊂ Rd to be

(4.1) CI := {G : I 7→ R, G is convex on I and ∂`G is coordinate-wise non-decreasing}.
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For any real-valued function S defined on I ⊂ Rd, we define d-GCM TI(S) of S as the point-
wise supremum of all d-convex function which lies below S, i.e.,

(4.2) TI(S)(x) = sup
G∈CI ;G≤S

G(x), x ∈ I.

For the sake of notational simplicity, if I = Rd, we drop the subscript and write TRd(S) as T (S).

We denote the cumulative sum diagram of the data as Sn. To be precise, we define Sn on [0, 1]d

on the design points xi = (x1,i1 , . . . , xd,id) as

Sn(xi) = Sn(x1,i1 , . . . , xd,id) =
1

n1 . . . nd

∑
l1≤i1

· · ·
∑
ld≤id

yl1...ld , for ik = 0, . . . , nk; k = 1, . . . , d

with the notations xk,0 = 0 and yi1...id = 0 if ik = 0 for any k. The process Sn is then
interpolated linearly at each coordinate in between the design points, and this interpolation is
done sequentially for each coordinate. For details on the construction of Sn, the readers are
referred to Section 2 of [4].

Finally, Theorem 2 of [4] asserts that

(4.3) m̂n(x) = ∂lT[0,1]d(Sn)(x), for all x ∈ [0, 1]d.

4.2. Proof of Theorem 2.4.

4.2.1. Outline of the Proof of Theorem 2.4. We start by noting that the projection equations (2.6)
can be restated as

(4.4) 〈m−m∗, g −m∗〉 ≤ 0, for all g ∈M,

where M is same as the defined in (2.2). Firstly, we will consider the continuous version of
the estimator m̃n defined in (2.4). In order to show the uniform convergence in (2.8), we will
show the uniform convergence of m̃n to m∗ (Proposition 2.1). Secondly, we will establish the
almost sure uniform convergence of m̂n− m̃n to 0 as n→∞. Finally, an application of triangle
inequality upon above said two results will complete the proof.

4.2.2. Proof of Proposition 2.1. For notational convenience denote Jd = {(i1, . . . , id) ∈ Nd :
1 ≤ ij ≤ nj , j = 1, 2, . . . , d}. Note that the cardinality of Jd is n. Step 1: First observe that the
quantity

Sn(f) =
1

n

∑
i∈Jd

(yi −m(xi))
2

is minimized at f = m̃n. Therefore, one can write

Sn(m∗) ≥ Sn(m̃n) =
1

n

∑
i∈Jd

(yi −m∗(xi) +m∗(xi)− m̃n(xi))
2

=Sn(m∗) +
2

n

∑
i∈Jd

(yi −m∗(xi))(m
∗(xi)− m̃n(xi))

+
1

n

∑
i∈Jd

(m̃n(xi)−m∗(xi))
2.

Cancelling Sn(m∗) from both sides and rearranging the terms, we have

(4.5)
1

n

∑
i∈Jd

(m̃n(xi)−m∗(xi))
2 ≤ 2

n

∑
i∈Jd

(yi −m∗(xi))(m̃n(xi)−m∗(xi)).

We would now like to point out that the right hand side of (4.5) can be interpreted as the sample
version of the quantity 〈m−m∗, m̃−m∗〉 as yi is m(xi) with some additive noise. The quantity
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〈m − m∗, m̃ − m∗〉 is negative by (2.6). However, due to randomness involved through the
regression errors in this term, one needs to have some further technicalities to conclude that the
sum in (4.5) is asymptotically bounded above by 0.

Step 2: We now claim that m̃n is uniformly bounded on [a, b]d for any 0 < a < b < 1 al-
most surely.
To see it, note that by monotonicity of m̃n, we have

(4.6) lim sup
n

sup
x∈[a,b]d

|m̃n(x)| ≤ lim sup
n

max
{
|m̃n(b)|, |m̃n(a)|

}
,

where a = (a, . . . , a) ∈ Rd and b = (b, . . . , b) ∈ Rd. Due to the grid structure of the design
points, given b < 1, there exists a design point xr such that b < xr < 1 for large enough n,
where 1 = (1, . . . , 1) ∈ Rd, and the inequality is the componentwise inequality. Without loss of
generality, assume m̃n(b) > 0. Now fix M > 0, and using (4.3), one can write

P
(
m̃n(b) > M

)
≤ P

(
m̂n(xr) > M

)
= P

(
∂lT[0,1]d(Sn)(xr) > M

)
= P

(
T[0,1]d(Sn)(x) > l, for all x > xr componentwise)

where l is a linear function with slope M and passing through T[0,1]d(Sn)(xr) at xr. The last
quantity implies

P
(
m̃n(b) > M

)
≤ P

(
Sn(x) > T[0,1]d(Sn)(xr) +M

d∏
k=1

(xk − xr,k), for all 1 ≥ x > xr component wise

)

≤ P

(
Sn(xr+1)− S(xr) > T[0,1]d(Sn)(xr)− Sn(xr) +M

d∏
k=1

(xr+1,k − xr,k)

)
≤ P(Yr+1 > M),

and the last quantity tends to 0 as M → ∞. Arguing in a similar way, one can establish that
m̃n(a) is also stochastically bounded. Using (4.6) along with this fact gives us

(4.7) lim sup
n

sup
x∈[a,b]d

|m̃n(x)| ≤ X(a,b),

whereX(a,b) is a valid random variable independent of n and depends on a = (a, . . . , a) ∈ Rd
and b = (b, . . . , b) ∈ Rd. To this point, choose an ε > 0, and choose c(a,b, ε) such that
P (X(a,b) > c(a,b, ε)) < ε. Thus, we have

P

(
{ω : lim sup

n
sup

x∈[a,b]d
|m̃n(x)|(ω) < c(a,b, ε)}

)
> 1− ε.

To this end, define

Ω0 = {ω : lim sup
n

sup
x∈[a,b]d

|m̃n(x)|(ω) < c(a,b, ε)}.

Step 3: Next, it follows from Lemma 4.5 that m̃n is uniformly bounded on [a, b]d and piece-wise
linear, which implies that m̃n is Lipschitz over [a, b]d uniformly in n on Ω0, a set of probability
at least 1− ε, i.e., on this set,

|m̃n(x)− m̃n(y)| ≤ 2c(a,b, ε)‖x− y‖,

for x,y ∈ [a, b]d when n is sufficiently large.
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Consider now the class of functions

C :=

{
h : [a, b]d 7→ R : h is co-ordinate wise non-decreasing,
|h(x)| ≤ c(a,b, ε), |h(x)− h(y)| ≤ 2c(a,b, ε)‖x− y‖

}
.

Observe that on Ω0, m̃n ∈ C for sufficiently large n, and C is compact with respect to the norm

d(h1, h2) = sup
x∈[a,b]d

|h1(x)− h2(x)|.

In view of the fact that C is compact, given η > 0, one can find h1, h2, . . . , hm ∈ C such that
m⋃
i=1

{
h ∈ C : d(h, hi) < η

}
⊃ C,

and therefore on Ω0, given m̃n, one can pick hJ ∈ C such that

sup
x∈[a,b]d

|m̃n(x)− hJ(x)| = d(m̃n, hJ) < η,

for sufficiently large n.
Let [a, b]d be large enough such that number of design points in [0, 1]d− [a, b]d is ≤ n1−δ for

some δ > 0, which follows from the condition (C3). Recall the right hand side of (4.5) and write
1

n

∑
i∈Jd

(yi −m∗(xi))(m̃n(xi)−m∗(xi))

=
1

n

∑
i∈Jd

(yi −m∗(xi))(m̃n(xi)− hJ(xi)) +
1

n

∑
i∈Jd

(yi −m∗(xi))(hJ(xi)−m∗(xi))

≤ 1

n

∑
i∈Jd

(yi −m∗(xi))(m̃n(xi)− hJ(xi))I(xi ∈ [a, b]d) +
1

nδ

+
1

n

∑
i∈Jd

(m(xi)−m∗(xi))(h(xi)−m∗(xi)) +
1

n

∑
i∈Jd

εi(hJ(xi)−m∗(xi))

= (I) + (II) + (III) + (IV ).

Since yi = m(xi) + εi, observe that (I) is bounded above by

sup
x∈[a,b]d

|m̃n(xi)− hJ(xi)|

[
1

n

∑
i∈Jd

(m(xi)−m∗(xi)) +
1

n

∑
i∈Jd

εi

]
.

Now, using the law of large numbers for strong mixing process (see [22]), we have
1

n

∑
i∈Jd

εi
a.s.→ E(ε) = 0,

and using (C3), we have

1

n

∑
i∈Jd

(m(xi)−m∗(xi))→
∫

[0,1]d

(m(x)−m∗(x))dx,

as n→∞. Therefore, for sufficiently large n, on Ω0, (I) is smaller than η
∫

(m(x)−m∗(x))dx
since it is already established that sup

x∈[a,b]d
|m̃n(x)− hJ(x)| = d(m̃n, hJ) < η for a given η > 0

on that set.
Observe that (IV ) converges to 0, as

E

(
1

n

∑
i∈Jd

εi(hJ(xi)−m∗(xi))

)
=

1

n

n∑
i∈Jd

(hJ(xi)−m∗(xi))E(εi) = 0,
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and the random variables εi(hJ(xi)−m∗(xi)) are also β-mixing random variables with β-mixing
coefficients satisfying (C2) (Lemma III.1 [3]). Therefore, again by strong law of large numbers
for mixing process, we have

1

n

∑
i∈Jd

εi(hJ(xi)−m∗(xi))
a.s.→ 0

as n → ∞. Thus, 1
n

∑
i∈Jd

εi(hJ(xi) −m∗(xi)) < η∗ for any given η∗ > 0 for sufficiently large

n.
Next, note that (III) converges to 〈m−m∗, hJ −m∗〉, and hence, we have

1

n

∑
i∈Jd

(Yi −m∗(xi))(m̃n(xi)−m∗(xi)) ≤ 〈m−m∗, hJ −m∗〉+ η∗∗,

on Ω0, where η∗∗ > 0 is arbitrary. Since ε is arbitrary, the last inequality holds almost surely.
Moreover, as η∗∗ > 0 is arbitrary, and 〈m −m∗, hJ −m∗〉 is negative by (4.4), the right hand
side of (4.5) is negative for sufficiently large n.

Step 4: Observe that Step 1 and Step 3, which proves that the right hand side of (4.5) is neg-
ative for n sufficiently large, together implies that

(4.8) lim sup
n→∞

1

n

∑
i∈Jd

(m̃n(xi)−m∗(xi))
2

= 0 almost surely.

Step 5: Note that [a, b]d is a compact set, and let Λ1, . . . ,Λp be an an-net of the set [a, b]d.
Using the assumption (C3), one can argue that for all j = 1, 2, . . . , p, there exists a design point
xi ∈ Λj . Further, note that m∗ is componentwise increasing, and using (4.8), it is also uniformly
bounded over [a, b]d, and therefore, m∗ is also Lipschitz.
Now, for x,xi ∈ Λj , we have

|m̃n(x)−m∗(x)| ≤ |m̃n(x)− m̃n(xi)|+ |m̃n(xi)−m∗(xi)|+ |m∗(xi)−m∗(x)|

The first term and the third term can be made small due to Lipschitz continuity (in an almost sure
sense for the first term), and the second term is bounded above by

sup
i
|m̃n(xi)−m∗(xi)|

which converges to 0 by (4.8) and the fact that the number of Λj’s are finite, one can conclude
that

sup
x∈[a,b]d

|m̃n(x)−m∗(x)| → 0, almost surely as n→∞.

As 0 < a < b < 1 are arbitrary, it proves (2.9).

4.2.3. Proof of Uniform Convergence of m̂n − m̃n.

Proposition 4.1. Let m̂n be the isotonic regression estimator defined in (2.2), and suppose that
m̃n is the same as defined in (2.4). Given η∗∗∗ > 0 and 0 < a < b < 1, we have

(4.9) sup
x∈[a,b]d

|m̂n(x)− m̃n(x)| < η∗∗∗

for sufficiently large n.

Proof. Note that by the construction, we have m̃n(x) ≥ m̂n(x) for x ∈ [0, 1]d and m̃n(xi) =
m̂n(xi) at the design points xi. Given x ∈ [a, b]d, let xl,k and xr,k be the immediate left
and right grid point of xk, the k-th coordinate of x. We write xl = (xl,1, . . . , xl,d) and xr =
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(xr,1, . . . , xr,d). Therefore xl < x ≤ xr componentwise, and by the componentwise mono-
tonicity of both m̃n and m̂n, we have

|m̂n(x)− m̃n(x)| =m̃n(x)− m̂n(x)

≤ m̃n(xr)− m̂n(xl)

≤ m̃n(xr)− m̃n(xl).

Therefore,
sup

x∈[a,b]d
|m̂n(x)− m̃n(x)| ≤ sup

i
|m̃n(xr)− m̃n(xl)|.

As m̃n is Lipschitz as established in Step 3, the last quantity is bounded above by c(a,b)‖xr −
xl‖ = O(1/n) using (C3), and it proves the desired result. �

4.2.4. Final Part : Proof of Theorem 2.4.

Proof. An application of triangle inequality on the assertions of Proposition 2.1 and Proposition
4.1 gives us, for any η∗∗∗∗ > 0 and 0 < a < b < 1,

sup
x∈[a,b]d

|m̂n(x)−m∗(x)| ≤ η∗∗∗∗,

almost surely for sufficiently large n. As η∗∗∗∗, a and b are arbitrary, it proves Theorem 2.4. �

4.3. Other Auxiliary Results.

Lemma 4.2. m ∈ H, whereH is the same as defined in Section 2.2.

Proof. From the condition (C1), note that m : [0, 1]d → R is a continuously differentiable
function, and hence,m is uniformly bounded over [0, 1]d. This implies that

∫
[0,1]d

m2(x)dx <∞,

and hence, m ∈ H. �

Lemma 4.3. M is a closed convex subset of H, whereM is the same as defined in Section 2,
andH is the same as defined in Section 2.2.

Proof. To avoid notational complexity, the proof is given for d = 1. The arguments will be the
same for general d.

Let {fn} ∈ M be a sequence of functions such that fn → f as n → ∞ in ||.||2 norm,
which is defined in Section 2.2. Observe that since fn ∈M, we have 〈fn(x)− fn(y), x− y〉 ≥
0 for all x and y. Since 〈., .〉 is a continuous function with respect to ||.||2 norm, we have
〈fn(x)− fn(y), x− y〉 → 〈f(x)− f(y), x− y〉 as n→∞ in ||.||2 norm for all x and y. Hence,
〈f(x) − f(y), x − y〉 ≥ 0 for all x and y, i.e., f ∈ M, which implies thatM is a closed set of
H.

Next, to establish thatM is a convex set ofH, let us consider two arbitrary functions f1 ∈M
and f2 ∈ M. Suppose that t ∈ [0, 1] is an arbitrary constant. Observe that for any x ≤ y, we
have f1(x) ≤ f1(y) as f1 ∈ M, and for any t ∈ [0, 1], we have tf1(x) ≤ tf1(y). Similarly,
(1− t)f2(x) ≤ (1− t)f2(y) also as f2 ∈M and (1− t) ∈ [0, 1]. These two facts imply that for
any t ∈ [0, 1], tf1(x) + (1 − t)f2(x) ≤ tf1(y) + (1 − t)f2(y) for all x ≤ y and any t ∈ [0, 1].
Hence, for t ∈ [0, 1], we have tf1 + (1 − t)f2 ∈ M, i.e.,M is a convex set as well. The proof
is now complete since it was earlier proved thatM is a closed set ofH.

�

Lemma 4.4. Let L be a linear function on Rd, for any continuous function S : Rd 7→ R, we
have TI(S + L) = TI(S) + L on I , for any interval I ⊂ Rd.
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Proof. First note that TI(S) + L is a d-convex function, and (TI(S) + L)(x) ≤ (S + L)(x)
for all x ∈ I . Therefore, TI(S) + L is a d-convex minorant of S + L, and by the definition of
d-GCM, we have

TI(S + L)(x) ≥ TI(S)(x) + L(x) for all x ∈ I.

On the other hand, we have (TI(S + L)− L)(x) ≤ S(x) for all x ∈ I . Moreover, observe that
TI(S + L) − L is a d-convex function itself, and therefore, TI(S + L) − L ≤ TI(S) by the
definition of d-GCM, and hence, the result is proved. �

Lemma 4.5. Suppose that we have a collection of closed polyhedrons {Ωi ⊂ Rd}ki=1 such
that Ω = ∪di=1Ωi is convex. Let fi be linear functions on Ωi, i.e., fi(x) = Aix + ci for
x ∈ Ωi, i = 1, . . . , k. Moreover, assume that for any i 6= j, and x ∈ Ωi ∩ Ωj , we have
fi(x) = fj(x). Let f be defined on Ω such that

f(x) = fi(x) if x ∈ Ωi.

Given arbitrary norms ‖ · ‖α, ‖ · ‖β , the functionf is max
i≤d
{‖Ai‖α,β}-Lipschitz continuous with

respect to ‖ · ‖α and ‖ · ‖β , i.e., for all x1, x2 ∈ Ω,

‖f(x2)− f(x1)‖α ≤ max
i≤d
{‖Ai‖α,β}‖x2 − x1‖β ,(4.10)

where ‖Ai‖α,β = max
‖x‖β≤1

‖Aix‖α.

Proof. Let g(t) = x1 + t(x2 − x1), L = max
i≤d
{‖Ai‖α,β}‖x2 − x1‖β , and h = f ◦ g. One can

see the inequality (4.5) is equivalent to

(4.11) ‖h(1)− h(0)‖α ≤ L.

Using the property that f is well-defined on Ωi ∩ Ωj for any i, j, we have that there exists
0 = t0 ≤ · · · ≤ tl ≤ · · · ≤ tK ≤ tK+1 = 1, l = 1, . . . ,K and corresponding i1, . . . , iK such that

(4.12) h(tl) = Ailx
(l) + cil = Ail−1

x(l) + cil−1

for all 1 ≤ l ≤ K, where x(l) = g(tl). We also let x(0) = g(t0) = x1 and x(K+1) = g(tK+1) = x2.
These xl’s have the property that

(4.13)
K∑
l=0

‖xil+1
− xil‖β =

K∑
l=0

(tl+1 − tl)‖x2 − x1‖β = ‖x2 − x1‖β .
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Thus we can bound the term ‖h(1)− h(0)‖α by

‖h(1)− h(0)‖α ≤
K∑
l=0

‖h(tl+1)− h(tl)‖α

≤
K∑
l=0

‖Ail+1
xl+1 + cil+1

−Ailxl − cil‖α

(i)

≤
K−1∑
l=0

‖Ailxl+1 + cil −Ailxl − cil‖α

=
K∑
l=0

‖Ailxl+1 −Ailxl‖α

(ii)

≤
K∑
l=0

‖Ail‖α,β‖xl+1 − xl‖β

≤ max
i
{‖Ai‖α,β , i ≤ d}

K∑
l=0

‖xl+1 − xl‖β

(iii)

≤ max
i
{‖Ai‖α,β , i ≤ d}‖x2 − x1‖β = L,

where (i) is due to inequality (4.12), (ii) is due to the definition of operator norm, and (iii) is
using equality (4.13). This proves inequality (4.10). �
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