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Abstract

Active galactic nuclei (AGN) are the signposts of black hole growth, and likely play an important role in galaxy
evolution. An outstanding question is whether AGN of different spectral types indicate different evolutionary
stages in the coevolution of black holes and galaxies. We present the angular correlation function between an AGN
sample selected from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) optical photometry and Wide-
field Infrared Survey Explorer mid-IR photometry and a luminous red galaxy (LRG) sample from HSC-SSP. We
investigate AGN clustering strength as a function of luminosity and spectral features across three independent HSC
fields totaling ∼600 deg2, for z ä 0.6−1.2 and AGN with L6 μm> 3× 1044 erg s−1. There are ∼28,500 AGN and
∼1.5 million LRGs in our primary analysis. We determine the average halo mass for the full AGN sample
(Mh≈ 1012.9 h−1Me), and note that it does not evolve significantly as a function of redshift (over this narrow
range) or luminosity. We find that, on average, unobscured AGN (Mh≈ 1013.3 h−1Me) occupy ∼4.5×more
massive halos than obscured AGN (Mh≈ 1012.6 h−1Me), at 5σ statistical significance using 1D uncertainties, and
at 3σ using the full covariance matrix, suggesting a physical difference between unobscured and obscured AGN,
beyond the line-of-sight viewing angle. Furthermore, we find evidence for a halo mass dependence on reddening
level within the Type I AGN population, which could support the existence of a dust-obscured phase. However, we
also find that quite small systematic shifts in the redshift distributions of the AGN sample could explain current and
previously observed differences in Mh.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Galaxy evolution (594); Quasars (1319);
Supermassive black holes (1663)

1. Introduction

Supermassive black holes (SMBHs) influence the growth and

evolution of the galaxies in which they reside (J. Kormendy &

D. Richstone 1995; J. Kormendy & L. C. Ho 2013). Periods of

rapid mass accretion onto SMBHs, creating an observable active

galactic nucleus (AGN; M. Schmidt 1963), provide a unique

opportunity to study their attributes. Tracing the black hole (BH)

and galaxy coevolution is critical to describing the role of BH and

AGN feedback in galaxy growth (J. Kormendy & L. C. Ho 2013;

T. M. Heckman & P. N. Best 2014).
Historically, AGN have been classified into two classes,

unobscured (Type I) and obscured (Type II). In strict unification

models, all AGN are identical but are seen from different angles.

Dusty flattened regions on parsec scales, known as the torus, act

as a screen at particular inclinations (R. Antonucci 1993;

C. M. Urry & P. Padovani 1995; H. Netzer 2015). However,

there have been significant results that challenge a strict unified

model of AGN structure, showing that the observed obscuration

level is correlated with the evolutionary stage of the host galaxy

and obscuration effects (D. B. Sanders et al. 1988; R. C. Hickox

et al. 2011; V. Allevato et al. 2014; S. L. Ellison et al. 2019;

V. A. Fawcett et al. 2023). There have been hints that observed

AGN spectral properties are tied to merger history (see

R. C. Hickox & D. M. Alexander 2018 for a recent review).

Additional studies are needed to probe whether obscured and

unobscured AGN are objects along different points in an

evolutionary track (P. F. Hopkins et al. 2008; R. C. Hickox

et al. 2009; N. Cappelluti et al. 2012).
Several observational results have shown that obscured AGN

are often found in mergers, suggesting that there is a link with

AGN activity (J. C. Mihos & L. Hernquist 1994, 1996;

A. W. Blain et al. 1999; T. Urrutia et al. 2008; M. Koss et al.

2010; S. L. Ellison et al. 2011, 2013, 2019; E. Glikman et al.

2015; A. D. Goulding et al. 2018; N. J. Secrest et al. 2020;

C. Ricci et al. 2021). There is also some evidence that

reddening in AGN is significantly impacted by host galaxy

properties (A. D. Goulding & D. M. Alexander 2009;

A. D. Goulding et al. 2012). Meanwhile, unobscured AGN

may be a later stage of the merger evolutionary scenario, once

winds and outflows (the potential ”blowout” phase) have

revealed the AGN broad-line region (P. F. Hopkins et al. 2008;

see C. R. Almeida & C. Ricci 2017 for a recent review of AGN

obscuration morphology).
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Analyzing these trends in single objects is difficult because
the timescales for star formation and mergers are much longer
than the AGN variability timescales (R. C. Hickox et al. 2014).
However, by measuring the clustering of a statistical sample of
galaxies, we can infer the properties of the dark matter (DM)

halos in which they reside. Clustering measurements from
large-scale structure analyses have thus become a preeminent
tool to study ensemble properties across samples of AGN and
other galaxy populations (P. S. Osmer 1981; P. A. Shaver
1984; T. Shanks et al. 1987; A. Iovino & P. A. Shaver 1988;
P. Andreani & S. Cristiani 1992; H. J. Mo & L. Z. Fang 1993;
T. Shanks & B. J. Boyle 1994; S. M. Croom & T. Shanks 1996;
F. La Franca et al. 1998; S. M. Croom et al. 2005; A. Lidz et al.
2006; Y. Shen et al. 2008; Y. Toba et al. 2017; W. He et al.
2018; J. Arita et al. 2023). They are particularly useful for
studying the relationship of galaxies and the halos they are
found in, and provide important clues at the population level.

Studies find that luminous AGN often reside in DM halos of
typical mass M h Mlog 12.5 13 logh

1~ - - (N. Cappelluti
et al. 2012; J. D. Timlin et al. 2018). These analyses also probe the
possible halo mass dependence of observed AGN luminosities,
and how it relates to BH accretion properties (e.g., S. M. Croom
et al. 2005; A. Lidz et al. 2006; L. Koutoulidis et al. 2013;
Y. Shen et al. 2013; A. J. Mendez et al. 2016; M. Krumpe et al.
2018; J. D. Timlin et al. 2018).

One way to test the idea that AGN move from a buried (and
obscured) growth phase to an unobscured state through
blowout could be to find differences in clustering strength
between obscured and unobscured AGN. This would also be a
test of the pure orientation model. Simple unification cannot
explain the observed differences in clustering amplitude
between obscured and unobscured AGN that have already
been reported (R. C. Hickox et al. 2011; V. Allevato et al.
2014; M. A. DiPompeo et al. 2014, 2016, 2017; N. Jiang et al.
2016; L. Koutoulidis et al. 2018; M. C. Powell et al. 2018;
G. C. Petter et al. 2023; Q. Li et al. 2024). Unfortunately,
different studies come to different conclusions about whether
obscured or unobscured AGN are found in more massive halos.
The results depend on the selection method, luminosities, and
redshift range of the samples. On the other hand, many of the
studies are based on relatively small areas and only hundreds of
AGN (see A. L. Coil et al. 2009; R. Gilli et al. 2009; N. Cappelluti
et al. 2010; V. Allevato et al. 2011; L. Koutoulidis et al. 2013;
M. Krumpe et al. 2018).

In this work, we implement the AGN selection by
A. D. Goulding et al. (2024, in preparation), which aims to
represent a more complete sampling of the AGN color space.
Using an optical and mid-infrared (MIR) color selection based
on unsupervised machine learning classification, we construct
unobscured and obscured AGN samples to investigate the
clustering strength of these populations. Increasing the source
number density will also reduce potential biases in AGN
subtype samples, and allows for more precise measurements of
the clustering on all relevant scales. We carry out our analysis
using the cross-correlation function between the Hyper
Suprime-Cam (HSC) photometrically selected galaxy sample
and our AGN samples, as opposed to the more common AGN
autocorrelation. Cross-correlations have the benefit of being
less sensitive to systematic uncertainties that are not shared
between both samples, and in this case provide a well-
understood galaxy sample with which to compare the AGN.
They also have higher signal-to-noise ratios (S/N) for sparse

samples like AGN. We make use of the individual redshift
distribution for each object in our sample, from either
photometric or spectroscopic measurements.
This paper is organized as follows. In Section 2, we

summarize the data sets used in this analysis, and the
subdivisions of the AGN sample. In Section 3, we outline
our methodologies for the projected angular correlation
function calculation, uncertainty estimation, and parameter
fitting and interpretation. We present the results of our
autocorrelation of HSC galaxies, the cross-correlation with
the full AGN sample, and the cross-correlations with the AGN
subtype samples in Section 4. We discuss our results in
Section 5, and conclude in Section 6.
Throughout this analysis, we adopt a ΛCDM “Planck 2018”-

like cosmology (Planck Collaboration et al. 2020), with
h=H0/100 km s−1Mpc−1= 0.67, Ωc= 0.27, Ωb= 0.045,
ns= 0.96, and σ8= 0.83. Quantities expressed with a log are
exclusively log10 values. All magnitudes are in the AB system
(J. B. Oke & J. E. Gunn 1983), unless otherwise noted. In the
context of galaxy bias and halo mass parameterization, we
make use of the J. L. Tinker et al. (2010) formalism with
Δ= 200 (the spherical overdensity radius definition). Fore-
ground dust extinction corrections are applied to all magnitudes
as supplied in the HSC catalog (H. Aihara et al. 2022) based on
D. J. Schlegel et al. (1998).

2. Data

2.1. HSC Survey

HSC is a wide-field prime-focus camera mounted on the
8.2 m Subaru Telescope, located atop Maunakea, Hawaii
(S. Miyazaki et al. 2018). The HSC Subaru Strategic Program
(SSP; H. Aihara et al. 2018) is designed to make the most of the
1.77 deg2 field of view by using 330 nights on Subaru to
explore the full range of galactic history from the present to
z∼ 7 across three imaging layers, each with specific scientific
goals. The Wide, Deep, and Ultradeep surveys consist of
different sky coverage and exposure times in the grizy
wideband filters, in combination with survey-specific narrow-
band filters (S. Kawanomoto et al. 2018). We refer the reader to
the most recent (PDR3) release of HSC-SSP data as described
in H. Aihara et al. (2022). We make use of the 670 deg2 full-
depth full-color Wide imaging within PDR3 to constrain the
properties of galaxies positioned across ∼2% of the sky. The
sensitivity is limited to the i  26 band, with the point-spread
function (PSF) at a 5σ point-source depth. The Wide survey is
split between four disjoint fields with varying coverage, two
equatorial strips for spring and fall, as well as the higher-decl.
field of HECTOMAP and the AEGIS calibration field.
Galaxy photometric redshifts (photo-z) are measured from

the spectral energy distribution (SED) of each object, following
the methods outlined in M. Tanaka et al. (2018) and the
template-fitting algorithm Mizuki (M. Tanaka 2015). This
procedure recovers p(z), the redshift probability distribution,
for each object. We also have spectroscopic redshifts (spec-z)
for a small fraction (<2%) of objects, but these are not
distributed homogeneously over the HSC fields. In HSC PDR3,
a wide array of publicly available spectroscopic catalogs are
combined to maximize the number of spectroscopic redshifts
for observed sources, as detailed in Section 4.1 of H. Aihara
et al. (2022). We model the p(z) for the spec-z as a narrow
Gaussian distribution, with σ= 0.01× (1+ z) (wider than
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typical spec-z modeling to overcome numerical limitations in
our halo model clustering tools).

2.2. Masking

The HSC PDR3 data have a bright-star mask already applied
to them, as described in detail by J. Coupon et al. (2018) and
H. Aihara et al. (2022). They used the Gaia DR2 bright-star
catalog (Gaia Collaboration et al. 2018) to identify bright
sources and remove affected sky regions from the total survey
area. These subtractions were calculated from constraining the
extent of stellar halos (the extended PSF of a bright source),
ghosts (optical reflections inside the camera that are displayed
in the recorded image), blooming (electron spillover into
neighboring pixels), and channel stops (diffraction patterns
perpendicular to blooming) in HSC imaging. This source mask
is already applied to our HSC galaxy catalog, and we apply it to
the AGN catalog used here.

Details of the source mask constructed based on the Wide-
field Infrared Survey Explorer (WISE) imaging data
(E. L. Wright et al. 2010; R. M. Cutri et al. 2012) can be
found in A. D. Goulding et al. (2024, in preparation), but we
provide a brief summary here. Using the WISE catalog, we
select all objects with CC_FLAGS=“H or D or X or P”.
These catalog objects are those identified from the pipeline to
be affected by data issues. We use the distribution of these
objects to create a 2D sky density map in order to flag regions
of the sky with potentially spurious and/or inaccurately
measured sources, removing ∼56 deg2. These regions are
identified as �7σ overdensities (relative to the average number
density of the field) on a map smoothed with a 0°.5 boxcar
kernel. In addition to this flag map, we identify regions of
striping within the remaining unmasked objects caused by
significantly deeper data, moonlight contamination, or addi-
tional artifacts. These extremely high-density regions are also
excluded as part of the final source mask.

Additionally, we remove point sources at the catalog level
that are not included in the bright-star mask by identifying and
excluding objects whose CModel magnitudes differ by �0.06
in g, r, i, or z from the PSF magnitude estimate. This difference
reflects how consistent the PSF model for a point source is with
the more robust CModel magnitude for an extended object
(J. Bosch et al. 2018). Not surprisingly, the excluded objects
follow the stellar locus in color–color space.

2.3. HSC Galaxy Sample

We use a magnitude-limited galaxy sample (i< 24) from the
HSC-SSP Wide survey, which will be cross-correlated with our
(HSC-derived) AGN sample. We perform the experiment on
the three largest HSC PDR3 equatorial fields with full filter
coverage, XMM-LSS (hereafter referred to as XMM), VVDS,
and GAMA. These fields encompass 2.3× 107 galaxies in our
analysis redshift range (z ä 0.6–1.2, see Section 3.3), after
applying all relevant survey masks (see Section 2.2). The mean
number density of galaxies is ∼40,000 deg−2, for a total area of
568.55 deg2 (post-masking). Using either spectroscopic or
photometric information, we recover the p(z) for each source.

Prior HSC analyses have selected samples with smaller
photo-z uncertainty in order to perform statistical measure-
ments, and found the most effective means of doing so is to use
a luminous red galaxy (LRG) sample (e.g., M. M. Rau et al.
2023). Additionally, the strongly clustered LRGs provide a

high-S/N comparison for cross-correlations. We similarly find
it necessary to isolate the LRG population in our galaxy sample
to reduce the p(z) uncertainty in our sample, given tests of the
galaxy autocorrelation analysis for the complete (i< 24) HSC
galaxy sample. We select the LRG population in the HSC
sample with an optical color–color cut (g− r> 1.2 and
r− i> 1.0), and use these objects throughout our clustering
analysis cross-correlations. See Appendix A for further details
of the LRG selection and preliminary autocorrelation analysis.
In total, there are 1.6× 106 LRGs in our analysis, with an
average number density of ∼2900 deg−2. Figure 1 illustrates
the LRG population and its density across the HSC fields in our
analysis and Table 1 gives the number of objects in each field.

2.4. WISE- and HSC-selected AGN Sample

We present an AGN sample that combines optical and MIR
photometry from HSC-SSP and WISE (E. L. Wright et al. 2010).
The details of this method are explained in A. D. Goulding et al.
(2024, in preparation), and we give a high-level overview here.
Using a maximum likelihood estimator, HSC grizy photometry is
matched to sources detected with S/N> 5 in their W1
photometry in the allWISE (E. L. Wright et al. 2019) and
unWISE (UnWISE Team 2021) catalogs (A. Mainzer et al. 2011;
E. F. Schlafly et al. 2019; R. M. Cutri et al. 2021). After
combining the source catalogs, we additionally require sources to
have S/N> 4, 3, and 3 in their g, W2, and W3 photometry.
Utilizing an unsupervised dimensionality reduction techni-

que, the uniform manifold approximation and projection
(UMAP) algorithm (L. McInnes et al. 2018), we distill the
multidimensional color, magnitude, and source size space
down to a single interpretable 2D manifold. UMAP incorpo-
rates the input multidimensional photometric information from
HSC and WISE to construct a neural network that identifies
objects with similar properties, grouping them together, while
simultaneously placing objects with dissimilar properties far
apart. The result is a simple 2D space in which we can identify
the region occupied by AGN. Inputting a test sample with
known labels after the training process has been completed, but
providing no prior knowledge of the intrinsic source properties
to UMAP, A. D. Goulding et al. (2024, in preparation) show
that UMAP segregates known stars from galaxies, and known
obscured or unobscured AGN/quasars from inactive galaxies.
The final UMAP manifold contains 16 distinct clusters, two of
which are dominated by AGN. The AGN nature of these
clusters is further validated via spectroscopic follow-up by
R. E. Hviding et al. (2024), who find the UMAP AGN
classification matches the spectral categorization with emis-
sion-line fitting and continuum ratios indicative of AGN
activity. These UMAP AGN subtype classifications are not part
of the principal AGN identification detailed in Section 2.4.1.
We use this step to solely identify the AGN.
A. D. Goulding et al. (2024, in preparation) further provide

photometric redshift distributions and spectroscopic redshifts
(where available) for all of the UMAP-classified AGN. These
photometric redshifts are determined by utilizing the full g
through W3 photometry to train an augmented random forest
algorithm, which they show significantly outperforms the
Mizuki photo-z that are primarily designed for inactive
galaxies. These random forest based photometric redshifts
perform equally well on both Type I and Type II AGN out to
z∼ 3 with an average precision of δz/(1+ z) ∼ 0.02 and 0.03,
respectively.
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The total redshift distributions for the AGN samples from the

photometric and spectroscopic measurements are illustrated in

panel (a) of Figure 2. We account for each object’s full p(z) in

the clustering measurements, as described in Appendix B.

2.4.1. AGN Subsamples

Accurate AGN classification is paramount to appropriately
estimating the objects’ properties. Previously, AGN subtypes
have been split based on an optical–MIR color, such as r−W2
(see G. C. Petter et al. 2023). However, a more robust
classification scheme should consider the SED evolution with
redshift, and empirically derive the minima in the AGN color–
redshift space to sort the subtypes, which we now proceed
to do.
From the subset of UMAP-classified AGN with spectrosc-

opy available from the Sloan Digital Sky Survey (SDSS),
A. D. Goulding et al. (2024, in preparation) train a k-nearest
neighbor (KNN) algorithm to probabilistically label these AGN
as unobscured, reddened, or obscured, based on their position
in g−W3 versus redshift space (the outputs of these
distributions are shown in Figure 2). The unobscured and
reddened training samples are spectroscopically characterized
by broad emission lines, but the reddened AGN have
significant dust obscuration and thus a red continuum in the
rest-frame optical. We will typically combine these in our

Figure 1. The HSC galaxy sample used in this analysis after isolating the LRG population with an optical color–color cut, split by HSC field. The fields (and
approximate central R.A., decl. coordinates) are XMM-LSS (34°, −2°), VVDS (346°, 2°), and GAMA (176°, 0°). The bespoke (see Section 2.2) masking strategy,
visualized here by stripes that have been removed from the HSC fields, is reflective of areas where there are correlated photometry errors in the WISE data. Other
removed areas are primarily due to bright stars and Galactic foreground objects. This figure is produced with the plotting tool skymapper (P. Melchior 2021).

Table 1

Field Properties and Number of Objects in Our Redshift Range (z ä 0.6–1.2)

GAMA VVDS XMM

Area [deg2] 397.18 100.95 70.42

Nobj (LRGs) 1,165,141

(15,444)b
303,143

(11,469)b
204,849

(16,396)b

Nobj (AGN)
a 23,244 (1981)b 5447 (1632)b 5457 (1667)b

Nobj (unobscured AGN)
a 9197 (1506)b 1446 (1074)b 1466 (1018)b

Nobj (reddened AGN)
a 5957 (335)b 1150 (392)b 1129 (364)b

Nobj (obscured AGN)
a 7536 (140)b 2774 (166)b 2803 (285)b

Notes.
a
Luminous AGN sample (L6 μm > 3 × 1044 erg s−1

).
b
Number of objects with a measured spectroscopic redshift indicated in

parentheses.
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analysis as an unobscured + reddened sample. Meanwhile, the
obscured AGN training sample is made up of objects that are
both heavily dust-obscured and have only narrow emission
lines. This process recovers ∼48,000 AGN in our redshift
range (i.e., at least 3% of the p(z) is in z ä 0.6–1.2), across the
three HSC fields used here. Of these, ∼15,000 objects are
unobscured AGN, ∼11,000 are reddened objects, ∼21,000 are
obscured AGN, and <1% of objects do not have a spectral type

assigned. Probabilistic estimates of AGN/galaxy classifications
using machine learning methodologies that encompass a wide
range of source properties inherently come with caveats, but on
the whole are deemed to be more complete and reliable than
standard singular or 2D demarcations. Hence, we choose to
exploit the available data to its reasonable limits to classify
our AGN.
The g−W3 distribution of the unobscured + reddened and

obscured objects in our analysis as a function of redshift is
shown in panel (b) of Figure 2. The redshift evolution for the
g−W3 color of SWIRE library templates (M. Polletta et al.
2007) for the three types of AGN is shown as dashed lines in
panel (b) of Figure 2. We will investigate the clustering
amplitude of the sets of unobscured + reddened and obscured
AGN, as well as the difference between unobscured and
reddened AGN.
We note that these color cuts are a function of redshift, given

the minima of the KNN probability density distribution, and are
not like previously defined selection functions for AGN types
using only optical and MIR colors (e.g., D. Stern et al. 2005,
2012; R. C. Hickox et al. 2009; R. J. Assef et al. 2013;
R. E. Hviding et al. 2022). These new classifications recover a
significant fraction of spectroscopically confirmed W1−W2<
0.8 AGN (below the D. Stern et al. 2012 limit), generating a wider
(and more complete) sampling of the unobscured + reddened and
obscured AGN color space for our analysis (AGN spectra from
SDSS DR16; R. Ahumada et al. 2020). From follow-up spectra of
178 objects in our sample with i< 22.5, R. E. Hviding et al.
(2024) confirm the classification for 85% of randomly selected
unobscured + reddened AGN, and similarly 65% of the obscured
AGN sample, finding a contamination rate of 3% and 15%,
respectively, and bolstering our confidence in the classification.
We present the subsample redshift and luminosity distribu-

tions in Figure 2. We note the excess of unobscured +
reddened objects at high redshift, which are driving the excess
of high-luminosity AGN in the L6 μm plot (see panel (a) of
Figure 2). We obtain rest-frame L6 μm luminosity measure-
ments for each AGN in the sample via the standard power-law
fitting to the MIR photometry from WISE. In order to compare
the clustering across AGN subtypes, we divide the analysis into
a series of redshift bins (Section 3.3). Their luminosity
distributions are illustrated in Figures 3 and 4. We establish a
lower limit for the AGN luminosity at L6 μm> 3× 1044 erg s−1,
close to the peak of the distribution, where we are confident
that we are complete out to z∼ 1.2 (see Figure 2). This has the
added benefit of allowing an analysis comparing AGN
subtypes where their luminosity distribution is more consistent:
above our threshold. This results in a total of 34,144 luminous
AGN in our redshift range that we will use in our analysis. The
number of luminous AGN (and their spectral classes) in each
field is shown in Table 1, including the number of objects for
which we have spectroscopic redshifts.
Additionally, we define a low- and high-L6 μm range to

investigate if there is any evidence of an inferred halo mass
trend with luminosity. These additional cuts are set at
3× 1044< L6 μm< 1045 erg s−1 for the low-L6 μm sample, and
at L6 μm> 1045 erg s−1 for the high-L6 μm sample.

3. Methodology

In the following section, we describe our methods to
measure the clustering statistic and compare with DM halo
models to ascertain galaxy bias and halo mass estimates.

Figure 2. (a) The luminosity distribution of the unobscured + reddened (blue
contours, objects we infer to have broad emission lines) and obscured (red
contours, objects inferred to have narrow emission lines) AGN samples as a
function of the fiducial redshift (zbest) for each object. The contours are set at
the (0.25, 0.5, 0.75) quantiles of each distribution. (b) The g − W3 (AB
magnitude) color vs. the zbest distribution for unobscured + reddened and
obscured AGN, following the same color scheme and contour quantile levels in
the upper panel. We divide the AGN sample into unobscured, reddened, and
obscured classes based on their distribution in this color–redshift space
(A. D. Goulding et al. 2024, in preparation). We convert the WISE magnitudes
in the Vega system to AB with mAB = mVega + Δm, where Δm(W3) = 5.174
(T. H. Jarrett et al. 2011). The dashed lines are the g − W3 color–redshift
evolution for three AGN templates from M. Polletta et al. (2007). We use their
unobscured quasar template (QSO 1, blue line), their unobscured quasar with a
B. T. Draine (2003) extinction law applied with AV = 0.5 and RV = 3.1 (to
create a reddened quasar template; green line), and their obscured quasar
template (QSO 2, red line). Histograms show the individual distributions for a
given quantity, where colors indicate the AGN sample specified.
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3.1. Two-point Statistics to Assess Galaxy Clustering

3.1.1. Angular Correlation Function

The two-point angular clustering statistic is defined as the

excess probability of a pair of objects being separated by an angle

θ above a Poisson (random) distribution (P. J. E. Peebles 1973).
Spatial correlation functions are a critical tool with which to
analyze the clustering properties of galaxies on a wide range of
angular scales. With only photometric redshift information in
hand for every object in our sample, we limit this analysis to a
projected clustering statistic, rather than one in 3D. In order to
reduce shot noise bias, we employ the S. D. Landy & A. S. Szalay
(1993) estimator of the angular two-point function:

( )
( ) ( ) ( )

( )
( )

DD DR RR

RR

2
, 1w q

q q q
q

=
- +

where we further define the data–data, data–random, and

random–random pair counting operations DD, DR, and RR as

( )
( )

( )XY
XY

N N
2

X Y

q
q

=
¢

to ensure proper normalization given the number of objects N

considered in the operation. While D is drawn from the

Figure 3. L6 μm luminosity distributions for the specified redshift bins for this
analysis combining all considered HSC fields. The vertical dashed line
indicates the L6 μm lower limit for this analysis at 3 × 1044 erg s−1. The
different colors indicate the different AGN subsamples.

Figure 4. L6 μm luminosity distributions for the wide redshift bin for this
analysis combining all considered HSC fields. The vertical dashed line
indicates the L6 μm lower limit for this analysis at 3 × 1044 erg s−1. The
different colors indicate the different AGN subsamples that are considered in
the wide redshift bin analysis.
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observational catalogs, R is synthesized as a set of random

points. We generate these randoms such that they match the

survey footprint and have all area masks applied. This is critical

in order to ensure that any excess clustering from the data is

measured in the same survey geometry as the random points

that establish the comparison. We will be using a weighted pair

counting and binning statistic in this analysis, as detailed in

Appendix B.
We follow H. Awan & E. Gawiser (2020) in formalizing the

pair counting operation as

( ) ¯ ( )XY 3
i

N

j i

N

ij k,

X Y

ååq¢ = Q
¹

where

¯ ( )[ ( )] ( )1 , 4ij k ij k ij k, min, max,q q q qQ = Q - - Q -

and

§
©̈

( ) ( )x
x

x

0 , if 0

1 , if 0 . 5Q =
<
õ

The Heaviside step function details the binning operation that

counts the number of objects at an angular distance from another

object. The parameter θij is the separation between galaxy i and

galaxy j in the sample of NX and NY galaxies. The per-bin

counting operator ¯
ij k,Q counts the number of galaxy pairs at

separation k ij kmin, max,q q q<ô for the kth bin. This formalism is

equally applicable to the auto- or cross-correlation of galaxy

catalogs. We use 24 spatial bins for the calculation, logarith-

mically spaced from s= 0.01 h−1Mpc to s= 100 h−1Mpc. We

convert these projected scales to angular bins with a standard

angular diameter distance conversion (from the comoving

distance), with the median of the sample’s dN/dzas the fiducial z.

3.1.2. Uncertainty Estimation

We use a standard jackknife procedure to estimate the total
statistical and systematic error in a given per-field analysis.
Splitting each of the three fields into 25 equal-area regions, we
calculate the clustering signal from a set of 24 regions,
removing one region per iteration until all 25 have been
removed once. This removes approximately 4% of the data in
each calculation. The per-bin error (which will be used as the
1σ error bars in each of the measured correlation functions) is
then calculated from the square root of the diagonal of the
covariance matrix as defined in P. Norberg et al. (2009):

( ) ( ¯ )( ¯ ) ( )C x x
N

N
x x x x,

1
, 6jk i j

k

N

i
k

i j
k

j

1

å=
-

- -
=

where xi is the ith measure of the statistic, i.e., ω(θ), out of a

total of N= 25 measurements, and

¯ ( )x x N. 7i

k

N

i
k

1

å=
=

Previous analyses have adopted two different approaches to
quantifying the uncertainties: R. C. Hickox et al. (2011),
V. Allevato et al. (2011, 2014), P. Laurent et al. (2017), and
M. Krumpe et al. (2018) use the full covariance matrix while
L. Koutoulidis et al. (2013, 2018) and M. A. DiPompeo et al.
(2014, 2016, 2017) use only the square root of the diagonal

terms of Cjk as the 1D uncertainty. The most recent analysis of
G. C. Petter et al. (2023), which we compare with here, uses the
diagonal terms. For ease of comparison with prior work, we
adopt the diagonal treatment as our default approach. We also
evaluate and report the resulting best-fit galaxy bias and
inferred halo mass via least-squares minimization of the data–
model residual with the full Cjk matrix. In doing so, we capture
the contribution of the real off-diagonal bin-to-bin correlations
from the jackknife, and more accurately capture the precision
of our measurements. In presenting the results from the full
covariance matrix treatments, we show that our conclusions do
not qualitatively change when either approach is implemented
(see Appendix D). Additionally, the systematic uncertainty as a
function of field-to-field variability is constrained by compar-
ing the different fitted bias (b) and halo mass (Mh) values from
each field (defined in full in the following subsection). We
combine the bias and halo mass distribution from all fields to
estimate the average value and uncertainty from the complete
sample via an inverse variance weighted mean.

3.2. Clustering Interpretation

We use a halo model to infer the clustering properties from
the measured excess probability ω(θ). The relationship between
galaxy clustering and DM halo clustering is formalized with the
multiplicative ratio term of the galaxy bias, where we are
working within the Eulerian framework of peak background
split theory (R. K. Sheth & G. Tormen 1999). The bias term b
describes the excess clustering signal in galaxies relative to the
DM halo clustering model. We use the measured redshift
distribution from our sample to model the DM halo clustering
signal, which we parameterize with Limber’s equation
(D. N. Limber 1953; E. J. Groth & P. J. E. Peebles 1977;
J. A. Peacock 1991; D. J. Eisenstein & M. Zaldarriaga 2001):

⎜ ⎟⎛
¿
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⎛
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where we use ( ) ( )k z P k z, ,
k2

2 HF

3

2
D =

p
, PHF(k, z) being the DM

power spectrum from linear to nonlinear scales from halofit as

implemented in the Core Cosmology Library (CCL; R. Takahashi

et al. 2012; N. E. Chisari et al. 2019). J0 is the zeroth-order Bessel

function, χ(z) is the comoving distance in units of h−1 Mpc, and

dz/dχ is defined as ( ) ( )[ ( ) ]H z c H c z1m0
3 1 2= W + + WL for

a flat cosmology in hMpc−1.
This parameterization takes a model for the 3D clustering of

the halos and the dN/dz from our particular data set, properly
accounting for the expected halo clustering over the redshift
range being probed. This synthesis of the individual galaxies’
redshift probability distributions p(z) is usually constructed via
a simple sum of the individual source p(z),

( ) ( )
dN

dz
p z . 9

i

iå=

As detailed in Appendix B, we use Equation (B5) to perform
a weighted sum that considers an object’s full p(z). The benefit
of this weighted method is that it includes the probability of an
object being both within and outside a defined redshift bin,
rather than standard tomographic approaches that include
objects whose fiducial redshift is in the bin. We find that the
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results from this method are broadly consistent with the
standard tomographic method, but opt for our weighted method
in order to reduce possible effects on the systematic biases
inherent in photometric redshift fitting.

We fit the measured clustering with a forward model via a
linear least-squares fit with the simple multiplicative scalar
value b2, using a Monte Carlo (MC) sampling estimator. For
our cross-correlation, the fitted multiplicative value is bGbA,
i.e., the product of the bias from each of the two data sets
(galaxies and AGN) being correlated. We calculate the galaxy
bias from the autocorrelation, as well as the cross-correlation
between the galaxy and AGN samples. In this analysis, we are
able to divide the cross bias term by the recovered galaxy bias
bG and isolate the AGN bias bA. We judge the goodness of fit

via a χ2 test, recording the reduced χ2 statistic, n2 2
d.o.f.c c=n ,

for the total degrees of freedom (dof; X data points being fit – 1
fitting parameter, b or Mh). Using the combined nonlinear and
linear DM halo model defined in halofit, we establish our
fitting range to include smaller scales than what could be
constrained with the linear model alone (I. Zehavi et al. 2004;
R. Takahashi et al. 2012). We do not model the nonlinear one-
halo term in this work, as that would require a halo occupation
distribution (HOD) treatment (e.g., A. A. Berlind &
D. H. Weinberg 2002), and does not contribute to the linear
bias estimate. We thus only fit over scales 3¢ in the measured
correlation function, avoiding points on smaller scales in which
the more complex HOD modeling would be necessary. This
angular extent is chosen such that we fit for s> 1 h−1 Mpc in
all redshift bins. Given these parameters and our 24
logarithmically spaced angular bins, we have a total of 11
data points from each correlation function to fit over, giving us
10 dof. We use the implementation of Limber’s equation in the
LSST Dark Energy Science Collaboration (DESC) CCL8 to
include the measured dN/dz in the halofit model
(N. E. Chisari et al. 2019). This method produces the standard
bias analysis in the (mostly) linear regime, and allows for an
extension to estimate the mass of the average halo leading to
the measured bias.

With this model and fitting algorithm, we infer the average
halo mass of our samples, Mh, from the measured linear
clustering bias. We use the J. L. Tinker et al. (2010)
parameterization of the halo mass function to infer the halo
masses traced by the measured bias values, as do P. Laurent
et al. (2017). Following M. Tegmark & P. J. E. Peebles (1998),
we can use the analytical form of b(z, M) such that we may
replace PHF(k, z) in Equation (8) with b2(z, M)PHF(k, z) in an
autocorrelation, fitting for the parameter M using an MC
analysis. From this estimate of the galaxy bias and halo mass,
we may then calculate the AGN halo mass by replacing
PHF(k, z) in Equation (8) with bG bA(z, M) PHF(k, z), where bG
is known from the autocorrelation. While more uncertain than
the bias measurement due to the several assumptions made for
the halo mass function and HOD, a mass inference will isolate
the halo properties from the implicit redshift evolution in the
recovered bias. Moreover, halo mass comparisons across
analyses are complicated by subtle differences in the precise
formalism of the bias–halo mass translation used, and can
introduce significant systematic shifts.

Following P. Laurent et al. (2017), we match the measured
linear bias with the MC-derived halo mass best fit to estimate

Mh,min, i.e., a model for a strict lower limit in Mh. For every
measured bias value in our chain, we calculate the Mh,min by
solving for this value in

( )
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where b1 is the measured clustering bias, dn/dM is the halo

mass function, the effective bias function b(z, M) is as defined

in J. L. Tinker et al. (2010), and 〈N(M)〉 is the average halo

occupation, which we assume is 1 for our sample (i.e., every

AGN is in the central galaxy of its halo).
This defines the lower bound of the mass range of halos,

which we can then use to estimate the average halo mass, 〈Mh〉,
folding in the halo mass and redshift distribution of our sample:
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This average halo mass estimate is more representative of the
complete halo mass distribution that leads to the measured
galaxy bias. Inferring the average host halo mass through this
weighted average properly accounts for the cosmological
distribution of halo masses in the Universe, as opposed to
assuming all AGN are hosted in halos of a single representative
mass Meff. We discuss the intercomparison of different results
in light of possible choices for the b–Mh connection formalism
in Section 5.1.

3.3. Redshift Bins

Following previous work (A. Nicola et al. 2020; M. M. Rau
et al. 2023), we subdivide our total sample into broad redshift
bins where we evaluate the properties of the clustering as a
function of cosmic time. How these bins are constructed
becomes particularly relevant in photometric redshift surveys,
where the p(z) is much broader than that for a spectroscopic
measurement.
Our finalized redshift bins are selected such that we have

significant overlap in redshift between the HSC galaxy sample
and the AGN, at z> 0.5. The median uncertainty of the LRG
photo-z estimates, given their p(z), is σz∼ 0.1. This uncertainty
leads us to choose a bin width of Δz= 0.2 in order to capture
the full 1σ distribution of an object in the center of our bin. We
define three narrow redshift bins over which to conduct the
complete AGN sample analysis. The first bin is delimited at
zä 0.6–0.8, the second bin is z ä 0.8–1.0, and the third is
defined for z ä 1.0–1.2. We construct an additional wider bin
with which to investigate the clustering across AGN subtypes,
defined for z ä 0.7–1.0.

4. Results

In this section, we will discuss the measurement of the
angular correlation functions of HSC galaxies. First we present
the galaxy autocorrelations, then we turn to the AGN–galaxy
cross-correlations.

4.1. HSC Galaxy Autocorrelation

We compute the LRG autocorrelation using the methods
outlined in Section 3. Our estimate of the LRG galaxy bias will
be used to isolate the AGN bias from the cross-correlation in8

https://github.com/LSSTDESC/CCL
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Section 4.2. The dN/dz for the LRGs in each redshift bin,

which inform the DM model fit to the data, are shown in the top

row of Figure 5. The autocorrelations are shown in Figure 6. To

emphasize differences between the per-field data and the

models, we scale the ω(θ) functions by a power of θ. In general,
recovered ωGG(θ) values agree between fields. The per-angular

bin average across all fields is shown as white symbols with a

colored outline.
As described in Section 3.2, we recover the bias from these

galaxy populations by fitting our halofit DM model to the

measured points and uncertainties for each field. On smaller

scales (s< 0.3 h−1Mpc) there is a characteristic rise in

clustering that deviates in shape from our DM model due to

multiple subhalos within the central halo (known as the “one-

halo” term). We find the model describes the data well

( 12c »n ) down to arcminute scales, and we limit the fits to

linear scales s> 1 h−1Mpc. Fitting with s> 2 h−1Mpc yields

similar results. We also test whether our results change when

excluding larger angular scales, and find that the measured bias

values shift by <1σ when fitting on scales 1< s< 20 h−1Mpc.

On larger scales, the error bars are significantly larger, but the

measurements agree within the uncertainties. We use the field-

to-field variability in measured bias as an estimate of the total

systematic uncertainty. This is exhibited in Figure 7, where the

fitted values of the bias from each field are plotted for a single

redshift bin, and the total distribution is used to estimate the

median value and its uncertainty. The recovered bias and 2cn
values are summarized in Table 2. For the three narrow redshift

bins, we find the recovered biases are (with increasing z)

1.80± 0.03, 2.24± 0.03, and 2.90± 0.04. For our wide

redshift bin (z ä 0.7–1.0), the measured bias is 1.92± 0.03.

We find the reduced χ2 values for the linear bias fit to be 1 in

the two lower-redshift bins. In the z ä 1.0−1.2 bin, however,

we observe a significant amount of excess clustering on

large scales relative to the linear DM model. Based on our

preliminary galaxy clustering tests, detailed in Appendix A, we

interpret this excess as the result of projection effects from

lower-redshift objects still being present in our higher-redshift

bin. We also perform these fits using the full covariance matrix,

finding the measured bias in the two lower-redshift bins shifts

by <1σ, while the highest-redshift bin has a significantly lower

bias (bG∼ 2.4), reflective of the uncertainty in the zä 1.0–1.2

bin. The constrained values and uncertainties are reported in

Table 3.
We observe a characteristic rise in linear bias as a function of

redshift across our three narrow redshift bins, consistent with

the findings of recent LRG studies like R. Zhou et al. (2021).

This is expected for a population of relatively constant Mh (and

at a fixed magnitude limit) at greater lookback time, as has been

shown by prior LRG studies (e.g., S. Ishikawa et al. 2021).

With bias values in hand for our galaxy population, we now

turn to the galaxy–quasar cross-correlations.

Figure 5. Normalized dN/dz measured from the LRG (top) and full AGN samples (bottom) for auto- and cross-correlations in the three narrow redshift bins, across
different HSC fields. These are constructed following the procedure outlined in Appendix B.
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4.2. Full AGN Sample Cross-correlations

Recovering the clustering amplitude from the AGN population
permits us to ask questions about any trends with luminosity or
redshift, and infer the halo mass that the AGN occupy following
Section 3.2. The cross-correlations of the LRG sample and
the complete AGN catalog, ωGA(θ), are shown in Figure 8. We
perform the cross-correlation analysis for AGN that lie above the
luminosity threshold of L6 μm> 3× 1044 erg s−1, as established in
Section 2.4.1 (see bottom panels of Figure 5 for the samples’
normalized redshift distributions). These correlation functions are
calculated in each HSC field, for each of the three narrow redshift
bins. We see broad agreement of the recovered ωGA(θ) across
fields, but note they are noisier than the correlation for ωGG(θ).
While consistent within the per-bin errors, the autocorrelations

vary at∼10% relative to the average over 3 40q¢ < < ¢, and here
we see ∼20% over the same range for the lowest two redshift

bins, and ∼50% variability for the highest-redshift bin.
From the measured cross-correlation functions, we fit for the

linear bias. Using the per-field autocorrelation bias found in

Section 4.1, we divide out the galaxy bias contribution in the

measured bGbA to isolate the quasar bias, bA. We perform a

halofit model fit for scales s> 1 h−1Mpc using CCL, and

infer the halo mass as described in Section 3.2 above. The

average bias and halo mass are recorded in Table 2, where they

have been calculated with an inverse variance weighting of the

results from individual fields. The recovered biases across

redshift bins are consistent within 1σ (see Table 2), showing no

significant evidence for bias evolution with redshift across this

Figure 6. The measured HSC LRG projected angular autocorrelation in our three HSC fields across three redshift bins in θω(θ). We use this scaling by a power of θ to
reduce the dynamic range of the plot and more clearly see the differences in the measured points. The open symbols are the per-bin average correlation function across
fields. The 1σ uncertainties are drawn from the square root of the diagonal of the jackknife covariance matrix for the sample. The solid lines represent the fitted
halofit DM model to each field. We fit points for physical scales s > 1 h−1 Mpc, while the gray region contains the interior points excluded from the fit. Note that
the model does not include the one-halo term, which is why the data rise significantly above the model on small scales.

Figure 7. Recovered galaxy bias from the autocorrelation of HSC-selected LRGs, in three redshift bins, for each analysis field. The inverse variance weighted mean
and 1σ uncertainty are plotted with a dashed line and shaded region.
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narrow redshift range. The average inferred Mlog h for our
L6 μm> 3× 1044 erg s−1 range in the three narrow redshift bins
is 12.8± 0.1, 12.7± 0.1, and 12.6± 0.1 ( )h Mlog 1- . We also
calculate the correlation function for the full AGN sample in
our wider redshift bin (z ä 0.7–1.0, Figure 9)—see the upper
leftmost panel of Figure 10. The inferred halo mass is
12.9± 0.1 ( )h Mlog 1- .

We additionally test for any evidence of halo mass evolution
with luminosity by making successive subsamples with a
higher threshold of L6 μm. The inferred mass for the

L6 μm> 1045 erg s−1 sample is 12.5 0.3
0.2

-
+

( )h Mlog 1- , while the
halo mass for the 3× 1044< L6 μm< 1045 erg s−1 bin is
13.0± 0.1 ( )h Mlog 1- . As visualized in the upper panels of
Figure 11, we find no significant evidence for an evolution in
halo mass as a function of L6 μm (also see Table 2). These bias
and halo mass values are consistent with the results when using
the full covariance matrix treatment, reported in Table 3.

4.3. AGN Subtype Cross-correlations

Following the same procedure as that for the full AGN
sample, we calculate the cross-correlation for the AGN
subtypes and estimate the physical properties of the halos in
which these AGN reside. We investigate the obscured and
unobscured AGN categories in a single, broader redshift bin
(z ä 0.7–1.0) to provide a large enough sample—see the total
and weighted number of objects in Table 2. Utilizing the same
L6 μm threshold, the luminosity distributions of the full
unobscured + reddened and obscured AGN resemble each
other, as seen in Figure 4. From the total number density
of 50.1 deg−2

(L6 μm> 3× 1044 erg s−1
) of AGN in the

zä 0.7–1.0 bin, there are 26.7 deg−2 unobscured + reddened
objects, and 22.5 deg−2 obscured objects. The unobscured +
reddened AGN include 14.6 deg−2 unobscured and 12.1 deg−2

reddened AGN.
The measured cross-correlation functions for the complete,

unobscured + reddened, and obscured samples are illustrated
in the top row of Figure 10, and display a fair amount of field-

to-field variability, while being consistent within the errors. We
account for these variations and illustrate a mean value as we
do for the full AGN sample. From these correlation functions,

we note how the average recovered clustering shifts above and
below the reference of the complete AGN sample (black
dashed line). These shifts in bias are (nonlinearly) correlated

with the underlying halo mass distribution of where these AGN
reside. We exploit this via the methods outlined in Section 3.2
to recover the average mass of the halos in which these AGN
are found. We again observe the rise at small angular scales

(s< 0.3 h−1Mpc) relative to the halofit model from the
one-halo term. As before, we fit the correlation function with
the model beyond 1 h−1Mpc, avoiding the nonlinear-domi-

nated regime. The measured correlation functions are well
described by the model in our fitting range (see χ2 values in
Table 2). As an additional test of the (in)consistency between

the unobscured and obscured measured ω(θ) values, we fit the
same CCL-derived ω(θ) DM model to both. They are fit with
the (per-field) full AGN sample DM halo model (see solid lines
in the top left panel of Figure 10). We find that the fitted b2

value for the LRG × unobscured AGN ω(θ) (5.0± 0.5) is
statistically inconsistent at >5σ with the value inferred for the
LRG × obscured AGN (2.2± 0.4) measurement. This is the

Table 2

Angular Correlation Function Fit Results

Subset Nobj Weighted Nobj 〈L6 μm〉 〈z〉 〈χ2〉 b 〈Mh〉
(log erg s−1

) (10 dof) ( )h Mlog 1-

z ä 0.6–0.8

LRGs 1,288,589 879,258.8 L 0.7 ± 0.1 9.8 1.80 ± 0.03 L

All AGN 22,988 5804.3 44.7 0.2
0.4

-
+ a 0.8 0.2

0.1
-
+ 5.4 1.5 ± 0.1 12.8 ± 0.1

z ä 0.8–1.0

LRGs 851,117 440,970.6 L 0.9 ± 0.1 6.6 2.24 ± 0.03 L

All AGN 26,264 10,381.3 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 5.8 1.4 ± 0.1 12.7 ± 0.1

z ä 1.0 − 1.2

LRGs 324,790 98,498.4 L 1.0 ± 0.1 18.7 2.90 ± 0.04 L

All AGN 25,235 7204.7 44.9 0.3
0.4

-
+ a 1.1 ± 0.2 4.9 1.6 ± 0.1 12.6 ± 0.1

z ä 0.7–1.0

LRGs 1,509,905 843,166.6 L 0.8 ± 0.1 15.5 1.92 ± 0.03 L

All AGN 28,494 13,898.8 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 6.7 1.6 ± 0.1 12.9 ± 0.1

Unobscured AGN 8266 3942.0 44.9 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 8.9 2.2 ± 0.1 13.3 ± 0.1

Unobscured + Reddened AGN 15,156 6745.71 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 5.4 1.9 ± 0.1 13.1 ± 0.1

Reddened AGN 6890 2803.6 44.8 0.2
0.5

-
+ a 0.9 0.2

0.1
-
+ 3.1 1.6 ± 0.1 12.8 0.2

0.1
-
+

Reddened + Obscured AGN 19,675 9893.4 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 5.0 1.4 ± 0.1 12.7 ± 0.1

Obscured AGN 12,785 7089.8 44.7 0.2
0.3

-
+ a 0.9 ± 0.2 6.9 1.3 ± 0.1 12.6 ± 0.1

High-L6 μm AGN 7760 2492.2 45.1 0.2
0.4

-
+ b 1.0. 0.2

0.1
-
+ 3.6 1.4 0.2

0.1
-
+ 12.5 0.3

0.2
-
+

Low-L6 μm AGN 20,734 11,406.5 44.8 0.2
0.3

-
+ c 0.9 0.2

0.1
-
+ 6.0 1.7 ± 0.1 13.0 ± 0.1

Notes.
a
Primary luminous AGN selection (L6 μm > 3 × 1044 erg s−1

).
b
Higher-luminosity AGN selection (L6 μm > 1045 erg s−1

).
c
Lower-luminosity AGN selection (3 × 1044 < L6 μm < 1045 erg s−1

).
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case when fitting with the 1D uncertainties, as well as with

the full covariance matrix. This shows that the measured

amplitude of the clustering signal from both of these samples is

substantially different.
With these correlation functions, we seek to measure the

clustering strength of our different AGN subsamples. We

estimate the galaxy bias and inferred halo mass for each

subtype to investigate whether the different samples have the

same or different characteristic Mh. We present the AGN

subtype halo masses in Figure 11 and in Table 2, and we

present the full covariance matrix treatment’s inferred Mh and

significance in parentheses throughout the text and in

Appendix D (in Table 3). The Mh values inferred with the

full covariance matrix treatment shift by <1σ for all AGN

subtypes. The average unobscured + reddened AGN halo mass

is ( )13.1 0.1 13.2 0.2
0.1 -
+

( )h Mlog 1- . We find the Mh for

obscured AGN is ( )12.6 0.1 12.6 0.3
0.2 -
+

( )h Mlog 1- . The

unobscured + reddened average Mh is higher than the obscured

halo mass by a factor of ∼3. Given the 1D statistical
uncertainties, this is a 3σ difference (2.8σ with the full

covariance matrix).
We also investigate what happens to the clustering and the

inferred halo mass when we split the unobscured+ reddened AGN
sample into its reddened and unobscured AGN components. The

Figure 8. Cross-correlation between HSC LRGs and all AGN measured, fitted with CCL in different fields across redshift bins, shown in θω(θ) to reduce the plotted
dynamic range. The AGN sample is limited to L6 μm > 3 × 1044 erg s−1. The open symbols are the per-bin average ωGA(θ) across fields. The 1σ uncertainties are
drawn from the square root of the diagonal of the jackknife covariance matrix for the AGN sample. The solid lines represent the fitted halofit DM model to each

field. The points considered in this analysis are those past the gray shaded region, at ( )s h1 Mpc 31 q> ¢-  .

Figure 9. Normalized dN/dz measured from the AGN samples for cross-correlations in the wide redshift bin (z ä 0.7–1.0) for the L6 μm > 3 × 1044 erg s−1 threshold,
for the three fields of interest.
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correlation functions for these samples can be seen in the bottom

panels of Figure 10. First we compare the average halo mass for

the unobscured and reddened AGN, finding Mlog 13.3h = 
( )0.1 13.4 0.1 and ( ) ( )h M12.8 13.0 log0.2

0.1
0.2
0.1 1

-
+

-
+ - , respec-

tively. Here, our sample of unobscured objects are more massive

than their reddened counterparts by a factor of∼3, at 3σ (2.9σ with

the full Cjk). Next we contrast blue objects (unobscured AGN) and

reddened objects (reddened AGN + obscured AGN), finding that

there is a significant difference, with the former being ∼4×more

massive, at 5σ (3.9σ). We directly compare the unobscured and

obscured AGN, and find a 5σ (3.5σ) statistical difference in the

inferred average halo mass, where the unobscured AGN reside in

∼4.5×more massive halos.
These measurements may suggest that AGN populations

with different obscuration levels occupy halos with different

average inferred masses. However, we must consider possible

systematic uncertainties in our photometric redshift values

and possible misclassifications before making any physical
interpretations.

4.4. Potential Effects of Unconstrained dN/dz Uncertainties

We investigate how systematic shifts in our dN/dz would
impact the interpretation of our measured clustering functions.
As we detailed in Section 3.2, the halo model is directly
informed by the overlap of the input dN/dz in a cross-
correlation. The smaller the overlap of the two samples’ dN/dz,
the lower the expected clustering amplitude of the halo model.
Consequently, the measured bias relative to the halo model will
be higher if these dN/dz are shifted away from each other.
Here we use a toy scenario to estimate the magnitude of the

required shift in dN/dz to resolve the currently observed
difference in average halo mass estimated between our
unobscured + reddened and obscured AGN. We shift the
dN/dz for our AGN samples and subsamples for each field by

Figure 10. Cross-correlation between HSC galaxies and the full AGN sample and subtype samples in the wide redshift bin (z ä 0.7–1.0) and with
L6 μm > 3 × 1044 erg s−1, shown in θω(θ). The open symbols are the per-bin average correlation function across fields. The 1σ uncertainties are drawn from the square
root of the diagonal of the jackknife covariance matrix for each AGN subtype sample. The solid lines represent the fitted halofit DM model to each field. The
points considered in this analysis are those past the gray shaded region, at s > 1 h−1 Mpc, where we are confident the model is able to describe the data. We note the
model still agrees with the measured points well within the shaded region. We observe a departure from the DM model on small scales, as expected for the one-halo
term. The dashed line represents the full AGN sample average best-fit halofit model, and is repeated in all panels as a reference line for ease of comparison. Top:
the cross-correlation of the full, unobscured + reddened, and obscured samples of AGN across three fields. Bottom: the cross-correlation of the unobscured, reddened,
and reddened + obscured samples with the LRG sample. The symbol shapes used for each sample here match those in Figure 11.
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Δz/(1+ z)=±0.03. We find that shifting the dN/dz to lower
redshifts has a minimal impact on the measured bias or inferred
Mh. This is expected given the shift to lower redshift does not
significantly change the overlap in dN/dz between the LRG
and the AGN. Shifting the distribution to higher z (further
separating it from the bulk of the LRG dN/dz) shifts the
average inferred halo mass up by a factor of ∼2.5 (0.4 dex) for
any sample/subsample of AGN. This shift is represented by the
red arrow in the bottom left panel of Figure 11. The bA is
shifted higher by 0.6 and 0.3 for the unobscured + reddened
and obscured samples, respectively.

If the true dN/dz for the obscured objects were to be
systematically shifted in this way relative to our measurement
(while the unobscured + reddened objects’ dN/dz is
considered accurate), then the significant difference we
measure here would be resolved. As R. C. Hickox et al.
(2011) show, systematic shifts in redshifts for photometrically
determined obscured AGN have been a topic of considerable
uncertainty given the abundance of spectroscopic information
on unobscured AGN (see Y. Shen et al. 2009; B. W. Lyke et al.
2020) and the relative dearth of obscured AGN spectra. This is
sensible given obscured objects are fainter and will suffer

photo-z fitting degeneracies similar to those of galaxies at
similar redshifts. Prior studies from HSC have also highlighted
the possibility of these systematic shifts in the photometric
redshift distributions (see R. Dalal et al. 2023).
We also investigate the effect of having uncorrelated objects

(any object that is at a different redshift but is incorrectly in our
redshift bin) in the analysis. We estimate how including
increasing numbers of randomly distributed objects (i.e., those
with incorrect redshifts) in the unobscured and obscured AGN
samples affects the measured correlation functions. We find
that if 10% of the unobscured AGN sample were in fact
uncorrelated random objects (that are then unaccounted for in
the dN/dz), they would depress the inferred bias value such that
it would resolve the difference in bias with the obscured AGN.
The magnitude of this effect is reproduced when including
random objects in the obscured AGN sample. We infer from
this test that if we had a similar fraction of catastrophic photo-z
misattributions only in our obscured AGN sample, it could
produce the bias difference we measure in this analysis.
Clearly, photometric redshifts provide a systematics floor to our
results that can only be resolved with large spectroscopic
samples. We discuss the possibility of these redshift failures

Figure 11. Summary of recovered halo masses (Mh) from the AGN cross-correlation of the full AGN sample (top row) and the AGN subtype samples (bottom row).
The left panels illustrate this as a function of redshift. The right panels show the halo masses as a function of estimated L6 μm. The position and uncertainties in z and
L6 μm are drawn from the 16%, 50%, and 84% quantiles of each bin’s underlying distribution. We find that unobscured + reddened AGN are found in significantly
more massive halos than obscured AGN. We additionally estimate the effect of a systematic redshift error in the dN/dz on our inferred halo masses. As indicated by
the red arrow, an upward z shift in the dN/dz byΔz/(1 + z) = 0.03 would lead to a boosting of the inferred Mh by a magnitude of 0.4 dex, a linear factor of ∼2.5. The
values represented are also found in Table 2.
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and other potential contaminating sources in our sample in
Section 5.2.

5. Discussion

The use of correlation functions has become an efficient
means of investigating the properties of DM halos in which
AGN reside. From illustrating the redshift evolution of bias for
AGN samples (see N. P. Ross et al. 2009; Y. Shen et al. 2009;
V. Allevato et al. 2011; L. Koutoulidis et al. 2013;
M. C. Powell et al. 2020) to informing the bias and inferred
halo mass of different AGN subtypes (e.g., R. C. Hickox et al.
2009; V. Allevato et al. 2014; M. A. DiPompeo et al.
2016, 2017; P. Laurent et al. 2017; G. C. Petter et al. 2023;
A. Viitanen et al. 2023), spatial statistics have served to
describe underlying properties of the distribution and abun-
dance of AGN.

We study the halo properties of our HSC + WISE AGN
sample using cross-correlation with LRGs. We find that the
AGN population shows no evidence for halo mass evolution
with redshift, over the narrow redshift range studied here.
Focusing on AGN with L6 μm> 3× 1044 erg s−1, where we are
relatively complete up to z∼ 1.2, we likewise find no evidence
for variation in Mh as a function of luminosity. This is
equivalent to Lbol> 3.4× 1045 erg s−1, following the IR
correction from P. F. Hopkins et al. (2007). However, we do
see a dramatic difference in the inferred halo mass between the
unobscured + reddened and obscured AGN samples. The
masses differ by a factor of ∼3, with the unobscured +
reddened AGN being more massive at >3σ significance
relative to the obscured objects.

5.1. Luminosity Dependence of Inferred Halo Properties

Many prior papers have found a lack of luminosity
dependence in clustering as found here. Direct comparisons
between samples can be complicated by differences in selection
method, redshift distribution, and so on. We thus limit our
attention to samples with 〈z〉≈ 1, with photometric or
spectroscopic redshifts, and that utilize angular correlation
functions. We compare with X-ray (A. L. Coil et al. 2009;
V. Allevato et al. 2011; L. Koutoulidis et al. 2013;
M. C. Powell et al. 2020), optical/UV (Y. Shen et al. 2009;
P. Laurent et al. 2017), and MIR (R. C. Hickox et al. 2011)
selected samples. The left panel of Figure 12 includes bias
tracks as a function of redshift for a given halo mass, following
J. L. Tinker et al. (2010). The right panel shows the reported
Mh from these analyses as a function of bolometric luminosity.
To convert each sample to a bolometric luminosity in a uniform
manner, we use the corrections from P. F. Hopkins et al.
(2007). We find the average halo mass for our AGN sample
( h M13 log 1» - ) is consistent with the AGN halo mass inferred
by the studies we compare with here.

We reiterate that comparing halo mass estimates across analyses
is imperfect due to different treatments of the galaxy bias to halo
mass connection, which may introduce significant shifts. Attention
must be paid to whether the inferred Mh is calculated with either
the effective redshift or the complete dN/dz of the sample, as well
as the precise b–Mh connection used (e.g., R. K. Sheth &
G. Tormen 1999; R. K. Sheth et al. 2001; J. L. Tinker et al. 2010).
Moreover, distinct cosmological codes make different assumptions
in standard galaxy bias–halo mass treatments, such as the mass
definition adopted, which in the case of spherical overdensity based

masses picks a value of Δ as defined in J. L. Tinker et al. (2010).
We have assumed, like P. Laurent et al. (2017) and the CCL
default (N. E. Chisari et al. 2019), that Δ= 200. Additionally,
there is not an agreed-upon convention for the definition of halo
mass (and therefore, a universal value of Δ). This plurality of
different approaches can introduce significant shifts on the order of
0.1–1.0 dex, and makes any comparison across analyses difficult.
To ensure robustness in our investigation, we check our (N-body
derived) halo mass inference from J. L. Tinker et al. (2010) against
the analytic formulation from R. K. Sheth & G. Tormen (1999).
While the recovered halo masses for all our subsamples shift to
∼0.2 dex larger values, we find that the relative halo mass
differences between AGN subtypes are consistent across these
b–Mh parameterizations. We also verify that these halo mass
differences are preserved when choosing a different halo mass
function formalism. We choose a parameterization that integrates
over the halo mass function so as to recover the 〈Mh〉 (see
P. Laurent et al. 2017 for another implementation of this method).
Other analyses such as G. C. Petter et al. (2023) have opted for an
Meff approach, where one reports the halo mass at which the
b(z, M) matches the measured galaxy bias, for a given b–Mh

connection. While there are physical implications to each of these
approaches, we find that the estimated Mh differences and
significances are present irrespective of the chosen formalism.
We are not so focused on the precise value of the inferred Mh, but
rather on the significance of the differences. Given all these
possible analysis choices, we conclude that while relative halo
masses within any investigation are informative, contrasting
absolute values between analyses can be misleading.
As we noted previously, we find no evidence for bias or halo

mass evolution as a function of luminosity. Our result is consistent
with Y. Shen et al. (2009), who find that over a wide range of
redshifts, the recovered halo mass of optically selected quasars
does not show any trends with luminosity (see also S. M. Croom
et al. 2005; A. Lidz et al. 2006; A. L. Coil et al. 2009;
R. C. Hickox et al. 2011; A. J. Mendez et al. 2016). Similarly,
Y. Shen et al. (2013) find there is a poor correlation between L

and Mh at z̄ 0.5~ .
Several analyses have constrained the AGN halo mass range

within M h M12.5 13 logh
1Î - - (P. F. Hopkins et al. 2008;

N. Cappelluti et al. 2012; M. Krumpe et al. 2014; J. D. Timlin
et al. 2018). It has been suggested that the halo mass scale at
which the studies presented here converge is unique for AGN
triggering due to the low relative galaxy velocities within a
group (e.g., P. F. Hopkins et al. 2008; R. C. Hickox et al.
2011). However, studies of more detailed semiempirical
models have suggested that the underlying distribution of halo
masses is broad, but the combination of higher AGN fractions
in higher-mass star-forming galaxies, low-L AGN sample
incompleteness, and relatively high satellite fractions among
AGN leads to an apparent constant Mh (A. Georgakakis et al.
2019; J. Aird & A. L. Coil 2021).
We note that some analyses have found evidence for a

correlation between quasar luminosity and inferred halo mass
(L. Koutoulidis et al. 2013). M. Krumpe et al. (2018) study
X-ray AGN at 〈z〉< 0.3. They find no significant difference
between their high- and low-LX bins on linear scales (two-halo
contribution), but find a significant difference (3σ) when
comparing the HOD-derived clustering strength for the one-
halo term. This difference may be driven by the inclusion of the
intrahalo small-scale clustering (the one-halo term), given that
prior studies have noted this higher clustering amplitude due to
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the presence of merging systems (J. F. Hennawi et al. 2006;
W. Serber et al. 2006; P. F. Hopkins et al. 2008). Since our
analysis only considers large scales, we are not surprised at the
lack of a luminosity difference in our results. This absence of
an L dependence allows us to analyze differences as a function
of AGN type (Section 5.2), without requiring identical L
distributions.

5.2. Inferred Average Halo Mass Differences

Previous studies have disagreed on whether obscured/Type
II and unobscured/Type I AGN reside in DM halos of different
masses. For instance, V. Allevato et al. (2011) find a trend
where (X-ray selected, optically classified) broad-line AGN are
in more massive halos than narrow-line AGN at a range of
redshifts (zspec∼ 0.8–2.0), and repeat this finding at zspec∼ 3 in
V. Allevato et al. (2014). However, it is difficult to compare
with X-ray analyses given smaller sample sizes and different
redshift ranges. M. Krumpe et al. (2018) find excess clustering
of (X-ray column depth defined) Type II AGN relative to Type
I AGN using spectroscopic redshifts for 〈zspec〉< 0.04.
N. Cappelluti et al. (2010) find the opposite, showing X-ray
Type I AGN to be an order of magnitude more massive than
their Type II counterparts for 〈zspec〉< 0.06, again split by their
column depth.

Previous optical- and IR-selected AGN studies have also
seen a divergence of results. Using a projected real-space
correlation analysis of optical−MIR color selected quasars,
R. C. Hickox et al. (2011) show that obscured AGN (with
primarily photometric redshifts) have statistically consistent
clustering with unobscured AGN (with primarily spectroscopic
redshifts), but note that the difference may be underestimated

due to photo-z uncertainties. A. J. Mendez et al. (2016) also
find no significant difference between AGN subtypes across IR
selections with spectroscopic redshifts for each object. Other IR
analyses have focused on using representative dN/dz distribu-
tions from a subset of their IR-selected AGN sample, which
complicates direct comparison. G. C. Petter et al. (2023) find,
as have previous photometric AGN surveys from IR selection
(E. Donoso et al. 2014; M. A. DiPompeo et al. 2017), that
obscured AGN are in significantly higher mass halos than their
unobscured counterparts. But comparisons with these studies
are not straightforward since many of these analyses (such as
R. Gilli et al. 2009; E. Donoso et al. 2014; M. A. DiPompeo
et al. 2016, 2017; G. C. Petter et al. 2023) span redshift ranges
(z ä 0–3) that we do not probe in this paper. In addition to
differences in redshift range and approach, we also utilize a
different color selection, which also precludes direct
comparisons.
We find that the g−W3 color versus redshift selected

unobscured + reddened AGN in our sample are in more
massive halos than the obscured AGN, by a factor of ∼3, with
a statistical significance >3σ (2.8σ with the full covariance
matrix). We also find that the host halos of unobscured AGN
are more massive than the halos of reddened AGN by a factor
of ∼3, at a statistical significance of 3σ (2.9σ with the Cjk), and
the unobscured AGN are ∼4.5×more massive than the
obscured AGN at 5σ (3.5σ), where the central values of the
inferred AGN subtype Mh shift by <1σ in all cases. We note
that the systematic uncertainty in our inferred average Mh

associated with our reliance on photometric redshifts can be as
large as the significant difference we see between our
subsamples with a Δz∼+0.06 systematic shift in the dN/dz
(as visualized by the low-opacity red rectangle in Figure 12).

Figure 12. Our measured AGN bias and inferred halo masses for the full AGN sample and unobscured + reddened and obscured samples in comparison with other
analyses. Left: the recovered AGN bias as a function of redshift in comparison with X-ray, optical, and IR selected AGN clustering studies. Marker styles represent the
analysis used in the comparison. Marker color indicates whether it is an analysis of all the AGN in the sample, or of a subsample for unobscured + reddened or
obscured AGN. The colored boxes illustrate our measurements and statistical uncertainties (solid outlines), and we include our estimate of the possible magnitude of
inferred bias and halo mass shifts were there to be a systematic bias in the dN/dz for Δz/(1 + z) = 0.03 (lower-opacity red rectangle). Plotted lines illustrate the
nominal b(z, Mh) tracks for different halo masses (J. L. Tinker et al. 2010). Right: inferred halo masses as a function of bolometric luminosity (Lbol); markers are the
same as those in the left panel. We convert studies’ recorded Lν to Lbol using the correction from P. F. Hopkins et al. (2007). We compare, where available, with values
from projected angular correlation function analyses, rather than projected real-space derived values (see R. C. Hickox et al. 2011). This halo mass comparison serves
as a visualization of other results in the field and the halo mass differences between subtypes they find, but absolute value comparisons are difficult since the studies
presented here use different b–Mh formulations.
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We cannot rule out that such small systematic shifts in the
dN/dz could drive our and previous (photo-z based) results
regarding Mh for obscured versus unobscured AGN (see
Section 4.4).

We leave open the possibility that some objects can be
misclassified and included in our AGN sample. Objects such as
lower-mass star-forming galaxies (K. N. Hainline et al. 2016)
could enter our selection, but only if the redshift solution is
incorrect such that the estimated luminosity is above our
threshold, and if they are sufficiently bright in the MIR to
appear to be similar to an AGN. These tight observational
constraints significantly limit the parameter space from which
non-AGN may enter our sample. Though we are confident our
classification methods are robust, further observations are key
to reducing the possibility of this potential systematic effect.

We conclude that additional spectroscopic measurements are
necessary to determine whether the differences in halo mass by
obscuration are real. If so, we may have found evidence linking
obscuration level with different phases in AGN–host galaxy
coevolution, as others have proposed. Such differences may
arise naturally if (for instance) earlier phases of galaxy and BH
growth are associated with lower-mass halos and higher levels
of obscuration (e.g., P. F. Hopkins et al. 2007; R. C. Hickox
et al. 2009; V. A. Fawcett et al. 2023). While photometric
surveys provide large sample statistics from which to perform
clustering measurements, spectroscopic information is key to
robust AGN identification, classification, and redshift determi-
nation. Large-format spectroscopic surveys, like the upcoming
survey of the Prime Focus Spectrograph (M. Takada et al.
2014; J. Greene et al. 2022) on the Subaru Telescope, will be
essential in further investigating the ensemble properties of
AGN and reducing the effect of systematics.

6. Conclusions

We present a correlation analysis between LRGs observed by
HSC and AGN selected from HSC and WISE photometry at
angular scales of 0.1 200q¢ < < ¢. These AGN are selected with a
combination of HSC optical and WISE MIR photometric colors,
and their classification has been shown to be robust with
spectroscopic confirmation (R. E. Hviding et al. 2024). Using
three HSC fields totaling ∼600 deg2, we have a total of 1.7× 106

LRGs and ∼34,000 AGN in the full redshift and luminosity range
we analyze (zä 0.6–1.2, L6 μm> 3× 1044 erg s−1). For the AGN
subtype cross-correlation clustering analysis, we use a single
redshift bin (zä 0.7–1.0) containing 1.5× 106 LRGs and
∼28,500 L6 μm-limited AGN. We fit these correlation functions
with a linear + nonlinear DM halo model at physical scales
s> 1 h−1Mpc ( 3q ¢ ), and interpret the clustering strength with
physical parameters. Our principal conclusions are as follows.

1. We find no significant evidence for luminosity depend-
ence on the inferred halo mass where AGN reside.

2. The host halos of unobscured + reddened AGN are
∼3×more massive than those of obscured AGN, at a 3σ
statistical difference (2.8σ with the full covariance matrix).
We also directly compare our samples of unobscured AGN
(i.e., Type I quasars) and obscured AGN (i.e., Type II) and
find the former are, on average, in ∼4.5×more massive
halos with M h Mlog 13.3 0.1 logh

1=  - , a 5σ statistical
difference. If we use the full covariance matrix instead, we
find that theMh values are unchanged, with a 3.5σ statistical
difference between unobscured and obscured AGN.

3. We find that reddened AGN (which we expect to have broad
lines) are in halos of intermediate mass between unobscured
and obscured AGN, at M h Mlog 12.8 logh 0.2

0.1 1= -
+ - . As

such, the halos of unobscured objects are ∼3×more massive
than those of reddened AGN, at 3σ (given statistical
uncertainties from the diagonal of the covariance matrix).
This result requires additional spectroscopic follow-up to
better characterize the AGN samples, but could point to an
evolutionary sequence between these AGN that is traced by
the average halo mass.

We investigate the coevolution of SMBHs and their galactic
hosts, and find that inferred average halo masses continue to be
an effective means of tracing average AGN properties. By
holding the luminosity and redshift distributions relatively
constant between AGN subsamples, we are able to infer the
differences between AGN subtypes as a function of our
photometric color and redshift classification. However, possi-
ble unconstrained dN/dz systematic uncertainties prevent us
from concluding that these inferred differences represent the
underlying distribution with certainty, if they were to only
affect the lower halo mass results. HOD analyses are essential
to exploit the small-scale clustering measurements we have
shown here, and will be a promising extension of this study to
learn about AGN satellite fractions. Additional work is
necessary to continue constraining the properties of the
obscured AGN, but the results here show that they may
include a significant population of lower halo mass objects,
relative to the unobscured + reddened AGN. Evolutionary
models and semiempirical approaches like those outlined by
J. Aird & A. L. Coil (2021) would be useful in constructing
simulations where we may test for possible halo mass
differences. Inferring these AGN’s characteristics has been an
area of active research (G. C. Petter et al. 2022; V. A. Fawcett
et al. 2023), and further observational data is key to
understanding their morphology and potential place in the
AGN evolutionary picture.
The data underlying this analysis are set to improve

significantly in the coming years. Upcoming wide-field
photometric surveys, like the Rubin Observatory’s Legacy
Survey of Space and Time (Z. Ivezić et al. 2019) and eROSITA
(A. Merloni et al. 2012), and spectroscopic surveys such as the
Prime Focus Spectrograph survey (M. Takada et al. 2014;
J. Greene et al. 2022) and the Dark Energy Spectroscopic
Instrument survey (DESI Collaboration et al. 2016, 2024) will
be particularly capable of revealing AGN (and AGN subtype)
populations. From disentangling AGN properties as a function
of time and evolutionary stage, to better characterizing the
spectral properties of AGN and the galaxies in which they
reside, new data sets will readily enable extensions of the work
presented here.
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Appendix A
LRG Selection

We have defined our parent HSC galaxy samples as objects
brighter than i= 24 AB mag, using three narrow photometric
redshift bins, and a wide redshift bin. We determine the bin
widths based on the median uncertainty from the AGN
sample’s photometric redshifts (see Section 3.3). As a check
on the photometric redshift accuracy, we calculate the cross-
correlation between the galaxy sample in the first and third
narrow redshift bins (i.e., before color cuts). If our photometric
redshifts and their errors are reliable, we should not detect
much signal above the random in the cross-correlation.
Nonetheless, by estimating the amplitude of the cross-bin
correlation relative to the autocorrelations, we find that there is
∼30% correlation between the full magnitude-limited galaxy
samples in the 0.6–0.8 and 1.0–1.2 redshift bins. In addition,
the autocorrelation of this sample displays artificial signal on
large scales, where the true signal is about 1% of the small-
scale amplitude and we become systematic-limited. These
findings require that we prune the galaxy catalog and identify
the source of these systematic limitations to our measurement.
To fix this, we adopt a color space sample selection to isolate

LRGs. LRGs have been found to have more reliable redshifts,
including by prior HSC analyses (D. J. Eisenstein et al. 2001;
M. M. Rau et al. 2023). This is primarily due to the presence of

Figure 13. HSC color–color diagram for the HSC galaxy sample in the XMM field, across three narrow redshift bins. As described in Appendix A, we isolate an LRG
sample from the whole galaxy catalog via a color–color cut, g − r > 1.2 and r − i > 1.0 (as indicated by the red dashed lines). The objects are isolated in a specific
redshift bin given the fiducial redshift (zbest) for every object. The histograms illustrate the distribution of galaxies in color space, and illustrate the scale at which we
separate the LRG population from the rest of the galaxies. The red solid lines in the histograms highlight the color distributions of the final selection of objects.
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the 4000Å Balmer break in the galaxy SED, characteristic of
LRGs, which allows photometric redshift codes to find a more
stable solution. Using the measured CModel AB magnitude
for HSC galaxies, we select objects with g− r> 1.2 and
r− i> 1.0 colors to isolate the LRGs readily seen in color–
color diagrams, shown in the color space representation of
galaxies in the XMM field in Figure 13. Given the HSC
photometric bands, this color selection isolates LRGs whose
redshifts are close to the 0.7 z 1.0 range. We find the
number of objects is reduced significantly, removing between
80% and 95% of the total galaxy sample (for the lowest- and
highest-redshift bins, respectively). The inferred stellar mass
available in the Mizuki catalog for the complete (i> 24)
galaxy population peaks at ∼9× 109Me, while for the red
galaxy sample the peak is at ∼6× 1010Me. After this cut, the
cross-correlation between the red galaxy samples in the lowest
(z ä 0.6–0.8) and highest (z ä 1.0–1.2) redshift bins is ∼10%
the amplitude of the autocorrelation in a single bin. We find this
reduction in systematic uncertainty to be sufficient for our
analysis and propagate the color cut throughout the rest of the
experiment.

The per redshift bin LRG sample dN/dz is illustrated in the
top row of Figure 5. The multiple peaks in each redshift bin are
reflective of unphysical fitting degeneracies in the HSC photo-
metric redshift code, wherein certain values are overprescribed.
There are also secondary peaks outside the redshift bin after the
weighted addition, indicative of a significant number of objects
whose p(z) is clustered outside (but significantly overlaps with)
the bin. We test how these dN/dz shapes affect our forward
model, and find a Gaussian-smoothed version of these distribu-
tions produces forward models that diverge from the fiducial
model by <0.5%. These distributions are representative of the
estimated redshifts and their uncertainties in each bin.

Appendix B
Proper Accounting of p(z) Uncertainties

The standard tomographic method for redshift binning takes
into account only those galaxies whose fiducial redshift is in
the bin. This procedure would, in a given tomographic redshift
bin, exclude objects whose nominal redshift (zbest) was not
inside the bounds of the bin, even if a significant fraction of
their p(z) did fall in the bin. We seek to account for the
complete redshift uncertainty in our sample, for objects that
both scatter into and out of our redshift bins. As such, we
implement the following formalism to create a more repre-
sentative clustering statistic taking this into account.

B.1. Redshift-weighted Correlation Function

We define a weighti based on the fraction of an object’s p
(z) found within a bin
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for a redshift bin with edges a and b. We define our binning

selection such that  i 0õ , where 0 is the threshold we

establish for inclusion in our redshift bin. In this analysis, any

object with greater than 3% of the probability p(z) falling inside

the predefined bin is included. This choice reflects a balance of

the inclusion of all available redshift space while not making

the calculation intractable.
We implement this weight for a pair counting operation such

that
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weights:
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We substitute this expression into the S. D. Landy &

A. S. Szalay (1993) estimator in Equation (1) to account for

appropriate object weighting.

B.2. Redshift-weighted Forward Modeling

We also update the dN/dz calculation to include the
appropriate per-object weighting, where

· ( ∣ ) ( )  
dN

dz
p z . B5

i

i i i 0å= õ

These are used in the forward model as described in Section 3.2.
Following significant testing and comparison with standard

tomographic binning, we find that the two methods return
values that are entirely consistent (<1σ) with each other.
Nevertheless we implement our weighted analysis throughout
this work, preferring to fold in all the available p(z)
information. As a result, this method is less subject to
systematic biases inherent in photometric redshift fitting.

Appendix C
All AGN Subtypes' dN/dz

Figure 14 highlights the dN/dz for each of the AGN subtype
samples in the principal analysis, for the three HSC fields
considered. We find that the AGN dN/dz show multiple peaks
and departures from a normal distribution, possibly indicative of
fitting degeneracies in the AGN photo-z pipeline. As discussed in
Section 3.2, each of these dN/dz is used to calculate the ω(θ) DM
model for the particular subset, then used to fit the measured
correlation.
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Appendix D
Full Covariance Matrix χ2 Minimization Fit Results

Table 3 shows the fit results for the complete experiment when
using the full covariance matrix, rather than 1D uncertainties from
the square root of the diagonal of the covariance matrix (as shown
in Table 2). We describe in Section 3 how this result incorporates
the off-diagonal elements showcasing the bin-to-bin correlations,
and thus more accurately represents the precision of our

measurements. The off-diagonal elements of the cross-correla-

tions’ covariance matrices have amplitudes of order 0.2–0.9 of the

value of the diagonal elements. However, for ease of comparison

with other analyses of AGN clustering using ω(θ) (see L. Kouto-

ulidis et al. 2013, 2018; M. A. DiPompeo et al. 2014, 2016, 2017;

G. C. Petter et al. 2023), we represent the main results using

the diagonal elements alongside the effect on the statistical

significance when using the full covariance.

Figure 14. Normalized dN/dz from all AGN subtype samples for cross-correlation in the wide redshift bin (z ä 0.7–1.0) for the L6 μm > 3 × 1044 erg s−1 threshold,
split by HSC field.

Table 3

Angular Correlation Function Fit Results (Full Covariance Matrix)

Subset Nobj Weighted Nobj 〈L6 μm〉 〈z〉 〈χ2〉 b 〈Mh〉
(log erg s−1

) (10 dof) ( )h Mlog 1-

z ä 0.6–0.8

LRGs 1,288,589 879,258.8 L 0.7 ± 0.1 32.8 1.83 0.05
0.04

-
+

L

All AGN 22,988 5804.3 44.7 0.2
0.4

-
+ a 0.8 0.2

0.1
-
+ 15.8 1.7 ± 0.1 13.2 ± 0.1

z ä 0.8−1.0

LRGs 851,117 440,970.6 L 0.9 ± 0.1 28.1 2.1 0.2
0.1

-
+

L

All AGN 26,264 10,381.3 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 29.4 1.5 ± 0.1 12.8 ± 0.1

z ä 1.0−1.2

LRGs 324,790 98,498.4 L 1.0 ± 0.1 21.2 2.43 0.03
0.01

-
+

L

All AGN 25,235 7204.7 44.9 0.3
0.4

-
+ a 1.1 ± 0.2 10.3 1.6 ± 0.1 12.9 ± 0.1

z ä 0.7−1.0

LRGs 1,509,905 843,166.6 L 0.8 ± 0.1 19.2 1.9 ± 0.1 L

All AGN 28,494 13,898.8 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 30.7 1.4 ± 0.2 13.2 0.2

0.1
-
+

Unobscured AGN 8266 3942.0 44.9 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 22.3 2.3 ± 0.2 13.4 ± 0.1

Unobscured + Reddened AGN 15,156 6745.71 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 53.3 2.1 ± 0.2 13.2 0.2

0.1
-
+

Reddened AGN 6890 2803.6 44.8 0.2
0.5

-
+ a 0.9 0.2

0.1
-
+ 16.7 1.6 ± 0.2 13.0 0.2

0.1
-
+

Reddened + Obscured AGN 19,675 9893.4 44.8 0.2
0.4

-
+ a 0.9 0.2

0.1
-
+ 29.2 1.4 ± 0.2 12.7 ± 0.2

Obscured AGN 12,785 7089.8 44.7 0.2
0.3

-
+ a 0.9 ± 0.2 36.7 1.2 ± 0.2 12.6 0.3

0.2
-
+

High-L6 μm AGN 7760 2492.2 45.1 0.2
0.4

-
+ b 1.0. 0.2

0.1
-
+ 10.4 1.3 ± 0.2 12.6 0.3

0.2
-
+

Low-L6 μm AGN 20,734 11,406.5 44.8 0.2
0.3

-
+ c 0.9 0.2

0.1
-
+ 23.4 1.5 ± 0.2 13.0 0.2

0.1
-
+

Notes.
a
Primary luminous AGN selection (L6 μm > 3 × 1044 erg s−1

).
b
Higher-luminosity AGN selection (L6 μm > 1045 erg s−1

).
c
Lower-luminosity AGN selection (3 × 1044 < L6 μm < 1045 erg s−1

).
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Appendix E
Per-field Correlation Results (1D Uncertainties)

Table 4 shows the per-field measurements of the galaxy and

AGN bias given the 1D uncertainties, as well as the inferred

average halo mass. We take these measurements and combine

them with an inverse variance weighted mean to produce our

nominal results, as shown in Table 2.

Table 4

Angular Correlation Function Fit Results for Each HSC Field

Subset Field Nobj Weighted Nobj 〈z〉 χ2
b 〈Mh〉

(10 dof) ( )h Mlog 1-

z ä 0.6−0.8

All AGN GAMA 15,494 3877.6 0.8 0.3
0.1

-
+ 5.4 1.6 ± 0.1 12.9 ± 0.1

All AGN VVDS 3815 1050.9 0.8 0.3
0.1

-
+ 10.4 1.3 ± 0.2 12.5 0.4

0.3
-
+

All AGN XMM 3679 875.7 0.8 0.3
0.1

-
+ 2.7 1.3 ± 0.2 12.5 0.4

0.3
-
+

z ä 0.8−1.0

All AGN GAMA 17,785 6444.19 0.9 0.2
0.1

-
+ 1.0 1.5 ± 0.1 12.7 ± 0.1

All AGN VVDS 4221 1936.76 0.9 ± 0.1 7.3 0.8 ± 0.2 11.2 0.6
0.5

-
+

All AGN XMM 4258 2000.31 0.9 ± 0.1 5.8 1.7 ± 0.2 12.9 ± 0.2

z ä 1.0−1.2

All AGN GAMA 17,110 4618.77 1.1 ± 0.2 4.9 1.4 ± 0.1 12.4 ± 0.2

All AGN VVDS 3907 1200.99 1.0 ± 0.2 1.0 1.5 ± 0.2 12.5 0.4
0.3

-
+

All AGN XMM 4218 1384.91 1.0 ± 0.2 13.2 3.1 ± 0.3 13.5 ± 0.3

z ä 0.7−1.0

All AGN GAMA 19,442 8748.86 0.9 ± 0.2 7.6 1.8 ± 0.1 13.0 ± 0.1

All AGN VVDS 4540 2595.26 0.9 0.2
0.1

-
+ 6.7 1.1 ± 0.2 12.1 0.5

0.3
-
+

All AGN XMM 4512 2554.68 0.9 0.2
0.1

-
+ 5.9 1.7 ± 0.2 12.9 ± 0.2

Unobscured AGN GAMA 6510 2800.22 0.9 0.2
0.1

-
+ 8.9 2.2 ± 0.2 13.2 ± 0.1

Unobscured AGN VVDS 863 590.09 0.9 ± 0.1 3.0 2.0 ± 0.3 13.1 0.3
0.2

-
+

Unobscured AGN XMM 893 551.78 0.9 ± 0.1 9.4 2.4 ± 0.3 13.4 0.2
0.1

-
+

Unobscured + Reddened AGN GAMA 11,610 4761.98 0.9 0.2
0.1

-
+ 5.0 2.0 ± 0.1 13.1 ± 0.1

Unobscured + Reddened AGN VVDS 1783 1029.33 0.9 0.2
0.1

-
+ 5.4 1.5 ± 0.2 12.7 0.3

0.2
-
+

Unobscured + Reddened AGN XMM 1763 954.39 0.9 0.2
0.1

-
+ 9.9 2.1 ± 0.2 13.2 ± 0.2

Reddened AGN GAMA 5100 1961.77 1.0 0.2
0.1

-
+ 2.7 1.6 ± 0.2 12.9 ± 0.2

Reddened AGN VVDS 920 439.24 0.9 ± 0.1 3.1 1.6 ± 0.3 12.8 0.4
0.3

-
+

Reddened AGN XMM 870 402.62 0.9 ± 0.1 8.2 1.7 0.4
0.3

-
+ 12.9 0.5

0.3
-
+

Reddened + Obscured AGN GAMA 12,491 5897.68 0.9 ± 0.2 5.0 1.6 ± 0.1 12.8 0.2
0.1

-
+

Reddened + Obscured AGN VVDS 3617 1998.54 0.9 0.2
0.1

-
+ 8.2 1.0 ± 0.2 11.8 0.6

0.4
-
+

Reddened + Obscured AGN XMM 3567 1997.2 0.9 0.2
0.1

-
+ 4.2 1.4 ± 0.2 12.6 0.3

0.2
-
+

Obscured AGN GAMA 7391 3935.91 0.9 ± 0.2 6.4 1.5 ± 0.1 12.7 ± 0.2

Obscured AGN VVDS 2697 1559.3 0.9 ± 0.2 9.8 1.0 ± 0.2 11.8 0.6
0.4

-
+

Obscured AGN XMM 2697 1594.58 0.9 0.2
0.1

-
+ 6.9 1.4 ± 0.2 12.6 0.3

0.2
-
+

High-L6 μm AGN GAMA 5796 1631.12 1.0 0.1
0.2

-
+ 4.5 1.3 ± 0.2 12.4 0.4

0.3
-
+

High-L6 μm AGN VVDS 1153 514.76 0.9 ± 0.1 3.6 1.3 0.4
0.3

-
+ 12.5 0.7

0.4
-
+

High-L6 μm AGN XMM 811 346.38 1.0 ± 0.1 2.9 1.7 0.4
0.3

-
+ 12.8 0.5

0.3
-
+

Low-L6 μm AGN GAMA 13,646 7117.74 0.9 0.2
0.1

-
+ 7.4 1.8 ± 0.1 13.0 ± 0.1

Low-L6 μm AGN VVDS 3387 2080.5 0.9 0.2
0.1

-
+ 5.9 1.3 ± 0.2 12.4 0.4

0.3
-
+

Low-L6 μm AGN XMM 3701 2208.31 0.9 0.2
0.1

-
+ 6.0 1.7 ± 0.2 12.9 ± 0.2
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