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Abstract

While the Question Generation (QG) task has
been increasingly adopted in educational as-
sessments, its evaluation remains limited by
approaches that lack a clear connection to the
educational values of test items. In this work,
we introduce test item analysis, a method fre-
quently used by educators to assess test ques-
tion quality, into QG evaluation. Specifically,
we construct pairs of candidate questions that
differ in quality across dimensions such as topic
coverage, item difficulty, item discrimination,
and distractor efficiency. We then examine
whether existing QG evaluation approaches
can effectively distinguish these differences.
Our findings reveal significant shortcomings
in these approaches with respect to accurately
assessing test item quality in relation to student
performance. To address this gap, we propose
a novel QG evaluation framework, QG-SMS,
which leverages Large Language Model for Stu-
dent Modeling and Simulation to perform test
item analysis. As demonstrated in our extensive
experiments and human evaluation study, the
additional perspectives introduced by the sim-
ulated student profiles lead to a more effective
and robust assessment of test items.

1 Introduction

The Natural Language Processing (NLP) domain
has recently seen the growing adoption of the ques-
tion generation (QQG) task in educational assess-
ments to help teachers measure student learning
and identify misconceptions (Wang et al., 2022b;
Jia et al., 2021; Wang et al., 2022a; Moon et al.,
2024; Nguyen et al., 2022). These generated ques-
tions are often evaluated using reference-based
metrics such as ROUGE (Lin, 2004), BLEU (Pa-
pineni et al., 2002), or BERTScore (Zhang et al.,
2019), which measure the syntactic and semantic
similarity between the generated question and a
human-written reference. However, researchers
have raised concerns about the validity and relia-

Learning Material

Introduction of computer vision: Computer vision (CV) is
the field of computer science that focuses on creating digital
systems that can process, analyze, and make sense of visual
data [...]. For example, [...]

Computer vision history [...] In 2012, a team from the
University of Toronto [...]. The model, called AlexNet,
[...],achieved an error rate of 16.4%, which overperformed
all other methods at that time. [...]

Quiz Questions

@Q1: Which of the following may utilize computer vision
techniques? 1). Use a camera to check potential issues on
the surface of products (2). Estimate the freshness of apples
from pictures (3). Estimate whether a car is speeding via a
camera (4). Determine whether a piece of audio is spoken by
a specific person

A) (D2)(3); B) (D(2)(4); C) (2)(3)(4): D) (D).

(2: One breakthrough in computer vision happened at the
University of Toronto in 2012, which achieved an error rate of
[ ] in image classification.

A) 6.4%; B) 10.4% C) 12.4% D) 16.4%.

Evaluation Task: Which question has higher discrimina-
tion?

Existing approaches: (1. @1 is an apply-level question,
while )2 is a recall-level question.

Label based on Actual Student Performance: ()». Appli-
cations of CV appearing in ()1 can be considered common
knowledge while Q2 tests a specific detail which only students
who pay close attention to details may be able to answer.

Table 1: Existing LLM-based approaches rely solely on
question content for evaluation. In this example, ChatE-
val identifies () as the better test item for distinguishing
high- and low-performing students, reasoning that it re-
quires learners to apply a concept rather than merely
recall information (as in ()2). However, real student
performance data shows )1 has lower discrimination.
This highlights the need for evaluation methods that
incorporate student modeling. The complete case study
is provided in Appendix A.4.

bility of reference-based metrics in accurately re-
flecting question quality (Nguyen et al., 2024). As
a result, reference-free metrics have been proposed
to assess aspects of question quality independently
of a single reference question (Moon et al., 2022;
Nguyen et al., 2024). Despite these advancements,
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most reference-free QG metrics primarily focus on
the answerability of generated questions, lacking a
direct connection to their educational value.

In this work, we introduce test item analysis,
a well-established method in education for as-
sessing test item quality, into the QG evaluation
pipeline. In educational testing, test item qual-
ity is assessed through both pre-examination and
post-examination analyses. Pre-examination anal-
ysis evaluates test items (i.e., quiz questions) be-
fore administration, focusing on dimensions such
as topic alignment, where instructors or subject
matter experts ensure that test content aligns with
learning objectives (Mahjabeen et al., 2017). Post-
examination analysis is a powerful tool that evalu-
ates the quality of test questions by analyzing how
test takers respond to them. It occurs after test
administration, providing insights into dimensions
such as item difficulty, item discrimination, and
distractor efficiency through statistical analyses of
test-taker performance (Mahjabeen et al., 2017).
Post-examination analysis can help improve future
test items’ validity and reliability. However, it can-
not evaluate test questions during the test design
phase, as it requires test-taker responses that are
only available after the test has been administered.

Recent studies have shown that Large Language
Models (LLMs) achieve state-of-the-art alignment
with human judgment via pairwise evaluation of
generated outputs in natural language generation
tasks (Chan et al., 2023; Zeng et al., 2024). We
investigate whether these evaluation approaches
can provide a predictive analysis of test items
by considering dimensions educators address in
both pre-examination and post-examination anal-
yses. Specifically, we consider four dimensions:
topic coverage (from pre-examination analysis),
and item difficulty, item discrimination, and dis-
tractor efficiency (from post-examination analy-
sis). We examine whether existing approaches can
effectively distinguish among questions based on
these four dimensions—for example, by comparing
two questions and identifying which one exhibits
higher difficulty. Our findings, illustrated in Fig. 1,
reveal a significant performance disparity: while
existing QG evaluation approaches excel in pre-
examination analysis (e.g., topic coverage), they
struggle to accurately evaluate dimensions in post-
examination analysis, such as item difficulty, dis-
crimination, and distractor efficiency.

Tbl. 1 illustrates the shortcomings of exist-
ing LLM-based evaluation approaches for post-
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Figure 1: Performance of LLM-based evaluation meth-
ods (defined in §4.2) in pairwise test item comparisons
on the EduAgent dataset. Existing approaches (in col-
ors except purple/markers except stars) perform well
in pre-examination analysis (95.6% on average). How-
ever, their post-examination performance on question
difficulty, discrimination, and distractor efficiency, sig-
nificantly falls behind, with average consistent accura-
cies of 49.1%, 44.5%, and 53.3%, respectively. Our
proposed approach, QG-SMS, bridges this gap, outper-
forming all methods across all dimensions.

examination analysis. These methods primarily
assess question content while neglecting test-taker
perspectives, which are crucial for evaluating ques-
tion quality. To address this gap, we propose QG-
SMS, a novel evaluation framework (illustrated in
Fig. 2) that utilizes a large language model (LLM)
to simulate students with diverse levels of under-
standing for test item analysis. These simulations
serve as reliable indicators of student performance
on candidate test items, significantly enhancing
the LLM’s capacity for evaluating question qual-
ity (Fig. 1). In summary, this paper makes the
following contributions:

* We systematically introduce fest item analy-
sis into QG evaluation, revealing a significant
performance gap in existing approaches when
assessing educational aspects such as ques-
tion difficulty, discrimination, and distractor
efficiency.

* To bridge this gap, we propose QG-SMS, a
novel QG evaluation framework that leverages
diverse Student Modeling and Simulation
with a single LLM.

* We conduct extensive experiments and human
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evaluation studies to showcase the effective-
ness and robustness of QG-SMS.

We release all implementation details of QG-
SMS to facilitate future works .

2 Problem Definition

2.1 Statistical Measures of Test Items

Educators evaluate test items across multiple di-
mensions to ensure their effectiveness. In this
work, we focus on four key dimensions that are
well-established in educational research and have
been mathematically formalized: fopic coverage,
item difficulty, item discrimination, and distrac-
tor efficiency (Martone and Sireci, 2009; Tavakol
and Dennick, 2011; Mahjabeen et al., 2017). While
topic coverage pertains to pre-examination analysis,
the remaining dimensions are primarily evaluated
post-examination.

Topic coverage (TC) evaluates whether the test
item covers a given topic. Mathematically, it is a
binary variable, where a value of 1 indicates that
the test item covers the desired topic, 0 otherwise.

Item Difficulty (DF) measures how easy (or dif-
ficult) a test item is for a group of students. Let
S = {s1,...,8p} be the set of students who at-
tempted the test item and x5 € {0,1} indicate
whether student s € .S answered correctly. The dif-
ficulty index (DF) of the test item is defined as the
proportion of students who answered the question

correctly:
ZSES Ts
5]

Item Discrimination (DC) measures the abil-
ity of the test item to differentiate between stu-
dents who have a strong understanding of the learn-
ing material and those who do not. Let X =
{Zs,,Tsy, ..., s, } denote the scores of students
on the specific test item, and 7" = {t5,, ts,, ..., s, }
where ¢, denote the total test score of student s € S.
The Discrimination Index DC of the test item is de-
fined as the correlation between the student’s score
on the specific item and their overall test score:

DF =

~ Cov(X,T)

oxaor

DC

where Cov(X,T) represents the covariance be-
tween X and T', while ox, o are the standard
deviations of X and 7" respectively.

"https://github.com/bnguyen5/qg-sms

For multiple-choice questions, distractor effi-
ciency (DE) assesses how well the distractors (in-
correct answer choices) mislead students who hold
specific misunderstandings. Let O be the set of dis-
tractors of a test item, and f(s,0) € {0, 1} denote
whether student s € S selects distractor o € O.
Then, the distractor efficiency (DE) of the test item
is defined as the number of distractors chosen by
at least 5% students in S (Mahjabeen et al., 2017).

DE = |{o € O}|p(0) > 0.05],

where p(0) = %

2.2 Task Definition

Given learning materials L such as lecture content
or transcripts, our goal is to obtain a test question
that effectively assesses students’ knowledge of L.
Since instructors may have varying requirements
for test questions (Wang et al., 2022a), let R, de-
note the desired characteristic or requirement of a
test question with respect to a specific dimension
d such as question difficulty, discrimination, topic
coverage, or distractor efficiency. Given two candi-
date questions Q1 and ()2 derived from L, the task
is to determine which question better satisfies the
requirement R;>. We provide an example of the
task in Tbl. 1.

To ensure that the task is achievable, we require
that the statistical measure corresponding to di-
mension d for ()1 be significantly different from
that of Q2. For example, if d represents difficulty,
then the absolute difference between the difficulty
indices of ()1 and ()2 must exceed a certain thresh-
old a: |DFg, — DFg,| > «, where « is a prede-
fined threshold ensuring a meaningful distinction
between the two questions.

3 QG-SMS: Student Modeling and
Simulation for Test Item Analysis

During the test design phase, it is imperative to
anticipate the diverse ways students may interpret
learning materials. For example, in multiple-choice
tests, effective distractors help teachers identify stu-
dents who hold certain misconceptions (Gierl et al.,
2017). In this sense, to enhance the educational
alignment of automated test item evaluation, we
propose QG-SMS, which leverages LLM to model

“While the current task setup relies on binary comparisons,
an extended approach using multiple pairwise comparisons
could establish a ranking-based system, where question rank-
ings translate into computed DF/DE/DC scores.
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Step I: Studente Profilee Generation

Learning Materiale

1. Introduction to Computer Vision
2. Computer Vision History
3. Computer visions Tasks 4

Alice - The Attentive

Alice has a good understanding of
all the lecture content, including
LLM the human and computer vision
systems, the history, the tasks

involved, and how images are history and technical ”
stored in computers. ’

Bob - The Beginner

Bob understands what
computer vision is and its
applications, but struggles

Clara - The Conflicted ﬂ

with understanding detailed David - The Distracted-?-

@ | sepects of specific tasks. @izm Qenerated Student Profiles

: Step 3: Evaluation
gfeg 2: QL: Which of the following may Q2: One breakthrough in computer P ﬁ
tudente utilize computer vision techniques? vision happened at the University of Candidate Quegﬁons Predicted ax -
per{ormance 2))({)(;)%;[]]3) oW Totronﬁ 1]n.20_12, Whlfh a_t;}.nez/_ed an error Qtudent
predicﬁon ’ : rateo 1 image classiucation. Performance % ?
3)(4); . A) 6.4%; B) 10.4%; I 2
C) <?)<3)<4) D) .(1)(2)(3)(4) o 12.40%; o 16'4;/0' Q1 Q2 arh
Candidate Quegtiong
_________ .
Learnin? e & Alice - The Bob - The 5% e
- enerated A . ’ . B ;
Materigle Qtudent axm UM Attentive @S| Beginner @xmi @xm Requirement Dreferred
udeny Q1: correct. Q1: correct. .
............... DFOHBQ n ? Q2: correct. Q2: incorrect. n A question that LLM QUQS*IOY]
has higher
discrimination Q2

Predicted Studentg Derformance

Figure 2: QG-SMS follows three steps: (1) Generating student profiles with diverse understanding of learning
materials, (2) Predicting responses of simulated students to candidate questions, and (3) Evaluating question
quality based on simulated student performance. In the same example shown in Tbl. 1, QG-SMS arrives at the
opposite conclusion from existing evaluation approaches. According to the simulation, applications of computer
vision (covered in (J1) are common knowledge among students, including Alice - The Attentive and Bob - The
Beginner, making them equally likely to provide a correct response. Meanwhile, recalling a specific statistic from
the lecture (as required by ()2) targets students who pay closer attention like Alice - The Attentive. Based on the
simulated performance, QG-SMS correctly identifies Q2 as the question with higher discrimination.

and simulate how well test items measure varying
levels of student understanding. As illustrated in
Fig. 2, QG-SMS consists of three key steps:

Step 1 - Student Profile Generation: QG-SMS
begins by simulating diverse student perspectives
on the same learning materials. Given learning
materials L, the LLLM is tasked to generate a set
of students S = {s1, S, ..., s, } such that the dis-
tribution of student understanding reflects that in
a realistic classroom. Note that we only simulate
diverse student understanding of the given learning
materials, avoiding the use of personal identities
that may introduce social bias into the generated
profiles (Cheng et al., 2023). Fig. 2 presents the
profiles of two simulated students Alice and Bob.

Step 2 - Student Performance Prediction:
Once student profiles are established, QG-SMS
simulates their performance on candidate test items.
Given learning materials L, a pair of candidate
questions to be evaluated {Q1, @2}, and the gen-
erated student profiles .S, the task is to predict
whether each student s € S will correctly or incor-
rectly answer ()1 and Qs.

Step 3 - Evaluation: Finally, QG-SMS assesses
whether a test item fulfills its intended purpose by
examining the responses of students with different
levels of understanding. For example, an easy ques-

tion should yield correct answers from a wide range
of students, while a challenging question should
only be correctly answered by those who have a
deeper understanding of the learning materials. In
this step, we leverage the LLM’s understanding
of the question content along with the simulated
performance data to make informed judgments on
questions. Formally, given the pair of candidate
questions {Q1, @2}, the desired characteristic of
the test item R, and the predicted student perfor-
mance from step 2, the task is to determine which
question better satisfies requirement R,.

Notably, the proposed approach uses the same
input L, Ry, and {Q1,Q2} as given in §2.2. All
other information is synthetically simulated by the
LLM. We provide the specific prompts used for
each step in Appendix. A.1.

4 Experiments

4.1 Dataset Construction

We construct a dataset of question pairs (Q1, Q2)
with varying quality levels from two knowledge-
tracing datasets: EduAgent (Xu et al., 2024) and
DBE-KT (Abdelrahman et al., 2022) datasets. Both
datasets contain mappings between learning mate-
rials and quiz questions, ensuring that ()1 and Q)2
are related to the given learning materials L. Each
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question is also annotated with its relevant topic, al-
lowing us to set up pairs for the topic coverage (TC)
setting. In addition, both datasets collect student
responses to individual quiz questions, allowing
us to compute the statistical measures discussed in
§2.1. For DBE-KT, we can only compute DF and
DC as information on specific distractors chosen by
students who answered incorrectly is unavailable.
As discussed in §2.2, we adopt the threshold «
to ensure a significant quality difference between
@1 and Q2. We set a to 1 for TC, 2 for DE, and
0.15 for DF and DC. For each pair (Q1, Q)2) that
exhibits significant quality difference with respect
to dimension d, we assign labels based on d and its
corresponding requirement 124 as follows:

* Topic coverage: we define R, as "the question
that covers the target topic". The label cor-
responds to the question with the higher TC
value (1 vs 0).

e Item Difficulty: we define R; as "the ques-
tion that is easier to answer". The label cor-
responds to the question with the higher DF
value.

e Item Discrimination: we define R4 as "the
question that is more effective at distin-
guishing between high-performing and low-
performing students". The label corresponds
to the question with the higher DC value.

* Distractor Efficiency: we define R, as "the
question that has a higher number of effec-
tive distractors". The label corresponds to the
question with the higher DE value.

Notably, R4 can also be defined in the opposite
direction to ours without altering the task setup.
For example, with difficulty as d, R4 can instead
be defined as "the question that is more difficult
to answer". In this case, the same (Q1, Q2) pair
would be labeled based on which question has the
lower DF value.

Ultimately, we obtained 477 and 255 question
pairs from EduAgent and DBE-KT, respectively.
These pairs serve as a benchmark for evaluating
QG-SMS and existing QG evaluation mechanisms
across multiple test item dimensions.

4.2 QG Evaluators

We compare QG-SMS with three individual-
scoring metrics:

The reference-based BERTScore (Zhang et al.,
2019) measures the semantic similarity between
the candidate question and a reference. Since we
do not have a reference question for each pair, we
instead use the learning material L as the reference
and measure the similarity between L and each
question.

The reference-free KDA (Moon et al., 2022)
evaluates question quality based on the perfor-
mance of simulated students with and without ac-
cess to learning material .. We use the large ver-
sion of this model-based metric.

The LLM-based QSalience (Wu et al., 2024)
measures the importance of the candidate question
for understanding the learning material L. We use
the best-performing model, mistral-instruct,
as reported by its authors.

As these metrics assign separate scores to ()1
and ()2, we must determine how to compare their
scores to establish a preference. For each dimen-
sion, we select the direction that yields the highest
average accuracy for the EduAgent dataset (see
Appendix A.2 for more details) and retain this com-
parison direction for the DBE-KT dataset, as a
reliable metric should exhibit consistent behavior
across domains.

We also consider LLM-based approaches that
perform pair-wise comparison of ()1 and Q2:

Vanilla (Zeng et al., 2024): We describe the
question generation task in natural language, given
lecture L and quiz requirement R4, referred to as
instruction I. Given instruction I, the LLM is
then asked to choose between Q1 and () based
on which question better satisfies R (i.e., better
aligns with the specified topic, is easier, has higher
discrimination ability, or has more effective dis-
tractors). The LLM simply outputs its preference
without providing an explanation.

Chain-of-Thoughts (CoT) (Wei et al., 2022):
Given instruction [, the LLLM is prompted to first
provide explanations before making its preference
between (1 and Qs.

Self-Generated Metrics (Metrics) (Liu et al.,
2023; Saha et al., 2024): Given instruction I, the
LLM is first prompted to generate a set of metrics
to which a well-constructed test question should
adhere. It then selects (1 or ()2 based on these
self-generated metrics.

Self-Generated Reference (Reference) (Zheng
et al., 2023): The LLM is first prompted to generate
a reference output (an example of a desirable ques-
tion) based on instruction I. It is then encouraged

26156



Topic Coverage (TC)

Difficulty (DF)

‘ Discrimination (DC)

| Dist. Eff. (DE)

Method EduAgent DBE-KT EduAgent DBE-KT EduAgent DBE-KT EduAgent
217 pairs 286 pairs 124 pairs 162 pairs 61 pairs 93 pairs 75 pairs
AA CA AA CA | AA CA AA CA | AA CA AA CA | AA CA
Individual Scoring
BERTScore 79.26 - 40.20 - 51.61 - 61.73 - 05.57 - 30.11 - 65.33 -
KDA4rge 57.60 - 38.46 - 60.48 - 54.32 - 60.66 - 58.06 - 7133 -
QSalience 54.84 - 48.25 - 54.03 - 60.49 - 52.46 - 47.31 - 68.00 -
Pairwise LLM-based
Vanilla 96.54 9539 7430 68.89 | 63.71 50.80 67.28 4938 | 63.11 49.18 63.98 49.46 | 73.33  64.00
CoT 9539 92.63 78.15 65.03 | 61.69 3226 6420 38.89 | 59.84 3279 6290 34.41 | 60.00 28.00
Metrics 9770 97.70 80.59 75.17 | 6532 5322 6420 48.77 | 65.57 50.82 61.29 45.16 | 72.00 62.67
Reference 97.00 9631 7255 6643 | 6653 51.61 6296 4506 | 6230 4590 60.75 44.09 | 69.33  56.00
Swap 9585 9585 81.64 7448 | 66.53 54.84 6831 5370 | 6475 4590 62.90 4839 | 68.00 53.33
ChatEval 96.77 9585 80.94 74.13 | 68.95 51.61 70.99 59.88* | 5492 4256 65.05 53.76 | 69.33  56.00
QG-SMS (Ours) 98.85 98.62 79.90 74.82 | 68.55 65.32* 69.44 64.20*% | 66.39 55.74 66.66 56.99 | 79.33 74.67*

Table 2: Performance (AA: average accuracy, CA: consistent accuracy) of existing QG evaluation approaches
and our proposed QG-SMS approach in test item analysis, grouped by dimension and dataset. The highest and
second-highest values for each column are highlighted with bold and underline markers, respectively. Asterisks (*)
indicate statistical significance at p < 0.1 of LLM-based evaluation approach in improving CA against Vanilla.

to utilize this reference to evaluate (1 and QQ».
Swap and Synthesize (Swap) (Du et al., 2024):
To address positional bias, the LLM is prompted
to express its preference using CoT in both or-
ders (Q1,Q2) and (Q2,Q1). If the LLM evalua-
tor makes contradictory choices when the question
order is swapped, it is prompted to make a final
decision by synthesizing the two CoT responses.
ChatEval (Chan et al., 2023): This method in-
corporates multiple personas when using LLM as
proxies for human evaluators. Given instruction 7,
we first generate multiple expert personas for the
evaluation task using the AutoAgents framework
(Chen et al., 2023). The LLM then assumes these
personas and engages in a multi-turn discussion to
determine its preference between (1 and Q2.

4.3 Additional Details

For all LLM-based evaluation metrics, including
ours, we use the same base model, GPT-40, across
all experiments.

As LLMs are known to exhibit strong positional
bias (Wang et al., 2024), we run evaluations on
each question pair twice, swapping their orders:
(Q1,Q2) and (Q2,Q)1). We assess the evaluation
performance using two evaluation metrics: Average
Accuracy and Consistent Accuracy. We define Con-
sistent Accuracy, applicable to LLM-based meth-
ods, as the percentage of cases where the evaluation
method makes the correct judgment both when the
questions are presented in their original order and
when their order is swapped.

Additional experimental details are provided in

Appendix A.2.

5 Results

5.1 Enhancing Test Item Analysis with
QG-SMS

We provide insights into which dimensions of test
item analysis that single-scoring metrics align the
most closely, with the expectation that they should
achieve accuracy > 50% on both datasets. As
shown in the Tbl. 2, their evaluation behavior is
consistent for the DF dimension (i.e., easier ques-
tions tend to receive lower BERTScores, higher
KDA values, and lower QSalience). KDA is also
consistent in its evaluation for DC (higher discrim-
ination questions tend to have lower KDA value),
although the evaluation performance is not as com-
parable to QG-SMS (ours). However, the behavior
of BERTScore and QSalience in TC and DC, and
KDA in TC, appears dataset-specific and therefore
not reliable in reflecting these educational aspects
of test items.

While existing LLM-based evaluation ap-
proaches perform well in pre-examination analysis
of topic coverage (TC), they struggle with post-
examination dimensions, as shown in Fig. 1 and
Tbl. 2. To address this gap, QG-SMS enhances test
item analysis performance by incorporating student
modeling and simulation. Across both datasets,
QG-SMS achieves the highest average accuracy
in evaluating DC and DE, and the second-highest
average accuracy in evaluating DF. Additionally,
QG-SMS significantly outperforms all baselines
in consistent accuracy, demonstrating its robust-
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Figure 3: Performance of LLM-based approaches in evaluating for Difficulty (DF) across different a values.
QG-SMS consistently shows better evaluation performance compared to other LLM-based approaches.
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Figure 4: Simulated student performance on the same
set of questions across five different runs. The observed
consistent distribution of student performance across
runs indicates the robustness of the generated student
profiles.

ness to input order variations. For instance, QG-
SMS’s consistent accuracy for DF in the EduAgent
dataset is 65.32%, maintaining a 10.48% gap over
the second-best baseline (Swap). Fig. 2 provides
a case study illustrating how simulation enhances
test item analysis, facilitating a more educationally
aligned evaluation.

5.2 Analysis

Varying o: We examine the effectiveness of QG-
SMS compared to other LLM-based approaches
across different values of «, i.e., the threshold of
quality difference in a pair of questions. Fig. 3
indicates that the performance of all LLM-based
metrics consistently improves as « increases. This
trend is intuitive, as higher « values suggest a larger
quality gap in question pairs, making the evaluation

task easier. Importantly, QG-SMS remains the top
performer regardless of the changes in a.
Robustness of generated student profiles: To
test the robustness of the generated student pro-
files, we repeat Step 1 (i.e., student profile genera-
tion) and Step 2 (i.e., student performance predic-
tion) multiple times and examine the consistency of
the predicted student performance. Fig. 4 demon-
strates that conditioning the student profiles solely
on the lecture content already results in consistent
distribution of simulated student performance on
the same set of questions across different runs.
Necessity of LLLM-based evaluation step: In
Step 3, we leverage the same LLLM to make pref-
erence between candidate question pairs, provid-
ing the model with two inputs: the questions’ con-
tent, and the simulated student performance derived
from Step 2. We believe that by providing the LLM
with simulated student performances as augmented
context, it can more effectively utilize its under-
standing of the questions’ semantics and nuanced
language to make informed judgments. To assess
the necessity of this step, we perform an ablation
study in which we directly compute the Discrimi-
nation and Difficulty Index (DC and DF) using the
simulated student performance and then compare
the question pair based on these statistics. Results
indicate that while this direct calculation yields
better evaluation performance on Difficulty (with
average accuracy improving from 68.55 to 73.11),
it greatly harms Discrimination performance (with
average accuracy decreasing from 66.39 to 56.83).
This observation demonstrates that Step 3 is effec-
tive and necessary for the QG-SMS framework.
Extension of QG-SMS to questions without
significant quality difference: We provide this
analysis to demonstrate that our pipeline can be
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DE =0 DE =1 DE =2 DE =3
022+0.18 040+£022 048+0.22 0.67+0.22

Table 3: QG-SMS-derived ranking scores (mean and
standard deviation) of questions with different distractor
efficiency (DE) in the EduAgent dataset. Questions with
higher DE tend to have higher QG-SMS ranking score.

Method Spearman Kendall Pearson
KDA 0.43 0.33 0.43
Vanilla 0.34 0.27 0.35
QG-SMS 0.48 0.38 0.50

Table 4: Correlation between method for computing
ranking score and actual DE value of questions in the
EduAgent dataset.

applied for test items with similar quality levels.
Specifically, we apply QG-SMS to the Distractor
Efficiency (DE) dimension within the EduAgent
dataset, considering all possible question pairs with
aof 0, 1, 2, or 3. This setting results in a total of
308 pairs. For each unique question, we computed
a ranking score as follows: If the question is consis-
tently preferred in both swapped and non-swapped
versions of a pair, we add 1 to its score; if it is
preferred in only one version, we add 0.5. We then
normalize the final score by the total number of
pairs the question appears in.

Tbl. 3 compares QG-SMS-derived scores with
actual DE values. An ANOVA test (p < 0.01)
reveals a significant difference in ranking scores
among groups of questions with different DE lev-
els. This supports our claim that QG-SMS can ef-
fectively identify groups of questions with similar
quality on a specific dimension. We also compare
the correlation between these ranking scores and
actual DE values across methods. Tbl. 4 shows
that QG-SMS achieves the highest correlation com-
pared to the two strongest DE baselines (Vanilla
and KDA).

5.3 Human Evaluation Study

So far, our experiments have involved human-
written questions from knowledge-tracing datasets
such as DBE-KT and EduAgent. To further demon-
strate the applicability of QG-SMS in the QG pro-
cess, we conduct a human evaluation study with
both human-written and generated questions.
Study Description: We recruit three volunteer
annotators, including two graduate and one under-
graduate student in Computer Science. Their do-

HumanQs GenQs

Method Stud.Perf Label | Anno Label

AA AA CA
Vanilla 70.83 70.83 58.33
CoT 67.50 65.00 38.33
Metrics 70.83 69.17 53.33
Reference 69.17 67.50 55.00
Swap 73.33 65.00 48.33
ChatEval 69.17 7417 56.67
QG-SMS 76.67 7417 63.33
Human 78.33 - -

Table 5: Results (AA: Average Accuracy, CA: Consis-
tent Accuracy) of QG evaluation approaches on human-
written (HumanQs) pairs and generated (GenQs) pairs.
The label is determined by actual student performance
(Stud.Perf) for the HumanQs pairs, and by Human An-
notators (Anno) for the GenQs pairs. The highest and
second-highest values for each column are highlighted
with bold and underline markers, respectively.

main knowledge is highly related to the lecture
contents of the EduAgent dataset (e.g., Al related
knowledge) and they all have some teaching expe-
rience. Annotators are tasked to make preferences
on 120 pairs of questions, including 60 pairs of
human-written and 60 pairs of machine-generated
questions. Each pair differs in one of three dimen-
sions - DF, DC, and DE. We use the EduAgent
dataset. Its lectures target a general audience, sup-
porting the credibility of our annotators in assess-
ing lecture content and quiz questions. We provide
more details on the question generation process and
instructions given to annotators in Appendix A.3.

Study Results: In 75 of 120 cases (62.5%) all
three annotators agree on the same preference. For
the remaining cases, we adopt the majority pref-
erence (chosen by 2 out of 3 annotators) as the
representative of human judgment. We report the
results of our human evaluation study in Tbl. 5.

In human-written question pairs with ground-
truth labels based on student performance, our hu-
man annotators achieve the highest average accu-
racy (78.33%) compared to LLM-based evaluators.
When broken down by dimension, the average ac-
curacy of human annotators is 90.48%, 53.33%,
and 87.5% for DF, DC, and DE respectively. This
observation suggests that performing item analy-
sis on the DC dimension poses significant chal-
lenges to our annotators. As they noted during post-
examination feedback, it is challenging to identify
which question more effectively distinguishes be-
tween high-performing and low-performing stu-

26159



dents when they do not have access to the specific
student profiles in the classroom. In terms of evalu-
ating DC, our proposed QG-SMS surpasses human
annotators, and on the other two dimensions, DF
and DE, QG-SMS achieves the closest accuracy
scores to humans. On average, QG-SMS achieves
the second-highest accuracy—surpassed only by
human annotators. The results show the effective-
ness of simulating student understanding and per-
formance. See Tbl. 7 for detailed results.

For the other 60 pairs of generated questions, we
use the human annotators’ preferences as the labels
and evaluate the performance of QG evaluators
accordingly. It can be seen from Tbl. 5 that QG-
SMS achieves the highest average accuracy and
consistent accuracy in this setting, demonstrating
state-of-the-art alignment with human judgment.

6 Related Work

NLG Evaluation with LLM: LLM-based evalua-
tors have garnered increasing interest due to their
higher correlation with human judgments com-
pared to traditional metrics (Zheng et al., 2023).
As foundation models advance, LL.M-based eval-
uation has evolved from scoring candidate texts
based on conditioned probabilities (Fu et al., 2024)
to directly generating scores according to prede-
fined criteria (Liu et al., 2023). However, LLMs
are sensitive to textual instructions and positional
biases. To enhance their reliability, Wang et al.
(2024) propose calibration strategies, such as re-
quiring models to generate multiple pieces of evi-
dence and aggregating final scores across different
orders of candidates. LLM-based evaluators also
benefit from prompting techniques imitating hu-
man behaviors such as in-context learning (Song
et al., 2025), step-by-step reasoning (Liu et al.,
2023), multi-turn optimization (Bai et al., 2023)
and multi-agent debate (Chan et al., 2023). Despite
these advances, as shown in this work, LLM-based
methods still fall short in item analysis, calling for
a more effective evaluation strategy like QG-SMS.

Student Modeling and Simulation with
(L)LMs: Recent studies explore the use of (L)LMs
to simulate human behaviors in general (Park et al.,
2023), and classroom learning in particular (Xu and
Zhang, 2023; Zhang et al., 2024). These simula-
tions have been applied in various educational con-
texts, from training novice teachers (Markel et al.,
2023) to promoting student engagement (Zhang
et al., 2024). Prior works have utilized LM-based

simulations for evaluating test items. Some limit
the simulation to a single group of students (S&u-
berli and Clematide, 2024), while others use mul-
tiple (L)LMs with varying capacities to model dif-
ferent students in the classroom (Lalor et al., 2019;
Moon et al., 2022; Park et al., 2024). Unlike these
approaches, our proposed method demonstrates
that a single LLM is capable of simulating students
at diverse levels, making the pipeline more efficient
and scalable. While the approaches proposed by Lu
and Wang (2024); Lalor et al. (2019); Hayakawa
and Saggion (2024); Byrd and Srivastava (2022)
require manual efforts to control the simulated stu-
dent profiles through either feature engineering or
prompt engineering, our approach eliminates this
need, making simulation more flexible.

7 Conclusion

In this work, we proposed QG-SMS, a novel
simulation-based QG evaluation framework for test
item analysis. We first constructed two datasets of
candidate question pairs that differ in quality across
multiple dimensions of educational value. Exper-
iments with existing evaluation approaches high-
light the challenges of accurately and efficiently
assessing test item quality. In response, we in-
troduced the modeling and simulation of diverse
student understanding for evaluation. These sim-
ulated student profiles offer valuable insights into
how well a question functions as a test item for
assessing student performance.

We identify two promising future directions.
Prior work has shown that, despite being prompted
with educational requirements, LLMs often fail
to incorporate them into generated questions, as
judged by human evaluators (Al Faraby et al.,
2024). We have shown that QG-SMS is a reliable
indicator of educational aspects like DF, DE, and
DC. In this sense, QG-SMS could be integrated
into a reward-based optimization pipeline to better
align generated test items with educational objec-
tives. Additionally, we observe a growing interest
in research question generation (Liu et al., 2024a,b),
which will potentially benefit from a simulation-
based evaluation framework like QG-SMS. Exist-
ing works still rely on costly and time-consuming
evaluation by human researchers. Future work
could explore simulating diverse researcher per-
spectives to enable automated, scalable evaluation
of research questions.
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Limitations

In this work, we evaluate the quality of test items at
an individual level. We recognize that constructing
assessment typically requires considering multi-
ple dimensions and ensuring diversity within each
dimension (Osterlind, 1997). For example, a well-
designed quiz should not only cover different topics
from the learning materials rather than repeatedly
assessing the same concept, but also include a mix
of easy, medium, and hard questions. One poten-
tial application of QG-SMS in such scenarios is
to rank candidate test items based on a given di-
mension d by comparing simulated student under-
standing and performance. Using these rankings,
future work could explore methods to assist teach-
ers in assembling assessments that achieve balance
across relevant dimensions. Additionally, our sig-
nificance tests rely on a p-value threshold of 0.1
(see Appendix A.2 for more details). Future works
could explore whether stronger models could lead
to more robust significance results.

Ethical Considerations

We avoid introducing bias in the generation and
use of student profiles by grounding the simula-
tion in the learning materials alone and instructing
the LLM to focus on student understanding, which
provides useful insights into test item quality. How-
ever, implicit bias may still arise in these generated
profiles. For example, despite prompting the LLM
to use names that describe student understanding,
we observed a predominance of European names
(Alice, Bob, etc.). It is important to emphasize that
these simulated profiles are not intended to repre-
sent specific students in a real classroom. Rather,
they serve collectively to estimate the diversity of
student understanding of the learning materials.

Acknowledgments

This work was supported by NSF 1IS-2119531,
11S-2137396, 11S-2142827, 11S-2234058, CCF-
1901059, and ONR N00014-22-1-2507.

References

Ghodai Abdelrahman, Sherif Abdelfattah, Qing Wang,
and Yu Lin. 2022. Dbe-kt22: A knowledge tracing
dataset based on online student evaluation. arXiv
preprint arXiv:2208.12651.

Said Al Faraby, Ade Romadhony, and Adiwijaya. 2024.
Analysis of llms for educational question classifi-

cation and generation. Computers and Education:
Artificial Intelligence, 7:100298.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze
He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia
Xiao, Haozhe Lyu, Jiayin Zhang, Juanzi Li, and Lei
Hou. 2023. Benchmarking foundation models with
language-model-as-an-examiner. In Advances in
Neural Information Processing Systems, volume 30,
pages 78142-78167. Curran Associates, Inc.

Matthew Byrd and Shashank Srivastava. 2022. Predict-
ing difficulty and discrimination of natural language
questions. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 119-130, Dublin,
Ireland. Association for Computational Linguistics.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. 2023. Chateval: Towards better 1lm-based eval-
uators through multi-agent debate. arXiv preprint
arXiv:2308.07201.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. 2023. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Myra Cheng, Tiziano Piccardi, and Diyi Yang. 2023.
CoMPosT: Characterizing and evaluating caricature
in LLM simulations. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 10853—10875, Singapore.
Association for Computational Linguistics.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2024. Improving
factuality and reasoning in language models through
multiagent debate. In Proceedings of the 41st Inter-
national Conference on Machine Learning, ICML’24.
JMLR.org.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2024. GPTScore: Evaluate as you desire. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6556—6576, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Mark J. Gierl, Okan Bulut, Qi Guo, and Xinxin Zhang.
2017. Developing, analyzing, and using distractors
for multiple-choice tests in education: A compre-

hensive review. Review of Educational Research,
87(6):1082-1116.

Akio Hayakawa and Horacio Saggion. 2024. Can Ilms
solve reading comprehension tests as second lan-
guage learners? In Fourth Workshop on Knowledge-
infused Learning.

Xin Jia, Wenjie Zhou, Xu Sun, and Yunfang Wu. 2021.
Eqg-race: Examination-type question generation. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 35, pages 13143-13151.

26161


https://doi.org/10.1016/j.caeai.2024.100298
https://doi.org/10.1016/j.caeai.2024.100298
https://proceedings.neurips.cc/paper_files/paper/2023/file/f64e55d03e2fe61aa4114e49cb654acb-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f64e55d03e2fe61aa4114e49cb654acb-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/2022.acl-short.15
https://doi.org/10.18653/v1/2022.acl-short.15
https://doi.org/10.18653/v1/2022.acl-short.15
https://doi.org/10.18653/v1/2023.emnlp-main.669
https://doi.org/10.18653/v1/2023.emnlp-main.669
https://doi.org/10.18653/v1/2024.naacl-long.365
https://doi.org/10.3102/0034654317726529
https://doi.org/10.3102/0034654317726529
https://doi.org/10.3102/0034654317726529

John P. Lalor, Hao Wu, and Hong Yu. 2019. Learn-
ing latent parameters without human response pat-
terns: Item response theory with artificial crowds. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4249—
4259, Hong Kong, China. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511-2522, Singapore. Association for Com-
putational Linguistics.

Yiren Liu, Si Chen, Haocong Cheng, Mengxia Yu, Xiao
Ran, Andrew Mo, Yiliu Tang, and Yun Huang. 2024a.
How ai processing delays foster creativity: Explor-
ing research question co-creation with an llm-based
agent. In Proceedings of the 2024 CHI Conference
on Human Factors in Computing Systems, CHI °24,
New York, NY, USA. Association for Computing
Machinery.

Yiren Liu, Pranav Sharma, Mehul Jitendra Oswal, Hai-
jun Xia, and Yun Huang. 2024b. Personaflow: Boost-
ing research ideation with llm-simulated expert per-
sonas. arXiv preprint arXiv:2409.12538.

Xinyi Lu and Xu Wang. 2024. Generative students:
Using llm-simulated student profiles to support ques-
tion item evaluation. In Proceedings of the Eleventh
ACM Conference on Learning @ Scale, L@S ’24,
page 16-27, New York, NY, USA. Association for
Computing Machinery.

Wajiha Mahjabeen, Saeced Alam, Usman Hassan, Tahira
Zafar, Rubab Butt, Sadaf Konain, and Myedah Rizvi.
2017. Difficulty index, discrimination index and
distractor efficiency in multiple choice questions. An-
nals of PIMS-Shaheed Zulfigar Ali Bhutto Medical
University, 13(4):310-315.

Julia M. Markel, Steven G. Opferman, James A. Landay,
and Chris Piech. 2023. Gpteach: Interactive ta train-
ing with gpt-based students. In Proceedings of the
Tenth ACM Conference on Learning @ Scale, L@S
’23, page 226-236, New York, NY, USA. Association
for Computing Machinery.

Andrea Martone and Stephen G. Sireci. 2009. Eval-
uating alignment between curriculum, assessment,
and instruction. Review of Educational Research,
79(4):1332-1361.

Hyeongdon Moon, Yoonseok Yang, Hangyeol Yu, Se-
unghyun Lee, Myeongho Jeong, Juneyoung Park,
Jamin Shin, Minsam Kim, and Seungtaek Choi. 2022.

Evaluating the knowledge dependency of questions.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10512—-10526, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Hyeonseok Moon, Jaewook Lee, Sugyeong Eo, Chanjun
Park, Jaechyung Seo, and Heuiseok Lim. 2024. Gen-
erative interpretation: Toward human-like evaluation
for educational question-answer pair generation. In
Findings of the Association for Computational Lin-
guistics: EACL 2024, pages 2185-2196, St. Julian’s,
Malta. Association for Computational Linguistics.

Bang Nguyen, Mengxia Yu, Yun Huang, and Meng
Jiang. 2024. Reference-based metrics disprove them-
selves in question generation. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 13651-13666, Miami, Florida, USA.
Association for Computational Linguistics.

Huy A. Nguyen, Shravya Bhat, Steven Moore, Norman
Bier, and John Stamper. 2022. Towards generalized
methods for automatic question generation in educa-
tional domains. In Educating for a New Future: Mak-
ing Sense of Technology-Enhanced Learning Adop-
tion: 17th European Conference on Technology En-
hanced Learning, EC-TEL 2022, Toulouse, France,
September 12—16, 2022, Proceedings, page 272284,
Berlin, Heidelberg. Springer-Verlag.

S.J. Osterlind. 1997. Constructing Test Items: Multiple-
Choice, Constructed-Response, Performance and
Other Formats. Evaluation in Education and Human
Services. Springer Netherlands.

Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong,
Bolun Zhang, Yanfeng Wang, and Siheng Chen.
2024. Self-alignment of large language models via
monopolylogue-based social scene simulation. In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jae-Woo Park, Seong-Jin Park, Hyun-Sik Won, and
Kang-Min Kim. 2024. Large language models are
students at various levels: Zero-shot question dif-
ficulty estimation. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
8157-8177, Miami, Florida, USA. Association for
Computational Linguistics.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S. Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, UIST ’23, New York, NY, USA.
Association for Computing Machinery.

26162


https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/D19-1434
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.1145/3613904.3642698
https://doi.org/10.1145/3613904.3642698
https://doi.org/10.1145/3613904.3642698
https://doi.org/10.1145/3657604.3662031
https://doi.org/10.1145/3657604.3662031
https://doi.org/10.1145/3657604.3662031
https://doi.org/10.1145/3573051.3593393
https://doi.org/10.1145/3573051.3593393
https://doi.org/10.3102/0034654309341375
https://doi.org/10.3102/0034654309341375
https://doi.org/10.3102/0034654309341375
https://doi.org/10.18653/v1/2022.emnlp-main.718
https://aclanthology.org/2024.findings-eacl.145/
https://aclanthology.org/2024.findings-eacl.145/
https://aclanthology.org/2024.findings-eacl.145/
https://doi.org/10.18653/v1/2024.findings-emnlp.798
https://doi.org/10.18653/v1/2024.findings-emnlp.798
https://doi.org/10.1007/978-3-031-16290-9_20
https://doi.org/10.1007/978-3-031-16290-9_20
https://doi.org/10.1007/978-3-031-16290-9_20
https://books.google.com/books?id=Ia3SGDfbaV0C
https://books.google.com/books?id=Ia3SGDfbaV0C
https://books.google.com/books?id=Ia3SGDfbaV0C
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2024.findings-emnlp.477
https://doi.org/10.18653/v1/2024.findings-emnlp.477
https://doi.org/10.18653/v1/2024.findings-emnlp.477
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit
Bansal, Jason Weston, and Xian Li. 2024. Branch-
solve-merge improves large language model evalu-
ation and generation. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 8352-8370, Mexico City, Mexico. Association
for Computational Linguistics.

Andreas Siduberli and Simon Clematide. 2024. Au-
tomatic generation and evaluation of reading com-
prehension test items with large language mod-
els. In Proceedings of the 3rd Workshop on Tools
and Resources for People with REAding Dlfficul-
ties (READI) @ LREC-COLING 2024, pages 22-37,
Torino, Italia. ELRA and ICCL.

Mingyang Song, Mao Zheng, and Xuan Luo. 2025. Can
many-shot in-context learning help LLMs as evalu-
ators? a preliminary empirical study. In Proceed-
ings of the 31st International Conference on Compu-
tational Linguistics, pages 8232—-8241, Abu Dhabi,
UAE. Association for Computational Linguistics.

Post-
Medical

Mohsen Tavakol and Reg Dennick. 2011.
examination analysis of objective tests.
teacher, 33(6):447-458.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei
Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
Qi Liu, Tianyu Liu, and Zhifang Sui. 2024. Large lan-
guage models are not fair evaluators. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9440-9450, Bangkok, Thailand. Association
for Computational Linguistics.

Xu Wang, Simin Fan, Jessica Houghton, and Lu Wang.
2022a. Towards process-oriented, modular, and ver-
satile question generation that meets educational
needs. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 291-302, Seattle, United States. As-
sociation for Computational Linguistics.

Zichao Wang, Jakob Valdez, Debshila Basu Mallick,
and Richard G Baraniuk. 2022b. Towards human-
like educational question generation with large lan-
guage models. In International conference on ar-
tificial intelligence in education, pages 153—166.
Springer.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yating Wu, Ritika Rajesh Mangla, Alex Dimakis, Greg
Durrett, and Junyi Jessy Li. 2024. Which questions
should I answer? salience prediction of inquisitive
questions. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,

pages 19969-19987, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Songlin Xu and Xinyu Zhang. 2023. Leveraging genera-
tive artificial intelligence to simulate student learning
behavior. arXiv preprint arXiv:2310.19206.

Songlin Xu, Xinyu Zhang, and Lianhui Qin. 2024. Edu-
agent: Generative student agents in learning. arXiv
preprint arXiv:2404.07963.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following. In
International Conference on Learning Representa-
tions (ICLR).

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. BERTScore: Evalu-
ating text generation with BERT. arXiv preprint
arXiv:1904.09675.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu
Gong, Jinchang Zhou, Zhiyuan Liu, Lei Hou, and
Juanzi Li. 2024. Simulating classroom educa-
tion with llm-empowered agents. arXiv preprint
arXiv:2406.19226.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

A Appendix

A.1 Prompts for QG-SMS

We provide the prompts used in each step of our
proposed approach in Fig. 5. For each require-
ment R, that we discussed in §4.1, we provide the
following definition in the prompt:

* Item difficulty (DC): “An easier question has
a higher proportion of students with a correct
answer.”

* Item discrimination (DC): “A question with
higher discrimination is more effective at dis-
tinguishing between high-performing and low-
performing students.”

* Distractor efficiency (DE): “An effective dis-
tractor is one that is chosen by at least 5% of
the students taking the quiz.”
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Step 1: Student Profile Generation

Given the following learning materials:

{Lecture Content / Knowledge Component Descriptions L}

Consider students with various understanding in a scenario where a quiz about the above learning
materials is being conducted. Ensure that you generate at least 10 roles for the scenario. For each
student, provide a detailed description that includes their name and their understanding of the
lecture content. The distribution of understanding of lecture content must mimic that in a real
classroom.

Given the following learning materials:
{Lecture Content / Knowledge Component Descriptions L}

Below is the list of students and their reported understanding of the learning materials:
{Student Profiles from Step 1}

Given the following quiz questions about the lecture content:
Question 1: {Question ()1 }
Question 2: {Question (2}

For each student, predict whether the student will correctly answer each question based on both
the student’s understanding, question’s difficulty, guessing factors, etc.). If you predict “incorrect”,
specify which distractor confuses the student.

Step 3: Evaluation

You are interested in finding a quiz question that satisfies the following requirement:
{Requirement R}

You are given 2 output quiz questions Output (a) and Output (b) and the analysis of the
responses of each student who attempted the questions. Your task is to identify which of Output
(a) and Output (b) better satisfies requirement { R;} based on the question content and student
performance.

{Description of R}

# Output (a): {Question )1}
# Output (b): {Question ()2}
# Consider Students Performance: {Predicted student performance from Step 2}

# Which question better satisfies { R4}, Output (a) or Output (b)? Your response should be either
"Output (a)" or "Output (b)"

Figure 5: Prompts for our three-step evaluation approach QG-SMS.

A.2 Experimental Details in each dataset to assemble L. In EduAgent, L
includes lecture transcripts and the textual descrip-

Assembling Learning Materials L: We used all
tions of the slides used in the lecture. In DBE-KT,

information about the learning materials provided
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L includes the knowledge components and the as-
sociated description or definition.

Construction of TC pairs: For both datasets,
each question is annotated with one or more related
topics. From all possible pairs in the dataset, we
first perform filtering. For EduAgent, each ques-
tion is associated with a specific section of a lec-
ture. We only consider pairs of questions from the
same section of the same video lecture. The learn-
ing material L consists of the lecture transcript and
slide descriptions. For DBE-KT, each question may
be linked to one or more knowledge components.
We only consider pairs with exactly one differing
knowledge component and at least one shared com-
ponent, making the test cases more challenging.
Here, the learning material L is the union of the
knowledge components for the pair. Then, for each
selected pair, we randomly choose one question as
the label (TC = 1). The associated topic is set as
the knowledge components (DBE-KT) or section
(EduAgent) of this label. The other question in
the pair is considered dispreferred output (TC = 0).
This set up results in 286 pairs for DBE-KT and
217 pairs for EduAgent.

Number of generated student profiles: We are
inspired by Pang et al. (2024), which simulates
social scenarios for LLM alignment and selects
10 generated profiles to balance diversity (crucial
for evaluating question quality) and computational
efficiency. Following this approach, our prompt
instructs the model to generate at least 10 roles for
each learning material L. We then use all generated
profiles—without filtering or augmentation—for
Steps 2 and 3.

Underlying LLM: For all LLM-based
experiments with GPT-40, we used the
gpt-40-2024-05-13 checkpoint with the de-
fault hyperparameters. Regarding the experiments
on the robustness of the student profiles (§5.2),
we ran the same prompt for Step 1 multiple
times using the same default hyperparameters
(temperature = 1). Thus, any differences in output
come from the random seeds used in the API calls.

Baseline implementation: For BERTScore,
we use the implementation of Hugging Face
evaluate® package (bertscore). For KDA%,
ChatEval °, and QSalience6, we used the code im-
plementation provided by the authors. To obtain the

3https://huggingface.co/docs/evaluate/en/index
4https://github.com/riiid/question—score
5https://github.com/thunlp/ChatEval
Shttps://github.com/ritikamangla/QSalience/

expert personas for ChatEval, we utilized the Au-
toAgents interactive framework’ given instruction
I as described in §4.2. We used the implementation
by Zeng et al. 20248 for the remaining LLM-based
evaluation approaches.

Comparison direction for single-scoring met-
rics

* Higher Topic Alignment: T BERTScore, 1
KDA, | QSalience

* Easier question: | BERTScore, 1 KDA, |
QSalience

* Higher discrimination: 7 BERTScore, | KDA,
1 QSalience

* Higher distractor efficiency:{ BERTScore, |
KDA, 1 QSalience

Signficance testing: We consider Vanilla, which
simply outputs a preference given the instruction
without any reasoning or intermediate steps, the
base strategy for using LLMs in test item analysis.
Other baselines and QG-SMS can be considered
more complex strategies for using LLMs as evalu-
ators of test items. We conduct pairwise binomial
tests to examine whether each LLM-based evalu-
ation approach (including QG-SMS) significantly
improves consistent accuracy in test item analysis
compared to Vanilla. We report the p-values of the
binomial tests on QG-SMS improvements over the
base strategy (Vanilla), as compared to all other
evaluation approaches in Tbl. 6.

A.3 Human Evaluation Details

Selection of human-written question pairs: In
the EduAgent dataset, both questions in a (@)1, Q)2)
pair comes from the same lecture. However, they
can be grounded to either the same or different
sections of the lecture. For example, in Tbl. 1, Q1
is relevant to the Introduction to computer vision
section, while ()5 is relevant to the Computer vi-
sion history section. To reduce the cognitive load
for annotators, we opt for question pairs that are
grounded to the same section in the same lecture.
Based on this condition, we selected 60 pairs of
human-written questions that exhibit differing qual-
ity: 21 pairs in the DF dimension, 15 pairs in the
DC dimension, and 24 pairs in the DE dimension.

"https://github.com/Link-AGI/AutoAgents
8https://github.com/princeton-nlp/LLMBar
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Method | DF

DC DE

‘EduAgent DBE-KT EduAgent DBE-KT EduAgent

CoT 0.999 0.996
Metrics 0.227 0.640
Reference 0.500 0.925
Swap 0.192 0.134
ChatEval 0.500 0.007
QG-SMS 0.007 0.000

0.999 0.999 0.999
0.500 0.910 0.813
0.938 0.967 0.981
0.856 0.588 0.985
0.927 0.262 0.942
0.252 0.124 0.093

Table 6: P-values from binomial tests assessing whether the LLM-based evaluation strategy significantly improves

consistent accuracy compared to the Vanilla baseline.

Method Diff. Disc. Dist. Eff.
Vanilla 73.81 56.67 77.08
CoT 76.19 56.67 62.50
Metrics 7143 53.33 81.25
Reference 73.81 53.33 75.00
Swap 76.19 63.33 77.08
ChatEval 83.33 43.33 72.92
QG-SMS  85.71 56.67 81.25
Human 90.48 53.33 87.50

Table 7: Results breakdown of QG evaluation ap-
proaches and human annotators on 60 human-written
question pairs. QG-SMS outperforms all baselines in
terms of evaluating question difficulty and distractor ef-
ficiency, reaching closest accuracy scores to human an-
notators. In terms of question discrimination, QG-SMS
surpasses human evaluators, reaching the second-best
performance. Overall, QG-SMS shows effectiveness on
three dimensions.

Construction of generated question pairs: To
generate questions with varying quality regard-
ing dimension d, we use the zero-shot prompts
provided in Fig. 6. Using GPT-40 with the
gpt-40-2024-05-13 checkpoint, we obtained a
question bank of 360 generated questions across
5 lectures. Then, for each of the 60 human-
written pairs, we construct a generated question
pair grounded to the same section of the corre-
sponding lecture and differs in the corresponding
dimension d.

Instructions for annotators: For each pair, we
asked annotators to first read the section of the
lecture that the pair is grounded upon before deter-
mining their preference. We provided our human
annotators the same definition of each dimension
d in §2.1 and the desirable trait R, in §4.1. In this
way, human annotators serve as another QG evalu-
ation competitor for the human-written pairs, and
provide the label for the generated-question pairs.

A.4 Qualitative Analysis on Limitations of
Existing Evaluation Approaches

We provide in Tbl. 8 the generations of all LLM-
based baselines when evaluating the two ques-
tions from the case study presented in Tbl. 1.
As shown, strategies that incorporate reasoning
(e.g., ChatEval, CoT, Swap) consistently prioritize
questions that “apply” the concept of computer vi-
sion—indicating higher discrimination—over ques-
tions that require recalling specific statistics. Mean-
while, generation-based criteria (Metrics, Refer-
ence) are too broad and not specific enough to as-
sess the requirement of high discrimination, likely
due to being distracted by the long learning mate-
rial context. Without explicitly modeling student
performance, it is difficult for LLMs to "reason"
about discrimination based solely on question con-
tent and materials.
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Difficulty-controlled question generation

Given the following learning materials:
{Lecture Content / Knowledge Component Descriptions L}

Generate 4-choice quiz questions to test students’ understanding of the lecture. The generated
questions should have diverse difficulty.

* The more difficult a question, the fewer number of students can correctly answer it.

* There must be 2 (two) ’easy-level” questions, 2 (two) *medium-level’ questions, and 2 (two)
“hard-level’ questions.

Given the following learning materials:
{Lecture Content / Knowledge Component Descriptions L}

Generate 4-choice quiz questions to test students’ understanding of the learning materials. The
generated questions should have diverse discrimination ability.

e A question with high discrimination is more effective at distinguishing between high-
performing and low-performing students. An example of a question with low discrimination is
when neither high-performing nor low-performing students can answer the question correctly,
or when all students can answer the question correctly.

* There must be 2 (two) ’low-discrimination’ questions, 2 (two) medium-discrimination ques-
tions, and 2 (two) "high-discrimination’ questions.

Distractor-efficiency-controlled question generation

Given the following learning materials:
{Lecture Content / Knowledge Component Descriptions L}

Generate 4-choice quiz questions to test students’ understanding of the lecture. The generated
questions should have diverse number of effective distractors.

* An effective distractor is one that will be selected by at least 5% of the students.

* Specifically, there must be 2 (two) questions with NO effective distractors, 2 (two) questions
with exactly ONE effective distractors, 2 (two) questions with exactly TWO effective distrac-
tors, and 2 (two) questions with all THREE effective distractors.

Figure 6: Prompts for generating questions with varying quality across three dimensions: difficulty, discrimination,
and distractor efficiency.
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Learning Material
Introduction of computer vision: Computer vision (CV) is the field of computer science that focuses on creating digital systems

that can process, analyze , and make sense of visual data [...]. For example, [...]
Computer vision history [...] In 2012, a team from the University of Toronto [...].

The model, called AlexNet, [...], achieved an error rate of 16.4% , which overperformed all other methods at that time. [...]

Quiz Questions
@1: Which of the following may utilize computer vision techniques ? 1). Use a camera to check potential issues on the

surface of products (2). Estimate the freshness of apples from pictures (3). Estimate whether a car is speeding via a camera (4).
Determine whether a piece of audio is spoken by a specific person

A) (D@2)(3); B) (D2)(4); ©) (2)(3)(4); D) (H)B)(A).

Q2: One breakthrough in computer vision happened at the University of Toronto in 2012, which achieved an error rate of [ ]

in image classification.
A) 6.4%; B) 10.4% C) 12.4% D) 16.4%.

Evaluation Task: Which question has higher discrimination?

Existing approaches: 1. 1 is an apply-level question, while Q)2 is a recall-level question.

Label based on Actual Student Performance: ()>. Applications of CV appearing in ()1 can be considered common knowledge
while Q)2 tests a specific detail which only students who pay close attention to details may be able to answer.

CoT: Q1 asks students to identify which scenarios utilize computer vision techniques, which requires a deeper understanding
of the lecture content and the application of computer vision. This question effectively distinguishes between students who
have a comprehensive understanding of the lecture and those who do not, as it requires them to apply their knowledge to different
scenarios.

Q2, on the other hand, asks for a specific fact from the lecture, the error rate achieved by the University of Toronto in 2012.
While this question tests recall, it does not require the same level of understanding or application of knowledge as Q1. It is more
about memorizing a specific detail rather than understanding the broader concepts and applications of computer vision.

Metrics: Does the question accurately and comprehensively reflect the specific content and structure of the lecture slides and
transcripts provided in the instruction?

Does the question maintain the clarity and coherence of the information as presented in the lecture slides and transcripts?
Does the question include all the required elements mentioned in the instruction without adding or omitting any details?

Reference: Explain the significance of the 2012 breakthrough by the University of Toronto in the context of computer vision
history, and discuss the two key factors that contributed to the success of convolutional neural networks (CNNs) at that time.

Swap: Q1 presents a question that requires students to apply their understanding of computer vision applications, which
were discussed in the lecture. This question effectively tests the students’ ability to distinguish between tasks that can and cannot
be performed using computer vision, thus having high discrimination.

Q2 focuses on a specific fact mentioned in the lecture, the error rate achieved by the University of Toronto in 2012. While this
question tests recall of a specific detail, it does not effectively distinguish between high-performing and low-performing students
as it relies more on memorization rather than understanding and application of concepts.

ChatEval

Q1: Relevance to Lecture Content: The question is relevant as it pertains to the applications of computer vision, which is
discussed in the lecture.

Complexity and Depth of Knowledge: The question requires students to apply their understanding of computer vision to
different scenarios, which is a higher-order cognitive skill. This makes it effective at distinguishing between high-performing
and low-performing students.

Appropriateness: The question is well-designed but includes an option related to audio, which is not directly related to computer
vision. This could potentially confuse students.

Q2: Relevance to Lecture Content: The question is directly relevant to the lecture content, specifically the historical breakthrough
in computer vision.

Complexity and Depth of Knowledge: The question tests recall of a specific fact, which is a lower-order cognitive skill. It does
not require deep understanding or application of knowledge, making it less effective at distinguishing between high-performing
and low-performing students.

Appropriateness: The question is straightforward and tests a specific detail from the lecture, but it lacks complexity and does not
challenge students to apply their knowledge.

Table 8: Case Study illustrates limitations of existing evaluation metrics in test item analysis.
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