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This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous 
Petrov–Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously 
developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) 
pp. 12–26) and extends the convergence results from (107) degrees of freedom (DOFs) to (109) DOFs using 
a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative 
definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. 
In the uniform refinement setting, a detailed convergence study is provided, demonstrating ℎ and 𝑝 robust 
convergence and linear scaling with respect to the wave frequency. The paper concludes with numerical results 
on ℎ𝑝-adaptive simulations including a large-scale seismic modeling benchmark problem with high material 
contrast.
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1. Introduction

1.1. Background

Wave propagation problems arise in a number of contexts includ-
ing natural resource exploration, medical imaging, and nuclear fusion 
research, to name a few. However, developing accurate and efficient 
numerical algorithms for the solution of time-harmonic wave propa-
gation problems is a notoriously difficult problem. While traditional 
finite element methods (FEM) can deliver high-accuracy and optimal 
discretizations, their efficacy for wave operators deteriorates for two 
main reasons. First, they suffer from stability issues unless very fine 
meshes are used to resolve the propagating wave. In the high-frequency 
regime this results in prohibitively expensive problems. The lack of 
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preasymptotic discrete stability also makes mesh adaptivity techniques 
unreliable and inefficient. Second, the linear system is highly indefi-
nite and, consequently, standard iterative solution schemes break down 
[26]. Current leading-edge preconditioning techniques for wave oper-
ators, such as multigrid methods [43,56,34], domain decomposition 
methods with special transmission conditions [7,31,55,44], stabilized 
methods based on artificial absorption [27,6], shifted Laplacian [53]
and sweeping preconditioners [23,24,11,46,57] are promising but they 
lose their efficiency in heterogeneous media and can be difficult to ap-
ply on complex geometries [29,25].

An alternative approach instead employs minimum-residual dis-
cretization methodologies which, by construction, produce positive-
definite discrete systems and may therefore be amenable to more stan-
dard preconditioning techniques [33,49,50,48]. Indeed, popularization 
of the first-order system least-squares methodology (FOSLS) [8,45], and 
other least-squares methodologies [12], was driven by the applicability 
of geometric and algebraic multigrid methods to otherwise indefinite 
problems. However, for wave propagation problems, FOSLS is known 
to be highly dissipative [30] and thus not competitive in the high-
frequency regime. This work discusses a multigrid solver based on a 
minimum-residual discretization obtained by the discontinuous Petrov–
https://doi.org/10.1016/j.camwa.2023.07.006
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Galerkin (DPG) method with Optimal Test Functions [18] applied to 
the ultraweak variational formulation.

1.2. DPG-MG solver

The DPG FE methodology of Demkowicz and Gopalakrishnan [17,
16,19] is a non-standard least-squares method with several attractive 
properties: mesh-independent stability, a built-in error indicator, and 
applicability to a number of variational formulations with different 
functional settings. A special case of the DPG method is the well-
established FOSLS method in which the residual is minimized in the 𝐿2

test norm. As mentioned previously, however, other formulations are 
preferable in the context of wave propagation. Among the various DPG 
formulations, the so-called ultraweak variational formulation has proved 
to be superior: it is less dissipative than other DPG formulations [48], 
with dispersion error roughly commensurate to Galerkin discretizations 
[30], and it has been shown to solve problems with many wavelengths 
accurately by countering the pollution error through a modest increase 
in the order of discretization [37]. These properties were leveraged by 
Petrides and Demkowicz in [50] to define an ℎ𝑝-adaptive multilevel 
preconditioner for DPG wave propagation problems discretized with 
conforming elements of the exact-sequence energy spaces [15].

Similar to hybridizable methods, the DPG methodology introduces 
additional trace degrees of freedom (DOFs) on the mesh skeleton result-
ing from testing with larger discontinuous1 (“broken”) test spaces [10]. 
In the case of high-order discretizations, statically condensing all inte-
rior DOFs onto the mesh skeleton results in a smaller global system 
and enables more coherent implementation for field and trace vari-
ables. The DPG multigrid solver (DPG-MG) is defined on this condensed 
global system of trace degrees of freedom. Constructing suitable pro-
longation operators for the condensed system is complicated by the fact 
that fine-grid DOFs resulting from ℎ-refinement have no natural coarse-
grid representatives; this is a challenge shared by hybridizable methods 
[52,51]. The construction of a stable prolongation operator between 
such non-nested condensed systems for general DPG problems2 was one 
of the major contributions in the original DPG-MG work by Petrides and 
Demkowicz [49,48] and it will be outlined later in Section 3.

1.3. Direction and outline

Based on the initial implementation by Petrides and Demkowicz 
[48], we have developed a scalable hybrid MPI/OpenMP implementa-
tion of the DPG-MG solver. The parallel implementation and its scaling 
characteristics will be detailed in a forthcoming publication; the present 
work instead leverages our performant implementation to study the 
convergence properties of the DPG-MG solver under uniform ℎ, uni-
form 𝑝, and ℎ𝑝-adaptive refinements. This work is intended to elucidate 
scaling characteristics of the DPG-MG solver and identify aspects of the 
current construction which may be improved.

The remainder of the paper is structured as follows: Section 2 defines 
the ultraweak acoustics model and DPG discretization used throughout 
this work. Section 3 reviews the construction of the DPG-MG solver. In 
Section 4, a number of convergence studies are performed for a model 
problem with manufactured solution. The applicability of the solver to 
state-of-the-art computational challenges is demonstrated in Section 5, 
using the GO_3D_OBS model [35], a challenging benchmark problem 
for evaluating next-generation algorithms in seismic modeling. We con-
clude in Section 6 with a discussion of findings and future work.

2. Ultraweak DPG for Helmholtz

The DPG method constructs automatically stable discretizations of 
well-posed variational formulations, inheriting stability from the con-

1 The ‘D’ in the DPG name.
2 discretized with exact-sequence energy spaces.
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tinuous problem. It achieves this by computing optimal test functions 
[16] that realize the supremum in the discrete inf–sup condition [3]. 
The unique space of these specially-selected test functions is called the 
optimal test space. In practice, this space is approximated by inverting 
the global Riesz map over an enriched, discontinuous test space [32]. 
The numerical computations in this paper employ a uniform increase of 
the polynomial order by 1 for the enrichment of the test space. The dis-
continuous (broken) nature of the test space enables the element-local 
computation of optimal test functions. However, this breaking of the 
test space results in additional (trace) unknowns defined on the mesh 
skeleton [10].

Notation and energy spaces We briefly introduce some notation and the 
energy spaces used throughout this work. Consider a bounded domain 
Ω ⊂ℝ3 with Lipschitz boundary Γ ≡ 𝜕Ω. The 𝐿2-inner product over Ω is 
denoted by (⋅, ⋅) and the 𝐿2-norm by ‖ ⋅‖. We define the standard energy 
spaces

𝐿2(Ω) = {𝑦 ∶ Ω→ℂ ∶ ‖𝑦‖ <∞},

𝐻1(Ω) = {𝑤 ∶ Ω→ℂ ∶𝑤 ∈𝐿2(Ω),∇𝑤 ∈ (𝐿2(Ω))3},

𝐻(div,Ω) = {𝑣 ∶ Ω→ℂ3 ∶ 𝑣 ∈ (𝐿2(Ω))3,∇ ⋅ 𝑣 ∈𝐿2(Ω)}.

(2.1)

In the DPG method, we use corresponding broken energy spaces 
for test functions which are defined as product-spaces over elements 
{𝐾}𝐾∈Ωℎ

of the finite element mesh Ωℎ:

𝐻1(Ωℎ) ∶= {𝑤 ∶ Ω→ℂ ∶𝑤|𝐾 ∈𝐻1(𝐾) ∀𝐾 ∈Ωℎ},

𝐻(div,Ωℎ) ∶= {𝑣 ∶ Ω→ℂ3 ∶ 𝑣|𝐾 ∈𝐻(div,𝐾) ∀𝐾 ∈Ωℎ}.
(2.2)

Lastly, the breaking of test functions [10] leads to introducing trace 
unknowns on the mesh skeleton Γℎ ∶= {𝜕𝐾}𝐾∈Ωℎ

. The trace spaces are 
understood as element-wise traces of globally conforming functions:

𝐻1∕2(Γℎ) ∶= {
∏
𝐾∈Ωℎ

𝛾𝐾 (𝑤|𝐾 ) ∶𝑤 ∈𝐻1(Ω)},

𝐻−1∕2(Γℎ) ∶= {
∏
𝐾∈Ωℎ

𝛾𝐾
𝑛
(𝑣|𝐾 ) ∶ 𝑣 ∈𝐻(div,Ω)}, (2.3)

where 𝛾𝐾 and 𝛾𝐾
𝑛
are element-wise continuous and normal trace opera-

tors [18,14].

Helmholtz problem This work considers the first-order mixed form of 
time-harmonic linear acoustics with inhomogeneous impedance bound-
ary condition (BC). In operator form, the equations are given by

𝑖𝜔𝑝+∇ ⋅ 𝑢 = 0 in Ω,

𝑖𝜔𝑢+∇𝑝 = 0 in Ω,

𝑍−1𝑝− 𝑢𝑛 = 𝑢0 on Γ,

(2.4)

where 𝑝 is pressure, 𝑢 is velocity, 𝜔 is the angular wave frequency, and 
𝑖 =

√
−1; in the impedance BC, 𝑍 is acoustic wave impedance, 𝑢𝑛 ∶= 𝑢 ⋅𝑛

is the flux in outward normal direction 𝑛, and 𝑢0 is an impedance load.

Broken ultraweak formulation Let ( , ̂ ) and  be the trial and test 
space, respectively, and let  ′ be the space of antilinear functionals 
on  . The DPG formulation of the Helmholtz problem is defined by a 
variational formulation of the form: Given 𝑙 ∈  ′, find 𝔲 ∈ and 𝔲̂ ∈ ̂

that satisfy

𝑏(𝔲,𝔳) + 𝑏̂(𝔲̂,𝔳) = 𝑙(𝔳), 𝔳 ∈  , (2.5)

where 𝑏 and 𝑏̂ are sesquilinear forms on  × and ̂ × , respectively.
We refer to [48,15] for a thorough derivation of the ultraweak 

Helmholtz formulation. The broken ultraweak formulation, given by 
(2.5), is defined by the following group variables and forms:
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𝔲 = (𝑢, 𝑝) ∈ (𝐿2(Ω))3 ×𝐿2(Ω),

𝔲̂ = (𝑢̂𝑛, 𝑝̂) ∈𝐻
− 1

2 (Γℎ) ×𝐻
1
2 (Γℎ) ∶𝑍−1𝑝̂− 𝑢̂𝑛 = 0 on Γ,

𝔳 = (𝑞, 𝑣) ∈𝐻1(Ωℎ) ×𝐻(div,Ωℎ) ∶𝑍−1𝑞 + 𝑣𝑛 = 0 on Γ,

𝑏(𝔲,𝔳) = (𝑖𝜔𝑝, 𝑞) − (𝑢,∇ℎ𝑞) + (𝑖𝜔𝑢, 𝑣) − (𝑝,∇ℎ ⋅ 𝑣)

𝑏̂(𝔲̂,𝔳) = ⟨𝑢̂𝑛, 𝑞⟩Γℎ + ⟨𝑝̂, 𝑣𝑛⟩Γℎ ,
𝑙(𝔳) = ⟨𝑢0, 𝑞⟩Γ.

(2.6)

Note that the test functions are assumed to satisfy 𝑍−1𝑞 + 𝑣𝑛 = 0 on Γ in 
order to build in the impedance BC, and that the impedance BC implic-
itly implies additional regularity of the velocities on boundary Γ. For 
the load to be well-defined, we can assume 𝑢0 ∈𝐻−1∕2(Γ) in which case 
⟨𝑢0, 𝑞⟩Γ can be understood in the sense of duality pairing; another op-
tion is to assume 𝑢0 ∈𝐿2(Γ) interpreting ⟨𝑢0, 𝑞⟩Γ in the 𝐿2-sense; see [15, 
Section 5.5] for further discussion on the regularity issue for impedance 
BCs.

The additional unknowns 𝑢̂𝑛, 𝑝̂ describe the normal velocity (i.e., 
flux) and the pressure on element boundaries on the mesh skeleton Γℎ; 
𝑢̂𝑛 is discretized as the normal trace of 𝐻(div)-conforming elements, 
and 𝑝̂ as the continuous trace of 𝐻1-conforming elements. The broken 
test space is equipped with the adjoint graph norm [50,18]:

‖𝔳‖2

∶= ‖𝐴∗

ℎ
𝔳‖2 + 𝛼‖𝔳‖2, (2.7)

where 𝐴∗
ℎ
𝔳 = −(𝑖𝜔𝑞 + ∇ℎ ⋅ 𝑣, ∇ℎ𝑞 + 𝑖𝜔𝑣), and 𝛼 is a scaling constant. 

Throughout this work, numerical results are computed with 𝛼 = 1.

3. DPG-MG solver

DPG-MG is a multigrid-preconditioned conjugate gradient solver, 
with the multilevel preconditioner defined on a hierarchy of meshes 
produced through refinement as defined in [50]. Mesh-independent sta-
bility of the DPG methodology implies that the DPG-MG solver can 
be initialized on arbitrarily coarse initial meshes. Once the solution is 
obtained to a sufficient accuracy on the current mesh, the DPG error in-
dicator is used to produce a set of refinements to define the next mesh. 
Because the solution on intermediate meshes is needed only to suffi-
cient accuracy to produce the next mesh, optimal ℎ𝑝-adaptive meshes 
can be produced with relatively few iterations and at little cost.

Prolongation As indicated in Section 1, the DPG-MG solver is defined 
on trace DOFs located on the mesh skeleton; ℎ-refinements produce 
fine-grid edges and faces that do not coincide with the previous-grid 
skeleton and thus have no natural representatives on the previous mesh. 
To ameliorate this, Petrides and Demkowicz introduced a two-stage pro-
longation [49]. In the first stage of the restriction, fine-grid DOFs not 
supported on the previous mesh skeleton are statically condensed; the 
resulting mesh is called the macro grid.

The second stage of the restriction operator is defined as the trans-
pose of the natural inclusion operator, which expresses previous-grid 
basis functions as a linear combination of macro-grid basis functions. 
The natural inclusion operator can be constructed by solving a series of 
projection problems, projecting basis functions on macro-grid edges and 
faces onto basis functions defined on the previous-grid mesh skeleton. 
Efficient implementation of these projection problems can be achieved 
via constrained approximation [20]. Note that in the two-grid setting 
of the original work [49], the fine grid was constructed using multiple 
refinements of the coarse grid; thus prolongation was defined via recur-
sive application of constrained approximation. In the multigrid setting, 
we assume that elements are ℎ-refined at most one time between grid 
levels. Certain complex cases, including anisotropic ℎ-refinements, can 
still require the recursive definition but are not considered in this work.

V-cycle and smoother We briefly illustrate the DPG-MG V-cycle and in-
troduce terminology used to refer to the various meshes involved in 
the algorithm. First, we depart somewhat from convention and refrain 
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from designating the initial mesh the coarse grid (we refer to it sim-
ply as the initial mesh). Therefore, terms like coarse-grid vertex patches 
and coarse-grid stiffness matrices are not necessarily related to the ini-
tial mesh. Instead, we reserve the terms coarse and fine grid to indicate 
the coarser and finer meshes, respectively, in a pair of consecutive 
meshes. In particular, fine(i) refers to the grid produced by the 𝑖-th 
refinement of the initial mesh with coarse(i) being its coarse coun-
terpart. This naming convention is illustrated along with the V-cycle 
in Fig. 1. Note that in the MPI-distributed implementation, discussed 
below, coarse(i) and fine(i-1) correspond to two different parti-
tions of the same mesh.

The DPG-MG solver applies both conjugate gradient iterations and 
smoothing on the macro grid. Smoothing is performed using an addi-
tive Schwarz (overlapping block-Jacobi) smoother with blocks defined 
as macro-grid DOFs supported on coarse-grid vertex patches. Smoothing 
patches on fine(i) are constructed using coarse(i) vertex patches. 
Use of vertex patches can lead to large smoothing blocks, especially in 
the case of high-order discretizations, but avoids additional complexi-
ties for vector-valued variables set in 𝐻(curl) and 𝐻(div) [2]. Thus, the 
DPG-MG solver is applicable, without modification, to any well-posed 
DPG problem discretized with exact-sequence energy spaces. Alterna-
tive definitions of smoothing patches lead to smaller patch sizes for 
vector-valued variables [42,43].

Alternative construction of coarse-grid operators Coarse-grid operators 
can be constructed either by direct matrix assembly, or by restricting 
fine-grid operators. Note that because of the use of trace spaces and 
the on-the-fly computation of the DPG optimal test space, these two ap-
proaches are not equivalent (indeed, in a non-nested multigrid iteration, 
as is the case here, these approaches are generally not equivalent). The 
DPG-MG solver assembles and solves the system on the current mesh, 
then refines to define the next mesh. Thus, for linear problems, direct 
assembly of coarse-grid operators can be accomplished by simply stor-
ing the current-grid system before refinement; this was the approach 
taken in the original DPG-MG implementation [50]. However, we ob-
served that for high-frequency problems, convergence rapidly deterio-
rated with increasing frequency. As will be demonstrated in Section 4, 
computing coarse-grid stiffness matrices as restrictions of fine-grid stiff-
ness matrices restores the expected convergence. We are working to 
develop a rigorous understanding of how these two coarse-grid ap-
proaches differ, and thus defer an analysis of this phenomenon to a 
later publication. For now it will suffice to say that, for large frequen-
cies (and fixed 𝛼), the spectrum of element Gram matrices with the 
adjoint graph test norm (2.7) changes dramatically as a mesh transi-
tions from preasymptotic to asymptotic regime; this in turn may impart 
vastly different scales to fine- and coarse-grid systems and, when not 
accounted for in prolongation, may cause the coarse-grid correction to 
become unstable. Finally, we note that computing coarse-grid operators 
as restrictions of fine-grid operators is relatively inexpensive compared 
to assembly of the fine-grid DPG system, typically requiring between 1%
and 10% of the cost of fine-grid assembly, even when sum-factorization 
[47,4] is used to accelerate element assembly.

Scalable MPI/OpenMP implementation in ℎ𝑝3D The DPG-MG solver is 
implemented in ℎ𝑝3D, a scalable finite element software for analysis 
and discretization of complex three-dimensional multiphysics applica-
tions [39,38]. ℎ𝑝3D supports a number of advanced FE technologies in-
cluding exact-sequence conforming discretizations, fully anisotropic ℎ𝑝-
adaptivity, and hybrid meshes with elements of “all shapes” (tetrahedra, 
hexahedra, prisms, pyramids). The code leverages hybrid MPI/OpenMP 
parallelism and interfaces with various scientific libraries including 
PETSc [5], MUMPS [1], and Zoltan [21]. ℎ𝑝3D is available as an open-
source code under a BSD-3 license.3

3 https://github .com /Oden -EAG /hp3d.

https://github.com/Oden-EAG/hp3d
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Fig. 1. DPG-MG V-cycle. The prolongation operator is defined by first condensing all fine-grid degrees of freedom onto the coarse-grid skeleton; then applying the 
natural inclusion operator on macro-grid edges and, in 3D, faces.
The original DPG-MG implementation [50] employed shared-
memory parallelism via OpenMP threading for single-node compu-
tation. Memory limitations of typical compute node configurations 
limited the scalability of the adaptive solver to (107) DOFs. We 
have extended the original solver implementation to support scalable 
distributed-memory computation with MPI. The approach is based on 
distributing solution and geometry DOFs on subdomains [38,36]; how-
ever, the DPG-MG solver employs unique data structures and algorithms 
that extend ℎ𝑝3D’s data structures to allow for asymmetric inclusion of 
ghost elements and enable efficient asynchronous communication with 
neighboring subdomains. To maintain satisfactory parallel efficiency on 
ℎ𝑝-adaptive meshes, dynamic load balancing is performed at each new 
grid level during the refinement process. For a fixed frequency, the dis-
tributed DPG-MG solver implementation has been shown to scale with 
near-linear parallel efficiency to (109) DOFs on (100) compute nodes. 
The details of the solver’s parallel data structures, algorithms, and its 
scaling characteristics are not the focus of this paper and will instead 
be discussed in a future publication.

4. Convergence studies

In this section, we perform a number of convergence studies to in-
vestigate the robustness of the DPG-MG solver with respect to element 
size ℎ, polynomial order 𝑝, and angular frequency 𝜔. Previous exposi-
tions of the DPG-MG solver considered a variety of physical problems, 
smoothing steps, and tolerances, illustrating the versatility of the DPG-
MG solver but somewhat confounding the scaling behavior. Instead, to 
elucidate the convergence characteristics of the DPG-MG solver, we fix 
the following parameters:

• Conjugate gradient iterations are terminated when the relative 𝓁2-

norm of the discrete residual has been reduced by a factor of 107 .
• After each refinement, the (initial) solution is reset to zero; in other 
words, solutions from previous grids are not used to generate initial 
guesses for following grids.
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• A single pre- and post-smoothing step is performed on each grid 
level (V(1,1)-cycle), except in one case in Section 4.2 in which both 
one and five smoothing steps are employed to aid in comparison; 
this case will be noted.

• The initial mesh is a single element of order 𝑝 = 2; however, itera-
tions are not reported for the initial mesh which is solved using the 
MUMPS direct solver [1].

• No initial-grid solver is employed during the iteration. We have 
observed no effect on convergence when the initial grid is far from 
resolving the wave (as is the case throughout this work).

All experiments in this section were performed on Frontera’s Cascade 
Lake (CLX) nodes at the Texas Advanced Computing Center [54]. Tim-
ing statistics are neglected in this section, but will be provided in Sec-
tion 5.

4.1. Problem setup

Throughout this section we consider propagation of a Gaussian 
beam with waist-radius 0.1 and direction given by spherical angles 
(𝜃, 𝜙) = (45◦, 55◦) in a homogeneous unit cube domain [0, 1]3. Homo-
geneous impedance boundary conditions are imposed on all surfaces 
except near the origin, where the Gaussian beam is injected through a 
manufactured impedance load. More precisely, let 𝑔(𝐱) denote the pre-
scribed Gaussian beam solution; the impedance load was defined on 
boundary Γ as:

𝑢0(𝐱) = 𝑒−1000 𝑟
6(𝐱)(𝑍−1𝑔 + (𝑖𝜔)−1𝜕𝑛𝑔

)

where the exponential term corresponds to a fast-decaying window 
function that localizes the load near the origin, 𝑟(𝐱) ∶=

√
𝑥2 + 𝑦2 + 𝑧2

is the radial coordinate of 𝐱, and 𝜕𝑛 denotes the outward normal deriva-
tive. Equations (2.4) were solved in a non-dimensional form with (non-
dimensional) acoustic impedance 𝑍 = 1 used throughout this work. The 
solution is depicted in Fig. 5.
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Fig. 2. Convergence of the DPG-MG solver with one smoothing step applied to uniformly ℎ-refined meshes. The solver convergence is ℎ-robust and the iteration 
numbers are lower when using fine-grid restriction. The iterations until convergence depend linearly on the frequency 𝜔.
The ultraweak formulation for the Helmholtz problem employed 
here has been added to the public ℎ𝑝3D GitHub repository4 under the 
problem directory HELMHOLTZ/ULTRAWEAK_DPG/; additional infor-
mation on the implementation will be provided in an updated version 
of the user manual [39]. This precise problem setup can be run by set-
ting the following parameters in the application script run.sh: cube 
geometry prob=0, impedance boundary condition ibc=3, and Gaus-
sian beam exact solution exact=5. A public version of the scalable 
DPG-MG solver is planned for release to the ℎ𝑝3D repository by June 
2024 but is not yet available at the time of publication.

4.2. Direct assembly vs. fine-grid restriction for coarse-grid operators

As indicated in Section 3, coarse-grid systems can be either directly 
assembled (or stored from previous meshes) or computed from fine-grid 
systems by applying the restriction operator. The two approaches are 
referred to as store and restrict, respectively. As will be demonstrated, 
the construction of coarse-grid systems has significant implications for 
the convergence of the DPG-MG solver.

Uniform ℎ-refinements We begin by studying convergence of the DPG-
MG solver under uniform ℎ-refinements; i.e. each subsequent grid is 
produced by a uniform ℎ-refinement of the previous grid. The number 
of iterations required for convergence under each of the approaches, for 
a variety of frequencies, is reported in Fig. 2. Examining the results in 
Fig. 2a (restrict), it can be seen that the number of iterations increases 
roughly linearly with frequency but demonstrates clear ℎ-robustness 
in the asymptotic regime. The increase in number of iterations with 
frequency is expected: meshes that cannot resolve the wave do not 
contribute to preconditioning the operator. Note that unlike multigrid 
preconditioners for the standard Galerkin method, which would diverge 
in this setting due to lack of discrete stability on the coarse grid, the DPG 
solver remains stable. Next, comparing Fig. 2a (restrict) and Fig. 2b 
(store), it can be seen that storing the coarse-grid system consistently 
resulted in a larger number of iterations than restricting; additionally, 
storing the coarse-grid system does not demonstrate ℎ-robustness.

Uniform ℎ-refinements; five smoothing steps In the original implemen-
tation of the DPG-MG solver, a relatively large number of smoothing 
iterations (typically between 5 and 10) were used in numerical ex-
periments. For comparison, we repeat the previous study using five 
smoothing steps per iteration (V(5,5)-cycle); the results are depicted 

4 https://github .com /Oden -EAG /hp3d.
85
in Fig. 3. Using a large number of smoothing steps tends to restore the 
ℎ-robust convergence when the coarse-grid system is stored (Fig. 3b); 
however, the number of smoothing steps needed to attain ℎ-robustness 
tends to increase with frequency. In particular, note that for the higher-
frequency cases, the number of iterations until convergence is in fact 
lower when using one smoothing step with restriction from fine-grid 
systems (Fig. 2a) than when using five smoothing steps with coarse-grid 
operators stored from previous meshes (Fig. 3b). Comparing Fig. 2a and 
Fig. 3a, it can be seen that when the coarse-grid systems are defined via 
restriction, increasing the number of smoothing steps by a factor of five 
results in a decrease of the number of smoothing iterations by only a 
factor of two. We neglect an explicit study of convergence in terms of 
the number of smoothing steps but qualitatively report that a single 
smoothing step per grid level is optimal for convergence in all of our 
numerical experiments to date.

Uniform 𝑝-refinements To investigate convergence of the DPG-MG 
solver under 𝑝-refinements, we first perform ℎ-refinements until there 
are at least two elements per wavelength (satisfying the Nyquist cri-
terion); then, the polynomial order of discretization 𝑝 is incremented 
on each subsequent grid. The results of this study are shown in Fig. 4, 
where it can be seen that both storing and restricting leads to 𝑝-robust 
convergence; however, restricting again requires far fewer iterations.

4.3. ℎ𝑝-adaptive refinements

We now consider ℎ𝑝-adaptive refinements, employing the Dörfler 
marking strategy [22] to determine elements to be refined. Marked 
elements are ℎ-refined until the maximum edge-length is less than one-
half the wavelength, otherwise they are 𝑝-refined. We end refinements 
one mesh after no additional ℎ-refinements are requested. As shown 
in Fig. 5, ℎ𝑝-adaptive refinements produce a series of meshes with a 
“sweeping” structure, i.e., they follow the direction of propagation of 
the beam.

In the case of uniform ℎ-refinements, the observed linear increase in 
iterations with frequency is expected and is related to the inadequacy of 
coarse-space corrections when meshes are not sufficiently fine to resolve 
the wave. With ℎ𝑝-adaptive refinements, the behavior of the number of 
iterations until convergence with respect to frequency is less obvious 
since intermediate meshes are able to partially resolve the wave. In-
deed, we initially believed the “sweeping” structure of meshes helped 
to reduce the frequency dependence of convergence. The convergence 
study in Fig. 6 seems to indicate this is not the case; the number of iter-
ations show a clear linear increase with frequency. However, note the 
maximum number of iterations required for convergence was consis-
tently higher than for uniform refinements; this is unexpected since the 

https://github.com/Oden-EAG/hp3d
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Fig. 3. Convergence of the DPG-MG solver with five smoothing steps applied to uniformly ℎ-refined meshes. Doing additional smoothing tends to restore ℎ-robustness 
in (b) to some extent; in (a), ℎ-robustness is still observed, however using five smoothing steps per level only reduces the number of iterations until convergence by 
a factor of approximately two when compared to one smoothing step. Iterations depend linearly on the frequency 𝜔.

Fig. 4. Convergence of the DPG-MG solver applied to uniformly ℎ𝑝-refined meshes: grids are uniformly ℎ-refined until two elements per wavelength, then uniformly 
𝑝-refined. The solver convergence is 𝑝-robust and the iteration numbers are lower when using fine-grid restriction. The iterations until convergence depend linearly 
on the frequency 𝜔.
adaptive case smoothes on each grid level, thus a much larger number 
of smoothing steps are performed overall.

An initial hypothesis on the cause of the deteriorated convergence 
of the DPG-MG solver on ℎ𝑝-adaptive meshes implicates a similar phe-
nomenon underlying the deteriorated convergence when coarse-grid 
systems are stored from previous meshes. In that case, roughly speaking, 
different scales between fine and coarse systems, imparted by element-
wise Gram matrices, were ameliorated by constructing coarse-grid sys-
tems as restrictions of fine-grid systems, so that all systems inherit 
the fine-grid scale. Under ℎ𝑝-adaptive refinements, multiple element 
sizes—with various scales imparted by element-wise Gram matrices—
are simultaneously present. We are undertaking a more rigorous inves-
tigation; however, note that in Fig. 6a, the number of iterations for 
convergence on the final meshes decreases considerably. Returning to 
Fig. 5, we can see that these final meshes are characterized exclusively 
by 𝑝-refinements with a consistent, uniform element size; from which 
coarse-grid systems are restricted.

5. Application – seismic modeling

The observed linear increase of iterations with frequency 𝜔 implies 
a suboptimal (𝑁4∕3) computational complexity of the DPG-MG solver 
in the preasymptotic regime; this is comparable to other methods in-
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cluding shifted Laplacian [28,53], multilevel [56,9,34], and domain 
decomposition [7,44,55] methodologies, but is worse than the loga-
rithmic increase observed for sweeping-type preconditioners [24,59]
including source-transfer [46], and others. Despite this linear increase, 
the DPG-MG solver is competitive for solving large-scale high-frequency 
wave propagation problems. To illustrate the performance and flexi-
bility of the DPG-MG solver, we consider the GO_3D_OBS benchmark 
[35] from seismic modeling. The benchmark problem is set in a hexahe-
dral domain with high-contrast heterogeneous structures representing a 
subduction zone, inspired by the geology of the Nankai Trough. Fol-
lowing [58], we consider a 20 × 102 × 28.3 km3 section of the model. 
The wavespeed in this section is illustrated in Fig. 7 and varies from 
1 500 m/s to 8 500 m/s. Material data is specified on a uniform grid 
with spacing 100 m, downsampled from the original 25 m spacing of 
the GO_3D_OBS model (which is rather large, occupying 132 GB per 
parameter). The following computations were performed on 512 Fron-
tera Cascade Lake (CLX) compute nodes (28 672 cores) at the Texas 
Advanced Computing Center.

The problem is driven by a point source with a frequency of 3.75 Hz 
located at (10.0, 12.5, 0.0), implemented as a tight Gaussian with stan-
dard deviation 𝜎 = 50 m. For simplicity, we use an initial mesh con-
sisting of 8 × 42 × 12 hexahedral quadratic (𝑝 = 2) elements with a total 
of 205 757 degrees of freedom. General unstructured meshes, fitted to 
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Fig. 5. ℎ𝑝-adaptive propagation of a Gaussian beam in a cube domain; crinkle cut of ℎ𝑝-adaptive meshes (top) and surface cut of the real part of the acoustic pressure 
field (bottom). The ℎ𝑝-adaptive meshes have a “sweeping” structure as refinements first accumulate near the corner and then propagate into the domain; solutions 
on intermediate meshes are stable and partially resolve the wave.

Fig. 6. Convergence DPG-MG solver applied to ℎ𝑝-adaptive meshes. The number of iterations required for convergence again increases linearly with frequency (𝜔) 
and the maximum number of iterations is higher than for uniform refinements (compare Fig. 2a).
high-contrast interfaces or adapted to wavespeed, could be used in 
conjunction with the DPG-MG solver with great effect; however, we 
illustrate that adaptive refinements, starting from an arbitrarily coarse 
initial mesh, can resolve complex problems without the need for hand-
tuned or time-intensive meshing.

The Dörfler marking strategy [22] is again used to mark elements for 
adaptive refinement. We perform seven initial ℎ-adaptive refinements 
to resolve the region around the point source, followed by ℎ𝑝-adaptive 
refinements until the DPG residual is reduced by a factor of 3 ⋅ 102
(which coincided with the exhaustion of computer memory). The ℎ𝑝-
adaptive strategy selects ℎ-refinements when the maximum edge length 
of an element is less than one-half of the wavelength, except in regions 
of high contrast—which we define to be a greater than 10% change 
in wavespeed over the element—where one-quarter of the wavelength 
is used. Otherwise, 𝑝-refinements are selected until a maximum or-
der of 𝑝 = 5, after which ℎ-refinements are again performed. Element 
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order was limited to 𝑝 = 5 since higher-order elements can result in 
large smoothing patches that are expensive to store; we are pursuing 
a number of strategies to reduce patch storage, including a GPU im-
plementation that recomputes smoothing patches during the solution. 
For applications that solve for many loads simultaneously, the cost of 
recomputing patches can be amortized over multiple loads, increasing 
the appeal of this approach.

In total, the mesh is refined 34 times, resulting in a final mesh (illus-
trated in Fig. 8) with over 6.3million elements and 1.9 billion degrees of 
freedom. The upper right-hand corner of the mesh in Fig. 8 is not fully 
refined and a few more adaptive steps would be needed to further re-
fine the mesh in that region; however, looking ahead to Fig. 9, it can be 
seen that the solution near this region has a relatively small amplitude. 
As alluded to previously, the refinement process was terminated due to 
a lack of memory; this is because the current implementation stores all 
34 adaptive meshes and associated coarse-grid operators (which are re-
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Fig. 7. Cutaway of acoustic wavespeed for a section of the GO_3D_OBS model, representing a subduction zone.

Fig. 8. Cross-sections of the hexahedral mesh (top); element order (middle); and wavespeed (bottom), at a cross-wise distance of 10 km. ℎ-adaptivity is used to 
resolve high-contrast interfaces and the point source (enlarged to show detail) while 𝑝-adaptivity helps to mitigate the pollution error.
88



J. Badger, S. Henneking, S. Petrides et al. Computers and Mathematics with Applications 148 (2023) 81–92

Fig. 9. Acoustic pressure (real) for 3.75 Hz frequency and a point source located at (10, 12.5, 0). The following cross-sections are shown: from the top, 0.5 km depth, 
15 km depth, 25 km depth, and 10 km cross-wise (left); and 12.5 km dip-wise (right). The field is amplitude-compensated (scaled by the distance from the source) to 
enable visualization throughout the domain.
computed as restrictions of fine-grid operators after each refinement). 
Various amelioration strategies are possible, e.g. refactoring the refine-
ment tree to group refinements of similar depth and reduce the total 
number of grids.

Cross-sections of the solution are illustrated in Fig. 9. These results 
are qualitatively similar to those depicted in [58], however we note the 
location of the point source between the two solutions differs slightly. 
A quantitative comparison of solution accuracy is deferred for a future 
work.

Convergence and timings for this example are shown in Fig. 10. The 
number of iterations required for convergence (again using a tolerance 
of 10−7) on each grid is depicted in Fig. 10a; however, note that in con-
trast to the convergence studies in Section 4, here we use the solution 
on the previous meshes to initialize the solution on subsequent meshes. 
The effect of initializing with previous solutions becomes apparent in 
later iterations, when the solution is reasonably well resolved in much 
of the domain and further refinements result in fairly localized pertur-
bations to the solution. Fig. 10b shows that the DPG residual decreases 
early in the adaptive process, when compared to the ℎ𝑝-adaptive Gaus-
sian beam problem in Fig. 6b; this is likely because the wave decays 
relatively quickly away from the point source.

Timings for the assembly and solution phase on each mesh are 
shown in Fig. 10; the solution on the finest mesh was completed in 
210 seconds whereas the total runtime for the job (including assembly 
and solution on 34 meshes) was 3 029 seconds (51 minutes). Because 
the solution on different grids involve different numbers of iterations, 
the time per iteration is depicted in Fig. 10d to better gauge efficiency 
of the implementation. After an early preasymptotic regime, it can be 
seen that the time per iteration scales roughly linearly with respect 
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to DOFs; however, some super-linearity is observed in the largest in-
stances. Super-linearity of multigrid solvers is expected when the num-
ber of DOFs grows sub-geometrically between grid levels (as is the case 
late in the refinement process). Refactoring the refinement tree to re-
duce the number of grid levels could help mitigate super-linear scaling 
and significantly reduce the cost of ℎ𝑝-adaptive solver iterations.

Finally, we note that the variations in time per iteration in Fig. 10d 
are related to the significant challenge of load balancing on ℎ𝑝-adaptive 
meshes. Indeed, ℎ𝑝-adaptive refinements produce elements and smooth-
ing patches with highly disparate costs that must be accurately predicted 
then properly partitioned. We neglect definition of our load balancing 
strategy in this work, but we note that the multilevel approach em-
ployed here operates on a large number of relatively small elements and 
patches; this greatly simplifies the estimation of costs, can provide op-
portunities for more fine-grain parallelism, and is often more conducive 
to shared-memory parallelism than other methods including domain de-
composition and sweeping-type preconditioners. Scalable adaptivity is 
a key differentiator of the DPG-MG solver which, to our knowledge, is 
novel among Helmholtz solvers.

Uniform refinements We conclude this section by considering uniform 
ℎ- and 𝑝-refinements for the GO_3D_OBS benchmark. As remarked ear-
lier, under the current implementation the DPG-MG solver stores and 
operates on all previous grids, which can become expensive when a 
small number of elements are refined between meshes. This added ex-
pense can be somewhat justified since adaptive meshes often attain a 
similar accuracy with a small fraction of the number of DOFs. Still, we 
are working toward reducing the additional expense of applying the 
solver to adaptively refined meshes. The following uniform refinement 
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Fig. 10. Convergence and timings for ℎ𝑝-adaptive solution of the GO_3D_OBS model with the DPG-MG solver (28 672 cores). The number of iterations is better 
controlled when solutions on previous grids are used to initialize subsequent grids. For a fixed frequency, the DPG-MG solver scales nearly linearly with respect to 
degrees of freedom; super-linear scaling is due to sub-geometric growth in DOFs.
example is intended to provide a baseline for potential performance of 
adaptive refinements and to provide a more direct point of comparison 
to other Helmholtz solver implementations.

We start from the same 8 ×42 ×10 initial mesh of uniform order 𝑝 = 2
and perform four uniform ℎ-refinements (corresponding to roughly two 
elements per wavelength in the water), followed by two uniform 𝑝-
refinements. The final mesh has 16 million elements and 5.6 billion 
degrees of freedom. Convergence and timing information are provided 
in Fig. 11. Comparing Fig. 11b to Fig. 10b, it can be seen that the uni-
form refinement setting requires nearly three times as many DOFs and 
only reaches a DPG residual ten times larger than for ℎ𝑝-adaptive refine-
ments, illustrating the optimality of meshes produced with ℎ𝑝-adaptive 
refinements using the DPG error indicator. Still, comparing Fig. 11d and 
Fig. 10d, it can also be seen that the time per iteration for uniformly re-
fined meshes is three times smaller than for adaptive meshes, or nine 
times smaller when normalizing for the number of DOFs. A significant 
benefit may thus be attained by reducing the number of grid levels 
used during ℎ𝑝-adaptive refinements. Finally, we note that the num-
ber of iterations for uniform refinements (Fig. 11a) was higher than for 
the adaptive case (Fig. 10a); this is contrary to findings in Section 4
but seems to be the case here because adaptive refinements resolve the 
point source on early grids and thus typically begin iterations from a 
much lower residual than uniformly refined meshes.

6. Conclusion

The DPG-MG solver leverages the unique properties of the DPG 
methodology including mesh-independent stability, a built-in error indi-
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cator, and Hermitian positive-definite discrete systems to enable robust, 
adaptable, and scalable solution of high-frequency wave propagation 
problems. When coarse-grid operators are constructed as restrictions 
of fine-grid operators, the DPG-MG solver demonstrates clear ℎ- and 
𝑝-robust convergence and a linear dependence with respect to wave 
frequency. A similar linear dependence on frequency was observed for 
ℎ𝑝-adaptive refinements. Despite the linear increase in number of iter-
ations with respect to frequency, a scalable MPI/OpenMP implemen-
tation of the DPG-MG solver was demonstrated to be competitive for 
high-frequency wave propagation problems. In initial, moderate-scale 
tests, the DPG-MG solver was able to solve a challenging high-contrast 
seismic modeling benchmark (GO_3D_OBS) with 1.9 billion DOFs on ℎ𝑝-
adaptive meshes and 5.6 billion DOFs on uniformly refined meshes; a 
larger scale than any work we are currently aware of for high-frequency 
wave propagation in heterogeneous media. A significantly smaller DPG 
residual was achieved when ℎ𝑝-adaptive meshes were used, however 
we defer quantitative comparisons of accuracy to a later publication.

Future directions Scalable implementation of the DPG-MG solver has 
motivated a number of promising research directions. First, as indi-
cated in Section 4, we intend to further investigate the deteriorated 
convergence rate of the DPG-MG solver when coarse-grid operators are 
stored and in the case of ℎ𝑝-adaptive meshes. Second, we are working 
to integrate the solver with automatic, fully-anisotropic ℎ𝑝-adaptivity 
[13,20], where the DPG error indicator is first used to mark isotropic ℎ𝑝-
refinements, an optimal set of anisotropic ℎ- and 𝑝-refinements is then 
extracted from the isotropic refinements, and the remaining refinements 
are finally discarded. We anticipate the combination of the DPG-MG 
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Fig. 11. Convergence and timings for uniform ℎ- and 𝑝-refinements of the GO_3D_OBS model with the DPG-MG solver (28 672 cores). Nearly three times as many 
DOFs are required and the final DPG residual is ten times larger than the ℎ𝑝-adaptive case (compare Fig. 10b); however, the time per iteration is three times smaller 
(compare Fig. 10d).
solver with automatic ℎ𝑝-adaptivity will be competitive for complex 
boundary layer problems and other problems with highly anisotropic 
features. We are continuously working to improve scaling and perfor-
mance of the DPG-MG solver; near-term improvements include integra-
tion of GPUs for a memory-efficient implementation, refactorization of 
the refinement tree to reduce the number of grids under adaptive re-
finements, and implementation of a fully distributed data structure in 
ℎ𝑝3D (a fairly light-weight but replicated data structure currently limits 
scalability).

Finally, we are working to apply the scalable DPG-MG solver to chal-
lenging problems in science and engineering. For example, we have 
implemented an ultraweak time-harmonic Maxwell model of a tokamak 
device on an unstructured tetrahedral mesh with numerous reentrant 
corners and complex features; ℎ𝑝-adaptivity is expected to be particu-
larly advantageous in this application. Additional applications of inter-
est include extension of an optical fiber amplifier model [40,41] to bent 
and complex cross-section fibers, and implementation of ultraweak elas-
tic Helmholtz for seismic modeling and, ultimately, seismic inversion.

Data availability

Data will be made available on request.
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