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Abstract

Wave propagation is fundamental to applications including natural resource exploration,

nuclear fusion research, and military defense, among others. However, developing accurate

and efficient numerical algorithms for solving time-harmonic wave propagation problems is

notoriously difficult. One difficulty is that classical discretization techniques (e.g., Galerkin

finite elements, finite difference, etc.) yield indefinite discrete systems that preclude the use of

many scalable solution algorithms. Significant progress has been made to develop specialized

preconditioners for high-frequency wave propagation problems but robust and scalable solvers

for general problems, including non-homogenous media and complex geometries, remain

elusive. An alternative approach is to use minimum residual discretization methods—that

yield Hermitian positive-definite discrete systems—and may be amenable to more standard

preconditioners. Indeed, popularization of the first-order system least-squares methodology

(FOSLS) was driven by the applicability of geometric and algebraic multigrid to otherwise

indefinite problems. However, for wave propagation problems, FOSLS is known to be highly

dissipative and is thus less competitive in the high-frequency regime.

The discontinuous Petrov–Galerkin (DPG) method of Demkowicz and Gopalakrishnan

[28] is a minimum residual finite element method with several additional attractive proper-

ties: mesh-independent stability, a built-in error indicator, and applicability to a number of

variational formulations. In the context of high-frequency wave propagation, the ultraweak

DPG formulation has been observed to produce pollution error roughly commensurate to

Galerkin discretizations. DPG discretizations may thus deliver accuracy typical of classical

discretization techniques, but result in Hermitian positive-definite discrete systems that are

often more amenable to preconditioning. A multigrid preconditioner for DPG systems, de-

veloped in the dissertation work of S. Petrides [100, 102], was shown to scale efficiently in a

shared-memory implementation.

The primary objective of this dissertation is development of an efficient, distributed im-

plementation of the DPG multigrid solver (DPG-MG). The distributed DPG-MG solver

developed in this work will be demonstrated to be massively scalable, enabling solution of

three-dimensional problems with O(1012) degrees of freedom on up to 460 000 CPU cores, an
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unprecedented scale for high-frequency wave propagation. The scalability of the DPG-MG

solver will be further combined with hp-adaptivity to enable efficient solution of challenging

real-world high-frequency wave propagation problems including optical fiber modeling, simu-

lation of RF heating in tokamak devices, and seismic simulation. These applications include

complex three-dimensional geometries, heterogeneous and anisotropic media, and localized

features; demonstrating the robustness and versatility of the solver and tools developed in

this dissertation.
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1.1 Motivation

Wave1 simulation is important in applications including seismic and medical imaging,

optical fiber design, and radio-frequency (RF) heating in tokamak devices for nuclear fusion

research. For example, in optical fiber design, wave simulation can be used to predict the

performance of specialized optical fiber amplifier designs, significantly reducing the time

and capital required to develop improved high-power fiber lasers. In imaging applications,

repeated forward wave simulation can be used in full waveform inversion (FWI) algorithms to

create higher resolution images. However, efficient simulation of wave propagation problems

remains a challenge in scientific computing, often necessitating use of less expensive and

less accurate models that can limit the ability of simulations to predict real-world behavior,

hindering their utility. Improving the efficiency of accurate wave simulation algorithms can

thus enhance the predictive capabilities of simulations, enabling improved decision making

in both scientific and commercial applications.

Wave simulation can be performed in the time- or frequency-domain. Time-domain ap-

proaches start from a known initial state and sequentially update the wavefield at discrete

points in time. Time-domain simulation is popular in seismic imaging applications for its

extreme scalability, but often require small time steps in high-contrast media. Frequency-

domain approaches simulate discrete frequencies independently, and are thus useful for simu-

lation of frequency-dependent phenomena including attenuation. Frequency-domain simula-

tion can also be used to efficiently simulate long time windows and time-harmonic or steady

state systems, and can significantly reduce memory and storage requirements. For example,

the recent dissertations of Sriram Nagaraj [93] and Stefan Henneking [58], in collaboration

with Jacob Grosek and the Air Force Research Laboratory [61, 62], developed a high-fidelity

optical fiber amplifier model coupling frequency-domain optical fields to a time-domain ther-

mal field to simulate transverse modal instability in high-power fiber lasers. In the optical

fiber model, the significant timescale separation between optical and thermal fields would

have required a prohibitive number of optical time steps to observe relevant perturbations in

the thermal field; instead, the optical field was assumed to reach steady state between each

thermal time step, effectively removing the optical timescale from the problem.

1This chapter contains passages adapted from ”Scalable DPG multigrid solver for Helmholtz problems:
A study on convergence,” by J. Badger, S. Henneking, S. Petrides, and L.Demkowicz, Comput. Math. Appl.,
148:81–92, 2023. The author of this dissertation contributed to theory, software development, numerical
simulations, and writing of that work.
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The primary limitation of frequency-domain methods has been scale: frequency-domain

simulation requires solving large linear systems of equations, and developing scalable and

efficient solution algorithms for these systems is a notoriously challenging problem in mathe-

matics and scientific computing [39]. The lack of scalable solvers has so-far limited frequency-

domain simulation to problems with O(109) unknowns, a relatively small scale when com-

pared to time-domain methods which have been demonstrated to solve problems with O(1012)

spatial unknowns [41, 23]. A multigrid solver based on the discontinuous Petrov–Galerkin

(DPG) finite element methodology was proposed in the dissertation work of Socratis Petrides

[100]. A shared-memory implementation of the DPG multigrid solver (DPG-MG), when cou-

pled with hp-adaptive mesh refinement, was shown to enable solution of high-frequency wave

propagation problems with singular and localized features but the shared-memory implemen-

tation limited the solver to problems with O(107) unknowns.

1.2 Objective

This dissertation details development of a scalable and performant implementation of the

DPG-MG multigrid solver. The scalable DPG-MG solver will be demonstrated to enable

solution of high-frequency wave propagation problems with O(1012) unknowns—an unprece-

dented scale for high-frequency wave propagation. An alternative construction of coarse-grid

operators, along with various algorithmic and implementational optimizations, improve the

efficiency of the scalable solver and make the DPG-MG solver competitive for general wave

propagation problems. Extension of the DPG-MG solver to support general unstructured

meshes of all element types, as well as anisotropic h- and p- adaptivity, enable increased flexi-

bility and further improve competitiveness for problems with singular and localized features.

The distributed DPG-MG solver developed here is notable for its versatility, robustness,

and extreme scalability; these features will be demonstrated via a number of challenging

problems in acoustics, electromagnetics, and elasticity.

1.3 Background
1.3.1 Discretization methods for wave propagation

Developing accurate and efficient algorithms to simulate time-harmonic wave propagation

is a perennial challenge in mathematics and scientific computing. The first challenge in solv-

ing high-frequency wave problems is defining an appropriate discretization. It is well known

3



that discretizations must satisfy the Nyquist criterion, establishing a minimum number of

points per wavelength needed to capture waves. However, as the frequency grows, all known

(volumetric) discretizations for three-dimensional wave problems suffer from so-called pollu-

tion error, arising either as phase (dispersive) error or as amplitude (dissipative) error. In

the context of the h finite element method for the one-dimensional Helmholtz problem with

wavenumber k, Ihlenburg and Babus̆ka [70] proved the wavenumber explicit error bound:

|u− uh|H1 ≤ (1 + Ck2h) inf
w∈Uh

|u− w|H1 , (1.1)

indicating that to maintain a particular accuracy, k2h should be held constant. The required

number of elements per wavelength thus increases linearly with frequency.

Melenk and Sauter later demonstrated that pollution could be countered, for a fixed

number of elements per wavelength, by increasing the polynomial order p logarithmically

with the wavenumber [89]. Use of high-order methods is often the most efficient strategy to

counter pollution (subject to regularity) and has motivated the development of numerous

high-order finite difference, spectral element, and discontinuous Galerkin (DG) methods,

among others, for both time-domain and frequency-domain wave propagation. Recently,

finite difference operators with stencils optimized for pollution error have been proposed

[1]; the so-called λ-adaptive schemes have been demonstrated to simulate high-frequency

problems in heterogeneous media with relatively low-order discretizations and a surprisingly

small number of points per wavelength.

Other approaches to mitigate pollution error largely fall into two categories: those that

seek to improve approximability of a discretization (targeting the best approximation term

inf
w∈Uh

|u−w|H1 in (1.1)), and those that seek to improve stability (targeting the wave number

explicit factor k2h in (1.1)). Methods in the former category attempt to enrich the approxi-

mation space, often supplementing piecewise polynomial bases with analytic wave solutions,

plane waves, or Bessel functions. Methods with enriched trial spaces include plane wave DG

methods [45, 66] and partition of unity method [87, 88], among others. Methods targeting

stability include the Galerkin least-squares method of Harari and Hughes[56], and a varia-

tion by Monk and Wang [90] further enriching the approximation space. The discontinuous

Petrov–Galerkin (DPG) method employed in this work can be seen as a method of optimal

test functions. In the case of DPG, use of discontinuous (“broken”) test spaces2 enables effi-

2The ‘D’ in the DPG name
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cient, on the fly computation of optimal test functions. A closely related method, leveraging

continuous test spaces, was recently proven by Monsuur and Stevenson [91] to counter pol-

lution through a modest increase in the order of the test space; however, test functions enter

the system as additional unknowns in this discretization and cannot be efficiently removed,

this approach thus similarly mitigates pollution at the expense of increasing the size of the

global system. We note that discretizations based on integral equations [75] are practically

pollution-free but assume piece-wise constant media; we thus limit the current discussion to

volumetric discretizations.

There is (so far) no free lunch. Effectively mitigating pollution produces larger and,

in the case of high-order methods, more densely coupled systems. Employing high-order

methods with a fixed number of elements per wavelength (i.e. h−1 ∝ k and p ∝ log k)

impliesO(k3 log3 k) spatial unknowns for three-dimensional wave propagation problems. The

resulting systems quickly become unfeasible for existing solvers, necessitating development

of increasingly fast, scalable, and efficient linear solvers for wave propagation problems.

1.3.2 Sparse Linear Solvers

Direct sparse solvers [4, 105] are among the most widely employed solvers for time-

harmonic wave propagation problems. These solvers employ nested-dissection and other

factorization-based techniques designed to minimize fill-in to preserve sparsity of the factored

system. Direct sparse solvers are robust and applicable to a wide range of problems, but

the computational and memory cost of factorization can be relatively expensive. When

applied to systems arising from discretization of three-dimensional PDEs, leading direct

sparse solvers have an O(N2) computational complexity and O(N4/3) memory complexity.

However, once a factorization is computed it can be applied in O(N4/3) complexity. Direct

solvers can thus be competitive for problems with a large number of right-hand-sides (e.g.

imaging applications [98]), in which case the factorization cost can be amortized over loads.

Recently, techniques including hierarchically semi-separable structure (HSS), rank-revealing

factorizations, and hierarchical compression [118, 76, 84] have been employed to reduce

the memory and computational complexity of direct solvers, at the expense of incurring

some algebraic error. Still, three-dimensional time-harmonic wave propagation represents a

challenge for rank-exploiting approaches, so-far limiting the scale of direct solvers to O(108)

(approaching O(109)).
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For elliptic problems, preconditioned iterative methods are well-established and highly

effective, and can be used to solve problems with O(1013) unknowns [46]. However, devel-

oping scalable and effective preconditioners for high-frequency wave propagation problems

is notoriously difficult. The primary challenge is that high-frequency wave propagation

operators—and often the discrete systems they lead to—are highly indefinite, causing stan-

dard iterative solution schemes to break down [39]. Current leading-edge preconditioning

techniques for wave operators such as multigrid methods [65, 113, 52], domain decompo-

sition methods with special transmission conditions [16, 49, 112, 74], stabilized methods

based on artificial absorption [54, 12], shifted Laplacian [110] and sweeping preconditioners

[36, 37, 21, 81, 114] are very promising but they lose their efficiency in heterogeneous media

and can be difficult to apply on complex geometries [43, 38].

An alternative approach instead employs minimum-residual discretization methodolo-

gies which, by construction, produce positive-definite discrete systems and may therefore be

amenable to more standard preconditioning techniques [51, 101, 102, 100]. Indeed, popu-

larization of the first-order system least-squares methodology (FOSLS) [17, 78], and other

least-squares methodologies [24], was driven by the applicability of geometric and algebraic

multigrid methods to otherwise indefinite problems. However, for wave propagation prob-

lems, FOSLS is known to be highly dissipative [47] and is thus not competitive in the

high-frequency regime.

1.3.3 DPG methodology

The DPG finite element methodology of Demkowicz and Gopalakrishnan [28, 29, 31] is

a minimum residual method with several attractive properties: mesh-independent stability,

a built-in error indicator, and applicability to a number of variational formulations with

different functional settings. A special case of the DPG method is the well-established

FOSLS method in which the residual is minimized in the L2 test norm. As mentioned

previously however, other formulations are preferable in the context of wave propagation.

Among the various DPG formulations, the so-called ultraweak variational formulation has

proved to be superior: it is less dissipative than other DPG formulations [100], with pollution

error roughly commensurate to Galerkin discretizations [47]. These properties were leveraged

by Petrides and Demkowicz in [102] to define an hp-adaptive multilevel preconditioner for

DPG systems discretized with conforming elements of the exact-sequence energy spaces [33].
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Similar to hybridizable methods, the DPG methodology introduces additional trace un-

knowns on the mesh skeleton resulting from testing with larger discontinuous test spaces [19].

In the case of high-order discretizations, statically condensing all interior unknowns onto the

mesh skeleton results in a smaller global system. The DPG multigrid solver (DPG-MG) is

defined on this condensed global system of trace degrees of freedom. Constructing suitable

prolongation operators for the condensed system is complicated by the fact that fine-grid

unknowns resulting from h-refinement have no natural coarse-grid representatives; this is a

challenge shared by hybridizable methods [103, 104]. Construction of a stable prolongation

operator between such non-nested condensed systems for general DPG problems3 was one of

the contributions in the original DPG-MG work by Petrides and Demkowicz [101, 100] and

will be outlined later in Chapter 5.

1.4 Accomplishments of this dissertation

The first accomplishment of this dissertation is development of a performant and scalable

multigrid solver for 3D high-frequency wave propagation problems. An alternative construc-

tion of coarse-grid operators, along with numerous optimizations, will be shown to massively

improve the efficiency of the scalable DPG-MG solver, enabling it to be competitive with

leading-edge wave propagation solvers for general wave propagation problems.

The distributed implementation developed here employs hybrid MPI/OpenMP paral-

lelism to enable efficient simulation on modern distributed manycore platforms. The ex-

treme scalability of our implementation is notable, enabling solution of 3D high-frequency

wave propagation problems in heterogeneous media with 1 000 wavelengths and over 800

billion degrees-of-freedom (DOFs) on 460 000 CPU cores. To the best of our knowledge, this

is orders of magnitude larger than any previous result for high-frequency wave propagation.

The DPG-MG solver was additionally extended to support unstructured hybrid meshes

with all element shapes (hexahedra, tetrahedra, prisms, and pyramids), general orientations,

and anisotropic h- and p-refinements. These capabilities appear to be unique among geomet-

ric multigrid solvers and enable solution of challenging problems in science and engineering.

Finally, the DPG-MG solver is demonstrated on a number of challenging problems with

complex geometries, high-contrast heterogeneous media, and localized features. Problems

include bend-loss simulation in optical fibers, RF heating in a tokamak device, and acoustic

3discretized with exact-sequence energy spaces
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and elastic simulation in complex seismic models including the GO 3D OBS model [53] and

the SEAM Arid model [99].

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 derives the acoustic,

electromagnetic, and elastic wave operators used throughout this work. Chapter 3 provides

an overview of the DPG methodology, starting with an abstract variational formulation and

later defining specific formulations for the wave operators considered here. Details on the

cost, implementation, and other considerations when computing with the DPG methodology

are then outlined in Chapter 4.

Chapter 5 defines the DPG-MG preconditioner and introduces the distributed implemen-

tation; various convergence studies are performed to highlight aspects of the construction.

Strong and weak scaling studies are provided to demonstrate the scalability of the approach.

Chapter 6 details application of the DPG-MG solver on various challenging problems in-

cluding optical fiber modeling, seismic modeling, and simulation of RF heating in a tokamak

device.
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Chapter 2

Wave Operators
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This chapter derives the various wave propagation problems considered throughout this

work, aiming to establish common notation. Time-domain operators are first derived in

Section 2.1 followed by time-harmonic operators in Section 2.2. Perfectly matched layer

boundary conditions are derived in Section 2.3.

2.1 Time-Domain Wave Propagation

Let Ω ⊂ R3 denote a bounded Lipschitz domain with boundary Γ = ∂Ω partitioned into

three disjoint parts {Γi, i = 1, 2, 3}, i.e. Γi are (relatively) open in Γ and

Γ =
⋃
i

Γi, and Γi ∩ Γj = ∅ for i ̸= j.

In the following, Γ1 will correspond to type 1 (Dirichlet) boundary conditions, Γ2 to type 2

(Neumann) boundary conditions, and Γ3 to type 3 (Robin or impedance) boundary condi-

tions.

2.1.1 Linear Acoustics

Classical linear acoustics can be derived by linearizing the isentropic form of the com-

pressible Euler equation about a hydrostatic equilibrium state, i.e. ρ = ρ0, u = 0. Alter-

native derivations, for example linearized about a variable density state [6], are useful in

geosciences but are not considered in this work. Consider linear perturbations of ρ,u about

the equilibrium state, i.e.
ρ = ρ0 + δρ

u = δu.

For isentropic flow, the pressure is related to the density via an algebraic relation p = p(ρ);

linearization of this relation around the equilibrium state gives:

p = p(ρ0)︸ ︷︷ ︸
:=P0

+
dp

dρ
(ρ0)︸ ︷︷ ︸

:=c2

δρ,

where the hydrostatic pressure P0 and wavespeed c have been defined. Perturbations in

pressure and density are thus related as δp = c2δρ. Substituting these expressions into the

isentropic form of the compressible Euler equation and subsequently eliminating δρ yields
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the linear acoustic equations: 
1

c2
∂(δp)

∂t
+ ρ0 div(δu) = 0

ρ0
∂(δu)

∂t
+∇(δp) = 0.

We neglect the δ’s from now on and introduce appropriate boundary conditions, these are:

• Prescribed pressure (acoustically soft):

p = p0 on Γ1

• Prescribed normal velocity (acoustically hard):

un = u0 on Γ2

• Impedance boundary:

un = dp+ u0, on Γ3

with impedance constant d > 0

Introducing pressure and velocity loads (fp and fu, respectively) yields the final linear acoustic

equations in the time domain:

1

c2
∂p

∂t
+ ρ0 div(u) = fp in Ω

ρ0
∂u

∂t
+∇p = fu, in Ω

p = p0 on Γ1

un = u0 on Γ2

un − dp = u0, on Γ3

(2.1)

2.1.2 Electromagnetics

Electromagnetic wave equations for non-conductive media can be derived from Maxwell’s

equations:
divD = ρimp

divB = 0

∇× E = −∂B
∂t

∇×H = Jimp +
∂D

∂t

(2.2)
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where D is the electric displacement, E denotes the electric field, B is the magnetization,

and H denotes the magnetic field. The impressed charge ρimp and impressed current Jimp

are assumed to satisfy the compatibility condition div(Jimp) =
∂ρimp

∂t
and we have implicitly

assumed the free charge and current density (typically ρ and J) are negligible. The system is

then closed with constitutive laws, relating electric and magnetic displacements to strength

of the magnetic field:

B = µ0H+ I,

D = ϵ0E+P,

where µ0 and ϵ0 are, respectively, the magnetic and electric permeabilities of vacuum. I

denotes the intensity of magnetization, and P denotes polarization; these may generally be

nonlinear [2], but will assumed to be linear throughout this work, leading to the standard

linear constitutive relation:
B := µµµH,

D := εεεE,
(2.3)

where µµµ : Ω → M and εεε : Ω → M denote, respectively, the permeability and permittivity of

the material and M denotes the space of real-valued rank-2 tensors.

Substituting the constitutive laws (2.3) into Maxwell’s equations (2.2) gives the time-

domain electromagnetic wave equations:

div
(
εεεE
)
= ρ (2.4a)

div
(
µµµH
)
= 0 (2.4b)

∇× E = −∂(µ
µµH)

∂t
(2.4c)

∇×H = Jimp +
∂(εεεE)

∂t
(2.4d)

Let n denote the outward normal to the boundary; admissible boundary conditions include:

• Perfect electric conductor:

n× E = n× E0 on Γ1

• Prescribed electric surface current (Perfect magnetic conductor):

n×H = Jimp
S := n×H0 on Γ2
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• Impedance boundary:

n×H+ dEt = Jimp
S on Γ3

where Et := −n × n × E is the tangential component of the electric field E, d > 0 is the

prescribed impedance, and Jimp
S denotes the impressed electric surface current and is tangent

to the boundary.

2.1.3 Linear Elasticity

The linear elastic model is given by

divσσσ + f = ρ
∂2u

∂t2
, (2.5a)

S : σσσ = ε(u), (2.5b)

where (2.5a) enforces conservation of linear momentum and (2.5b) is the linear elastic con-

stitutive relation in compliance form. Vector field u : Ω → R3 defines the displacement

generated by body force f : Ω → R3, and stress σσσ : Ω → S is a real symmetric second-order

tensor. Strain ε(u) is defined to be the symmetric gradient of displacement u, i.e.

ε(u) :=
1

2

(
∇u+∇uT

)
.

Compliance tensor S : S → S is a fourth-order tensor with major and minor symmetries:

Sijkl = Sjikl = Sijlk (minor symmetry)

Sijkl = Sklij (major symmetry)

The compliance tensor is the inverse of the more common stiffness or elastic tensor C over

symmetric rank-2 tensors, i.e. S = C−1 : S → S. Indeed, constitutive relation (2.5b) can be

expressed in equivalent stiffness form:

C : ε(u) = σσσ.

In this form, the first-order elastic system reduces to the more compact second-order form

∂2u

∂t2
− div(C : ε(u)) = f ;

however, the first-order system (2.5) will be a convenient starting point for deriving numerical

methods in future sections.
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Symmetries of the compliance tensor S and stiffness tensor C imply that only 21 of 81-

components can be independently specified. In the context of wave propagation, isotropic

stiffness tensors C are commonly specified with pressure (compressive) wavespeed Vp, shear

wavespeed Vs, and density ρ. In Voigt notation, the stiffness tensor C takes the form:
C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

 , (2.6)

with
C11 = ρV 2

p

C44 = ρV 2
s

C12 = C11 − 2C44

Admissible boundary conditions for elasticity include:

• Prescribed displacement:

u = u0 on Γ1

• Prescribed traction:

σσσn = t0 on Γ2

Note that in the case of elasticity, boundary values are vector-valued, boundary conditions

can thus be mixed. For example, a symmetric boundary condition can be enforced on a

face normal to the x-direction by prescribing normal displacement ux = 0, and tangential

tractions, σσσxy = σσσxz = 0. To simplify notation we neglect to enumerate each case. We further

neglect impedance boundary conditions for elasticity and will instead leverage perfectly

matched layer boundary conditions (Section 2.3) when a radiation-type boundary condition

is required.

2.2 Frequency-Domain Wave Propagation

Time-harmonic wave equations are derived by assuming fields and sources are oscillating,

monochromatic fields. Let u and f denote group variables and loads, the time-harmonic
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equations will be derived by introducing, then factoring out the ansatz:

u(x, t) = ℜ
{
eiωt ũ(x)

}
, (2.7)

f(x, t) = ℜ
{
eiωt f̃(x)

}
, (2.8)

where i denotes the complex unit and ũ, f̃ are complex-valued fields. The remainder of this

work considers only time-harmonic wave equations, we thus simplify notation by dropping

the tilde ( ·̃ ), overloading time-dependent variables with corresponding complex-valued time-

harmonic analogs.

Linear Acoustics. The group variable for the linear acoustics problem is composed of

pressure p and velocity u:

uacoustic := ( p, u )T

Introducing the time-harmonic ansatz in the linear acoustic system (2.1) and nondimen-

sionalizing leads to the time-harmonic system

iω

c2
p+ div(u) = fp in Ω

iωu+∇p = fu in Ω

p = p0 on Γ1

un = u0 on Γ2

un − dp = u0, on Γ3

(2.9)

where, p : Ω → C and u : Ω → C3 are complex-valued fields.

System (2.9) can instead be expressed in more compact operator notation by defining

Aacoustic :=

 i
ω

c2
div

∇ iωI

 , (2.10)

where we have introduced I, a rank-2 “diffusion” tensor that is currently defined to be the

rank-2 identity tensor, this tensor will simplify the definition of PML boundary conditions

later in Section 2.3. Homogeneous boundary conditions can then built-in to the definition

of the domain of Aacoustic:

D(A) =
{
u ∈

(
L2(Ω)

)4
: Au ∈

(
L2(Ω)

)4
, p = 0 on Γ1, un = 0 on Γ2, un = dp on Γ3

}
.
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Note that the time-harmonic acoustic operator Aacoustic is formally skew adjoint, i.e.

A∗
acoustic = −Aacoustic.

Time-harmonic acoustic system (2.9) (and the remaining wave propagation operators), can

then be written: {
u = ũ0 +D(A),

(Au, v) = 0 v ∈ L2(Ω).
(2.11)

where ũ0 is a lift of the boundary data and v ∈ L2(Ω) is understood component-wise.

Electromagnetics. The electromagnetic group variable includes electric and magnetic

fields,

uEM := (E, H )T

Substituting the time-harmonic ansatz in the electromagnetic wave equations (2.4) gives the

time-harmonic electromagnetic wave equations:

∇× E+ iωµµµH = 0 in Ω

∇×H− iωεεεE = Jimp in Ω

n× E = n× E0 on Γ1

n×H = n×H0 on Γ2

n×H+ dEt = Jimp
S on Γ3

(2.12)

where the impressed current is again assumed to satisfy the compatibility condition div(Jimp) =

iωρimp. Note that we have neglected Gauss’ laws (2.4a & 2.4b) in the time-harmonic electro-

magnetic system (2.12). Indeed, once the first two equations (Faraday’s law and Ampere’s

law, respectively) are satisfied, Gauss’ laws will be automatically satisfied, as can be seen by

taking the divergence of Faraday’s law and Ampere’s law.

This problem can again be expressed in operator form by defining:

AEM :=

 −iωεεε ∇×

∇× iωµµµ

 (2.13)

with domain

D(A) =
{
u ∈
(
L2(Ω)

)6
: Au ∈

(
L2(Ω)

)6
,

n× E = 0 on Γ1, n×H = 0 on Γ2, n×H+ dEt = 0 on Γ3

}
.

Due to asymmetry of the cross-product, AEM is not formally skew-adjoint (in this form,

rotating one variable 90◦ in the complex plane yields a skew-adjoint operator).
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Linear Elasticity. Substitution and subsequent elimination of the time-harmonic ansatz

in the linear elastic system (2.5) yields the time-harmonic operator:

divσσσ + ρω2u = −f ,

−S : σσσ + ε(u) = 0.

However, to better mirror the acoustic and electromagnetic operators, it is convenient to

formulate the system in terms of velocity v instead of displacement, i.e. v = iωu:

divσσσ − iωρv = f in Ω,

−iωS : σσσ + ε(v) = 0 in Ω,

v = v0 on Γ1,

σσσn = t0 on Γ2.

(2.14)

One advantage of the velocity formulation is that variables are similarly scaled with respect

to ω, which simplifies weighting of the adjoint graph test norm for the DPG discretization,

introduced in Chapter 3. Still, this form of the elastic system presents a number of challenges

for discretization and an alternative definition of the elastic operator will be presented in

Chapter 3, introducing an infinitesimal rotation tensor r.

Velocity and stress form the group variable for linear elasticity:

uelastic := (v, σσσ )T,

and the time-harmonic elastic wave operator is defined

Aelastic :=

 −iωρ div
1

2

(
∇(·) +∇(·)T

)
−iωS :

 (2.15)

with domain

D(A) =
{
u ∈

(
L2(Ω)

)9
: Au ∈

(
L2(Ω)

)9
, v = 0 on Γ1, σσσn = 0 on Γ2

}
.

Note that symmetry of σσσ was strongly enforced and operator Aelastic is thus formally skew-

adjoint.
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2.3 Perfectly Matched Layers

Impedance boundary conditions, introduced previously for acoustic and electromagnetic

operators, are a first-order approximation of radiation boundary conditions that permit

outgoing wavefields to leave the domain. Radiation boundary conditions for the acous-

tic Helmholtz problem are given by the Sommerfeld radiation condition which, in three-

dimensions, takes the form:

lim
r→∞

r

(
∂p

∂r
− iωp

)
= 0,

where r := |x|. More accurate approximations of the Sommerfeld-type radiation condi-

tions can be obtained with perfectly matched layer (PML) boundary conditions, a class of

non-reflecting boundary conditions that append finite-width absorbing layers to domain Ω.

Absorbing layers dissipate outgoing (from the perspective of Ω) waves and are defined by

specifying a complex-valued “stretching” function φ. Pullback maps will be used to derive

the form of the absorbing material for each wave operator under a general complex stretching

φ. On hexahedral domains, with Ω = (−l, l)3 and ΩE = (−L,L)3 with l < L, the Cartesian

stretching function is frequently adopted:

φj(x) :=


xj |xj| ≤ l

xj +
iC

ω

(
xj − l

L− l

)β

|xj| > l
(2.16)

where C, β are parameters used to modify the rate of decay in the PML absorbing layer.

Exact sequence energy spaces. Before introducing pullback maps we briefly recall the

three-dimensional exact sequence energy spaces. We denote the L2-inner product over Ω by

(·, ·) and the L2-norm by ∥ · ∥; the exact sequence energy spaces are defined:

L2(Ω) = {q : Ω → R(C) : ∥q∥ <∞},

H1(Ω) = {w : Ω → R(C) : w ∈ L2(Ω),∇w ∈ (L2(Ω))3},

H(curl,Ω) = {E : Ω → R3(C3) : E ∈ (L2(Ω))3,∇× E ∈ (L2(Ω))3},

H(div,Ω) = {v : Ω → R3(C3) : v ∈ (L2(Ω))3, div v ∈ L2(Ω)}.

Energy spaces communicate regularity: L2(Ω) corresponds to (an equivalence class of) func-

tions that are L2 integrable over Ω, H1(Ω) to functions with value and gradient in L2(Ω),

H(curl,Ω) to functions with value and curl in L2(Ω), etc. In the present derivation of PML

boundary conditions, identifying the energy setting of different variables reveals how they
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are transformed under the complex stretching. For example, the p and ∇p terms in the

acoustics operator indicate that for Au to be in L2(Ω), p should be set in H1(Ω). Similarly

u and div(u) terms indicate u should be set in H(div,Ω).

Pullback maps. Let ΩE denote an extended domain, (i.e. Ω ⊂ ΩE) and φ(x) : ΩE ⊂

R3 → Ω̃E ⊂ C3 denote a complex stretching of the extended domain such that φ(x)
∣∣
Ω
= x.

Pullback maps establish a mapping between exact sequences defined on the extended and

stretched domains. Pullback maps can be derived from commutativity of the de Rham

diagram:

H1(ΩE)
∇−→ H(curl,ΩE)

∇×−→ H(div,ΩE)
∇·−→ L2(ΩE)yT grad

yT curl
yT div

yTL2

H1(Ω̃E)
∇̃−→ H(curl, Ω̃E)

∇̃×−→ H(div, Ω̃E)
∇̃·−→ L2(Ω̃E).

(2.17)

Let J denote the Jacobian of the complex stretching, i.e. J :=
∂φ

∂x
, and j := |J |, the

pullbacks maps are defined:

H1(Ω) ∋ u 7−→ T gradu := u ◦ φ−1 = ũ ∈ H1(Ω̃E) (2.18)

H(curl,ΩE) ∋ E 7−→ T curlE := (J −TE) ◦ φ−1 = Ẽ ∈ H(curl, Ω̃E) (2.19)

H(div,ΩE) ∋ v 7−→ T divv := (j−1JV) ◦ φ−1 = ṽ ∈ H(div, Ω̃E) (2.20)

L2(ΩE) ∋ q 7−→ TL2

q := (j−1q) ◦ φ−1 = q̃ ∈ L2(Ω̃E). (2.21)

Acoustics. Considering the acoustic system defined on the stretched domain,
iω

c2
p̃+ d̃iv(ũ) = 0,

iω I ũ+ ∇̃p̃ = 0.
(2.22)

The PML can be derived by pulling system (2.22) back to the extended domain. For example,

p̃ ∈ H1(Ω̃E) implies p̃ = p◦φ−1 while, according to diagram (2.17), ∇̃p̃ ∈ H(curl, Ω̃E) implies

∇̃p̃ = (J −T∇p) ◦ φ−1. Pulling back the acoustics operator leads to the following stretched

system: 
iω

c2
p+ j−1 div(u) = 0,

iωj−1J I u+ J −T∇p = 0.
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Rearranging, stretching factors can be grouped with the wavespeed c and diffusion (identity)

tensor I (introduced in (2.10) for precisely this purpose):
iωj

c2
p+ div(u) = 0,

iωj−1J TJ I u+∇p = 0.

This motivates definition of modified materials

c′ = cj−1/2 and I′ = j−1J TJ . (2.23)

Definition of modified materials simplifies the implementation of the PML: the extended do-

main and stretching function define the complex-valued modified materials which implement

the complex stretching.

Electromagnetics. PML boundary conditions can be derived similarly for the electro-

magnetic operator (2.13). Pulling back the operator defined on the stretched domain Ω̃E to

the extended domain ΩE gives:{
j−1J∇× E+ iωµµµJ −TH = 0,

j−1J∇×H− iωεεεJ −TE = 0.

Rearranging to move the stretching factors onto εεε and µµµ terms yields the modified permit-

tivity and permeability:

εεε′ := jJ −1εεεJ −T and µµµ′ := jJ −1µµµJ −T. (2.24)

Elasticity. To derive PML expressions for elasticity we further assume that J = J T,

simplifying treatment of the symmetric gradient term. Pulling back the elastic system from

the stretched domain gives: {
j−1 divσσσ − iωρv = 0,

−iωS : j−1Jσσσ + J −1ε(v) = 0.

Straightforward manipulations again permit grouping of the stretching terms to define mod-

ified material properties:

ρ′ = jρ and S′
ijkl = j−1JniJmkSnjml (2.25)

However, note that minor symmetries of S are violated in the modified compliance tensor S′.
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Chapter 3

Discontinuous Petrov-Galerkin Method
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3.1 Variational formulations

Variational formulations are at the heart of finite element methods; finite element prac-

titioners are thus well aware of the classical weak formulation, commonly derived starting

from the second order system. For example, the standard weak formulation for the Helmholtz

(linear acoustics) problem starts from the Helmholtz operator:

−∆p− ω2

c2
p = f

Introducing test function v and integrating over the domain, we have:

−
∫
Ω

∆pv −
∫
Ω

ω2

c2
pv =

∫
Ω

fv.

where · denotes complex conjugation. Applying integration by parts to the first term, yields

the standard weak form:∫
Ω

∇p · ∇v −
∫
Γ2

∂npv −
∫
Ω

ω2

c2
pv =

∫
Ω

fv.

In fact, this is just one of six variational formulations for linear acoustics. The other varia-

tional formulations can be derived starting from the first-order operators given in Chapter 2,

then applying integration by parts to weaken (relax) none, either, or both of the equations

(this gives four variational formulations, the remaining two are derived by eliminating one

of the variables in the so-called mixed formulations). The various variational formulations

for a variety of second-order operators are given in [26], and can be shown to simultaneously

well- or ill-posed.

We note only two abstract variational problems for the wave operators defined previously.

The first is the so-called trivial variational formulation that introduces group test variable

v, and neglects to weaken either equation.{
u ∈ D(A)
(Au, v) = (f, v), v ∈ L2(Ω)

(3.1)

where v ∈ L2(Ω) is used to denote that each component is individually an L2 field.

At the other extreme we have the so-called ultraweak variational formulation, defined by

weakening both equations: {
u ∈ L2(Ω)
(u, A∗v) = (f, v), v ∈ D(A∗),

(3.2)

Note that both trivial and ultraweak variational formulations have an asymmetric functional

setting, requiring a Petrov–Galerkin discretization with different trial and test spaces.
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3.2 The Ideal Petrov–Galerkin Method

The ideal Petrov–Galerkin methodology is a natural predecessor to the DPG method-

ology. This section briefly introduces the ideal Petrov–Galerkin method in the context of

three characterizations or “hats” [30] that motivate important properties—namely Hermi-

tian positive-definiteness, mesh-independent stability, and a built-in error indicator—of the

DPG methodology.

Hat 1: A minimum residual method. To this end, consider a (well-posed) variational

problem posed on complex-valued Hilbert spaces U, V{
u ∈ U
b(u, v) = l(v), v ∈ V,

(3.3)

where b(·, ·) is a continuous sesquilinear funcional on U × V , and l(·) ∈ V ′. Sesquiliinear

functional b(·, ·) defines linear operator B : U 7→ V ′ through duality pairing,

⟨Bu, v⟩V ′×V = b(u, v).

The abstract variational problem in (3.3) is then equivalent to minimization of the residual

in dual space V ′, i.e.

u = argmin
w∈U

1

2
||l − Bw||2V ′ . (3.4)

Instead of minimizing in the dual norm, we can introduce the Riesz operator RV : V 7→

V ′, and recast problem (3.4) as a minimization in V :

u = argmin
w∈U

1

2
||R−1

V (l − Bw)||2V . (3.5)

Requiring the Gâteaux derivative of the cost functional in (3.5) to vanish, and considering

now a finite dimensional trial space Uh ⊂ U , yields the variational problem:{
uh ∈ Uh

(R−1
V Buh, R

−1
V Bδuh)V = (R−1

V l, R−1
V Bδuh), δuh ∈ Uh.

(3.6)

where the left-hand side (R−1
V B·, R−1

V B·)V defines an inner product, and thus trivially defines

a Hermitian positive-definite variational problem. The inner product defined by (3.6) further

motivates definition of the energy norm for the ideal Petrov–Galerkin method as:

||u||E = ||R−1
V Bu||V = ||Bu||V ′ = sup

v∈V

|b(u, v)|
||v||V

. (3.7)
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Hat 2: A method of optimal test functions. An additional characterization of the

ideal Petrov–Galerkin method can be observed by defining the trial-to-test operator T :

Uh 7→ V by

(Tδuh, δv)V = b(δuh, δv), δuh ∈ Uh, δv ∈ V ; (3.8)

i.e. T = R−1
V B. Defining now the discrete test space V opt

h := T (Uh) leads to the equivalent

Petrov–Galerkin problem {
uh ∈ Uh ⊂ U
b(uh, vh) = l(vh), vh ∈ V opt

h .
(3.9)

The test space V opt
h trivially satisfies the discrete inf-sup condition since, for uh ∈ Uh,

b(uh, vh)

||vh||V
=
b(uh, Tuh)

||Tuh||V
= ||uh||E = sup

v∈V

|b(uh, v)|
||v||V

.

As a method of optimal test functions, the ideal Petrov–Galerkin method is thus uniformly

and unconditionally stable, inheriting stability from the continuous problem.

Hat 3: A mixed method. Finally, by introducing ψ := R−1
V (l − Buh), the Riesz repre-

sentation of the residual, the ideal Petrov–Galerkin method can be cast as a mixed problem:
uh ∈ Uh, ψ ∈ V
(ψ, v)V + b(uh, v) = l(v), v ∈ V
b(wh, ψ) = 0, wh ∈ Uh.

(3.10)

Computing the error e = uh − u in the energy norm reveals,

||uh − u||E = ||B(uh − u)||V ′ = ||Buh − l||V ′ = ||R−1
V (l − Buh)||V = ||ψ||V . (3.11)

The ideal Petrov–Galerkin methodology could therefore be seen to provide a built-in error

indicator. Note however that ψ, arising from the continuous Riesz operator RV , is set in

continuous space V and problem (3.10) is not yet amenable to computation.

3.2.1 The Practical Petrov–Galerkin Method

The practical Petrov–Galerkin methodology with optimal test functions replaces infinite

dimensional space V in (3.10) with an enriched finite dimensional space V r
h ⊂ V :

uh ∈ Uh, ψh ∈ V r
h

(ψh, vh)V + b(uh, vh) = l(vh), vh ∈ V r
h

b(wh, ψh) = 0, wh ∈ Uh.
(3.12)
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Substituting the finite-dimensional test space V r
h diminishes stability of the problem com-

pared to the ideal method, but the decrease in stability is often minor and can be quantified

by constructing Fortin operators [50, 95].

Use of finite-dimensional test space V r
h in the practical Petrov–Galerkin yields a fully

discrete system that can be solved for uh, ψh. Field ψh can further be used to define a built-in

error indicator via element-wise contributions to ||ψh||V . While the practical Petrov–Galerkin

methodology is computable, it yields a mixed system of the form[
G B
B∗ 0

] [
s
u

]
=

[
f
0

]
(3.13)

where G is discretized by the enriched test space V r
h and is thus often significantly larger than

B. Comparing system (3.13) to an analogous Galerkin discretization reveals that the practical

Petrov–Galerkin has not only significantly increased the size of the problem, it has further

imparted a saddle point structure. Indeed, while the practical Petrov–Galerkin method is

computable, it is (at the moment) not computationally competitive. However, Monsuur

and Stevenson recently showed that a practical Petrov–Galerkin method for Helmholtz is

practically pollution-free, given a modest increase in order of the enriched test variable s with

wavenumber [91]. Development of preconditioners and matrix-free solvers for mixed system

(3.13) could improve the competitiveness of the practical Petrov–Galerkin methodology in

the future.

3.3 The Discontinuous Petrov–Galerkin Method

The discontinuous Petrov–Galerkin methodology was developed to improve the com-

putability of the practical Petrov–Galerkin method. The core idea is that testing with a

larger discontinuous (“broken”) enriched test space block-diagonalizes the Gram matrix G,

allowing it to be eliminated at the element level. Breaking test spaces introduces additional

trace variables [19] defined on the mesh skeleton. Denoting these new trace variables û ∈ Ûh,

the DPG system takes the form
uh ∈ Uh, ûh ∈ Ûh, ψh ∈ V r

h

(ψh, vh)V + b(uh, vh) + b̂(ûh, vh) = l(vh), vh ∈ V r
h

b(wh, ψh) = 0, wh ∈ Uh

b̂(ŵh, ψh) = 0, ŵh ∈ Ûh.

(3.14)

The remainder of this section first introduces the energy spaces needed to rigorously de-

fine DPG systems for the wave propagation operators. Ultraweak variational formulations
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are then given for the wave propagation operators, followed by the corresponding broken

ultraweak forms. Corresponding DPG methods are finally defined.

3.3.1 Energy Spaces

Consider a bounded domain Ω ⊂ R3 with Lipschitz boundary Γ ≡ ∂Ω. L2 inner products

over Ω and Γ are denoted:

(u, v) :=

∫
Ω

uv and ⟨u, v⟩ :=
∫
Γ

uv.

The standard energy spaces were defined previously in Section 2.3 and are repeated here:

L2(Ω) = {q : Ω → R(C) : ∥q∥ <∞},

H1(Ω) = {w : Ω → R(C) : w ∈ L2(Ω),∇w ∈ L2(Ω)},

H(curl,Ω) = {E : Ω → R3(C3) : E ∈ L2(Ω),∇× E ∈ (L2(Ω))3},

H(div,Ω) = {v : Ω → R3(C3) : v ∈ L2(Ω),∇ · v ∈ L2(Ω)},

where L2(Ω) :=
(
L2(Ω)

)3
is the space of vector-valued L2 fields over Ω. We will similarly use,

bold faced energy spaces to denote three-dimensional copy of other energy spaces, specifically:

H1(Ω) :=
(
H1(Ω)

)3
,

H(div,Ω) :=
(
H(div,Ω)

)3
.

It is also convenient to define subspaces of the energy spaces vanishing on some part of the

boundary, these will be denoted:

H1
Γi
(Ω) = {u ∈ H1 : u|Γi

= 0},

HΓi
(curl,Ω) = {E ∈ H(curl,Ω) : E|Γi

× nΓi
= 0},

HΓi
(div,Ω) = {v ∈ H(div,Ω) : v|Γi

· nΓi
= 0}.

Let Ωh denote a finite-element mesh with elements {K}K∈Ωh
. Use of discontinuous test

spaces in DPG will necessitate definition of broken energy spaces, these are defined as product

spaces over elements:

L2(Ωh) = {q ∈ L2(Ω) : q|K ∈ L2(K) ∀K ∈ Ωh} = L2(Ω),

H1(Ωh) := {w ∈ L2(Ω) : w|K ∈ H1(K) ∀K ∈ Ωh} ⊃ H1(Ω),

H(curl,Ωh) = {E ∈ (L2(Ω))3 : E|K ∈ H(curl, K) ∀K ∈ Ωh} ⊃ H(curl,Ω),

H(div,Ωh) := {v ∈ (L2(Ω))3 : v|K ∈ H(div, K) ∀K ∈ Ωh} ⊃ H(div,Ω).
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Breaking test spaces [19] further introduces trace unknowns on the mesh skeleton Γh :=

{∂K}K∈Ωh
. The trace spaces are understood as element-wise traces of globally conforming

functions:
H1/2(Γh) :=

{ ∏
K∈Ωh

γK(w|K) : w ∈ H1(K)
}
,

H−1/2(div,Γh) :=
{ ∏

K∈Ωh

γK⊤ (E|K) : E ∈ H(curl, K)
}
,

H−1/2(curl,Γh) :=
{ ∏

K∈Ωh

γK⊥ (E|K) : E ∈ H(curl, K)
}
,

H−1/2(Γh) :=
{ ∏

K∈Ωh

γKn (v|K) : v ∈ H(div, K)
}
,

where γK , γK⊤ , γK⊥ , and γKn are element-wise continuous, tangential, rotated tangential, and

normal trace operators [30, 27].

3.3.2 Ultraweak Time-Harmonic Wave Propagation

Before proceeding with the derivation of broken ultraweak formulations, we formalize the

ultraweak variational problems for the time-harmonic wave propagation operators introduced

in Section 2.2. To simplify the presentation we neglect impedance boundary conditions.

Information on impedance boundary conditions and corresponding DPG formulations for

the acoustic and electromagnetic problems can be found in [33, 60].

Acoustics. The ultraweak variational formulation, defined for the abstract setting in (3.2),

takes the following form for the acoustics problem:
p ∈ L2(Ω), u ∈ L2(Ω)

iω(c−2p, q)− (u,∇q) = −⟨u0, q⟩Γ2 + (fp, q) q ∈ H1
Γ1
(Ω)

iω(u,v)− (p, div v) = −⟨p0, vn⟩Γ1 + (fu,v) v ∈ HΓ2(div,Ω).

(3.15)

Note that p and u are set in L2(Ω), the standard technique of using “finite energy lifts” [33] to

enforce non-homogeneous boundary conditions is thus not well-defined. Instead, prescribed

boundary conditions can be enforced either by including data as boundary loads (as above),

or by introducing additional trace variables (see Section 3.3.3).
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Electromagnetics. The ultraweak formulation for electromagnetics follows similarly:
E,H ∈ L2(Ω)

− iω(εεεE,F) + (H,∇× F) = ⟨n×H0,F⟩Γ2 F ∈ HΓ1(curl,Ω)

iω(µµµH,G) + (E,∇×G) = ⟨n× E0,G⟩Γ1 + (Jimp,G) G ∈ HΓ2(curl,Ω)

(3.16)

Elasticity. Finally, the ultraweak formulation for elasticity is given by:
v ∈ L2(Ω),σσσ ∈ L2(Ω, S)

iω(ρv,w) + (σσσ,∇w) = ⟨t0,w⟩Γ2 + (f ,v) w ∈ H1
Γ1
(Ω)

iω(S : σσσ,τττ) + (v, div τττ) = ⟨v0, τττn⟩Γ1 τττ ∈ HΓ2(div,Ω; S)

(3.17)

where HΓ2(div,Ω; S) ⊂ HΓ2(div,Ω) denotes the space of symmetric rank-2 tensor-valued

fields. Space HΓ2(div,Ω; S) has proven challenging to discretize; we will thus introduce a

second ultraweak formulation for elasticity, weakly enforcing symmetry of τττ . To this end

we introduce the infinitesimal rotation tensor r ∈ L2(Ω,A), where A denotes the space

of complex-valued anti-symmetric tensors. The infinitesimal rotation tensor r is defined via

three independent L2(Ω) components and is thus simply discretized. The resulting ultraweak

problem is then given by:
v ∈ L2(Ω),σσσ ∈ L2(Ω, S), r ∈ L2(Ω,A)

iω(ρv,w) + (σσσ,∇w) = ⟨t0,w⟩Γ2 + (f ,v) w ∈ H1
Γ1
(Ω)

iω(S : σσσ,τττ) + (v, div τττ) + iω(r, τττ) = ⟨v0, τττn⟩Γ1 τττ ∈ HΓ2(div,Ω).

(3.18)

A comparison of elastic formulations (3.18) and (3.17) follows in Section 3.5. For now we will

continue developing both, referring to them as elastic formulation I (with strongly symmetric

test stresses) and elastic formulation II (with weakly symmetric test stresses), respectively.

3.3.3 Broken Ultraweak Time-Harmonic Wave Propagation

Use of broken test spaces necessitates introduction of additional trace variables [19]; these

new trace variables can be understood as Lagrange multipliers, weakly enforcing continuity

of the test space. Boundary conditions can then be enforced by building boundary data

into the definition of the trace spaces. For example, trace spaces conforming to specified

boundary data for the acoustics problem can be defined:

H
1/2
p0,Γ1

(Γh) :=
{
p̂ ∈ H1/2(Γh) : p̂ = p0 on Γ1

}
,

H
−1/2
u0,Γ2

(Γh) :=
{
ûn ∈ H−1/2(Γh) : ûn = u0 on Γ2

}
.

(3.19)
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Trace spaces for the electromagnetic problem will similarly be defined:

H
−1/2
E0,Γ1

(curl,Γh) :=
{
Ê ∈ H−1/2(curl,Γh) : n× Ê = n× E0 on Γ1

}
,

H
−1/2
H0,Γ1

(curl,Γh) :=
{
Ĥ ∈ H−1/2(curl,Γh) : n× Ĥ = n×H0 on Γ2

}
,

(3.20)

and finally for the elastic problem:

H
1/2
v0,Γ1

(Γh) :=
{
v̂ ∈ H1/2(Γh) : v̂ = v0 on Γ1

}
,

H
−1/2
t0,Γ2

(Γh) :=
{
σ̂σσn ∈ H−1/2(Γh) : σ̂σσn = t0 on Γ2

}
.

(3.21)

Broken ultraweak variational formulations all follow from unbroken forms by introducing the

appropriate trace terms. Details can be found in various published works [33, 72] and are

thus provided without additional commentary.

Acoustics.
p ∈ L2(Ωh), u ∈ L2(Ωh), p̂ ∈ H

1/2
p0,Γ1

(Γh), ûn ∈ H
−1/2
u0,Γ2

(Γh)

iω(c−2p, q)− (u,∇q) + ⟨ûn, q⟩Γh
= (fp, q) q ∈ H1(Ωh)

iω(u,v)− (p, div v) + ⟨p̂, vn⟩Γh
= (fu,v) v ∈ H(div,Ωh)

(3.22)

Electromagnetics.
E,H ∈ L2(Ωh), Ê ∈ H

−1/2
E0,Γ1

(curl,Γh), Ĥ ∈ H
−1/2
H0,Γ2

(curl,Γh)

− iω(εεεE,F) + (H,∇× F)− ⟨Ĥ,n× F⟩Γh
= 0 F ∈ H(curl,Ωh)

iω(µµµH,G) + (E,∇×G)− ⟨Ê,n×G⟩Γh
= (Jimp,G) G ∈ H(curl,Ωh)

(3.23)

Elasticity I.
v ∈ L2(Ωh), σσσ ∈ L2(Ωh, S), v̂ ∈ H

1/2
v0,Γ1

(Γh), σ̂σσn ∈ H
−1/2
t0,Γ2

(Γh)

iω(ρv,w) + (σσσ,∇w)− ⟨σ̂σσn,w⟩Γh
= −(f ,v) w ∈ H1(Ωh)

iω(S : σσσ,τττ) + (v, div τττ)− ⟨v̂, τττn⟩Γh
= 0 τττ ∈ H(div,Ωh; S)

(3.24)

Elasticity II.
v ∈ L2(Ωh), σσσ ∈ L2(Ωh, S), r ∈ L2(Ω,A), v̂ ∈ H

1/2
v0,Γ1

(Γh), σ̂σσn ∈ H
−1/2
t0,Γ2

(Γh)

iω(ρv,w) + (σσσ,∇w)− ⟨σ̂σσn,w⟩Γh
= −(f ,v) w ∈ H1(Ωh)

iω(S : σσσ,τττ) + (v, div τττ) + iω(r, τττ)− ⟨v̂, τττn⟩Γh
= 0 τττ ∈ H(div,Ωh)

(3.25)
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3.3.4 Ultraweak DPG Method for Time-Harmonic Wave Propagation

The broken ultraweak variational problems given in (3.22)–(3.25) define sesquilinear func-

tionals b(·, ·) and b̂(·, ·) as well as function spaces Uh, Ûh, and Vh. All that remains to define

the DPG systems of the form (3.14) is to specify an appropriate test inner product (·, ·)V .
Definition of the test norm is not unique; specifying a different test norm will lead to a dif-

ferent method and convergence in a different norm. The choice of test norm can significantly

impact the accuracy of DPG discretizations. Perhaps the most intuitive choice is the L2

inner product; this leads to the FOSLS method [78] which is known to be highly dissipative

for wave operators.

In the case of the (unbroken) ultraweak formulation, the adjoint norm ||·||A∗ := (A∗·, A∗·)
can be shown to be optimal [120]. However, the adjoint norm is not localizable; indeed, ||·||A∗

is not definite over the discontinuous test space. The premise of DPG was to impart the

Gram matrix G with a block diagonal structure that could be condensed locally. To this end,

the adjoint norm is supplemented with a weighted L2 contribution; the resulting weighted

adjoint graph norm

∥ · ∥2V := α∥ · ∥2 + ∥ · ∥2A∗ (3.26)

is quasi-optimal for ultraweak DPG discretizations. The effect of the weighting parameter

α will be demonstrated in Section 4.3. The broken ultraweak formulations and explicit form

of the adjoint weighted graph norm are given in the notation of the abstract DPG system

(3.14) in the following.

Acoustics.

u = (p,u) ∈ L2(Ωh)×L2(Ωh)

û = (p̂, ûn) ∈ H
1/2
p0,Γ1

(Γh)×H
−1/2
u0,Γ2

(Γh)

v = (q,v) ∈ H1(Ωh)×H(div,Ωh)

∥v∥2V = α∥q∥2 + α∥v∥2 + ∥iωc−2q + divh v∥2 + ∥iω I v +∇hq∥2

b(u, v) = iω(c−2p, q)− (u,∇hq) + iω(I u,v)− (p, divh v)

b̂(û, v) = ⟨ûn, q⟩Γh
+ ⟨p̂, vn⟩Γh

l(v) = (fp, q) + (fu,v)

(3.27)

Recall that material properties ρ and I will be complex-valued in the PML (Section 2.3),

and note the presence of complex conjugates on both in the definition of the test norm.
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Electromagnetics.

u = (E,H) ∈
(
L2(Ωh)

)2
û = (Ê, Ĥ) ∈ H

−1/2
E0,Γ1

(curl,Γh)×H
−1/2
H0,Γ2

(curl,Γh)

v = (F,G) ∈
(
H(curl,Ωh)

)2
∥v∥2V = α∥F∥2 + α∥G∥2 + ∥iωεεε∗F+∇h ×G∥2 + ∥iωµµµ∗G−∇h × F∥2

b(u, v) = − iω(εεεE,F) + (H,∇h × F) + iω(µµµH,G) + (E,∇h ×G)

b̂(û, v) = − ⟨Ĥ,n× F⟩Γh
− ⟨Ê,n×G⟩Γh

l(v) = (Jimp,G)

(3.28)

Elasticity I.

u = (v,σσσ) ∈ L2(Ωh)× L2(Ωh, S)

û = (v̂, σ̂σσn) ∈ H
1/2
v0,Γ1

(Γh)×H
−1/2
t0,Γ2

(Γh)

v = (w, τττ) ∈ H1(Ωh)×H(div,Ωh; S)

∥v∥2V = α∥w∥2 + α∥τττ∥2 + ∥iωρw − divh τττ∥2 + ∥iωS : τττ − εh(w)∥2

b(u, v) = iω(ρv,w) + (σσσ,∇hw) + iω(S : σσσ,τττ) + (v, divh τττ)

b̂(û, v) = − ⟨σ̂σσn,w⟩Γh
− ⟨v̂, τττn⟩Γh

l(v) = (−f ,v)

(3.29)

Elasticity II.

u = (v,σσσ, r) ∈ L2(Ωh)× L2(Ωh, S)× L2(Ωh,A)

û = (v̂, σ̂σσn) ∈ H
1/2
v0,Γ1

(Γh)×H
−1/2
t0,Γ2

(Γh)

v = (w, τττ) ∈ H1(Ωh)×H(div,Ωh)

∥v∥2V = α∥w∥2 + α∥τττ∥2 + ∥iωρw − divh τττ∥2 + ∥iωS : τττ − εh(w)∥2 + ∥ω
2
(τττT − τττ)∥2

b(u, v) = iω(ρv,w) + (σσσ,∇w) + iω(S : σσσ,τττ) + (v, div τττ) + iω(r, τττ)

b̂(û, v) = − ⟨σ̂σσn,w⟩Γh
− ⟨v̂, τττn⟩Γh

l(v) = (−f ,v)

(3.30)
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3.4 Discretization
3.4.1 Discrete Exact Sequence Energy Subspaces

Let X0, X1, ..., XNs (with Ns < ∞) denote a family of vector spaces, and for each

i = 1, ..., Ns, let Ai : Xi−1 −→ Xi be a linear operator. The sequence or complex formed by

these operators

X0
A1−→ X1

A2−→ · · · ANs−−→ XNs

is said to be exact if, for i = 1, 2, ..., Ns − 1, it holds that R(Ai) = N(Ai+1) where R and N

denote the operator range and nullspace. The three-dimensional energy spaces first intro-

duced in Section 2.3 form an exact sequence. Similar exact sequences can be formed in one-

and two- dimensions:

1D: H1(Ω)
∂−→ L2(Ω)

2D: H1(Ω)
∇−→ H(curl,Ω)

∇vts−−→ L2(Ω)

H1(Ω)
∇stv−−→ H(div,Ω)

div−→ L2(Ω)

3D: H1(Ω)
∇−→ H(curl,Ω)

∇×−−→ H(div,Ω)
div−→ L2(Ω).

(3.31)

where the ∇vts and ∇stv denote the 2D vector-to-scalar and scalar-to-vector curl operators

respectively, defined by∇vts = ∂1(·)2−∂2(·)1 and∇stv = (∂2,−∂1), and Ω denotes a bounded,

simply connected, Lipschitz domain in RN with N = 1, 2, 3, according to context.

It is important that discretizations of exact sequence energy spaces similarly form an

exact sequence. For example, in discretization of the time-harmonic electromagnetic wave

propagation problem (2.12) it was noted that, at the continuous level, Gauss’ laws were

implied by satisfaction of Faraday’s law and Ampere’s law. In particular, this requires that

R(∇×) ⊂ N(div). Satisfaction of Gauss’ laws on the discrete level thus requires that discrete

finite element spaces inherit the exact sequence structure.

Perhaps the simplest polynomial exact-sequence subspaces are defined on hexahedral

elements. Consider the space of tensor product polynomials

Qp,q,r(x, y, z) := Pp(x)⊗ Pq(y)⊗ Pr(z),

where Pp(x) := span{xj : j = 0, . . . , p}. Polynomial exact-sequence subspaces on a hexahe-
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dral element are then given by:

W p := Qp,q,r

Qp := Qp−1,q,r ×Qp,q−1,r ×Qp,q,r−1

V p := Qp,q−1,r−1 ×Qp−1,q,r−1 ×Qp−1,q−1,r

Y p := Qp−1,q−1,r−1

Note that throughout this work we will use discretization order to indicate the order of the

corresponding exact sequence. This implies that, for an order p discretization, variables set in

H1 will be discretized with order p polynomials, while L2 variables are discretized with order

p − 1 polynomials, and H(curl) and H(div) variables have mixed order. This dissertation

leverages the open-source orientation embedded high-order shape functions (defined for all

element shapes) developed by Keith, Fuentes, Demkowicz, and Nagaraj [42]. Exact sequence

conforming shape functions are also implemented in a number of modern finite element

packages including FEniCS (Basix) [108, 109], NGSolve [107], and MFEM [5].

3.4.2 Discrete Linear System

The Discontinuous Petrov Galerkin methodology leads to a global linear problem with

saddle-point structure:  G B B̂
B∗ 0 0

B̂∗ 0 0

 s
u
û

 =

 f
0
0

 (3.32)

where G is element-wise block-diagonal. The DPG system in mixed form (3.32) has condition

number O(h−1) [73], and can be useful for solving poorly conditioned problems. Solving the

system in mixed form may also permit use of matrix-free solvers. However, a more economical

approach is often to leverage the element-wise block-diagonal structure of G to condense s

at the element level, forming the normal system:[
B∗G−1B B∗G−1B̂

B̂∗G−1B B̂∗G−1B̂

] [
u
û

]
=

[
B∗G−1f

0

]
. (3.33)

In the context of the ultraweak variational formulation, field unknowns u are L2 fields with

no coupling between elements, B∗G−1B is thus again element-wise block diagonal and can

be condensed on the element level. Condensing both s and u leaves only trace variables

û defined on the mesh skeleton, drastically reducing the number of unknowns in the DPG

system without increasing matrix bandwidth. Still, forming and condensing element Gram

33



matrices GK and forming element stiffness matrices BK is expensive; these costs will be

outlined in Chapter 4.

3.5 Convergence Studies

With the exception of H(div,Ωh; S), the ultraweak DPG problems in Section 3.3.4 lever-

age the standard energy spaces and are discretized accordingly. At the heart of energy

spaces is continuity: H1 is composed of continuous scalar-valued functions, H(curl) of vector-

valued functions with tangential continuity, H(div) of vector-valued functions with normal

continuity, and L2 of discontinuous scalar-valued functions. However, since DPG leverages

broken test spaces, it is perhaps natural to ask whether it is strictly necessary to use an

H(div,Ωh; S)-conforming discretization for the test stress τττ in (3.29). We follow intuition,

partially discarding mathematical rigor in the process, and take τττ ∈ H1(K, S), i.e. we use

six scalar valued H1(K) variables to represent τττ in the first elastic formulation.

Convergence studies were performed to verify the correctness of the implementations.

For each wave problem we considered a unit cube domain, Ω = (0, 1)3, with manufactured

solution

ϕ(x) = sin(ωx) sin(ωy) sin(ωz)

with ω = 2π for components p, Ex, and vz in the acoustic, elactromagnetic, and elastic prob-

lem, respectively. Type 1 boundary conditions with manufactured (homogeneous) boundary

data were employed in each case. Each study began from a single hexahedral element, four

uniform h-refinements were then performed. Test norm weight α = 1 was used throughout.

All material parameters were taken to be unit valued (with ϵϵϵ = µµµ = I), with the exception

of elasticity where Vp = 2 was used (with Vs = 1, ρ = 1).

Results of the convergence studies are illustrated in Figure 3.1. Errors were computed in

the L2 norm, with respect to all L2 field variables, except in the case of elastic formulation II

where the infinitesimal rotation tensor r was neglected in error computations. Convergence

rates are depicted for each problem and for orders p ∈ {2, 3, 4}. The first mesh (corresponding

to a single element per wavelength) in each case is too coarse to resolve the manufactured

solution, but optimal convergence rates were observed in subsequent refinements. Note

that elastic formulation II (Fig. 3.1d) demonstrated marginally higher accuracy than elastic

formulation I (Fig. 3.1d) in every case, although the difference was was often insignificant.
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The most substantial differences were observed on the second mesh for p = 2 and p = 3,

although even these differences are difficult to observe visually.

(a) Acoustics (b) Electromagnetics

(c) Elastic Formulation I (d) Elastic Formulation II

Figure 3.1: Convergence studies for ultraweak DPG discretization of wave operators. Opti-
mal rates are observed.

3.5.1 Comparison of Elastic Formulations with PML

Elastic formulation II was observed to be marginally more accurate than formulation I

in the previous convergence study. Further testing revealed challenges of formulation II in

the presence of PML boundary conditions. We thus briefly consider a slightly more complex

problem.

Consider a simple 0.5 km cube domain (Ω = (−0.25, 0.25)×(−0.25, 0.25)×(0, 0.5)), with

a free-surface boundary condition at z = 0, and surrounded by a 0.25 km-wide PML layer on

the remaining sides. The PML is defined via the Cartesian stretching function (2.16) with

parameters β = 3, C = 40. The domain is again taken to be homogeneous with ρ = 1 g/cm3,

Vp = 1 km/s, and Vs = 2 km/s. A similar configuration is illustrated in Fig. 4.2, although

piecewise-constant material data was assumed in that case. The methods are compared at
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frequency f = 12 Hz (ω = 24π) and loaded by a point source located at xsrc = [0, 0, 0]. The

point source was implemented as a simple radial step function:

f =

{
1 |x| ≤ 0.0125,
0 otherwise.

A 32×32×24 element hexahedral mesh (3 elements per shear wavelength) was used for both

formulations. To ensure accurate integration of the load, elements incident to the source were

h-refined once.

Figure 3.2: Solution and relative errors for simulation of a point source with elastic formu-
lation I (strongly symmetric test stress). Rows correspond to increasing polynomial order
(labeled); the first and second column show slices of ℜ{vz} at z = 0, x = 0, respectively.
The third and fourth columns correspond to the relative error in the same slices. All fields
are amplitude compensated.

Slices of the solution (ℜ{vz}) are shown in Fig. 3.2 and Fig. 3.3. Relative error was

computed against a reference solution produced on a fourth-order (p = 4) 128 × 128 × 96
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Figure 3.3: Solution and relative errors for simulation of a point source with elastic formu-
lation II (weakly symmetric test stress). Rows correspond to increasing polynomial order
(labeled); the first and second column show slices of ℜ{vz} at z = 0, x = 0, respectively.
The third and fourth columns correspond to the relative error in the same slices. All fields
are amplitude compensated. Note difference in colorbar scales compared to Fig 3.2.

element hexahedral mesh, corresponding to 12 fourth-order elements (48 points) per shear

wavelength, and is also provided in the figures. Both solution and error fields are amplitude

compensated, i.e. scaled by the distance from the source (ũ(x) := u(x)|x − xsrc|). This

compensates for the natural decay of point source solutions in three-dimensions and helps

visualize wavefields uniformly in space. The scale in the relative error plots differ between

Fig. 3.2 and Fig. 3.3; indeed, elastic formulation I is observed to produce ca. 5× smaller error

than elastic formulation II, with p = 4 achieving ca. 0.2% error in the L2
r norm (where L2

r

is the weighted norm implied by amplitude compensation). Finally, it can be observed that

although the lowest order fields for both formulations demonstrated significant inaccuracies,
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the error is largely dissipative. Indeed, pollution in DPG discretizations manifests primarily

as amplitude error, often producing very little phase error.

The underperformance of formulation II was somewhat unexpected in this case. To

understand the difficulty of the method in the context of PML boundary conditions, recall

the second equation in (3.25):

iω(S : σσσ,τττ) + (v, div τττ) + iω(r, τττ)− ⟨v̂, τττn⟩Γh
= 0.

We consider only the antisymmetric part of this expression. Assuming S conforms to major

and minor symmetries leaves only the infinitesimal rotation term:

iω(r, τττ) = 0.

The infinitesimal rotation tensor r can thus be understood as a Lagrange multiplier, enforcing

(weakly) symmetry of τττ . However, as noted in Section 2.3, PML stretching violates minor

symmetries of S. The asymmetry thus couples the reaction from weak enforcement of test

stress symmetry to the symmetric terms enforcing the constitutive relation. Indeed, as can be

seen in Fig. 3.3 (especially p = 4), the error appears to originate from the PML boundary.

Further refinements and computing the solution on a larger domain (not depicted) were

observed to further localize the error near the PML.

Further investigations into the treatment of the compliance asymmetry induced by the

PML are required for formulation II to be competitive. We leave such investigations to future

work, noting only that formulation I avoids these challenges and was observed to achieve

optimal convergence rates and comparable accuracy to formulation II. We will thus consider

formulation I exclusively throughout the remainder of this dissertation.
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Chapter 4

Computing with DPG
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The DPG method was first proposed by Demkowicz and Gopalakrishnan nearly 15 years

ago [28] but, despite the various compelling qualities outlined in the previous chapter, DPG

has struggled to gain traction among practitioners. This delayed adoption is perhaps partially

due to the significant mathematical and implementational complexity of DPG relative to

other numerical methods. A second likely factor is cost: DPG has earned a reputation of

being exorbitantly expensive relative to more standard Galerkin finite element approaches,

which are in turn often considered expensive relative to finite difference and other methods.

The additional cost of DPG is two-fold: 1) forming element normal matrices is typically

orders of magnitude more expensive than forming Galerkin element matrices, and 2) DPG

introduces additional variables that result in larger global systems with increased coupling

and are often significantly more expensive to solve. This chapter summarizes the costs and

complexities of computing with DPG and outlines a number of practical considerations.

4.1 Element Matrix Formation
4.1.1 Numerical Integration

Forming DPG element normal matrices requires forming Gram matrix G, stiffness matrix

B, and interface stiffness matrix B̂, all using a larger enriched test space. To illustrate the

size of these matrices, Table 4.1 outlines the number of bubble (Nb), interface (Ni), and

enriched test unknowns (Nt) for a hexahedral element with modest order (p ∈ {2, 3, 4}) for

each wave operator studied here. Standard numerical integration of the matrices (with the

exception of B̂) in three-dimensions has O(p9) complexity for evaluating and accumulating

O(p3) trial functions against O(p3) test functions at O(p3) quadrature points.

Numerical integration was implemented with matrix-matrix multiplication routines that

implicitly perform the accumulation over quadrature points [11]. That is, let S denote a

matrix where each column corresponds to the values of a particular shape function at each

quadrature point, then the numerical integration can be expressed as S∗
1DS2, where D is

a diagonal (for scalar-valued unknowns) or block-diagonal (for vector- and tensor-valued

unknowns) incorporating the quadrature weight, material data, etc. Despite having the

same O(p9) complexity, this approach enables use of highly-optimized general matrix-matrix

multiplication (GEMM) routines to compute matrix-matrix products and significantly out-

performs classical loop-based implementations. Numerical integration via matrix-matrix

multiplication is employed by numerous finite element codes, but is notable here as it signifi-
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Table 4.1: Number of bubble (Nb), interface (Ni), and enriched test (Nt) degrees of freedom
for wave propagation problems with different orders.

Problem p Nb Ni Nt

Acoustics

2 32 50 127

3 108 110 365

4 256 194 666

EM

2 48 96 288

3 162 216 600

4 384 384 1080

Elasticity

2 72 150 576

3 243 330 1125

4 576 582 1944

cantly reduces numerical integration times previously reported in hp3D [92, 8, 58]. Numerical

integration times for the DPG system are reported in Table 4.2.

4.1.2 Static condensation

Static condensation of the Gram matrix can be performed in three main stages:

1. Cholesky factorization of the Gram matrix: G = U∗U

2. Back substitution for columns of the stiffness, interface stiffness, and load: W =

U−1[B B̂ f]

3. Matrix-matrix multiplication for the weighted normal matrix B̃ = W∗W; the resulting

matrix B̃ contains the blocks of the element normal system and the modified load

in 3.33

Each of these operations has O(p9) complexity. Timings are reported in Table 4.2, from

which it can be seen that each of the three stages have a similar cost. The total cost of

numerical integration and static condensation are also relatively similar, with the exception

of elasticity, where the number of trial and test unknowns significantly exceeds the number

of quadrature points. Static condensation is significantly more expensive in the elastic case.

41



Table 4.2: Timings for forming DPG element normal matrices for wave propagation problems
with various discretization orders p.

Numerical Integration (s) Static Condensation (s)

p B B̂ G Total Chol. Backsub. W∗W Total

Acoustic

2 3.2e-4 1.2e-4 6.2e-4 1.1e-3 2.3e-4 1.9e-4 9.3e-5 5.2e-4
3 2.1e-3 6.5e-4 3.7e-3 6.5e-3 2.2e-3 2.5e-3 1.3e-3 6.0e-3
4 1.2e-2 1.2e-4 2.0e-2 3.2e-2 1.0e-2 1.5e-2 8.8e-3 3.4e-2

EM

2 1.5e-3 1.0e-3 3.2e-3 5.8e-3 1.2e-3 8.8e-4 5.8e-4 2.7e-3
3 8.1e-3 2.9e-3 1.6e-2 2.7e-2 8.3e-3 9.2e-3 6.2e-3 2.4e-2
4 3.4e-2 8.2e-3 7.8e-2 1.2e-1 5.2e-2 5.5e-2 4.6e-2 1.5e-1

Elastic

2 1.5e-3 1.3e-3 5.2e-3 8.1e-3 5.9e-3 5.2e-3 2.3e-3 1.3e-2
3 9.2e-3 3.8e-3 4.2e-2 5.5e-2 3.7e-2 4.4e-2 2.5e-2 1.1e-1
4 3.3e-2 1.0e-2 1.4e-1 1.8e-1 1.6e-1 2.5e-1 1.7e-1 5.7e-1

4.1.3 Sum-factorization

Sum factorization can be used to reduce the complexity of numerical integration from

O(p9) to O(p7) on elements with tensor product [92] and semi-tensor product [8] structure.

Figure 4.1 compares the standard GEMM-based numerical integration to an optimized sum-

factorization routine. Results were computed on Frontera [111] at the Texas Advanced

Computing Center (TACC). A single dual socket (Intel 8280) node with 56 total cores and

192GB of RAM was employed in a 2 MPI rank by 28 thread configuration. Each thread

computed a 100-run average cost of forming G, B, and B̂; timings were then averaged over

threads. The sum-factorized routine is ca. 2–3× faster even for low-order elements; however

the results are somewhat misleading since evaluating 3D shape functions is the dominant

cost for low-order elements (p < 4). The observed complexity of the GEMM-based routine is

also less than the expected O(p9) complexity; this was likely due to bandwidth limitations in

the all-core configuration and the improving intensity of the computation for larger matrices.

Timings for full and partial sum-factorized integration of electromagnetic element ma-

trices were provided in [8] but the fastest sum-factorized routines outlined there are again

only ca. 3× faster than the GEMM-based routines. However, implementing, optimizing, and

maintaining sum-factorization routines is cumbersome and DPG element matrix formation

is still often limited by the cost of static condensation. GEMM-based routines are also often

much better suited to GPU computing and other accelerators. Still, sum-factorization can

provide substantial speedups for numerical integration and, especially if coupled with fast
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static condensation routines, can be an effective tool for reducing the cost of DPG element

matrix formation.

Figure 4.1: Timings for numerically integrating G, B, and B̂ for the acoustics problem with
GEMM-based and sum-factorization routines.

4.1.4 Future directions

Numerically integrating and statically condensing relatively large Gram matrices is ex-

pensive and, in applications where this cost is limiting and cannot be amortized, one approach

may be to remove it entirely. Hybridizable discontinuous Galerkin (HDG) methods with

impedance-based fluxes have been proposed [69] and proved [83] to be pre-asymptotically

stable. These HDG methods have a similar (not identical) functional setting to the ultraweak

DPG methods employed here and seem to be compatible with the DPG-MG preconditioner

(the solve may require an alternative Krylov iteration), although we have not yet verified

this assertion. Critically, HDG methods avoid formation and static condensation of a Gram

matrix. The cited HDG methods do advocate for static condensation of the field variables,

but condensation of the field variables in both HDG and DPG is relatively inexpensive due

to the reduced size of these matrices compared to the Gram matrix. Indeed, as can be

noted in Table 4.1, the number of bubble unknowns (Nb) is typically 3–4× smaller than

the number of enriched test unknowns (Nt) for the polynomial orders shown; this implies

a 27–64× reduced cost for static condensation of the field variables compared to the cost
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for statically condensing the Gram matrix. A comparison of the cited HDG methods with

DPG methods for wave propagation problems would make a compelling future study. Still,

DPG provides substantial benefits including a built-in error indicator and Hermitian positive

definite structure; methods for fast condensation of Gram matrices would thus be a welcome

direction for further inquiry.

4.2 Additional Unknowns and Linear Solvers

DPG methods are typically derived starting from first-order operators that have addi-

tional variables relative to the second-order operators used for standard Galerkin discretiza-

tions. For example, linear acoustics supplements scalar-valued pressure p with vector-valued

velocity u, electromagnetics uses both electric and magnetic fields (E and H, respectively),

and linear elasticity supplements vector-valued displacement (velocity) v with the tensor-

valued stress σσσ. The mixed DPG system (3.10) further introduces additional enriched test

variables and trace variables on the mesh skeleton and, for the problems and orders consid-

ered here, has ca. 10× as many unknowns than a standard Galerkin system. However, as

noted previously, standard DPG implementations condense the enriched test variables and

any bubble trial degrees of freedom (DOFs) on the element level, leaving only DOFs sup-

ported on the mesh skeleton. Galerkin discretizations may similarly condense bubble DOFs

on the element level, leaving only DOFs supported on the mesh skeleton; in this case the

DPG system will typically have 2× as many unknowns as the Galerkin system.

This simple enumeration of unknowns confirms that DPG systems do, at best, have

roughly twice as many unknowns as a Galerkin system on a given mesh. DPG’s additional

degrees of freedom are coupled, resulting in 2× larger matrix bandwidth and requiring 4×

more memory. Applying a direct sparse solver with O(N2) complexity would, in an optimistic

estimate, increase the cost of solving the system by 4–8× (when accounting for the increased

coupling); however, in practice the performance of direct sparse solvers significantly degrades

with increased coupling, often incurring a cost at least 10× higher than for applying a direct

solver to an analogous Galerkin system.

The preceding estimate neglects many of the benefits of the DPG methodology and is

intended to demonstrate how, under common workflows, DPG can prove exorbitantly ex-

pensive and discourage potential adopters. Benefits of DPG—including mesh-independent

stability, a built-in error indicator, and compelling dispersion characteristics—will be illus-

44



trated throughout this dissertation. For now we simply note that the Hermitian positive-

definite structure of DPG systems enables use of advanced preconditioners (e.g. multigrid)

and use of the preconditioned conjugate gradient iteration with improved memory and com-

putational complexity compared to the preconditioned GMRES iteration typically employed

for Galerkin methods. For example, the largest problems considered in Chapter 6 required

ca. 500 iterations; storing the Krylov history in these cases would require substantially more

memory than the DPG system while use of restarting, BiCGSTAB, or some other method

to limit the Krylov history would be expected to increase the number of iterations and com-

putational expense. Thus, at scale, DPG may become more economical than comparable

Galerkin systems. The Hermitian structure can further be leveraged to store only the upper

or lower triangular part of the operator, reducing memory consumption to only 2× that of

a Galerkin system (while still requiring 4× more operations to apply, however bandwidth

limitations of modern computing hardware typically imply a less substantial increase).

Finally, we note that the number of DOFs reported in future studies count all trial

variables, including bubble and interface DOFs (neglecting enriched test DOFs). Counting

in this way is somewhat biased in favor of DPG discretizations. As can be verified in

Table 4.1, ultraweak DPG discretization of the fourth-order (p = 4) acoustic problem will

have 450 DOFs per element, while a Galerkin discretization will have 125 DOFs per element.

In the examples considered in this dissertation, the ultraweak DPG systems have ca. 3–4×

as many DOFs as a comparable Galerkin discretization on the same mesh. However, even

when accounting for this advantageous counting, the scale of problems shown in Chapter 6

represents an unprecedented scale for time-harmonic wave propagation problems.

4.3 Test Norm Scaling

As observed in Section 3.5, definition of the test norm can significantly impact the quality

of the solution, particularly in the preasympotic regime. This section demonstrates the effect

of test norm weight α on solution accuracy for a linear elastic problem with piecewise constant

material properties. A similar test-norm scaling study, in the context of an ultraweak acoustic

problem, was conducted in [47].

The study is conducted on a 0.5 unit cube domain, partially surrounded by a 0.25 unit

PML layer (see Fig. 4.2), with a free-surface boundary condition on the z = 0 face. The

Cartesian stretching function (2.16) with parameters β = 3, C = 40 was used to define the

45



Figure 4.2: Configuration for test norm (α) scaling study. All length measurements shown
are in km. The domain has piecewise constant material properties, with separating plane
and material data specified. The location of the origin (at the center of the free surface) is
noted.

PML. Piecewise constant material data and separating plane are additionally specified in

Fig. 4.2. In the PML absorbing layer, material data was simply extruded in the direction

of stretching. The problem is driven by a point source located at xsrc = [0, 0, 0.15] with

frequency ω = 32π (f = 16 Hz).

Solutions were computed on a uniform hexahedral mesh (h = 1/32), corresponding to two

elements per minimum shear wavelength, for orders p ∈ {2, 3, 4} and α ∈ {10−2, 100, 102};

the resulting solutions are shown in Fig. 4.3–4.5. The depicted relative error was computed

against a reference solution computed on a twice h-refined fourth-order mesh (h = 1/128, p =

4). Meshes were not fitted to the material discontinuity. Although fitting meshes would have

been relatively simple for this problem, it will be nearly impossible for the more complex

applications considered in Chapter 6. This study thus fulfills a dual purpose of validating

accuracy of DPG discretizations when meshes are not aligned to material discontinuities.

Second-order solutions are depicted in Fig. 4.3, where it can be observed that the solution

becomes more dissipative as α is increased. It is well-documented [47, 59] that increasing the

test norm weight α tends to increase pollution error which, in the case of DPG discretizations,

tends to manifest as dissipation. Increased dissipation is thus expected for larger α. It can

also be seen from Fig. 4.3 that for small α the solution appears to become less stable,
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Figure 4.3: Test norm (α) scaling study for p = 2. Solution (ℜ{vz}) slices at z = 0 (top
row) and x = 0 (middle row) and relative error slices at x = 0 (bottom row) are depicted.
Fields are amplitude compensated.

exhibiting additional oscillations.

Third- and fourth-order solutions are depicted in Fig. 4.4 and Fig. 4.5. In both cases, ad-

ditional error is incurred for α = 102, but the induced changes are relatively less pronounced.

Only minor differences are visible in relative errors for α = 10−2 and α = 100 and the overall

accuracy (O(3%) and O(1%) for p = 3 and p = 4, respectively) is acceptable given the two

element per minimum shear wavelength mesh.

Finally, we note that the DPG-MG solver with a stopping criterion of 10−8 relative

ℓ2 residual was used to solve this problem. Additional information on the solver and run

configurations will be provided in future studies; for now we note only that the solve required

128, 46, and 37 iterations for α = 10−2, 100, 102, respectively, reflecting a general trend that
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Figure 4.4: Test norm (α) scaling study for order p = 3.

decreasing α tends to increase the number of iterations required for convergence. Selecting

an appropriate test weight α thus requires balancing competing objectives of accuracy and

solution time. As defined here, the choice of α is not robust with respect to frequency ω,

element size h, domain size L [59], or the wave operator. Fortunately, the sensitivity of both

accuracy and iteration count to α is often relatively mild. Unless otherwise noted, test norm

weight α = 1 was used throughout this work.
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Figure 4.5: Test norm (α) scaling study for order p = 4.
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Chapter 5

DPG Multigrid Solver
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5.1 Overview

Multigrid1 algorithms are a cornerstone of modern scalable solver technology but their

application to problems with indefinite operators, such as high-frequency wave propagation,

is challenging and remains an active area of research. The DPG methodology—as a mini-

mum residual method—produces Hermitian positive definite discrete systems and can thus

be used to circumvent many of the challenges associated with applying multigrid to indefinite

problems. That is not to say DPG is without its own unique challenges in applying multigrid.

For example, as outlined in Chapter 3, the DPG methodology introduces additional trace

degrees of freedom (DOFs) on the mesh skeleton, resulting from testing with discontinuous

(“broken”) test spaces [19]. The DPG system is typically condensed onto a system composed

entirely of trace unknowns defined on the mesh skeleton. Constructing suitable prolongation

operators for these trace unknowns is complicated by the fact that h-refinement alters the

mesh skeleton, introducing additional fine-grid unknowns with no natural coarse-grid repre-

sentatives; this is a challenge shared by hybridizable methods [103, 104]. The construction of

a stable prolongation operator between such non-nested condensed systems for general DPG

problems2 was one of the contributions in the original work by Petrides and Demkowicz

[100].

The DPG multigrid preconditioner is a non-standard multilevel preconditioner that op-

erates on DPG trace systems and is applicable—without modification—to any DPG formu-

lation, for any well posed problem involving the standard energy spaces. The DPG multigrid

solver (DPG-MG) leverages this multilevel preconditioner to precondition a conjugate gradi-

ent iteration, defining a fast iterative solver for general DPG systems. The DPG-MG solver

can be leveraged in conjunction with mesh-independent stability and built-in error indicator

of the DPG method to drive hp-adaptivity. In this context, the solution on intermediate

meshes is only needed to sufficient accuracy to produce a subsequent refinement; achiev-

ing the needed accuracy typically requires only a relatively small number of iterations, this

approach was demonstrated in Petrides’ original works [100, 102].

This dissertation extends Petrides’ implementation in a number of key ways:

1This chapter contains a number of sections adapted from ”Scalable DPG multigrid solver for Helmholtz
problems: A study on convergence.” by J. Badger, S. Henneking, S. Petrides, and L.Demkowicz, Comput.
Math. Appl., 148:81–92, 2023. The author of this dissertation contributed to theory, software development,
numerical simulations, and writing of that work.

2discretized with exact-sequence energy spaces
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1. An alternative construction of coarse-grid operators is proposed that significantly im-

proves convergence of the solver.

2. A fully distributed implementation is developed, enabling efficient and scalable solution

on modern distributed manycore architectures.

3. The implementation is extended to support anisotropic refinements and hybrid meshes

of all element shapes.

4. A performant CPU implementation achieves significant acceleration compared to the

original implementation, enabling the solver to be competitive for a much larger class

of problems.

5.1.1 Software

The DPG-MG solver was built on top of hp3D and grown out of Petrides’ original shared-

memory solver implementation [100]. An open-source version of the distributed DPG-MG

solver was intended to be included in the hp3D repository; however, hp3D was not intended

for massively parallel computation at the scale demonstrated in this work. Indeed, among

other limitations, hp3D employs a replicated-mesh data structure to enable distributed par-

allelism, this approach requires each process to store and maintain a copy of the entire mesh

and limits scalability of the solver to O(109) DOFs. The scalable DPG-MG solver leveraged

throughout this work is based on an optimized version of hp3D that can be run in replicated

or fully distributed modes and will be demonstrated in Chapter 6 to solve problems with

O(1012) DOFs.

As part of the development process, the performant version of hp3D has diverged signif-

icantly from the open source code and we are exploring publishing a performant version of

hp3D along with an open source version of the scalable solver in the FrequenSolver Github

repository3. However, at the time of writing no open source implementation of the scalable

DPG-MG solver is available. In the meantime, a simplified version of the solver based on

a previous version of hp3D will be made available in that repository, or can be obtained

by contacting the author4. A version of the shared-memory implementation by S. Petrides

[100] is available in hp3D (although it is not compatible with the current tagged release); the

3https://github.com/FrequenSol/FrequenSolver
4jcbadger@utexas.edu
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following presentation will at times point to that implementation but will seek to emphasize

commonality in operations, better paralleling the approach of the scalable implementation.

5.2 DPG Multigrid Preconditioner

The DPG multigrid preconditioner was defined in [100]. This section provides a brief

overview of the preconditioner for completeness and to establish necessary terminology for the

distributed implementation, outlined Section 5.3. We begin by introducing the concept of the

macro grid and necessary components for a two-grid V-cycle: smoothing, prolongation, and

coarse-grid correction operators. Finally, we review the multigrid V-cycle and preconditioned

conjugate gradient iteration. This section largely summarizes Petrides’ construction, the

most notable exception being the alternative coarse grid construction in Section 5.2.5; the

alternative construction will be observed in Section 5.4 to drastically improve convergence

of the DPG-MG solver.

5.2.1 Macro Grid

The DPG-MG solver operates on trace unknowns on the mesh skeleton; h-refinements

produce fine-grid edges and faces that do not coincide with the previous-grid skeleton and

thus have no natural representatives on the previous mesh. To ameliorate this, Petrides

and Demkowicz [100] introduced a macro grid, where fine-grid unknowns not supported on

the coarse mesh skeleton are statically condensed. In the case of p-refinements, macro and

fine grids coincide. Figure 5.1 illustrates coarse-, fine-, and macro-grids in the context of

h-adapted meshes.

As shown by Petrides and Demkowicz [100], macro- and fine-grid systems are spectrally

equivalent. This allowed analysis to be performed on the uncondensed DPG normal sys-

tem and implies that similar convergence should be expected when applying the precondi-

tioned conjugate gradient iteration on the condensed fine-grid system or macro-grid system.

Throughout this work, we chose to apply operators on the macro grid. In the case when the

fine grid is defined via a single h-refinement of the coarse grid, the macro grid will have ca.

50% fewer degrees of freedom than the fine grid system, and thus reduces the cost of vector

operations such as communicating and computing dot products. Note however that this

choice can increase the expense of storing and applying the global system (by ca. 2×) due to

the increased density of the macro-grid system induced by static condensation. Coarse-grid
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(a) Coarse grid (b) Fine grid (c) Macro grid

Figure 5.1: Macro grid construction. The fine grid unknowns that do not lie on the skeleton
of the coarse grid are statically condensed onto the remaining unknowns. Dots on the
macro grid indicate the location of vertex degrees of freedom. Illustrated in 2D for clarity,
3D construction follows analogously. Reproduced from Adaptive multilevel solvers for the
discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation
problems by S. Petrides., 2019, PhD thesis. Copyright 2019 by S. Petrides. Reproduced with
permission.

smoothing patches are ca. 2× smaller, albeit more dense, on the macro grid.

We emphasize that this construction is intended for a two-grid V-cycle with fine and

coarse grid separated by a single h- or p-refinement. This differs from the original two-

grid definition in [101, 100], where the fine and coarse grids were separated by multiple

refinements. Performing multiple levels of refinement between grid levels necessitates more

extensive static condensation that degrades sparsity and increases the memory consumption

and the computational cost of applying the preconditioner and further requires more compli-

cated restriction operators defined via recursion. Multiple levels of refinements can be more

efficiently exploited in a multigrid V-cycle, defined in Section 5.2.7.

5.2.2 Preconditioned Conjugate Gradient Iteration

The preconditioned conjugate gradient (PCG) iteration requires the preconditioner to be

symmetric (Hermitian) and positive definite. Positive definiteness is guaranteed by the DPG

discretization but symmetry requires symmetric smoother and prolongation operators, an

equal number of pre- and post-smoothing steps, and a linear coarse grid correction operator.

The PCG iteration is standard and will not be detailed here. However, as will be noted in

Section 5.5, we will at times define the coarse-grid correction via an inner PCG iteration.

This will imply that the preconditioner for the outer PCG iteration will become nonlinear
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and require use of the flexible PCG iteration. This will be revisited in Section 5.5.

5.2.3 Additive Schwarz (Overlapping Block Jacobi) Smoother

The DPG-MG solver employs an additive Schwarz (overlapping block-Jacobi) smoother

with blocks defined by coarse-grid vertex patches. As noted previously, smoothing can be

performed on the fine-grid or macro-grid system, both patch definitions are illustrated in 5.2.

In either case, let Rj denote a restriction operator, extracting the unknowns supported on

patch j. The additive Schwarz smoother is then defined

S =
∑
j

θRT
j B

−1
j Rj, (5.1)

where Bj := RjBR
T
j is the patch stiffness matrix, and θ ∈ (0, 1) is a relaxation parameter

(θ = 0.2 was adopted throughout this work). A diagonal weighting matrix is sometimes

included in (5.1), such a diagonal weighting often corresponds to a partition of unity that

ensures smoother corrections are equally weighted throughout the domain. Inclusion of the

diagonal weighting term makes the preconditioner asymmetric and is thus neglected in our

case.

Note that the definition of smoothing patches based on the support of coarse-grid ver-

tex patches can lead to large smoothing blocks, especially in the case of high-order dis-

cretizations, but avoids additional complexities for vector-valued variables set in H(curl)

and H(div) [7]. In particular, this definition of patches implies that the DPG-MG solver is

applicable—without modification—to any well-posed DPG problem discretized with exact-

sequence energy spaces. Alternative definitions of smoothing patches lead to smaller patch

sizes for vector-valued variables [64, 65].

5.2.4 Prolongation

The macro grid was introduced in Section 5.2.1 to facilitate restriction of h-refinements

with no coarse-grid representatives. In the two-grid case defined thus far, the macro-grid

system is simply defined via static condensation and a single-stage prolongation between

the macro-grid and coarse-grid system is required. In the multigrid case, and when the

PCG iteration is applied on the fine-grid, we will instead define a two-stage prolongation

operator, with the first stage restricting from the fine-grid to the macro-grid system using

Schur complements, and the second stage restricting from the macro-grid to coarse-grid
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(a) Vertex patch - coarse grid (b) Vertex patch - macro grid

Figure 5.2: Construction of a smoother patch. A smoother patch is defined by the support
of a coarse grid vertex basis function. Adapted from “An adaptive multigrid solver for DPG
methods with applications in linear acoustics and electromagnetics.” by S. Petrides and L.
Demkowicz, Comput. Math. Appl., 87:12–26, 2021.

system. The corresponding restriction operators will be denoted:

• Ifm – Restriction from fine-grid to macro-grid

• Imc – Restriction from macro-grid to coarse-grid

Fine-to-macro prolongation operators. The fine-to-macro restriction is defined via

Schur complements. Let Be denote a macro stiffness matrix corresponding to macro-element

e; assembled from fine-grid stiffness matrices BK with K ⊂ e. Partition the system into

unknowns supported on the macro-element interface (denoted with subscript i) and interior

(denoted with subscript b); i.e. [
Be,ii Be,ib

Be,bi Be,bb

]
The local restriction on macro element e is then defined via the Schur complement as:

Ifm(e) =
[
I −Be,ibB

−1
e,bb

]
.

where I denotes the Ni ×Ni identity.

The global fine-to-macro restriction is then defined by assembling local element contri-

butions:

Ifm =
∏
e

Ifm(e)
∏
K∈e

, (5.2)
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where
∏

denotes the finite element assembly operator. Note that the definition of the

macro-to-fine restriction operator in (5.2) is applied to element-wise unassembled fine-grid

arrays. This definition reflects the shared memory implementation and the approach outlined

in Section 5.3. The definition could have alternatively been given in global assembled form:

Ifm =
[
I −BibB

−1
bb

]
where indices i denote the global unknowns supported on the macro-grid skeleton.

The macro-to-fine extension operator, denoted Imf is simply defined as the Hermitian

transpose of the restriction operator; i.e. Imf :=
(
Ifm
)∗
. The definition of Imf via the transpose is

required for the classical preconditioned conjugate gradient iteration since the preconditioner

is required to be symmetric.

Macro-to-coarse prolongation operators. The coarse-to-macro extension operator (Icm)

is defined simply via the natural inclusion operator, expressing coarse-grid basis functions

as a linear combination of macro-grid basis functions. The natural inclusion operator (or

rather its transpose) can thus be constructed by solving a series of projection problems,

projecting basis functions defined on macro-grid edges and faces onto basis functions defined

on the coarse-grid mesh skeleton. Efficient implementation of these projection problems can

be achieved via constrained approximation [32]. In the case of p-refinements with hierarchi-

cal shape functions (as employed here), the new unknowns resulting from p-refinement are

simply set to zero.

The macro-to-coarse restriction operator Icm is real-valued and defined via the transpose

i.e. Icm :=
(
Imc
)T

to preserve symmetry of the preconditioner.

5.2.5 Coarse-Grid Correction

Smoothers, such as the overlapping block Jacobi smoother introduced in Section 5.2.3, are

known to effectively reduce high-frequency error. The motivation behind multilevel methods

is that low-frequency error can be more effectively corrected on coarse meshes; smoothing

iterations are thus combined with a coarse-grid correction operator to improve convergence.

Coarse-grid operators can be constructed either by direct assembly (i.e. by forming the

discrete operators on coarser meshes directly), or by restricting the already formed fine-grid

operators. In the case of classical Galerkin methods with nested approximation spaces (i.e.
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UC ⊂ UF , where UC and UF denote coarse- and fine-grid approximation spaces, respectively)

these approaches coincide. Indeed, let I : UC → UF denote the natural inclusion operator

and b(·, ·) denote a bilinear form defining a Galerkin discretizaiton. Abusing notation we

have,

BC = b(UC , UC) = b(ITUF , I
TUF ) = I BF IT,

where BC and BF denote the resulting coarse- and fine-grid stiffness matrices, respectively.

In the context of the DPG methodology, where the mixed or saddle-point structure of the

system resembles a Stokes problem, these approaches do not coincide. The direct assembly

approach was used in Petrides’ original works, storing and re-using operators assembled on

coarse grids to precondition fine grids. However, we observed that for high-frequency prob-

lems, convergence rapidly deteriorated with increasing frequency. As will be demonstrated

in Section 5.4, computing coarse-grid stiffness matrices as restrictions of fine-grid stiffness

matrices restores the expected convergence rates. Computing coarse-grid operators as re-

strictions of fine-grid operators is relatively inexpensive, typically requiring 1%–10% of the

cost of forming the fine-grid DPG system. It may be possible to define operator-dependent

prolongation operators that enable direct assembly of coarse-grid operators to be effective,

this would be an interesting direction for future inquiry.

Coarse grid correction with restricted coarse operators. Let Imc again denote the

macro-to-coarse restriction operator defined in Section 5.2.4, the restricted coarse-grid system

is given by

Bc := Imc B
(
Imc )

∗.

The coarse-grid correction operator is then defined:

Q :=
(
Imc )

∗ B−1
c Imc .

5.2.6 Two-Level Preconditioner

A two-level preconditioner may be defined via additive (parallel) or multiplicative (serial)

coupling between smoothing operators and coarse-grid corrections. We employ multiplicative

coupling, the two-level preconditioner is then given as:

zn = Mrn = zsn + zsqn + zsqsn
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where

zsn = Srn

zsqn = Q(I − Bzsn)

zsqsn = S(I − Bzsqn )

The preconditioner M can be expressed compactly [100] as:

M =
(
Q+ S(I − AQ) + (I − QA)S− S(I − AQ)AS

)
5.2.7 Multigrid V-cycle

Until this point we have only considered the two-level preconditioner, with a single fine

and coarse mesh. The multilevel preconditioner operates on a hierarchy of grids, we will thus

need to distinguish between various grids. Multigrid can be expressed as recursive application

of the two-level preconditioner, where the coarse grid correction operator B−1
c , is approxi-

mated by a further two-level preconditioner. The recursive algorithm is given in Algorithm 1,

and motivates our enumeration of meshes. The initial mesh is labeled coarse(1), the i-th

subsequent refinement is labeled coarse(i), coinciding with fine(i-1). The macro-grid

between coarse(i) and fine(i) is denoted macro(i) and is uniquely ennumerated. This

convention is illustrated in Fig. 5.3.

Algorithm 1 Multigrid V(1,1)-cycle

procedure v cycle(r,i) ▷ r: residual, i: Grid level
if i == 1 then

z = coarse correction(r) ▷ Coarsest-grid correction
else

z = smooth(r,i)
r = r - Bi z ▷ Update residual
rc = restrict(r,i) ▷ Restrict residual
zc = v cycle(rc,i-1) ▷ Recurse
z = z + extend(zc,i) ▷ Prolong update
r = r - Bi z ▷ Update residual
z = z + smooth(r,i)

return z

This grid numbering convention may appear unintuitive; indeed, grids could simply be

enumerated based on the level of mesh refinement; however, in the distributed implementa-

tion outlined next, coarse(i) and fine(i-1) correspond to two different partitions of the
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Figure 5.3: Multigrid V-cycle schematic. Adapted from “An adaptive multigrid solver for
DPG methods with applications in linear acoustics and electromagnetics.” by S. Petrides
and L. Demkowicz, Comput. Math. Appl., 87:12–26, 2021.

same mesh. Note that the definition of smoothing patches, etc. is also based on this two-

grid structure, with smoothing patches on macro(i) (or fine(i)) defined via the support

of coarse(i) vertex patches.

5.3 Distributed Implementation

The distributed DPG-MG solver leverages a domain-partitioning approach to distribute

work among parallel processors. Domain partitioning is necessary since the DPG-MG solver

stores the macro-element stiffness matrices and (optionally) patches, these operators consume

a large amount of memory and cannot be efficiently communicated during the solve. However,

domain partitioning presents a challenge in the context of mesh adaptivity since local mesh

refinement quickly imbalances a partition; repartitioning is thus necessary for load balancing.

Repartitioning is somewhat more complex in the context of multigrid, which operates on

hierarchy of meshes. Our implementation partitions grids as they are constructed; the top

level grid may be repartitioned while it is active, but once an additional grid is added the
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coarser grids becomes static. During prolongation, the solution or residual array is migrated

to coincide with the partition on that mesh. The multigrid V-cycle with repartitioning is

illustrated in Fig. 5.4 and outlined in Algorithm 2.

We intend to publish a version of the solver in the FrequenSolver Github repository5

but it is not available at the time of writing. A simplified version of the solver, based on

a previous version of hp3D will be made available in the repository, or can be obtained by

contacting the author6. A shared memory version of the solver is currently available in hp3D

under the directory trunk/src/solver/MGCG/, but is not compatible with the current hp3D

tagged release. We will point to that code when possible to provide a concrete instantiation

of the ideas presented here.

Figure 5.4: Multigrid V-cycle schematic with repartitioning.

5https://github.com/FrequenSol/FrequenSolver
6jcbadger@utexas.edu
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Algorithm 2 Distributed multigrid V(1,1)-cycle with migration

procedure v cycle(r,i) ▷ r: residual, i: Grid level
if i = 1 then

z = coarse correction(r) ▷ Coarsest-grid correction
else

z = smooth(r,i)
r = r - Bi z ▷ Update residual

rc = Imc (i) r ▷ Restrict from macro(i) to coarse(i)
rf = migrate c2f(rc,i) ▷ Migrate from coarse(i) to fine(i-1)
rm = Ifm(i-1) rf ▷ Restrict from fine(i-1) to macro(i-1)

zm = v cycle(rm,i-1) ▷ Recurse

zf = Imf (i-1) zm ▷ Prolong from macro(i-1) to fine(i-1)

zc = migrate f2c(zf ,i) ▷ Migrate from fine(i-1) to coarse(i)
z = z + Icm(i) zc ▷ Prolong from coarse(i) to macro(i)

r = r - Bi z ▷ Update residual
z = z + smooth(r,i)

return z

5.3.1 Mesh Partitioning and Ghosting

The distributed solver uses standard, element-wise partitioning, but partitions are re-

quired to conform to the coarse grid on each two-level cycle. As can be noted in Fig. 5.4,

this implies that the mesh partition lags the mesh by one refinement level and can lead to

some imbalance. This imbalance can be mitigated using a weighted partition, with weights

reflecting the increased cost of coarse grid elements that have been refined.

After partitioning macro elements, each process further claims all coarse-grid vertex

patches incident to its subdomain. Each process then appends ghost elements to its sub-

domain to complete the claimed patches. The resulting padded subdomain thus includes a

single layer of macro-grid elements. The partitioning and ghosting strategies are illustrated

in Fig. 5.5. This partitioning strategy is somewhat inefficient, patches on the interface be-

tween multiple subdomains will be claimed by multiple processes. More efficient partitioning

strategies based on unique ownership of patches are possible but necessitate additional com-

munication stages; the ghosting strategy illustrated in Fig. 5.5 was chosen for simplicity of

presentation and implementation. An alternative partitioning strategy is outlined in Sec-
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tion 5.6.2.

Figure 5.5: Partitioning and ghosting strategy. Coarse-grid elements are partitioned; ghost
elements are then appended to complete vertex patches incident to subdomain elements.

5.3.2 Data Structures

hp3D data structures. We briefly review the main data structures in hp3D—particularly

ELEMS and NODES. A more extensive review of these structures can be found in Leszek

Demkowicz’s book series on hp3D [25, 32, 60]. The ELEMS data structure stores element

and connectivity information for initial (unrefined) mesh elements. The ELEMS structure is

thus defined once, when a mesh is read in, and remains static for the remainder of the com-

putation. Information about mesh refinement, approximation order, etc. is thus encoded in

the NODES data structure, a dynamic array storing ‘vertex’, ‘edge’, ‘face’, and ‘middle’ node

types. The NODES data structure is initialized for the initial mesh; the connectivity of these

initial nodes is stored in the ELEMS array. Refining elements “breaks” nodes, generating a

number of children nodes of different types that are appended to the data structure. For

example, breaking an edge node (NODES(nod)%ntype = MEDG) results in two additional edge

nodes and a single vertex node. NODES is thus a tree data structure, with the connectivity of

nodes implied by their genealogy and the initial mesh connectivity. In addition to implicitly

storing mesh connectivity (via genealogy) for refined elements, NODES stores the subdomain

that middle nodes belong to, as well as geometry and solution degrees of freedom for nodes

that are active in a given mesh.

The distributed implementation of hp3D utilizes a replicated-mesh approach, maintaining

a full copy of the ELEMS and NODES data structure on each distributed process, but deallocat-

ing geometry and solution degrees of freedom not on a process’ partition. The rather spartan

design of NODES is central to hp3D’s distribution strategy (indeed, each node occupies only
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56 bytes) and enables solution of problems with O(109) degrees of freedom on large scale

distributed compute resources. Indeed, during development of the distributed version of

hp3D [58], considerable effort was devoted to ‘slimming’ the data structures to enable some

additional scalability at the expense of disabling features including mesh unrefinement, etc..

The largest problem considered in this work has 2.6 billion elements and 25 billion nodes,

the replicated mesh approach would have required nearly 1.5 TB of memory per MPI rank.

A fully distributed approach was thus required. Before introducing DPG-MG specific data

structures, we take a brief detour to outline the design of our fully distributed data structures.

More extensive details may be provided in the future, when an open-source version is available

for reference.

Mostly-distributed data structures. The ELEMS and NODES data structures are fun-

damental to hp3D; the initial idea behind our fully distributed data structure was thus to

leave these data structures unperturbed and ‘trick’ the code into thinking it was working

on a full mesh. A ‘translation layer’ was then defined to reconcile the differing enumeration

of elements and nodes on different processes. The first incarnation of the translation layer

(Global Local mesh Unification or GLU) was defined starting from a replicated initial mesh.

The replicated mesh was partitioned and a replicated data structure was constructed con-

taining all nodes on elements incident to any subdomain interface, these will be referred to

as global nodes.

Local ELEMS and NODES data structures, defined only on a process’ ghosted subdomain

(with a single layer of ghost elements) were then created and the replicated ELEMS and

NODES data structures were deleted. Nodes on the interface were then bidirectionally linked

to corresponding global nodes, this is illustrated in Fig. 5.6. This correspondence defined the

translation layer: when a node was communicated it would first be routed to the translation

layer, translated to its global node, communicated, then translated back on the receiving

process. Reduction of an array indexed by node number is a common operation in hp3D.

For example, unique node ownership can be decided by initializing an integer array; processes

then mark all entries corresponding to nodes on their subdomain elements with their MPI

rank. The array is then reduced with a min or max operation to decide ownership. In the

mostly distributed approach, local nodes on the global interface are copied from the local

array to the global array; the global array is then reduced, and the local entries are extracted
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from the global array; this is outlined in Algorithm 3.

Figure 5.6: Replicated mesh (left), with all processes store a full copy of the mesh. In the
mostly distributed data structure (right), each process stores its ghosted subdomain, and all
processes store a consistent global interface.

Algorithm 3 Global reduction for local distributed arrays.

procedure GLU AllReduce(larray)
garray(:) = 0 ▷ Initialize global array (value depends on operation)
call copy to glob(larray, garray) ▷ Extract global entries from local array
call MPI AllReduce(garray) ▷ Global reduction
call copy from glob(garray, larray) ▷ Return global entries to local array
return larray

The idea is thus relatively simple so far, next we outline how to produce globally con-

sistent mesh refinements and update the global data structure accordingly. For now we will

consider only isotropic element refinements so that an element (and consequently, a node)

is either broken or not. We will allow processes to execute a single batch of refinements (in

a refinement batch any number of elements on a process’ subdomain may be refined once).

After the refinements have been executed, an array indexed by local node number is initial-

ized and any local nodes that were broken are marked. The array is then globally reduced

as in Algorithm 3. Processes then loop through the resulting local array and reproduce the

indicated refinements. At this point all local data structures are consistent; the global data
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structure is then updated by performing the reduction in Algorithm 3 once more, but retain-

ing the global array. Processes then loop through the global array in order and break any

indicated global nodes. Because the global interface was constructed with the same ordering

across processes (via the replicated mesh), breaking nodes in the same order will result in a

consistent updated global data structure.

A few notes on this approach. First, all refinements to the local data structure are

produced in parallel which, once we have removed the global data structure, will allow re-

finements to be produced quickly. Second is that the approach was not intrusive, it largely

did not require changes to existing data structures or routines, with the exception of wrap-

ping node-related MPI calls to redirect them to corresponding ’translated’ (GLU) routines.

Finally, while the global data structure was simple and convenient for illustration, the only

requirement for any pair of nodes to communicate is that there exist a consistent translation

layer between them. This motivates a fully-distributed implementation.

Fully-distributed data structures. The fully distributed analog (GLUd) of the mostly-

distributed data structure follows the same logical outline but instead of creating a single

translation layer on the global interface, each process creates a local translation layer with

each of it’s neighbors. There are multiple ways to implement this; our initial approach was

for each process defined a data structure containing all the nodes that are shared between

the process and any other process (either in their subdomain or ghost layer). Local nodes

were bidirectionally linked to shared nodes. Additional data structures were then created

containing the nodes shared with each neighbor, and the shared nodes were bidirectionally

linked to neighbor data structures, this is illustrated in Fig. 5.7. The call to the global MPI

collective in Algorithm 3 was then replaced by point-to-point communications gathering

shared entries from each neighbor, performing the reduction in the order of shared nodes,

and then communicating the result back. The translation layers were then updated similar

to the mostly-distributed context. We have of course neglected to outline every routine

needed to support the fully distributed code but what has been outlined is largely sufficient

to define and update translation layers. The logic is rather intuitive once a consistent node

ordering is established.
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Figure 5.7: Fully distributed data structure where each process stores its ghosted subdomain,
a structure storing elements shared with any neighbor, and a consistent interface for each
neighboring process. Only structures relating to process 1 are shown.

Limitations. We have made a number of assumptions in defining the fully-distributed

data structure. The first implicit assumption in hp3D was that translation layers (and the

distributed mesh) were defined starting on the initial mesh, before any refinements have

been produced. This restriction is largely because connectivities are explicitly stored only

on the initial mesh, and traversing the mesh and reconstructing connectivities thus requires

descending the data structure down to the initial mesh. A second assumption was that

only isotropic refinements were permitted (at least on shared elements), this avoids more

complex reconciliation when processes produce different refinements of the same element.

Finally, we have implicitly assumed that once a mesh has been fully distributed it cannot

be redistributed. This is a severe restriction, especially in the context of adaptive mesh

refinement.
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The implementation used in this work did not address the first limitation. The second

limitation can be addressed rather simply by redefining the reduction operator to compute

the union of anisotropic refinements. For example, if one process refined an element in the

x-direction and another process performed a refinement in the y-direction, then the reduc-

tion operator would return an xy-refinement; local data structures then remove inconsistent

refinements and reproduce the reduced refinement. The final limitation was addressed by

introducing the concept of mesh ’parts,’ a fully-distributed subdomain that is shared by

multiple processes. In particular, the local data structures (NODES and ELEMS) defining the

mesh part were replicated by a number of processes, allowing the part to be repartitioned

as usual among those processes, averaging any imbalance over a number of processes. This

is thus a two-level partitioning approach where the lower level is fully distributed and the

top level is replicated. On the top level, standard MPI collectives were used to communicate

among processes sharing the part. On the lower (fully distributed) level, one process per part

is nominated as the manager and handles communication with other parts. A hierarchical

version of Algorithm 3 would thus first reduce the local array from workers in a part to the

manager; the manager would then proceed with the global reduction, and the local result

would then be broadcast back to the workers.

We emphasize that one of the benefits of this translation layer model is that it is largely

non-invasive. The translation layer code itself can become rather complex but is only ever

encountered via redirection of fairly intuitive MPI collectives over nodes and elements. That

is not to say our implementation was fully non-invasive; as expected, additional bottle-

necks were encountered in scaling from O(109) DOFs to O(1012) DOFs and required various

changes to algorithms and data structures.

DPG-MG data structures. The DPG-MG solver defines two additional data structures,

NODES MG and GRID. The NODES MG structure is simply an extension of NODES, storing the

following additional information for each node:

• orderC – Integer storing the order of approximation of the node on the previous mesh

• master(:) – Array indicating whether the node is an active node in a particular grid

• subd old – The subdomain containing the node in the previous mesh partition
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The GRID data structure is the workhorse of the DPG-MG solver, storing operators and other

data required for prolongation, smoothing, and residual updates. Our implementations of the

DPG-MG solver primarily operate using element-wise unassembled operators. For example,

no global sparse stiffness matrix is stored, the stiffness matrix is instead stored and applied

element-wise (in unassembled form). This framework of block-wise operations is defined

next. As operations are defined their location in the GRID structure will be noted.

5.3.3 Block-Wise Operations

The distributed solver relies primarily on block-wise operations. This basic operation is

given in Algorithm 4.

Algorithm 4 Gather-Operate-Reduce

procedure Blockwise Operation(vg)
for iblk=1 to Nblk do ▷ Loop over blocks

for il = 1 to block size(iblk) do ▷ Gather entries from global array into local array
ig = lcon(il)
vl(il) = vg(ig)

call block operation(vl) ▷ Operate on local array

for il = 1 to block size(iblk) do ▷ Reduce entries back into global array
ig = lcon(il)
ug(ig) = ug(ig) + vl(il)

return vg

The shared-memory implementation loosely follows this paradigm; each block (e.g. an

element or patch) stores a connectivity array (typically named lcon) containing the global

indices where data can be found. Threads loop through the blocks, extract entries for a

particular block, apply the operator, and then reduce the result. The reduction is often

particularly expensive; use of standard reduction clauses cause threads to create copies of

the entire array and use of locks tends to serialize operations and limit efficiency. A simul-

taneously more maintainable and higher-performance approach defines these operations as

abstract algebraic blocks. Operations including smoothing, applying stiffness matrices, and

applying prolongation operators, as well as communication routines can be defined in this

abstract framework, simplifying routines and interfaces and further enabling analysis and

optimization. For example, block dependencies can be analyzed and independent blocks and
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be grouped, removing the need for threaded reduction entirely. Abstraction could further

facilitate offloading of blocks to accelerators in heterogenous compute contexts, or enable

exchanging blocks with neighboring processes to enable improved dynamic load-balancing.

We briefly note that an alternative approach to this block-wise approach is to assemble

blocks into sparse matrices. We briefly explored this approach, implementing the stiffness

matrix product in PETSc[10], but found it to be less performant than the block-wise ap-

proach. The large systems considered here require use of 64-bit integer indices in PETSc;

indices thus consume 33–50% of memory bandwidth, depending on whether they system is

stored in (complex) single or double precision. PETSc was further unable to take advan-

tage of the Hermitian structure of DPG systems, this required reading 2× the number of

entries. More optimal sparse-matrix approaches could be perhaps be devised and may sim-

plify implementation. We finally note that storing the global system in unassembled form

does require storing additional entries; however, when accounting for the cost of storing 64-

bit sparse matrix indices, memory consumption was comparable (when storing operators in

single precision, the block-wise approach required substantially less memory).

Residual update and smoothing. The most basic examples of block-wise operations

include routines used to compute global matrix-vector products. These are defined in

modules/pcg info.F90 in the shared-memory implementation. In this case, blocks cor-

respond to macro-elements in the padded -subdomain and the operator applies the macro-

element stiffness matrix.

The overlapping block-Jacobi smoother, defined in smoother/smoothers.F90 is similar:

blocks correspond to patches and the operator is the patch stiffness matrix inverse. Stor-

ing the patch in Cholesky-factorized form reduces the cost of applying the patch stiffness

matrix from O(N3
p ) to O(N2

p ), where Np denotes the number of DOFs supported on the

patch. Patches can alternatively be re-assembled from macro-element stiffness matrices and

refactored at each step. While often significantly more expensive, recomputing patches can

reduce memory requirements and enable solution of larger problems; this will be revisited in

Section 5.6.

• Stiffness matrix application (modules/pcg info.F90)

– Connectivity : Macro-element to global (GRID%dloc(iel)%lcon)

70



– Operator : Element matrix-vector multiply (GRID%dloc(iel)%zstiff)

• Overlapping Block-Jacobi Smoother (smoother/smoothers.F90)

– Connectivity : Patch to global connectivities (GRID%patch(iptch)%lcon)

– Operator : Patch matrix inverse (GRID%patch(iptch)%zAp)

Sharing. Smoothing produces an update vector; in the distributed context each process

only applies a subset of patches, communication is thus needed to assemble process-local

updates into a globally consistent update. The ghosting strategy was previously defined

such that a process claims all patches incident to its subdomain elements; this implies that

patches on interfaces will be applied by multiple processes but ensures that all unknowns

on subdomain elements will be fully assembled and globally consistent. Communication is

required to update unknowns on ghost elements; this is accomplished by communicating

macro-element DOFs from processes on which the element is owned, to processes on which

the element is ghosted.

Sharing is also required after applying the stiffness matrix. We again perform redundant

operations to simplify the required communication. In particular, each process applies and

assembles all of the elements in its padded subdomain; again producing a result in which

subdomain entries are already assembled and globally consistent. The same communication

routine used after smoothing can thus be used to share the solution from owned elements

to ghosted elements. Communication operators are not implemented in the shared-memory

version of the code available in hp3D.

Prolongation and Migration. The distributed multigrid V-cycle in Algorithm 2 sep-

arates prolongation operations into three stages: macro-to-coarse prolongation, migration,

and fine-to-macro prolongation. Each stage has a similar block-wise structure, but are rela-

tively more involved because the input and output are defined on different meshes.

Restriction begins by restricting from the macro to coarse grid, by applying constrained

approximation operators to subdomain elements only. The element-wise operators are de-

fined in (prolongation/macro2coarse.F90). The element-wise output of the macro-to-

coarse restriction is stored in element-local arrays (defined in GRID%loc(iel)) and are not

assembled into a global array.
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Migration communicates local arrays from the (unique) process owning an element on

the previous partition to the (unique) process owning it on the next partition.

The final stage of the restriction is defined via the Schur complement. As outlined in

Section 5.2.4, a number of fine grid elements are first assembled into a partitioned array

separating interface DOFs, defined on the macro-grid skeleton, from the remaining DOFs.

The assembly and partiton are defined by GRID%sch(iel m)%gloc(iel f)%lcon; iel m cor-

responds to the macro-grid element, iel f denotes the index of the fine-grid element within

the macro element, and the connectivity array lcon stores a positive index for interface

DOFs and a negative index for bubble DOFs (simultaneously encoding the ordering and

partitioning of the assembly). The Schur complement operator (GRID%sch(iel m)%A21) is

then applied and the result is again stored in local arrays.

At this point each process has local restricted residuals on its subdomain elements only,

the distributed implementation thus communicates once more, sharing the local arrays from

processes on which the element is owned, to processes on which the element is ghosted. The

local arrays are then finally assembled into global arrays using the standard macro-element

connectivities (GRID%dloc(iel)%lcon).

5.4 Convergence Studies

This section outlines a number of convergence studies to investigate the robustness of the

DPG-MG solver with respect to element size h, polynomial order p, and angular frequency

ω. Previous expositions of the DPG-MG solver considered a variety of physical problems,

smoothing steps, and tolerances, illustrating the versatility of the DPG-MG solver but some-

what confounding the scaling behavior. To elucidate the convergence characteristics of the

DPG-MG solver, we fix the following parameters:

• Conjugate gradient iterations are terminated when the relative ℓ2-norm of the discrete

residual is less than 10−7.

• After each refinement, the (initial) solution is reset to zero; in other words, solutions

from previous grids are not used to generate initial guesses for following grids.

• A single pre- and post-smoothing step is performed on each grid level (V(1,1)-cycle),

except in one case in Section 5.4.2 in which both one and five smoothing steps are

employed to aid in comparison; this case will be noted.
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• The initial mesh is a single second-order element (p = 2); however, iterations are not

reported for the initial mesh, which is solved using the MUMPS direct sparse solver

[4].

• No initial-grid solver is employed during the iteration. We have observed no effect on

convergence when the initial grid is far from resolving the wave. This will be explored

further in Section 5.5.

• Test norm weight α = 9 was used7.

All experiments in this section were performed on Frontera’s Cascade Lake (CLX) nodes at

the Texas Advanced Computing Center [111]. Timing statistics are neglected in this section,

but will be provided in Section 5.6.

5.4.1 Problem Setup

Throughout this section we consider propagation of an acoustic Gaussian beam with

waist-radius 0.1 and direction given by spherical angles (θ, ϕ) = (45◦, 55◦) in a homogeneous

unit cube domain [0, 1]3. Homogeneous impedance boundary conditions are imposed on all

surfaces except near the origin, where the Gaussian beam is injected through a manufactured

impedance load. More precisely, let g(x) denote the prescribed Gaussian beam solution; the

impedance load was defined on boundary Γ3 = ∂Ω as:

u0(x) = e−1000 |x|6(x)(Z−1g + (iω)−1∂ng
)

where the exponential term corresponds to a fast-decaying window function that localizes the

load near the origin, and ∂n denotes the outward normal derivative. Ultraweak DPG system

(3.27) was solved with acoustic impedance d = 1. The solution is depicted in Fig. 5.11.

5.4.2 Direct Assembly vs. Fine-Grid Restriction of Coarse-Grid Operators

As indicated in Section 5.2.5, coarse-grid systems can be either formed directly (or stored

from previous meshes) or computed from fine-grid systems by applying the restriction op-

erator. The two approaches are referred to as store and restrict, respectively. As will be

demonstrated, the construction of coarse-grid systems has significant implications for con-

vergence of the DPG-MG solver.

7In the original study in [9], α = 1 was claimed but a length-scale of 1/3 km was chosen that effectively
increased the size of the domain and decreased the frequency (both by a factor of 3×); we neglected to
consider the effect of the non-dimensionalization on α.
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Uniform h-refinements. We begin by studying convergence of the DPG-MG solver under

uniform h-refinements; i.e. each subsequent grid is produced by a uniform h-refinement of

the previous grid. The number of iterations required for convergence under each of the

approaches, for a variety of frequencies, is reported in Fig. 5.8. Examining the results in

Fig. 5.8a (restrict), it can be seen that the number of iterations increases roughly linearly with

frequency but demonstrates clear h-robustness in the asymptotic regime. The increase in

number of iterations with frequency is expected: meshes that cannot resolve the wave do not

contribute to preconditioning. Note that unlike multigrid preconditioners for the standard

Galerkin method, which would diverge in this setting due to lack of discrete stability on

the coarse grid, the DPG solver remains stable. Next, comparing Fig. 5.8a (restrict) and

Fig. 5.8b (store), it can be seen that storing the coarse-grid system consistently resulted in

a larger number of iterations than restricting. Storing the coarse-grid system additionally

does not appear to demonstrate h-robustness.

(a) Coarse-grid system restricted from fine-grid
system

(b) Coarse-grid system stored from previous
meshes

Figure 5.8: Convergence of the DPG-MG solver with one smoothing step applied to uniformly
h-refined meshes. The solver convergence is h-robust and the iteration numbers are lower
when using fine-grid restriction. The iterations until convergence depend linearly on the
frequency ω.

Uniform h-refinements; five smoothing steps. In the original implementation of the

DPG-MG solver, a relatively large number of smoothing iterations (typically between 5 and

10) were used in numerical experiments. For comparison, we repeat the previous study

using five smoothing steps per iteration (V(5,5)-cycle); the results are depicted in Fig. 5.9.
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Using a large number of smoothing steps tends to restore the h-robust convergence when the

coarse-grid system is stored (Fig. 5.9b); however, the number of smoothing steps needed to

attain h-robustness tends to increase with frequency. In particular, note that for the higher

frequencies, the number of iterations until convergence is lower when using one smoothing

step with restriction from fine-grid systems (Fig. 5.8a) than when using five smoothing steps

with coarse-grid operators stored from previous meshes (Fig. 5.9b). Comparing Fig. 5.8a

and Fig. 5.9a, it can be seen that when the coarse-grid systems are defined via restriction,

increasing the number of smoothing steps by a factor of five results in a decrease of the

number of smoothing iterations by only a factor of two. We neglect an explicit study of

convergence in terms of the number of smoothing steps but qualitatively report that a single

smoothing step per grid level has been optimal in all of our numerical experiments to date.

(a) Coarse-grid system restricted from fine-grid
system

(b) Coarse-grid system stored from previous
meshes

Figure 5.9: Convergence of the DPG-MG solver with five smoothing steps applied to uni-
formly h-refined meshes. Doing additional smoothing tends to restore h-robustness in (b) to
some extent; in (a), h-robustness is still observed, however using five smoothing steps per
level only reduces the number of iterations until convergence by a factor of approximately
two when compared to one smoothing step. Iterations depend linearly on the frequency ω.

Uniform p-refinements. To investigate convergence of the DPG-MG solver under p-

refinements, we first perform h-refinements until there are at least two elements per wave-

length, p is then incremented on each subsequent grid. The results of this study are shown in

Fig. 5.10, where it can be seen that both storing and restricting lead to p-robust convergence;

however, restricting again requires far fewer iterations.
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(a) Coarse-grid system restricted from fine-grid
system

(b) Coarse-grid system stored from previous
meshes

Figure 5.10: Convergence of the DPG-MG solver applied to uniformly hp-refined meshes:
grids are uniformly h-refined until two elements per wavelength, then uniformly p-refined.
Convergence is p-robust and the iteration numbers are lower when using fine-grid restriction.
Iterations depend linearly on the frequency ω

5.4.3 hp-Adaptive Refinements

We now consider hp-adaptive refinements, employing the Dörfler marking strategy [34] to

determine elements to be refined. Marked elements are h-refined until the maximum edge-

length is less than one-half the wavelength, otherwise they are p-refined. We end refinements

one mesh after no additional h-refinements are requested. As shown in Fig. 5.11, hp-adaptive

refinements produce a series of meshes with a “sweeping” structure, i.e., they follow the

direction of propagation of the beam.

In the case of uniform h-refinements, the observed linear increase in iterations with

frequency is expected and is related to the inadequacy of coarse-space corrections when

meshes are not sufficiently fine to resolve the wave. With hp-adaptive refinements, the

behavior of the number of iterations until convergence with respect to frequency is less

obvious since intermediate meshes are able to partially resolve the wave. Indeed, we initially

hypothesized the “sweeping” structure of meshes would reduce the frequency dependence of

convergence. The convergence study in Fig. 5.12 seems to indicate this is not the case; the

number of iterations increases linearly with frequency. Further, note the maximum number

of iterations required for convergence was consistently higher than for uniform refinements;

this was unexpected since the adaptive case smoothes on each grid level, thus a much larger

number of smoothing steps are performed overall.
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Figure 5.11: hp-adaptive propagation of a Gaussian beam in a cube domain; crinkle cut of hp-
adaptive meshes (top) and surface cut of the real part of the acoustic pressure field (bottom).
The hp-adaptive meshes have a “sweeping” structure as refinements first accumulate near
the corner and then propagate into the domain; solutions on intermediate meshes are stable
and partially resolve the wave.

(a) Number of iterations to 10−7 tolerance (b) Convergence of DPG residual

Figure 5.12: Convergence DPG-MG solver applied to hp-adaptive meshes. The number
of iterations required for convergence again increases linearly with frequency (ω) and the
maximum number of iterations is higher than for uniform refinements (compare Fig. 5.8a).

An initial hypothesis on the cause of the deteriorated convergence of the DPG-MG solver

on hp-adaptive meshes implicates a similar phenomenon underlying the deteriorated con-
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vergence when coarse-grid systems are stored from previous meshes. In that case, roughly

speaking, different scales between fine and coarse systems, imparted by element-wise Gram

matrices, were ameliorated by constructing coarse-grid systems as restrictions of fine-grid

systems, so that all systems inherit the fine-grid scale. Under hp-adaptive refinements,

multiple element sizes—with various scales imparted by element-wise Gram matrices—are

simultaneously present. A more rigorous investigation is required; however, note that in

Fig. 5.12a, the number of iterations for convergence on the final meshes decreases consider-

ably. Returning to Fig. 5.11, we can see that these final meshes are characterized exclusively

by p-refinements with a consistent, uniform element size; from which coarse-grid systems are

restricted.

5.5 Coarse-Grid Correction

Initial implementations of the DPG-MG solver leveraged a parallel direct sparse solver [4]

on the initial mesh; this direct solver was also used for the coarse-grid correction on the initial

mesh during the multigrid V-cycle. However, when the initial mesh did not at least partially

resolve the wavefield, the initial-grid solver was not observed to improve convergence. This

motivated terminating the V-cycle at some intermediate grid depth, when the mesh was

still fine enough to provide a reasonable correction. The size of the system on the coarsest

grid that improves convergence grows with frequency and quickly becomes too large for

direct sparse solvers, we thus investigated a number of other approaches for producing the

coarse-grid correction.

We have employed a number of different strategies throughout this work. The first was to

simply neglect the coarse grid solver and use a number of smoother iterations on the coarsest

grid. A slight modification of this strategy is to use a PCG iteration on the coarsest grid,

preconditioned by one or more smoothing steps. Note however that the later strategy implies

that the outer-loop preconditioner will be nonlinear since step sizes, as well as potentially

the number of steps (when using a tolerance to terminate the inner iteration), on the coarse

grid varies based on the residual. Use of a PCG iteration on the coarse grid thus requires

that flexible PCG [96] be employed in the outer iteration.

The classical PCG iteration defines β via the Fletcher–Reeves formula:

βk =
r∗k+1zk+1

r∗kzk
,
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where zk is the preconditioned residual, i.e. zk = Mrk. When M is Hermitian positive-

definite, this can be rewritten as:

βk =
∥rk+1∥2M
∥rk∥2M

,

and it is clear that β ∈ R.

In contrast, the flexible PCG iteration leverages the Polak–Ribière formula:

βk =
r∗k+1(zk+1 − zk)

r∗kzk
.

The Polak–Ribière formula is often employed in the nonlinear conjugate gradient iteration

but requires storing an additional vector. For linear problems, when M is linear r∗k+1zk =

0 and the methods coincide. Convergence of the Polak–Ribière formula was observed to

stall occasionally when nesting PCG iterations. Note that in this case the additional term

implies that β ∈ C. Stalling seemed to coincide with β developing an appreciable imaginary

component, we thus adopted the slightly modified formula:

βk =
ℜ{r∗k+1(zk+1 − zk)}

r∗kzk
,

taking only the real part of the Polak–Ribière formula. This was observed to eliminate

stalling and generally improved convergence. We have not yet investigated this observation

further and simply note it in interest of reproducibility.

Table 5.1 outlines the effect of coarsest-grid on convergence of the tilted interface problem

illustrated in Fig. 4.2. In this case, the domain was taken to be 1 km × 1 km × 0.75 km (the

same size as the extended (PML) domain in that problem). Impedance boundary conditions

were assumed on all sides except at z = 0, where a free-surface boundary condition (un = 0)

was adopted. The frequency was taken to be 32 Hz with test norm weight α = 102. Iterations

were terminated at 10−5 relative ℓ2 residual. The initial mesh consisted of 4× 4× 3 second

order (p = 2) hexahedral elements. The mesh was h-refined three times, then p-refined

twice, so that the final mesh was composed of 32 × 32 × 24 fourth-order (p = 4) elements

and 8.4 million DOFs. The same material properties from Fig. 4.2 were adopted, implying

two elements per wavelength on the finest grid. In Table 5.1, grid depth 0 corresponds to

preconditioning using only the smoother on the finest level. Grid depth 1 terminated the

multigrid V-cycle at the third-order mesh (p = 3) with two elements per wavelength. Grid

depth 2 terminated the V-cycle at the second-order mesh (p = 2) with two elements per

wavelength. Finally, grid depth 3 terminated the V-cycle at the second-order mesh (p = 2)
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with one element per wavelength; coarser grids had no effect on convergence. The coarse

grid correction on the given grid depth was produced either with a direct solver, or PCG

with NPCG iterations. The study was performed on a single Frontera CLX node.

We first explain a few seeming anomalies in Table 5.1. First, note that the V(1, 1)-cycle

uses two smoothing steps on each of the intermediate grids; when NPCG = 1, only a single

smoothing step is performed on the coarse grid, resulting in an increase in the number of

iterations with decreasing depth. Also note that the number of iterations increases from grid

depth 2 to grid depth 1; this is because the coarse-grid patches on grid depth 1 were defined

by vertex patches on grid depth 2 (corresponding to a p-refinement), the smoothing patches

thus have smaller support on grid depth 1 than grid depth 2.

At grid depth 3, with one second-order element per wavelength (two points per wave-

length), the coarse-grid correction is limited by discretization error and increasing the alge-

braic accuracy of the coarse-grid correction (by increasing NPCG) only marginally improves

convergence. On grid depth 2, the coarse-grid correction meaningfully improves convergence,

and the coarse grid correction with 8 PCG iterations achieves nearly the same benefit as the

direct solver; this configuration was also fastest among PCG coarse-grid corrections. As

noted previously, grid depth 1 used a smaller patch size and thus required more iterations

and was generally more expensive, except when the direct solver was used. Timings with

the direct solver are somewhat irrelevant in the context of the large problems we are target-

ing with the distributed implementation, but the small number of iterations is compelling

and indicates a more accurate correction on that grid could improve performance. We have

investigated use of W-cycles to this end, results have been mixed and will be presented in

the future. With a few exceptions that will be noted, in the remainder of this work we used

grid depth 2 with NPCG = 8.
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Table 5.1: Number of iterations and, in parentheses, total solve time for the acoustic test
problem using either NPCG PCG iterations or a direct sparse solver for the coarse-grid cor-
rection.

NPCG \ Grid Depth 3 2 1 0

1 118 (31.8) 158 (41.3) 328 (57.7) 636 (49.16)
2 111 (29.8) 103 (28.1) 198 (44.9)
4 109 (30.1) 76 (22.2) 131 (36.2)
8 110 (31.3) 65 (21.2) 79 (30.0)

Direct 109 (28.8) 64 (24.8) 15 (18.2)

5.6 Scaling Studies

The scalable DPG-MG solver was developed during the past five years and performance

has changed significantly throughout its development. Application problems considered in

Chapter 6 were also produced over a number of years, timing and scaling were thus produced

with different versions of the code and may not be comparable or reflect the current state

of the solver. This section provides recent timing and scaling data from a number of the

application problems. In particular, this section focuses on solver iteration costs to illustrate

scaling. Convergence and overall timing data will be given in Chapter 6.

The timing and scaling data reported in this section are for an optimized implementation

of the fully distributed DPG-MG solver. Optimizations include use of a modified ghosting

strategy based on unique patch-ownership that eliminates redundant operations, overlapping

computation and communication, use of mixed precision, and various other improvements.

With respect to precision, operators (including element matrices and patch assembly and

factorization) were formed in double precision. Smoothing operators and stiffness matrices

were then stored and applied in single precision. Storing stiffness matrices and performing

residual updates in double precision enables double precision results at a 20–30% higher

cost per iteration. However, the applications demonstrated here operate primarily in the

early-asymptotic regime with O(10−3)–O(10−1) relative discretization error, single precision

algebraic error error is thus acceptable. Results were obtained on Frontera. Reported timings

were averaged over 100 iterations.

5.6.1 Strong Scaling

Many of the applications in Chapter 6 will be based on adapted meshes, with mesh

refinements defined either via the DPG error indicator or adapted to material properties. We
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will demonstrate strong scaling in the context of an hp-adapted mesh and a uniform mesh.

This comparison is intended to demonstrate that hp-adapted and uniform meshes often

demonstrate comparable performance per DOF, and will motivate use of simple uniform

meshes in later weak scaling studies (weak scaling studies are often not convenient in the

context of hp-adapted meshes as it can be difficult to generate meshes with the desired

multiples of DOFs).

We consider elastic simulation on a small section of the SEAM Arid model [99]. The study

was performed on a 0.5 km cube centered at (5, 5, 0.25) km (see Fig. 6.17). A free-surface

boundary condition was assumed at the surface and a 0.25 km wide PML was appended

on each of the remaining boundaries. Fig. 5.13 compares the time per iteration on an hp-

adapted mesh (2 ≤ p ≤ 4) with 51 200 elements (18.4 million DOFs) and on a uniform

mesh (p = 3) with 49 152 elements (18.7 million DOFs). In the case of uniform refinements,

multigrid levels were constructed via a single h-refinement followed by a single p-refinement;

the coarsest mesh is thus one level coarser with order p = 2. The adapted mesh demonstrates

slightly deteriorated strong scaling relative to the uniform mesh, mainly due to the load

imbalance, but achieves acceptable performance given that adapted meshes often require far

fewer DOFs to achieve similar accuracy. Timings in Fig. 5.13 demonstrate that the cost

of applying the solver on adaptive meshes is comparable on a per-DOF basis with uniform

meshes.

Figure 5.13: Strong scaling of elastic model with uniform (p = 3) and hp-adaptive mesh.

5.6.2 Weak Scaling – Storing Patches.

Weak scaling was investigated with elastic simulation on the uniform mesh used in the

previous study; results are shown in Fig. 5.14. Each two-fold increase in problem size corre-
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sponds to doubling the mesh size in one of the dimensions. Acceptable efficiency (ca. 80%)

on up to 512 nodes was achieved. The decline in efficiency is largely due to imperfect parti-

tioning. The employed partitioning strategy first performs a weighted partition of elements

with weights defined by the number of DOFs supported on an element. After partitioning

elements, we partition the patches supported on the interfaces between subdomains, this

avoids redundant computation of patches and reduces the number of ghost elements. We

required that patches only be claimed by a subdomain they were incident to, resulting in a

constrained discrete optimization problem. A relatively simple damped iterative strategy was

adopted to perform the partitioning. An initial partition was assigned, processes computed

the cost of all currently claimed patches, and neighboring processes sequentially compared

costs and exchanged patches corresponding to a (damped) fraction of the difference.

Figure 5.14: Weak scaling of the elastic model on a uniform p = 3 mesh.

5.6.3 Weak Scaling – Recomputing Patches

Smoothing patches were defined via coarse-grid vertex patches, resulting in relatively local

smoothing blocks. Smoothing patches are stored in Cholesky-factorized form, this reduces

the complexity of applying patch inverse from O(N3
p ) to O(N2

p ). Storing patches typically

requires 2–3× more memory than storing macro-element stiffness matrices. One approach

to reduce memory usage is thus to reconstruct patch stiffness matrices (from macro-element

stiffness matrices) and recompute the factorization at each smoothing step. However, because

Cholesky-factorization has a higher compute-intensity than back-substitution applied to a

single right-hand-side, the refactorization is often less expensive than complexity alone would

suggest on modern bandwidth-limited compute hardware.

This approach is demonstrated via a weak-scaling study on acoustic simulation of a
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100 km ×100 km ×30 km section of the GO 3D OBS model (see Fig. 6.9). In the case of

the largest simulation on 8 192 Frontera nodes (458 752 cores), the coarsest mesh consisted

of ca. 2.7 billion second-order (p = 2) hexahedral elements. Two uniform p-refinements were

performed, resulting in a fine grid with 829 billion fourth-order (p = 4) DOFs. Scaling and

timing data are depicted in Fig. 5.15. Over 80% efficiency was observed on 8 192 nodes,

but this is largely due to the increased expense of re-assembly and factorization of patches,

which hides communication and other costs. Indeed, recomputing patches increased the cost

of smoothing by ca. 15×, and increased the cost of the full iteration by ca. 7×; these factors

were determined by comparing costs on a smaller problem for which the patches could

be stored. In problems with many loads that can be solved simultaneously (e.g. seismic

imaging), the cost of repeated factorization can be amortized over loads.

Figure 5.15: Weak scaling of acoustic simulation on the GO 3D OBS model with a uniform
hexahedral mesh. Patches were recomputed during the iteration.

Memory scaling for this problem is shown in Fig. 5.15, where it can be seen that the

solver achieves near perfect linear memory scaling. Linear memory scaling is achieved by

leveraging fully distributed data structures and use of the PCG iteration, which does not

require storing a Krylov history. Note that in this case we only use ca. 50% of the total

available memory per node. We could likely solve a larger problem (ca. 1.6 trillion DOFs)

in the future but had limited attempts to run at this scale. Storing patches would have

required ca. 270 GB per node and was thus not feasible for this problem.
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Figure 5.16: Memory scaling for acoustic simulation on the GO 3D OBS model with a uniform
hexahedral mesh. Maximum memory usage over nodes (left) and total memory usage (right)
demonstrate near linear memory scaling of the solver.
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Chapter 6

Applications
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The DPG-MG solver is unique in a number of aspects. First, it is applicable—without

modification—to general DPG systems1 and can thus be used to simulate a number of

physical problems. Second, it is adaptive and flexible, supporting isotropic and anisotropic

h- and p-refinements on unstructured hybrid meshes with elements of all shapes. Third, it is

massively scalable. This chapter focuses on a number of applications designed to illustrate

these properties. Section 6.1 details simulation of bent optical fibers, leveraging anisotropic

h-adaptivity to adaptively resolve the portion of the signal that is lost from the fiber core.

Section 6.2 details simulation of RF heating in a Tokamak device to illustrate simulation

on general unstructured meshes. Section 6.3 is dedicated to simulation of a number of

challenging seismic wave propagation models; both acoustic and elastic models are simulated,

illustrating the benefit of hp-adaptivity in these contexts and demonstrating the extreme

scalability of the solver for practical problems of interest.

The applications in this chapter are presented in chronological order, with the most-recent

studies presented at the end, in Section 6.3. The chronology is important since results were

produced over a number of years, with different versions of the code. The performant fully

distributed code is still under development and some of the older results have not yet been

ported to the new code. Timings are presented for the version of the code used at the time

and are thus not comparable across applications since the structure and performance of the

code has changed significantly in recent years. Recent scaling data was given in Section 5.6,

and more recent studies will provide more relevant indicators of the performance of the

DPG-MG solver.

6.1 Optical fiber bending

Fiber lasers operate using the principle of active gain amplification, where power is trans-

ferred from a pump field to a signal field via rare-earth doping of the fiber core. Power scaling

of single-mode fiber lasers is limited by the onset of nonlinear effects such as stimulated Ra-

man scattering (SRS) and stimulated Brillouin scattering (SBS) at high optical intensities [2].

The optical intensity can be decreased by increasing the mode diameter, thus higher power

fibers can be realized by increasing the area of the fiber core. Such large mode area (LMA)

fibers have higher gain-saturation characteristics but lower efficiency and permit propaga-

tion of additional high-order modes that can degrade signal coherence. Transverse mode

1discretized with the exact sequence energy spaces
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instability (TMI), a nonlinear phenomenon in which energy is chaotically transferred be-

tween high-order modes [71], causes a severe degradation in beam quality and is a dominant

barrier to power scaling of LMA fiber lasers.

Bending optical fibers facilitates energy leakage from core-guided modes. Losses due

to bending are highly mode-dependent, thus bending can be used to preferentially filter

high-order modes at the expense of lowering overall amplification efficiency. Bending has

been observed to delay the onset of TMI [71, 22] thus an improved understanding of bend

losses could help to improve power scaling of fiber lasers. The observed effect of bending on

nonlinear effects and the ubiquity of bending in applications has lead to renewed interest in

accurate modeling of bend losses, however this remains a challenging problem.

6.1.1 Bent Fiber Model

A high-fidelity optical fiber amplifier model was developed in the dissertation work of

S. Nagaraj [93] and S. Henneking [58], in collaboration with J. Grosek and the Air Force

Research Lab [94, 61, 62]. In this dissertation, we consider only a linear time-harmonic

Maxwell fiber model (2.12) of a weakly guiding, continuous wave, single-clad, large mode

area, step-index fiber, as illustrated in Fig. 6.1. We will simulate only the signal field,

with frequency ω in a bent configuration. Magnetization of silica glass is assumed to be

negligible, and the polarization will be assumed to be isotropic, implying that the background

permeability and permittivity take the form:

µµµ = I, εεε = n2(x)I

where n : Ω → R is the index of refraction and I is the 3× 3 identity tensor.

A host of computational and analytic methods have been proposed to model bend losses

in optical fibers [57, 85, 106]. Bending perturbs optical properties and induces birefringence,

a separation in the propagation speed of differently polarized modes. Birefringence is a

result of geometric effects due to the spatial deformation of the fiber and photoelastic effects,

describing stress-induced perturbations to optical properties. These effects can be modeled

by modifying the permittivity and permeability of the fiber, as will be described next.

Photoelasticity. The photoelastic effect [97] relates strains (e) to perturbations in the

inverse relative permittivity (εεε−1) through the photoelastic tensor P as

∆(εεε−1)ij = Pijklekl. (6.1)
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Figure 6.1: Optical fiber schematic.

Silica glass has an amorphous structure and is thus characterized as an isotropic crystal; the

photoelastic tensor takes the form

Pijkl =


p11 if i = j = k = l
p12 if i = j ̸= k = l
1

2
(p11 + p12) otherwise

(6.2)

for parameters p11 and p12. These values were reported for silica glass in [55] as p11 = 0.121,

p12 = 0.270.

Geometric birefringence. Spatial deformation of a waveguide changes the propagation

guided fields even in the absence mechanical stresses. Pullback maps, introduced in Sec-

tion 2.3 in the context of PML boundary conditions, can be used to quantify these purely

geometric effects by defining equivalent straight fiber models. The use of pullback maps to

transform fields defined on deformed spaces has only recently (ca. 2010) been adopted by

the optics community under the name transform optics [20]. Pullback maps are a generaliza-

tion of the commonly used conformal mapping techniques used to analyze 2D scalar optics

models [57, 82]. Various transformed equations have been proposed to model bent optical

fibers, but these transformed equations typically do not agree with those produced by the

mathematically rigorous pullback maps.

Consider the deformation of an optical fiber from a straight domain Ω̂ to a bent domain Ω

as illustrated in Fig. 6.2, given by deformation φ : Ω̂ → Ω. Pullback maps can be employed

to transfer fields between bent and straight domains. The same transformations introduced
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Figure 6.2: Deformation of an optical fiber to a bent configuration

in Section 2.3 can be used here, however in this case the real-valued deformation will result

in real-valued modified permittivity and permeability:

εεε′ := |J |J −1εεεJ −T, µµµ′ := |J |J −1J −T. (6.3)

Note that although the magnetization of silica glass was assumed to be negligible, the equiva-

lent straight fiber has non negligable magnetization due to the nontrivial relative permeability

µµµ′. This magnetization is an artifact of computing on the curvilinear manifold defined by

mapping physical space under φ−1 and is not physically realized in bent fibers.

Assuming the isotropic and divergence-free permittivity, i.e.

εεε = n2I, ∇ · εεε = 0,

the time-harmonic Maxwell (vectorial) model (2.12) can be reduced to an acoustic (scalar)

model (2.9) with wavespeed c = n−1. In this case, the modified material properties derived

in Section 2.3 take the form:

n′ = nj1/2, I′ = j−1J TJ ,

In two-dimensions, straight configurations can be defined such that φ is a conformal map;

in this case I remains identity by the Cauchy-Riemann equations. This conformally mapped

scalar model was proposed in [57] and has formed the basis of much of the bending literature

including the work of Schermer and Cole [106]; one of the most widely used bend loss models.

However, in three-dimensions there is no generalization of the conformal mapping and the

diffusion tensor I is generally nontrivial. Perhaps more challenging however, is that straight-

fiber models introduce a radially dependent index of refraction such that n→ ∞ as r → ∞.
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This complicates analysis and even the definition of PML and other radiative-type boundary

conditions. Some of these challenges will be noted in Section 6.1.2.

Bent configurations. Bent configurations can be derived from the theory of elasticity.

Consider again the deformation φ : Ω̂ → Ω mapping between reference and current configu-

rations. The deformation gradient is simply the Jacobian used to define pullback maps; we

will use the symbol F in the context of elasticity to conform to classical notation:

F(X) := J =
∂ϕ

∂Xj

, (6.4)

where X ∈ Ω̂ is used to denote coordinates in reference the reference configuration. The

Green-St. Venant strain tensor is then:

E(X) :=
1

2
(FTF − I) =

1

2

[
∇u+ (∇u)T + (∇u)T∇u

]
(6.5)

where u(X) := ϕ(X)−X is the displacement field. In the case of thin beam bending, strains

are small and the linear constitutive relation (Hooke’s law) is given in terms of Young’s

modulus E and Poisson ratio ν:

Eij =
1

E

[
(1 + ν)σij − νσkkδij

]
. (6.6)

Deformations due to pure bending are classically derived by assuming the form of the

stress tensor as

σσσ =

 0 0 0
0 0 0

0 0
E

R
X

 .
In the case of small deformations, the nonlinear term in (6.5) is frequently neglected, reducing

to (2.5b). Use of the linearized strain leads to a parabolic profile and is unsuitable for the

large deformations encountered in fiber bending.

An alternate approach is to assume the form of the displacements directly then compute

the corresponding stresses in the beam. Assuming the simple longitudinal deformation of a

fiber into a circular profile as

x = φ(X) =


(X +R) cos

(
Z

R

)
−R

Y

(X +R) sin

(
Z

R

)
 . (6.7)
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Stress can be recovered from Hooke’s law as

σσσ =
E

(1 + ν)(1− 2ν)


ν
X

R
0 0

0 ν
X

R
0

0 0 (1− ν)
X

R

 . (6.8)

Note however that when ν ̸= 0 (indeed, ν = 0.17 in silica glass) the normal stress on the outer

surface of the fiber does not vanish. The deformation given by (6.7) thus only represents

a pure bending state when ν = 0; otherwise, for a fiber with radius a, the radial traction

boundary conditions are violated with error O(νa/R). More accurate deformations can be

derived based on the theory of inflexed beams [40].

6.1.2 Spectral Analysis of Open Waveguides

This section takes a brief detour to review spectral theory for waveguide structures and

is intended to motivate some of the challenges in modeling, and indeed even rigorously ana-

lyzing bent optical fibers. Waveguide structures are commonly assumed to be homogeneous

in the longitudinal direction and naturally give rise to eigenvalue problems defined in the

transverse plane. The modes obtained by solving the transverse eigenvalue problem are

fundamental to waveguide design and form the basis for coupled mode theory (CMT) [119]

commonly used to simulate complex and nonlinear waveguide structures.

Consider an open waveguide structure defined on the half-space Ω = {R3 : z ≥ 0}. We

assume the waveguide geometry and material are longitudinally homogeneous and make the

right-propagating ansatz:

u(x, y, z) = u(x, y)e−iβz (6.9)

Vectorial transverse eigenproblem. Let E = (E, E3), where E denotes transverse com-

ponents and E3 denotes longitudinal components. Similarly assume the permittivity εεε can

be separated into transverse (ϵ : Ω → R2x2) and longitudinal contributions (ϵ3 : Ω → R).

Substituting (6.9) into the time-harmonic Maxwell system (2.12) and assuming longitudinal

homogeneity gives the following generalized transverse polynomial eigenproblem [116]:{
∇×

(
curl E

)
− ω2ϵE+ β2E− jβ∇E3 = 0,

∇ · ∇E3 + ω2ϵ3E3 + jβ∇ · E = 0
(6.10)
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where ∇× := (∂2,−∂1) denotes the scalar-to-vector curl operator, and curl := ∂1(·)2− ∂2(·)1
denotes the vector-to-scalar curl. As shown in [79], this system can be rescaled to yield a

classical eigenproblem where the linear operator A :
{
E ∈ L2(Ω) : A(E) ∈ L2(Ω)

}
→ L2(Ω)

is self-adjoint.

Scalar transverse eigenproblem. The acoustic model leads to the scalar transverse

eigenproblem:

∆u+ k2n2u = β2u, (6.11)

where k2 := ω2 − β2. Let n ∈ R, then linear operator A := ∆ + k2n2 defined on domain

D(A) =
{
u ∈ L2(R2) : A(u) ∈ L2(R2)

}
is self-adjoint.

Theory of self-adjoint operators on unbounded domains. Spectral theory requires

that the spectrum of essentially self-adjoint operators defined on an unbounded domain Ω

consist of only discrete and continuous spectrum [35]. The discrete and continuous spectrum

are complete in L2(Ω) with representation

u(x) =
N∑
i=0

ei(x)

∫
Ω

ei(x)u(x)dx+

∫
κ

e(κ;x)

∫
Ω

e(κ;x)u(x)dx dκ (6.12)

where ei denote guided modes corresponding to the discrete spectrum {βi}Ni=1, and e(κ; ·)
represent the continuum of radiation or scattering modes corresponding to the continuous

spectrum {β(κ) : κ ∈ R}. Orthogonality of the guided modes corresponding to the discrete

spectrum can be understood in the L2 sense,∫
Ω

ei(x)ej(x)dx = δij (6.13)

Radiation modes are not in L2(Ω) and their orthogonality must be understood in the distri-

butional sense ∫
Ω

e(κ,x)e(κ′,x)dx = δ(κ− κ′); (6.14)

i.e. for any test function φ ∈ D(Ω),∫
Ω

∫
Ω

e(κ,x)e(κ′,x)φ(κ′)dκ′dx = φ(κ).
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Leaky modes. Lossy waveguides (e.g. W-waveguides [68], microstructure waveguides

[48]) have no discrete spectrum; thus any signal propagated in the waveguide will experience

radiative losses. Radiation modes define a spectral transform S : L2(Ω) 7→ L2(Ω) given by

û(κ) := S(u)(κ) =
∫
Ω

u(x)e(κ,x)dx. (6.15)

This spectral transform can be used to represent a solution to the waveguide problem on

half-space Ω with input u0(x) = u(x, 0) as

u(x, z) = CN

∫
R
û0(κ)e

iβκze(κ,x)dκ. (6.16)

where CN denotes a constant scaling factor. An analogous representation holds for the

vectorial problem (6.10).

The complex extension of the spectral representation is a meromorphic function with

poles in the upper half plane R⊗ iR+ [86, 80]. The modes corresponding to these poles are

called leaky modes. By the Residue Theorem, we can express the solution u as a discrete

sum of residues corresponding to the poles,

u(x, z) = CN

∫
R
û0(κ)e

iβ(κ)ze(κ,x)dκ

=
∞∑
i=0

Res [ū0(·)E(·,x), si] eiβ(si)z
(6.17)

where ·̄ and E represent the complex extension of the spectral transform ·̂ and radiation mode

e respectively. Leaky modes are not individually L2 integrable, are not orthogonal, and grow

exponentially in the transverse direction; however their discrete representation has lead to

widespread adoption. Appendix A shows that leaky modes in a simple W-waveguide can be

equivalently derived by enforcing a radiation condition on modes, i.e. requiring the modes

to be outgoing only. The equivalence of leaky modes derived by meromorphic extension

or by radiation condition for more general problems can be established by representing

the radiation condition via complex stretching. This implies that mode solvers enforcing

radiation boundary conditions will compute leaky modes.

Bent waveguides and non-self-adjoint operators. We briefly consider the simplest

possible bent waveguide structure: a 2D acoustic slab waveguide. Formulation of the problem

94



in polar coordinates and subsequent separation of variables with separation constant β2 leads

to a Bessel problem in the radial coordinate:

r
∂

∂r

(
r
∂ϕ

∂r

)
+
(
k20n(r)

2r2 − β2
)
ϕ = 0, r ∈ (0,∞). (6.18)

Note the similarity of this problem to the problem defining the Hankel transform; in that case

n is constant and n2k20 takes the role of the separation constant for fixed β. The resulting

operator in that case is self-adjoint in L2((0,∞), r) and thus generates a spectral transform,

i.e. the Hankel transform. We would thus expect a similar result in the bent waveguide

problem. Indeed, the operator is symmetric in the weighted space L2((0,∞), 1/r); it is not

however essentially self-adjoint. Indeed, for constant n, this problem permits solutions of

the form

ϕβ(r) = cJβ(k0nr) + dYβ(k0nr) (6.19)

where Jν , Yν represent the ν-th order Bessel functions of first and second kind respectively; it

can be verified that modes are not orthogonal in L2((0,∞), 1/r). The Bessel function of the

first kind further has finite energy, i.e. ∥Jβ∥1/r < ∞. This is incompatible with the notion

of generalized eigenfunctions (i.e. modes corresponding to the continuous spectrum) under

the spectral theory for self-adjoint operators.

Spectral theory for non-self-adjoint operators is a mathematically formidable subject, we

do not attempt to produce any new insights in this regard but note a few surprising results.

First, note that the well-posedness of even the simplest bent slab waveguide problem has

not been established. Second, Hiremath et al. [67] observed that ‘leaky’ modes derived for

the bent slab waveguide problem by enforcing a radiation condition satisfy an orthogonality

relationship in the indefinite inner product

[u, v]1/r =

∫ ∞

0

uv

r
dr, (6.20)

which differs from the L2((0,∞), 1/r) inner product only by the lack of the complex conjugate

on the second argument. This structure seems to suggest an analysis via Krein spaces [77],

although we are not aware of any existing work on the application of Krein spaces to bent

waveguides.
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6.1.3 Adaptive Simulation

The preceding mathematical challenges illustrate the lack of rigorous understanding of

bent waveguides and appropriate boundary conditions. We had intended to use large scale

three-dimensional simulations to investigate the effect of various boundary conditions on

bend losses. This section outlines initial simulations in this direction, however we quickly

discovered that the replicated version of hp3D and corresponding version of the solver were

not sufficiently scalable to simulate meaningful lengths of fiber. Some work is still required

to port the fiber models to the fully distributed solver, we have thus not yet had occasion to

run these problems at a larger scale. These initial simulations are intended to demonstrate

the applicability of adaptive mesh refinement in this context and provide some insight into

the scale needed for high-fidelity simulation of bent optical fibers.

We will consider a simple step-index fiber with core radius rcore =
√
162 µm and cladding

radius rclad =
√
16200 µm. The index of refraction in core and cladding was taken to be

ncore = 1.4512 and nclad = 1.45, respectively. We consider propagation of a signal field at

wavelength λ = 1024 nm, this configuration corresponds to the Yitterbium-doped optical

fiber amplifier simulated in [58].

A fiber length of L = 384 µm, corresponding to 512 fundamental mode wavelengths, is

adopted. The simple circular deformation (6.7) with a bend radius of 3 mm was used to

define the bent configuration, with 20 µm straight sections appended at the beginning and

end of the fiber to inject the straight-fiber fundamental mode at the entrance and implement

a PML at the exit. Perfectly electric conducting (PEC) boundary conditions were assumed

on all boundaries except the exit where with a simple longitudinal PML β = 3, C = 25 was

implemented in the final 20 µm straight section. Note that the bend radius is exaggerated by

1–2 orders of magnitude relative to practice and we have neglected to define an appropriate

radiation condition on the transverse surface in these initial simulations. A transverse cross-

section of the initial mesh is depicted in Fig. 6.3; this mesh was extruded by 512 elements

in the longitudinal direction.

Simulations were performed on 256 Frontera CLX nodes (14336 cores). The DPG-MG

solver was used with a stopping criterion of 10−8 relative ℓ2 residual. A simple V(1, 1)

multigrid cycle was used with a coarse-grid correction produced via a sparse direct solver

on the initial mesh. The initial fourth-order mesh (p = 4) was longitudinally refined twice

to define meshes 2 and 3; subsequent meshes were defined via anisotropic (in the transverse
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Figure 6.3: Transverse cross-section of initial mesh. Mesh is composed of hexahedral and
prismatic elements (near center). The fiber core is marked in red and has radius rcore =√
162 µm; the radius of the cladding rclad =

√
16200 µm.

plane) h-adaptive mesh refinement using a Dörfler marking strategy [34] and the DPG error

indicator funciton. Cross-sections of the solution (|Ex|) are depicted in Fig. 6.4, where values

are plotted only at element second-order Lagrange nodes to enable visualization of the refined

mesh. Iteration and timing data are provided in Table 6.1.

It can be observed in Fig. 6.4 that even in the presence of the extreme bend radius,

the majority of the signal leaves the fiber core but does not reach the boundary. Adaptive

mesh refinement was able to resolve the signal leaving the core. However, in the case of less

extreme bends, losses often have several orders of magnitude smaller amplitude than core-

guided modes. Indicator-based adaptivity may struggle to mark and resolve the losses unless

the core-guided modes are accurately resolved and the solution is computed to sufficient

accuracy. Indeed, the relatively small magnitude of bend losses further implies that a highly

accurate solution would likely be needed to accurately predict loss coefficients, especially

since the DPG method primarily exhibits dissipative pollution error. The relatively small

tolerance (10−8) used here was chosen to reflect the need for high-accuracy solutions to
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Figure 6.4: Adaptive simulation of bend loss in an optical fiber with band radius R = 3
mm. The magnitude of Ex is plotted at second-order Lagrange nodes (vertices and middle
of edges, faces, elements) along a longitudinal slice (y = 0).

accurately model bend losses. As can be seen in Table 6.1, this requires a large number of

iterations and is thus relatively expensive.

Future directions. Although preliminary simulations revealed a number of challenges

with this approach, high-fidelity three-dimensional bend loss simulations may be feasible

with a number of further developments. First, a longitudinal wave ansatz could likely be

used to ease longitudinal discretization requirements. Such an approach leverages the com-

98



Table 6.1: Timing and convergence history for adaptive simulation of bent fiber on 256
Frontera CLX nodes (14336 cores).

Grid DOFs Iterations Solve Time

1 29 401 120 1042 21.7

2 54 323 240 1123 56.5

3 108 646 440 1678 172.1

4 122 188 170 1701 256.6

5 161 432 655 1671 599.8

6 247 612 480 1789 762.1

7 400 902 405 1756 1201.0

8 563 642 835 1871 1851.1

mon direction of propagation of fields along the optical fibers, computing a less-oscillatory

envelope around the common wave-vector component. The original wavefield can then be

computed by reintroducing the ansatz into the envelope solution. This approach has been

successfully deployed in the high-fidelity straight fiber models developed in [58] to simulate

TMI on meter-long fibers [63]. While the envelope approach is likely to be substantially

less effective in the case of bending, when combined with the significantly improved scaling

and performance of newer versions of the DPG-MG solver, it may be possible to simulate

10–100× longer fibers, enabling more realistic and relevant studies, including investigation

of appropriate boundary conditions and comparison with existing bend loss models.

6.2 Radio-Frequency Heating in a Tokamak

Nuclear fusion is a process in which two atomic nuclei (commonly hydrogen isotopes)

combine to form a heavier nucleus (commonly hydrogen isotopes) releasing a significant

amount of energy in the process. Nuclear fusion has the potential to generate vast amounts

of clean and sustainable energy, but achieving and controlling nuclear fusion on Earth is

challenging due to the extremely high temperatures and pressure required to initiate and

maintain the reaction. Various concepts including tokamaks devices (e.g. Joint European

Torus (JET) and International Thermonuclear Experimental Reactor (ITER)) and laser

fusion facilities (e.g. National Ignition Facility (NIF)), are being explored for this purpose.

Tokamaks are large, toroidal shaped devices used to contain and heat plasmas for nuclear
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fusion research. During fusion experiments, plasmas are heated to millions of degrees Celsius.

Strong magnets arranged along the exterior of the torus are thus used to magnetically confine

the plasma to the interior of the device, away from walls and other equipment. Heating is

achieved via radio-frequency (RF) heating, directing RF electromagnetic waves into the

plasma where they are absorbed by particles. This section details preliminary simulations

of RF heating in a tokamak device; we thank S. Shiraiwa and J. Hillairet for the geometrical

information of the simulation domain2.

Figure 6.5: Initial tokamak mesh, composed of ca. 300 000 tetrahedral elements

Problem Setup. The initial mesh is shown in Fig. 6.5 and was composed of ca. 300 000

linear (p = 1) tetrahedral mesh elements. Perfect electric conductor (PEC) boundary condi-

tions were assumed on all boundaries, with the z-component of the boundary data specified

(the remaining components are homogeneous) as shown in Fig. 6.6. The material was as-

sumed to be isotropic and homogeneous with index of refraction n = 1 and frequency ω = 100

was adopted. These preliminary simulations were only intended to demonstrate the applica-

bility of the DPG-MG solver to this problem; more realistic simulations including the plasma

would employ highly heterogeneous and anisotropic material data.

The first mesh was produced via a single uniform p-refinement of the initial mesh. Mesh

2 and mesh 3 were defined by uniform h-refinement, and the remaining three meshes were

defined via uniform p-refinement. The final mesh was composed of ca. 19 million fifth-order

(p = 5) tetrahedral elements, supporting 6.7 billion unknowns. The MUMPS direct solver

was employed for the initial solver and coarse-grid correction. Two pre- and post-smoothing

2Fig. 9 of S. Shiraiwa et al 2023 Nucl. Fusion, 63, 026024
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Figure 6.6: z-component of the PEC boundary data (E0).

steps were employed and the iteration was terminated at 10−4 relative residual. Test norm

weight α = 104 was used.

The magnitude of the z-component of the simulated electric field (Ez) is illustrated

in Fig. 6.7; timing and convergence data are given in Table 6.2. The number of iterations

required for convergence was relatively small; this is largely due to the large test norm weight

α which, as noted in Section 4.3, tends to improve convergence but increases pollution error.

Figure 6.7: Simulated electric field in the tokamak device. Slices of the z-component of the
electric field on the final mesh at z = 0 (left) and x = 0 (right)

Adaptivity studies. Adaptive mesh refinement is likely required to accurately resolve

singularities induced by the large number of reentrant corners and irregular features present

in the tokamak geometry. Adaptivity is also expected to be beneficial in realistic simulations

with material heterogeneity and anisotropy.
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Table 6.2: Timing and convergence data for Tokamak simulation on 512 Frontera nodes
CLX nodes (24 576 cores).

Grid DOFs Iterations Solve Time (s)

1 19 993 630 28 0.4

2 159 976 860 17 1.4

3 703 920 440 23 7.0

4 1 747 020 756 37 33.5

5 3 404 467 824 33 91.5

6 6 704 649 952 24 196.2

Preliminary adaptivity studies were attempted on this problem but were largely unsuc-

cessful. The difficulty in enabling adaptivity was that the mesh contained nearly singular

elements. Two of these elements are shown in Fig. 6.8 (marked in yellow) and have edge

length O(10−1 m) and volume O(10−9 m3). These near-singular elements necessitated use

of a large test norm weight to enable inversion of the element Gram matrix. The singular

elements were produced at interfaces where the size of mesh elements changes abruptly, these

elements were thus often adjacent to large elements. Near-singular elements induced errors

in the neighboring larger elements, causing those elements to be marked first for refinement

(the small volume of the near-singular elements typically prevented them from being marked

directly). Repeated refinement of the large elements subsequently necessitated refinements

in the near-singular elements to maintain a one-irregular mesh. The resulting repeated re-

finement of near-singular elements caused them to become numerically singular even when

employing large test norm weights.

Future directions. These preliminary results demonstrate the applicability of the DPG-

MG solver to problems with unstructured meshes and complex geometries. Substantial

further work is required to produce useful insights into tokamak control and design. Use

of a more suitable mesh would enable refinement studies and permit use of a smaller test

norm weight, mitigating pollution error and significantly reducing the number of unknowns

required for a given accuracy. A curvilinear mesh would also likely be beneficial for adaptivity

as it would avoid localized sharp features induced by the triangulation of the coarse-mesh

boundary. Heterogeneous and highly anisotropic material data was made available to us but
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Figure 6.8: Tokamak mesh elements in the neighborhood of two nearly singular tetrahedral
elements (yellow) with edge length O(10−1) and volume O(10−9).

tended to exacerbate challenges related to the numerical singularity of the element Gram

matrix on small aspect-ratio elements. The abrupt changes in element size further tended to

produce vertices shared by up to nearly 100 mesh elements, producing a number of very large

smoothing patches that were expensive to factor and apply and contributed significantly to

load imbalance. A more regular mesh would thus also reduce the cost of the DPG-MG

solver significantly. When the normal-system was able to be formed, the DPG-MG solver

demonstrated satisfactory convergence even in the case of highly anisotropic material data,

but use of very large test norm weights in these cases likely obscured true convergence trends.

6.3 Seismic Simulation
6.3.1 Visco-Acoustic Simulation on the GO 3D OBS model

This section outlines acoustic simulation on the GO 3D OBS model [53]. We thank Andrzej

Górszczyk of the Institute of Geophysics at the Polish Academy of Sciences for kindly sharing

the model with us, it proved to be a valuable tool in helping to benchmark and develop the

DPG-MG solver and in investigating adaptivity strategies.

Model. The GO 3D OBS model is an open-source multiparameter seismic model with high-

contrast heterogeneous structures representing a subduction zone, inspired by the geology

of the Nankai Trough. The model provides isotropic visco-elastic properties (Vp, Vs, ρ,

Qp, Qs). In the following we used only the compressive wavespeed Vp (c in the acoustic

model) and quality factor Qp. These are shown on a 100 km × 100 km × 30 km section
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of the GO 3D OBS model in Fig. 6.9. Constant density was assumed. Indeed, recall that the

derivation of the linear acoustic equations in Section 2.1.1 performed linearization about a

constant density state. Linearization around a variable density state [6] leads to models

with so-called fractional density (∇ρ/ρ), although this term is often neglected leading to the

classical variable density Helmholtz problem.

Figure 6.9: Wavespeed c (or Vp) (left) and quality factor Qp (right) for a section of the
GO 3D OBS model. The model is hexahedral, water was set to be transparent to reveal the
bathymetry.

Material properties for the GO 3D OBSmodel are defined on a 25 m uniform grid. Through-

out the following examples the full-resolution seismic model is read and stored separately

from the finite element mesh. This implies that material properties are evaluated using the

full-resolution model (not interpolated on the finite-element mesh) and will introduce some

error into the numerical integration of element matrices. To counter this error, the quadra-

ture order was increased by two over the enriched test space order (pr = p + 1 throughout

104



this work). Thus, for a fourth order (p = 4) discretization, a total of 83 quadrature points

are used for numerical integration.

Attenuation is parameterized by the quality factor (Qp) which, in the frequency domain,

defines a complex-valued wavespeed [3]. For simplicity, we assume frequency-independent

attenuation leading to the complex-valued wavespeed:

c̃(x) = c(x)

(
1 + isgn(ω)

1

2Qp(x)

)
,

although frequency dependence would be rather trivial to implement in the frequency do-

main. Impedance parameter d(x) = c−1(x) was adopted at impedance boundaries for the

remainder of this work.

Indicator-based adaptive simulation. Building on our experience in previous applica-

tions, we attempted to apply indicator-based adaptivity to seismic simulation. Following

[115], these initial studies considered a 20 km × 102 km × 28.3 km section of the model.

That particular section largely overlaps with the section depicted in Fig. 6.9, but is not

depicted here. Material data was downsampled to 100 m spacing for these initial indicator-

based simulations. The following computations were performed on 512 Frontera compute

nodes (28 672 cores).

The frequency was taken to be 3.75 Hz and the problem was loaded with a pressure point

source (fp) at (10.0, 12.5, 0.0) km, implemented as a tight Gaussian with standard deviation

of 50 m. Impedance boundary conditions were adopted on all boundaries. The initial mesh

consisted of 8×42×12 hexahedral quadratic (p = 2) elements with a total of 205 757 DOFs.

After solving the problem on a given mesh and evaluating the DPG error indicator, elements

were marked for refinement using the Dörfler marking strategy [34]. The solver iteration

was terminated at 10−7 relative ℓ2 residual; we note however that the large number of h-

refinements near the source tended to produce a large initial residual. The 10−7 tolerance

used here is thus somewhat artificially small but is adopted in absence of a more appropriate

termination criterion. A simple V(1, 1) cycle was used without a coarse-grid correction on

the initial mesh.

Seven initial h-adaptive refinements were used to resolve the region around the point

source, followed by hp-adaptive refinements. The hp-adaptive strategy selected h-refinements

until the maximum edge length of an element was less than one-half the minimum wavelength
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over the element. In regions of high contrast, where the variation in wavespeed over the

element was greater than 10% of the minimum wavespeed over the element, an additional

h-refinement was used. Otherwise, p-refinements were selected until a maximum order of

p = 5. A subset of the resulting hp-adaptive meshes are depicted in Fig 6.10. In total, the

mesh is refined 34 times, resulting in a final mesh with over 6.3 million elements and 1.9

billion DOFs. The corresponding wavefields (ℜ{p}) are depicted in Fig. 6.11.

Convergence and timings for indicator-based adaptive simulation of the GO 3D OBS model

are compared to a uniformly refined mesh with a minimum of two fourth-order (p = 4)

elements per wavelength on the finest mesh in Fig. 6.12. The number of solver iterations

on each grid is depicted in Fig. 6.12a; however, in contrast to the convergence studies in

Section 5.4, the solution on the previous mesh is used to initialize the solution. The effect of

initializing with previous solutions becomes apparent in later iterations, when the solution

is reasonably well resolved in much of the domain and further refinements result in fairly

localized perturbations to the solution. Fig. 6.12b shows that the DPG residual decreases

early in the adaptive process, when compared to the hp-adaptive Gaussian beam problem

in Fig. 5.12b; this is likely because the wave decays relatively quickly away from the point

source.

The solution on the finest mesh was completed in 210 seconds, whereas the total runtime

for the job (including forming and solving the system on 34 meshes) was 3 029 seconds (51

minutes). The time per iteration is depicted in Fig. 6.12d to illustrate scaling of the solver

with indicator-based adaptive refinement. After an early preasymptotic regime, it can be

seen that, in the adaptive case, the time per iteration scales roughly linearly with the size

of the system; however, super-linear scaling is observed in later iterations. This super-linear

scaling is due to the sub-geometric growth of adaptive meshes late in the adaptive process.

Comparing uniform and adaptive refinements reveals that the uniform refinement case

required nearly 3× as many DOFs and only reaches a DPG residual ten times larger than

for hp-adaptive refinements. This is however not as compelling as it may otherwise indicate.

First, the DPG test norm was defined via the L2 norm (i.e. the L2 norm of the graph and

adjoint terms). The error indicator is thus not amplitude compensated and the far-field is

effectively weighted less than the near-field in simulation of point sources. The resulting

error indicator is thus perhaps not an incredibly relevant metric for seismic simulation and

imaging contexts where an accurate far-field is desired. Second, it can be seen in Fig. 6.12d
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Figure 6.10: 2D cross-section of hp-adaptive meshes produced via indicator-based adaptive
refinement of the GO 3D OBS model. The depicted meshes are, from top to bottom, after 0,
9, 18, 26, and 33 adaptive mesh refinements.
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Figure 6.11: 2D cross-sections depicting the real part of the pressure after (from top to
bottom) 0, 9, 18, 26, and 33 adaptive mesh refinements. Fields are amplitude-compensated.
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(a) Iterations to convergence (10−7 tolerance) (b) Convergence of DPG residual

(c) Solution time (d) Time per iteration

Figure 6.12: Convergence and timings for hp-adaptive solution of the GO 3D OBS model with
the DPG-MG solver (28 672 cores). The number of iterations is better controlled when
solutions on previous grids are used to initialize subsequent grids. For a fixed frequency,
the DPG-MG solver scales nearly linearly with respect to degrees of freedom; super-linear
scaling is due to sub-geometric growth in DOFs.

that the time per iteration for the uniformly refined case is three times smaller than for

adaptive meshes, or nine times smaller when normalizing for DOFs.

Indicator-based adaptivity is attractive for resolving singular and localized features. In-

deed, it did manage to resolve the near-singular point source in Fig. 6.11, this is however

typically not the feature of interest in seismic modeling contexts. The DPG test norm (and

thus error indicator) could be defined via a weighted norm (e.g. L2
r) to better account for

far-field errors, this could make a compelling future study.
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Wavespeed-adapted simulation. In the context of seismic wave simulation, the wave-

field is expected to be supported globally and the wavespeed provides an initial indicator of

the mesh size and order needed to resolve the wavefield. Adapting the mesh to wavespeed

is often a much more efficient approach and does not require repeated solution of the prob-

lem on a large number of meshes. Tournier et al. [115] used this approach with advanced

mesh generation tools to generate a regular tetrahedral mesh with element size adapted to

wavespeed. While the DPG-MG solver does accommodate general unstructured meshes with

all element types, mesh generation is often cumbersome and difficult to automate. We thus

adopt a slightly different approach, starting from trivial uniform hexahedral meshes and

leveraging hp-adaptivity to define wavespeed adapted meshes.

Wavespeed adaptive meshing was accomplished by defining a number of rules that deter-

mine when elements are adequately refined. Perhaps the simplest rule is that element edge

length should not exceed a given ratio of the minimum wavelength over the element. The

wavespeed-adapted mesh is then produced by looping over elements in the current mesh,

checking whether the given rules are satisfied, and marking them for h-refinement if not.

A sequence of meshes produced in this way is illustrated later in Fig. 6.17. This initial

h-adaptation defines a coarse-grid for the DPG-MG solver with relatively uniform approx-

imability, additional h- and p-refinements are then specified to define multigrid levels. The

initial round of refinements is typically based on wavespeed only; subsequent refinements

select between h- and p-refinements based on the number of elements per wavelength and

the variation of wavespeed over the element, leveraging p-refinements in elements with low

wavespeed variation and h-refinements elsewhere. This strategy thus deploys h-refinements

to resolve sharp interfaces and irregular features while deploying p-refinements to mitigate

pollution error. A cross-section of a wavespeed-adapted mesh for the GO 3D OBS model is

depticted in Fig. 6.13. Wavespeed adaptivity is not limited to simple hexahedral meshes, it

could also be useful starting from general meshes conforming to topography or some other

feature of interest.

Adapting meshes to wavespeed in this way is conceptually simple, does not require com-

plex meshing tools, and can be done in parallel in the fully distributed version of hp3D. Gener-

ating the wavespeed adapted mesh for the problem illustrated in Fig. 6.14 and Fig. 6.15, with

nearly 500 million elements took a total of 12 seconds, with a majority of that time spent

updating geometry DOFs between refinements. The previously outlined fully-distributed
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Figure 6.13: Cross-section of the wavespeed (top) and wavespeed-adapted mesh (bottom)
for the GO 3D OBS model; the mesh is intended to resolve a 2 Hz wavefield.

data structures solve many of the challenges of scaling this routine. We note however that

the large seismic models used in this section occupy 50–300GB, depending on the model

and number of properties stored. The models are thus distributed as well, with each process

storing the section of model corresponding to its current subdomain.

Wavespeed adaptivity was used to simulate acoustic propagation in the 100 km × 100 km

× 30 km section of the GO 3D OBS model depicted in Fig. 6.9 at 15 Hz, this is the same

problem simulated in the weak scaling study in Section 5.6.3. In contrast to the indicator-

based adaptive simulation previously, a free-surface boundary condition was implemented at

the surface. The free-surface boundary condition generates reflections, effectively forming a

waveguide with the seabed; this tends to roughly double the number of iterations required

for convergence. The coarsest mesh had uniform order p = 2 and was adapted to have a

minimum of 2 elements per wavelength. Two p-refinements were then performed, resulting

in a final adapted mesh with over 500 million hexahedral elements and 157 billion DOFs, a

5.3× reduction compared to the uniform mesh considered in Section 5.6.3 with 829 billion

DOFs.

The simulation was performed on 2048 Frontera nodes (114 688 cores). The top-level
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Figure 6.14: 15 Hz time-harmonic acoustic wavefield simulated on a 100 km × 100 km ×
30 km section of the GO 3D OBS using a wavespeed adapted mesh on 2 048 Frontera nodes
(114 688 cores). The real part of the pressure (ℜ{p}) is plotted at the surface (z = 0) in all
panels, with the magnification factor indicated. Fields are amplitude compensated.

patches were refactored during the simulation, while patches on the remaining grid levels

were stored. Smoothing iterations on the coarsest grid were thus relatively inexpensive and

16 PCG iterations were used for the coarse-grid correction. The iteration was terminated at

10−4 relative ℓ2 residual, requiring 492 iterations for convergence. Construction of the DPG

normal system took 532 seconds and the solve took 3 891 seconds; however, the maximum

per-node memory usage was 76 GB, indicating that top-level patches perhaps could have

been stored, which would have significantly reduced the solve time.

Cross-sections of the (amplitude-compensated) solution are depicted in Fig. 6.14 and

Fig. 6.15. To our knowledge this is the largest time-harmonic visco-acoustic simulation to

date on a complex heterogeneous model, corresponding to ca. 1 000 acoustic wavelengths in

the water. We did not verify accuracy but computing the ratio of the DPG error-indicator

at the final solution and under a zero wavefield indicates an L2 error of O(5%).
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Figure 6.15: 15 Hz time-harmonic acoustic wavefield simulated on a 100 km × 100 km ×
30 km section of the GO 3D OBS using a wavespeed adapted mesh on 2 048 Frontera nodes
(114 688 cores). The real part of the pressure (ℜ{p}) is plotted at (y = 50 km) in all panels,
with the magnification factor indicated. Fields are amplitude compensated.
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6.3.2 Visco-Elastic Simulation on the SEAM Arid Model

We briefly conclude with visco-elastic simulation on the SEAM Arid model, produced in

collaboration with Sergey Fomel and Andrey Bakulin of the Bureau of Economic Geology

at the University of Texas at Austin. We thank Saudi Aramco for providing the model, it

has helped us probe the limits of the DPG-MG solver and wavespeed adaptive meshing.

Figure 6.16: Compressive wavespeed (Vp, left) and shear wavespeed (Vs, right) for the SEAM
Arid model.

Model. The Arid model has complex near-surface structure including karsts and significant

high-contrast structures. Within the first 150 m, the minimum (shear) wavespeed is 550 m/s

and the maximum (compressive) wavespeed is ca. 5 000 m/s, a contrast of nearly 10×.

The model is characterized by horizontal transverse isotropy (HTI), defined via compressive

wavespeed (Vp), shear wavespeed (Vs), density (ρ), Thomsen’s parameters (γ, ϵ, δ), and a
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rotation angle defining the orientation of the isotropic plane (ϕ). The full domain is 10 km

× 10 km × 3.75 km, and is depicted in Fig. 6.16. All material properties are specified on a

6.25 m regular grid. We will consider only a 7 km × 7 km patch of the model, centered at

(5, 5) km. The top 25 m of the model is attenuating, with constant compressive and shear

Q-factors, Qs = Qp = 75. A free-surface boundary condition was assumed at the surface,

a 0.5 km wide PML was appended to the remaining boundaries. The PML was defined via

the Cartesian stretching function (2.16) with parameters β = 3, C = 50. A frequency of was

25 Hz (ω = 50π) was assumed.

Figure 6.17: Wavespeed-adaptive meshing of a 0.5 km cube section of the SEAM Arid model.

Mesh. The mesh was defined starting from an 80× 80× 44 second-order (p = 2) uniform

hexahedral mesh. The initial-mesh was then adaptively h-refined until at least 2.2 elements

per shear wavelength. In the final refinement, elements in which the shear wavespeed varied

more than 30% of the minimum shear wavespeed were h-refined; the remaining elements p-

refined. The final mesh had 20 million elements and 7.4 billion DOFs with a minimum of ca.

7 points per shear wavelength. The complex near-surface structure of the Arid model makes

hp-adaptivity particularly advantageous. A uniform mesh with similar minimum resolution
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would have ca. 20× more DOFs than the hp-adapted mesh. The mesh adaptivity process

is visualized on a small section of the Arid model in Fig. 6.17. The material properties

are visualized using second-order hexahedral elements, the full-resolution model is however

stored separately from the mesh. The full-resolution model was used during adaptivity and

throughout the simulation.

Figure 6.18: Time-harmonic visco-elastic (HTI) simulation of a 25 Hz source on the SEAM
Arid model. Slices through the shot show the real part of z-displacement.
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Simulation. The simulation was performed on 256 Frontera CLX nodes (14 336 cores).

Test norm weight α = 10−2 was used and assembly of the DPG normal system took 348

seconds. The iteration was terminated at a 10−5 relative ℓ2 residual, requiring 273 iterations.

A single source was solved in 493 seconds. The real part of the z-displacement (ℜ{vz}) is

depicted in Fig. 6.18. While this problem was run on 256 Frontera nodes (only 3% of the

total machine) it is to our knowledge significantly larger than any previous time-harmonic

elastic simulation. Convergence studies were conducted on a 0.5 km cube section of the arid

model at 25 Hz, these will be published at a later date and indicated O(2%) L2 error, we

expect the error on the full model to be modestly higher.
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Chapter 7

Concluding Remarks
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Contributions. This dissertation outlined development of a scalable, fully distributed

multigrid solver for high-frequency wave propagation problems discretized with the DPG

finite element methodology. The distributed DPG-MG solver was shown to enable solution

of time-harmonic wave propagation problems with over 800 billion fourth-order (p = 4)

unknowns, a scale nearly 2–3 orders of magnitude larger than any previous work we are

aware of. As noted in Section 4.2, a portion of the achieved scale is due to a rather favorable

counting of unknowns in DPG systems. Indeed, counting interior and interface unknowns

of the first-order system results in ca. 3–4× as many unknowns as a Galerkin system on a

comparable mesh. Perhaps an even more significant factor was our use of significantly larger

computational resources than any previous time-harmonic wave propagation work we are

aware of. Still, the DPG-MG solver is notable for its scalability and efficiency and enables

solution of previously intractable problems in high-frequency wave propagation. Indeed,

the DPG-MG solver was shown to enable solution of challenging problems with over 1 000

wavelengths, high-contrast and anisotropic materials, and complex geometries.

While the DPG-MG solver was the primary focus of this work, supporting technologies

including fully distributed finite element data structures were outlined. These distributed

data structures enabled fast and parallel isotropic and anisotropic hp-adaptive mesh refine-

ment on meshes with elements of all types and with limited dynamic load balancing. These

capabilities seem to be fairly unique among scalable finite element codes.

Conclusions and future directions. The observed performance of the DPG-MG solver

is perhaps surprising, especially for a method that is notoriously slow. We thus briefly

compare the DPG-MG solver to existing methods, summarize what we view as the main

points of differentiation, and provide an outlook for future work.

First, note that the observed O(N4/3) computational complexity is in line with a host

of other solvers including shifted Laplacian [44, 110], multilevel [113, 18, 52], and domain

decomposition [16, 74, 112] methodologies, but is worse than the O(N log(N)) computational

complexity for sweeping-type preconditioners [37, 117] including source-transfer [81], and

others. The later class of methods are however difficult to scale. A comparison of leading

scalable wave propagation solvers thus reduces to a comparison of constants, which often

depends significantly on hardware and implementation. We thus limit our comparison to

structural differences.
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Domain decomposition (DD) methods are a promising alternative to the DPG-MG solver,

the optimized restricted additive Schwarz (ORAS) preconditioner [15, 115] seems to be par-

ticularly noteworthy. The ORAS preconditioner [115] was recently applied with an optimized

finite difference discretization [1] to enable solution of very high-frequency time-harmonic

acoustics problems. Investigation of optimized DPG discretizations to minimize pollution

(e.g. in the spirit of [14]) may be a compelling direction for future research.

Both ORAS and DPG-MG solvers leverage a parallel subspace correction strategy; the

notable difference being that the ORAS solver leverages a smaller number of subspaces de-

fined over larger subdomains as opposed to the coarse-grid vertex patches employed by the

DPG-MG solver. Use of more localized vertex patches in the DPG-MG solver may prove

to be a significant advantage compared to DD approaches. Perhaps the first benefit is that

the solver can be implemented with dense matrix-vector operations. When solving multiple

loads simultaneously, this enables use of dense matrix-matrix operations which often have

high-compute intensity and perform well on GPUs and other accelerators such as advanced

matrix extension (AMX) coprocessors. The localized definition of operators is also expected

to be an advantage in the case of problems such as elasticity, where additional unknowns

and increased coupling diminishes the performance of sparse solvers and necessitates use

of smaller subdomains, often leading to deteriorated convergence. A final advantage was

that patch factorizations could be recomputed on the fly, reducing the overall memory foot-

print and enabling solution of very large problems. Still, storing and applying smoothing

patches represents the most significant cost of the DPG-MG solver, investigation of optimized

smoothers for particular problems thus may prove a fruitful area of inquiry. For example,

edge- or face-based definitions for H(div) and H(curl) variables, respectively [64, 65], would

significantly reduce patch sizes.

An additional advantage of the DPG-MG solver relative to other scalable Helmholtz

solvers is the Hermitian positive-definite structure of the resulting system. This structure

enables use of the conjugate gradient iteration, or of a GMRES iteration based on the

Lanczos factorization with a three-term recurrence. Both algorithms limit the size of the

Krylov history and enable truly linear memory scaling, as demonstrated in Section 5.6. The

Hermitian positive-definite structure of DPG systems further guarantees the invertibility of

sub-blocks, playing a key role in the definition of the patch-based smoother, and seems to

enable considerable flexibility in defining preconditioners.
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Flexibility and adaptivity are also notable advantages. Indeed, the DPG-MG solver is

applicable—without modification—to general DPG systems including coupled multiphysics

problems. In the context of seismic modeling, simple wavespeed-adaptive mesh refinement

was shown to reduce the number degrees of freedom by 5.3× in the case of the acoustic

simulation shown in Fig. 6.14 and ca. 20× in the case of the elastic simulation shown

in Fig. 6.18, relative to a uniform mesh with similar minimum resolution. In the context

of optical fiber modeling, indicator-based adaptivity was used to progressively refine the

localized beam solution, drastically reducing the size of the final system. Adaptivity is

certainly not limited to the DPG method but the built-in error indicator makes adaptivity

relatively more accessible since developing robust error indicators is problem-dependent and

often requires significant work.

The various examples in this dissertation demonstrated the compelling pollution charac-

teristics of DPG. In particular, DPG demonstrates relatively little dispersive (phase) error,

with pollution largely manifesting as dissipative (amplitude) error. This property could

prove useful in imaging contexts including full waveform inversion (FWI). Jaime Bramwell’s

dissertation work [13] on applying DPG to FWI was motivated precisely by the improved

dispersion characteristics of DPG; however, we are not aware of any further work in this di-

rection in the decade since that pioneering work. The limited work in this direction was likely

due to the relative expense of DPG and the lack of scalable solvers for both DPG and high-

frequency wave propagation, but likely merits fresh consideration. Additional benefits in the

context of seismic modeling include 1) trivial handling of attenuation and other frequency-

dependent phenomena, 2) relatively inexpensive resolution of near-surface structures with

hp-adaptivity, and 3) support for general unstructured meshes to enable simulation of non-

trivial topography and other complex features. Finally, the DPG-MG solver is expected to

support simulation of additional problems of interest including poroelasticity and coupled

multiphysics problems. Simulation of coupled time-harmonic acoustics, elasticity, poroelas-

ticity, and perhaps other phenomena at scale would represent a significant advancement in

forward modeling capabilities and support novel research in geosciences and beyond.
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Appendix A

Leaky Modes in W-type Slab Waveguide

In this section we consider the the scalar transverse eigenproblem (6.11) associated with

a W-type slab waveguide defined on the half-space {(x, z) ∈ R2 : z > 0}. The W-type

waveguide has discontinuous index of refraction (depicted in Fig. A.1) defined on five ‘slabs’

as:

n(x) :=


n0 |x| < a
n1 a < |x| < b
n0 |x| > b.

where n0 > n1. In the following we will show that the W-waveguide has only continu-

Figure A.1: Refractive index profile for W-type slab waveguide

ous spectrum and, in accordance with Section 6.1.2, defines a spectral representation with

a meromorphic complex extension. Finally, we will show that the poles of the meromor-

phic continuation coincide with zeros of a dispersion relationship arising from enforcing a

radiation-type condition on eigenmodes.

The scalar transverse eigenproblem is given by

∆u+
(
k20n(x)

2 − β2
)
u = 0, x ∈ R. (A.1)

Define:

k := (k20n
2
0 − β2)1/2 and α := (β2 − k20n

2
1)

1/2,
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and let V := k20(n
2
0 − n2

1). Problem (A.1) permits solutions of the form

u(x) = ℜ ◦


C0e

−ikx + C0e
ikx |x| < a

C1e
−αx + C1e

αx a < |x| < b
C2e

−ikx + C2e
ikx b < |x|

(A.2)

where C0, C1, C2 are complex constants that are partially constrained by requiring u ∈

D(A) ≡ H2(R) ↪→ C1(R). Explicit expressions for modes can be derived more easily by

considering separately even and odd modes characterized by C0 ∈ R and C0 ∈ iR, respec-

tively.

Dipsersion condition via radiation condition. For brevity we consider only even

modes and the right half of the waveguide, x ∈ R+:

u(x) = ℜ ◦


c0 cos(kx) x < a
c1e

−αx + d1e
αx a < x < b

c2e
−ikx + d2e

ikx b < x
(A.3)

Enforcing C1 continuity at x = a and at x = b will lead to four constraints on constants

c0, c1, c2, d1, d2; a fifth constraint will arise from the normalization implied by the orthogo-

nality condition (6.14) but for now we simply set c0 = 1.

Continuity (C1) at x = a gives rise to the linear system[
e−αa eαa

−αe−αa αeαa

] [
c1
d1

]
=

[
cos ka

−k sin ka

]
which permits solution

c1 =
1

2a

(
αeαa cos ka+ keαa sin ka

)
,

d1 =
1

2a

(
αe−αa cos ka− ke−αa sin ka

)
.

Similarly, continuity at x = b yields[
e−αb eαb

−αe−αb αeαb

] [
c1
d1

]
=

[
e−ikb eikb

−ike−ikb ikeikb

] [
c2
d2

]
.

which leads to

c2 =
1

2ik

(
c1(α + ik)e−(α−ik)b − d1(α− ik)e(α+ik)b

)
d2 =

1

2ik

(
− c1(α− ik)e−(α+ik)b + d1(α + ik)e(α−ik)b

)
.
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Now, with the time-harmonic ansatz defined as in (2.8), d2 is the coefficient on an incoming

signal. Enforcing a radiation boundary condition (i.e. enforcing that the solution be outgoing

only) results in the following dispersion relationship:

e−2α(b−a)(a cos ka+ k sin ka)(α− ik)− (α cos ka− k sin ka)(α + ka) = 0. (A.4)

This relationship in general cannot be satisfied for k ∈ R so we consider roots of the complex

extension, k ∈ C. Figure A.2 shows the complex magnitude and phase of the left-hand side

(LHS) of (A.4); the zeros can be identified visually.

Figure A.2: Dispersion relation (A.4) for a W-type slab waveguide with parameters V =
16, a = 0.25, and b = 1.5. The complex phase is indicated by color and the magnitude is
indicated by brightness. Zeros correspond to dark spots near the real axis.

Spectral representation. Finally, we can derive leaky modes by finding the pole of the

complex extension of the spectral representation. In order to derive the complex extension

we need a slightly different representation:

u(x) =


c0 cos(kx) x < a
c1e

−αx + d1e
αx a < x < b

ĉ2 cos(kx) + d̂2 sin(kx) b < x.

(A.5)

The reason for the alternative representation is that the complex modulus is not an analytic

function, thus cannot be used in the complex extension. By rewriting the solution in this

form we ensure that ĉ2, d̂2 ∈ R. In this form, the normalization implied by the orthogonality

condition (6.14) requires that ĉ2
2 + d̂22 = 1. The proper normalization is thus given by

c0 =
1√

ĉ2
2 + d̂22

. (A.6)
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The poles of the spectral representation (6.16) behave as c20, this is plotted in Fig. A.3.

The poles can be identified as simple poles since contours around the poles traverse a single

period in the complex phase. Finally, to see that the poles coincide we relate ĉ2, d̂2 to c2, d2

Figure A.3: Normalization factor (A.6) for a W-type slab waveguide with parameters V =
16, a = 0.25, and b = 1.5. The complex phase is indicated by color and the magnitude is
indicated by brightness. Poles correspond to white spots near the real axis.

as

ĉ2 =
c2 + d2

2
and d̂2 = i

d2 − c2
2

,

and we can re-express the normalization:

ĉ22 + d̂22 =
(c2 + d2)

2

4
− (c2 − d2)

2

4
= 2c2d2.

Zeros of the dispersion relation (A.4) thus correspond to poles of the normalization (A.6)
and leaky modes derived via either method coincide.

126



Bibliography

[1] Hossein S Aghamiry, Ali Gholami, Laure Combe, and Stéphane Operto. Accurate 3D
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