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Universality in Block Dependent Linear Models
With Applications to Nonlinear Regression

Samriddha Lahiry and Pragya Sur

Abstract— Over the past decade, characterizing the precise
asymptotic risk of regularized estimators in high-dimensional
regression has emerged as a prominent research area. This
literature focuses on the proportional asymptotics regime, where
the number of features and samples diverge proportionally.
Much of this work assumes i.i.d. Gaussian entries in the design.
Concurrently, researchers have explored the universality of these
findings, discovering that results based on the i.i.d. Gaussian
assumption extend to other settings, including i.i.d. sub-Gaussian
designs. However, universality results examining dependent
covariates have predominanatly focused on correlation-based
dependence or structured forms of dependence allowed by right-
rotationally-invariant designs. In this paper, we challenge this
limitation by investigating dependence structures beyond these
established classes. We identify a class of designs characterized
by a block dependence structure where results based on i.i.d.
Gaussian designs persist. Formally, we establish that the optimal
values of regularized empirical risk and the risk associated with
convex regularized estimators, such as the Lasso and the ridge,
converge to the same limit under block-dependent designs as for
i.i.d. Gaussian entry designs. Our dependence structure differs
significantly from correlation-based dependence and enables,
for the first time, asymptotically exact risk characterization in
prevalent high-dimensional nonlinear regression problems.

Index Terms— Block dependent design, nonlinear regression,
universality.

I. INTRODUCTION

OVER the past decade, a novel regime to exploring
high-dimensional asymptotics has emerged in supervised

learning. This paradigm posits that the number of features (p)
and the number of samples (n) both diverge with the ratio
p/n converging to a positive constant. For natural reasons,
this paradigm is referred to as the proportional asymptotics
regime. Numerous parallel techniques have emerged to address
statistical and probabilistic questions within this framework,
including random matrix theory [1], approximate message
passing theory [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
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[12], [13], [14], the leave-one-out/cavity method [7], [9],
[15], [16], [17], [18], [19], [20], [21], [22], convex Gaussian
min-max theorem [23], [24], [25], [26], [27], [28], etc. The
widespread adoption of this paradigm in statistical research
can, in part, be attributed to its precise asymptotic results,
which showcase exceptional performance when tested on finite
samples (cf. [7], [9], [13], [21], [29], [30], [31], [32], [33], [34]
and references cited therein). Moreover, this paradigm liberates
researchers from stringent sparsity assumptions on underlying
signals, accommodating structured classes of both dense and
sparse signals.

However, a limitation arises within this paradigm—
conventional tools often assume Gaussianity in the distribution
of observed covariates. Extensive prior literature [33], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50] suggests that this assumption is hardly a
conceptual constraint. The results derived under this paradigm
are often insensitive to the specific form of the covariate
distribution, and rely more on the distribution’s tails or on
quantities such as the spectrum of the sample covariance
matrix. In particular, prior work demonstrates the seamless
extension of results derived under i.i.d. Gaussian designs to
i.i.d. sub-Gaussian designs with suitable moments. Neverthe-
less, universality results under dependent design entries are
relatively scarce. This paper addresses this challenge, revealing
that under an appropriate notion of block dependence, univer-
sality results persist.

Our universality result substantially broadens the scope of
statistical models considered within the proportional asymp-
totics regime. While the extension of universality beyond the
independent model is intrinsically fascinating, we demonstrate
that our results apply to widely used statistical models that had
thus far remained outside the purview of this literature. Specifi-
cally, we leverage our universality result to provide precise risk
characterization of estimators arising in nonlinear regression
in the presence of high-dimensional covariates (Section II).
To the best of our knowledge, this class of problems had
so far remained uncharted. Our result relies on a block
dependence structure and we exhibit three popular examples
where such dependence emerges naturally. The first example
pertains to the additive model, well-studied in statistics, and
applied in diverse fields such as biomedical research [51],
[52], agronomy [53], environmental science [54] etc. The
second example, scalar- on-functional regression, arises from
the expansive field of functional data analysis, motivated by
longitudinal data, growth curves, time series, and more [55].
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The third and final example is from genomics, particularly
linkage-disequilibrium models [56], where block dependence
structures arise naturally.

To introduce our setup formally, let (Yi,Xi)ni=1 be i.i.d. ran-
dom variables with Yi ∈ R and Xi ∈ Rp. We assume that Yi
is a function of Xi corrupted by an additive noise i.e.

Yi = g∗(Xi) + ϵi

with the most popular choice of g∗ being the linear model.
In the next section, we will see that many nonlinear models
can be reduced to linear models by choosing a suitable basis,
and doing so induces interesting block dependent structures.
To capture such nonlinear regression models, it suffices to
focus on linear models with appropriate dependencies among
covariates i.e. we will denote g∗(Xi) = X T

i β for a suitable
choice of Xi and β. This would be the main focus of our
paper.

We consider a penalized empirical risk minimization prob-
lem of the form minβ R̂n(Y,X , β) where

R̂n(Y,X , β) =
1
2n

n∑
i=1

∥Yi −X T
i β∥2 + λf(β). (I.1)

Here X = (X1, . . . ,Xn)T , Y = (Y1, . . . , Yn)T , Xi ∈ Rp, β ∈
Rp and f is a convex penalty function.

We denote the minimum and the minimizer of the empirical
risk by

R̂n(Y,X ) = min
β∈Rp

R̂n(Y,X , β)

β̂X ∈ argmin
β∈Rp

R̂n(Y,X , β) (I.2)

respectively. For the rest of this paper we will assume that the
covariates are centred i.e. E[Xi] = 0.

Regularized estimators have been a subject of intense study
over the decades. Extensive prior work characterizes the risk
of such estimators in the proportional asymptotics regime
when the covariates are drawn from a Gaussian distribu-
tion. To extend to non-Gaussian settings, the typical strategy
involves proving universality results that answer the following
question: can rows of the data matrix X T

i be replaced by
Gaussian vectors with matching moments and yield the same
asymptotic results?

Among existing universality results, [57] established that
when the design matrix has i.i.d. entries and finite sixth
moment, the optimal value of the risk of a box constrained
Lasso is the same as the optimal value when the entries are
i.i.d. Gaussian. Subsequently, [40] showed an analogous result
in the context of elastic net. See also [47] for a compre-
hensive set of universality results that hold when the design
entries are i.i.d. Despite this stylized setting, results based on
i.i.d. Gaussian designs capture many new high-dimensional
phenomena accurately in a qualitative sense. Further, this
assumption allows one to characterize precise limits of objects
of statistical relevance, such as risks of estimators [4], [8], [9],
[18], [19], [20], behaviour of finite-dimensional marginals [9],
[21], and prediction error of machine learning algorithms [33],
[58], [59], [60], as well as prove

√
n-consistency of estimators

for average treatment effects [34]. In light of the elegant theory

and novel high-dimensional phenomena this allows to capture,
it is imperative to understand the limits of these results. In this
paper, we seek to understand the extent to which results based
on i.i.d. Gaussian designs continue to hold in presence of
dependence among the covariates.

In the context of dependent covariates, [48] established
that when rows of the design are of the form Xi = Σ1/2Zi
with entries of Zi i.i.d. sub-Gaussian, the optimal value of
the risk matches that of the design whose rows are of the
form Σ1/2Gi, where Gi has i.i.d. Gaussian entries. However,
in a broad class of problems, the dependence structure among
covariates may not be in the precise form Σ1/2Zi with
Zi containing i.i.d. entries. On the other hand, [45], [46],
[61] studied universality under curated forms of dependence,
as allowed by right-rotationally-invariant designs, that are
critical in compressed sensing applications [62], [63], [64].
See [65] for detailed discussion and examples on the nature
of dependent problems this class can handle. These forms
of dependence studied in prior work fails to capture general
sub-Gaussian designs that may arise naturally in important
statistical models—this is the main focus of our paper.

In our conquest to understand dependent covariates, we rec-
ognize that “too much” dependence among entries of Xi may
break universality, as demonstrated in [20] and [47]. In the
latter, the authors show that for isotropic designs, if each
entry in a row of the design depends on every other entry,
the estimation risk is asymptotically different from the model
with i.i.d. Gaussian covariates. However, noteworthy examples
of dependence exist where each entry of the design depends on
a subset of the entire row (cf. Section II). A natural question
then arises: do universality results hold under such dependence
structures? We answer in the affirmative, identifying a class of
dependence structures that ensure universality results continue
to hold. In particular, we show the following

Let X be a design matrix with i.i.d. mean zero rows. Further
assume that each row Xi is “block dependent” and sub-
Gaussian. Let G be a design matrix with i.i.d. rows distributed
as a multivariate Gaussian N (0,Λ) for a diagonal matrix Λ.
If E(XiX T

i ) = Λ then we have

min
β
R̂n(Y,X , β) ≈ min

β
R̂n(Y,G, β)

∥β̂X − β0∥2 ≈ ∥β̂G − β0∥2.

This simple mathematical result opens the avenue for
exact risk characterization of regularized estimators in
high-dimensional models that had so far evaded the literature
(see Section II for concrete examples). We define the notion
of block dependence formally in Section II. To the best of
our knowledge, our result is the first in the literature on
universality in high-dimensional regression that goes beyond
correlation-based dependence or right-rotationally-invariant
designs. We provide a more detailed literature review in
Section VI. For simplicity, we focus on two of the most
commonly used penalty functions—the ℓ1 (Lasso) or the ℓ22
(ridge). These differ drastically in the geometry they induce
in high dimensions. In this light, we believe that most other
popular examples of separable penalties can be handled by
extending our current proof techniques.
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Finally we note that a crucial step in establishing the
universality result, is showing that the optimizers are bounded
in ℓ∞ norm (see Lemma (7.2) for details). To prove such a
bound in the case of independent design one usually relies
on a leave-one-out method (see [47] for e.g.), which uses
high probability upper bound conditioned on a given column.
However this method does not work in the dependent case
and to circumvent this issue we use a leave-d-out method (see
proof of Lemma 7.2), where we condition on an entire block
to prove the high probability bounds.

A. Outline of the Results

To illustrate the importance of considering block dependent
designs, we present various examples in Section II. The initial
example revolves around the commonly used additive model,
where we demonstrate that by considering block dependent
settings, one can extend results from linear models to nonlinear
models. Additionally, we explore an example of scalar-on-
function regression where such dependence may emerge.
The third example delves into a genomics model where
block dependent designs naturally come into play. Section III
presents preliminaries and Section IV presents our main
results. In Section V, we present simulations corroborating
our theory while Section VI reviews literature related to our
work. Section VII provides the proof of the main theorems
and corollaries. Finally, we conclude in Section VIII with a
discussion on possible generalizations of our results, while the
proofs of the auxiliary lemmas are given in the Appendix.

B. Notations

We use the O(.) and o(.) to denote asymptotically bounded
and asymptotically goes to 0 respectively i.e we say an =
O(γn) if lim sup |an/γn| ≤ C and an = o(γn) if
lim sup |an/γn| = 0. Similarly Op(.) and op(.) are reserved
for the stochastic versions of the same quantities. We will use
P−→ to denote convergence in probability. The ℓ1 and ℓ2 norms

of vectors are denoted by ∥.∥1 and ∥.∥ respectively unless
otherwise mentioned. For matrices the ∥A∥ will always denote
the largest singular value of A (operator norm) and hence the
same notation ∥.∥ will be reserved for the ℓ2 norm of a vector
and the operator of norm of the matrix, the difference being
understood from the context. We will denote the set {1, . . . , p}
by [p]. For any subset S ⊂ [p] and a matrix X we will denote
the submatrix whose column indices are restricted to S by
XS . Similarly subvector of a vector v, whose coordinates are
restricted to S, will be called vS . Throughout the notation C
will denote a generic constant unless otherwise specified. The
Kronecker delta function will be denoted as δij = 1i=j . For µ
in Rm (m > 0) we will also use δµ to define the delta measure
which is 1 at µ and 0 otherwise. Since the same notation is
used they will appear in separate context and the one referred
to will be clear from the context. For (µ1, . . . , µp) with
µi ∈ Rm (m, p > 0, 1 ≤ i ≤ p) we will define the empirical
distribution by 1

p

∑
i=1 δµi

. For any sequences of probability
measures µn and another probability measure µ, we say that
µn

W2==⇒ µ if the following holds: there exists a sequence of

couplings Πn with marginals µn and µ respectively, so that if
(Xn, X) ∼ Πn, then E[(Xn −X)2] → 0 as n→ ∞.

Next we fix some notations for the optimizers and the
optimum value of the risk that will help us state our results in
a compact form. Let φ = β − β0 and φ̂X = β̂X − β0 where
β̂X is the minimizer of the empirical risk in equation (I.1).
Consider the expression of empirical risk in equation (I.1).
For the sake of brevity, we will denote R̂n(Y,X , β) as
R(φ,X ), where the dependence on β0 and ξ (and hence Y )
is suppressed. Similarly, we will denote the minimum risk as
R(X ). Further we will denote the general form as RK(φ,X )
where K = L or K = R is used to distinguish between
the Lasso and ridge setups i.e whether f(β) = ∥β∥1/

√
n

or f(β) = ∥β∥22/2 respectively. The minimum value of the
empirical risk in this setup will be denoted as RK(X ) and the
error by φ̂KX := β̂KX − β0. Finally we will abuse notation and
call both φ̂X and β̂X optimizers when there is no chance of
confusion and the quantity referred to will be understood from
the context.

II. EXAMPLES OF BLOCK DEPENDENT DESIGNS

As discussed in the preceding section, we seek to study
models with block dependencies among the design entries.
To be precise, we define our formal notion of block depen-
dence below.

Definition 2.1: A p-dimensional random vector W is called
block dependent (with dependence parameter d) if there exist a
partition {Sj}

kp

j=1 of [p] (i.e. Sj are disjoint and ∪kp

j=1Sj = [p])
such that |Sj | ≤ d ∀j and Wl ⊥Wk if l ∈ Si, k ∈ Sj , i ̸= j.

The design matrices whose rows are i.i.d. block dependent
random vectors will be called block dependent designs. As a
warm up toward our results, we present here three concrete
settings where block dependent designs arise naturally.

A. Penalized Additive Regression Model

Let (Yi,Xi)ni=1 be i.i.d. with Yi ∈ R and Xi ∈ [0, 1]p0 .
We consider the following additive model

Yi = h∗(Xi) + ϵi,

with h∗(Xi) =
∑p0
j=1 h

∗
j (X

j
i ) and X

j
i denoting the jth

component of Xi. This model features in [66], where non-
parametric estimation of h∗ is considered under an L2 loss
with suitable smoothness restrictions on the function classes.
A high-dimensional version of the same problem can be found
in [67], where the authors consider penalized estimators of the
form ĥ =

∑p0
j=1 ĥj that minimizes

1
2n

n∑
i=1

(Yi − h(Xi))2 +D(h). (II.1)

Here D(h) penalizes the complexity of the function h and
the hj’s are the components of the additive model. In this
context, [67] consider a more general model where each
component hj is allowed to be multivariate. For convenience,
we first describe the model under a univariate setup. In [67],
the authors consider an ultra-high-dimensional regime where
log(p0) = o(n) but with sparsity assumptions on the number
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of active components hj (see Section VI for a detailed discus-
sion). We switch gears to a different regime where p0/n→ κ
where κ can be greater than 1. Further we do not assume
any sparsity on the underlying model and obtain an exact
characterization of the estimation risk. In other words, our
work encompasses dense as well as sparse signals. In contrast
to prior work where the assumed sparsity is often sub-linear,
we are able to allow linear sparse models (see [67] for other
forms of sparsity, such as weak sparsity, that takes a slightly
different form, and we refrain from comparing it further here).

To make the setting more concrete, we express each compo-
nent hj in terms of the trigonometric basis of L2[0, 1], denoted
by ϕj(t), and given by

ϕ0(t) = 1, ϕ2k−1(t) =
√
2cos(2πkt)

ϕ2k(t) =
√
2sin(2πkt), k = 1, 2, . . . .

In nonparametric estimation theory (see [68]) one considers
estimation when the functions are restricted to certain smooth-
ness classes with a popular choice being the periodic Sobolev
class which is defined as follows

W (β,Q) = {f ∈ L2[0, 1] : θ = {θl} ∈ Θ(β,Q),

where θl =
∫ 1

0

ϕl(t)f(t)dt}, (II.2)

where Θ(β,Q) is the Sobolev ellipsoid defined by

Θ(β,Q) = {θ = {θl} ∈ ℓ2(N) :
∞∑
l=1

αlθ
2
l ≤ Q}, (II.3)

with αl = l2β or (l − 1)2β for even and odd l respectively.
Let hj be a function of the form

hj(t) =
∞∑
k=1

θjkϕk(t). (II.4)

Then observing that θjk are Fourier coefficients one can con-
sider estimation of hj when hj ∈ W (β,Q) or equivalently
{θjk}∞k=1 ∈ Θ(β,Q). Thus the estimation of the coefficients
θjk is equivalent to the estimation of the function hj and the
number of non-zero coefficients is a measure of complexity
of the function.

In this paper we additionally impose the condition that hj
is a finite linear combination of the basis functions i.e. it is a
function of the form

hj(t) =
d∑
k=1

θjkϕk(t). (II.5)

Indeed such finite linear combinations can be interpreted as a
subclass within the periodic Sobolev class with finitely many
Fourier coefficients and has been widely studied, most notably
in [69]. Using (II.1) and (II.5), we arrive at the penalized
estimation problem

1
2n

n∑
i=1

(Yi −
p0∑
j=1

d∑
k=1

θjkϕk(X
j
i ))

2 + λD(θ),

where D(θ) penalizes the complexity of the function h in
terms of the parameter θ.

We observe the following facts. Since one can always center
Y , we may drop the intercept term arising from ϕ0(t). Further,
if we assume X

j
i ∼ Unif (0, 1), then using the fact that

{ϕk} is an orthonormal basis, we have E[ϕk(X
j
i )] = 0 and

E[ϕk(X
j
i )ϕl(X

j
i )] = δkl. Furthermore we assume X

j
i s to be

independent across j. Thus we can reformulate the above
problem to estimation of β in the following linear regression
problem

Y = Xβ + ξ, (II.6)

where the rows of X (a n× p0d matrix) are of the form

Xi =(ϕ1(X1
i ), . . . , ϕd(X

1
i ), . . . , ϕ1(X

p0
i ), . . .

. . . , ϕd(X
p0
i ))T

and β = (θjk)
p0,d
j=1,k=1. Thus the rows are independent isotropic

sub-Gaussian vectors with a block dependent structure with
each block having size d. We note that letting p = p0d we may
capture properties of estimators in this model by developing
theory under the setup where p0d/n→ κ (see Section III-A).

Further note that for any estimator ĥj(x) of the form∑d
k=1 θ̂

j
kϕk(x

j), the L2 estimation risk translates to

∥ĥj − hj∥2 :=
∫ 1

0

(ĥj(t)− hj(t))2dt =
d∑
k=1

|θ̂jk − θjk|
2.

Thus we have
p0∑
j=1

∥hj − ĥj∥2 =
p0∑
j=1

d∑
k=1

|θ̂jk − θjk|
2 (II.7)

and it suffices to analyze the estimation risk ∥β̂ − β∥22 in the
model (II.6).

B. Penalized Functional Regression

Let (Yi,Xi(t), ϵi)ni=1 be i.i.d. with Yi ∈ R and Xi(t) ∈ R
for t ∈ (0, 1). We consider the following functional regression
model

Yi =
∫ 1

0

Xi(t)γ(t) + ϵi, (II.8)

with γ(t) ∈ R and ϵi being sub-Gaussian random variables.
This model and its variants, called functional linear

regression or scalar-on-function regression, has been widely
studied in functional data analysis [70], [71], [72]. The
Kosambi–Karhunen–Loève theorem states that under standard
assumptions the stochastic process Xi(t) admits an expansion
with respect to an orthonormal basis i.e

Xi(t) =
∞∑
k=1

ζikϕk(t),

where the random variables ζiks have mean 0 and E[ζilζik] =
λkδkl i.e. they are uncorrelated with variance λk. When Xi(t)
is expanded upto a finite number of terms as is used in practice
[70], the regression model can be written as

Yi =
d∑
k=1

ζikθk + ϵi,
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where we have also expanded the function γ(t) as γ(t) =∑d
k=1 θkϕk(t). In the multivariate setup the data is of the

form (Yi,Xi(t), ϵi)ni=1 where Yi ∈ R and Xi(t) ∈ Rp for t ∈
(0, 1). We denote the coordinates of the multivariate function
Xi(t) as X

j
i (t) and we assume the coordinate functions to be

independent. We have the following expansion

X
j
i (t) =

d∑
k=1

ζjikϕk(t).

The random variables ζjik satisfies the relations E[ζjik] =
0 and E[ζjikζ

j
il] = λjkδkl. We consider the multivariate ana-

logue of the model (II.8)

Yi =
p0∑
j=1

∫ 1

0

X
j
i (t)γ

j(t) + ϵi.

Finally letting γj(t) =
∑d
k=1 θ

j
kϕk(t) we obtain

Yi =
p0∑
j=1

d∑
k=1

ζjikθ
j
k + ϵi. (II.9)

We note that since X1
i (t), . . .X

p0
i (t) are independent stochas-

tic processes, (II.9) can also be written in the form Y = Xβ+ξ
with Xi of the form

Xi = (ζ1i1, . . . , ζ
1
id, . . . , ζ

p0
i1 , . . . , ζ

p0
id )

T

and β = (θjk)
p0,d
j=1,k=1. The design matrix X has independent

rows whose entries have the block dependent structure as given
in Definition 2.1. Indeed for each i, Xj

i (t) and Xm
i (t) being

independent for m ̸= j, ζjik and ζmil are independent as well.
Further we have X = XΛ1/2 where Xijs have variance 1.
We will assume that that the vector (ζjik)

d
k=1 is sub-Gaussian

random vector (II.9) and that E[|ζjik|4] ≤ K for some constant
K. In particular if ζjik are bounded and d remains constant the
above assumptions trivially holds. Also, note that the matrix
Λ is a diagonal matrix and we will assume that the diagonal
entries λi satisfy c ≤ λi ≤ C for some c > 0 for all i ∈
{1, . . . , p0d}.

A common approach towards estimating the vector β is to
consider the following penalized estimation problem (see [72]
for example)

β̂ = argmin
β

1
2n

∥Y −Xβ∥2 + f(β)

and then construct γ̂j(t) =
∑d
k=1 θ̂

j
kϕk(t). As in the case of

Example II.1 we have
p0∑
j=1

∥γj − γ̂j∥2 =
p0∑
j=1

d∑
k=1

|θ̂jk − θjk|
2, (II.10)

and we are reduced to the familiar setup of finding an
asymptotic expression for ∥β̂ − β∥22 in the model (II.6).

Remark 2.1: We note that while the concept that nonlinear
models can be studied as linear models via basis expansion
is widely studied in the literature, the structure of dependence
arising from such models is the focus of our study. Unless
Gaussian assumptions are used (for example assuming X(t)
is a Gaussian process) the design matrix contains rows with

dependent entries. In the first and second model, we may
assume that d is finite and n/(p0d) → κ−1. This assumption
can be relaxed to the assumption c < n/p0 < C for some
constants c and C. In the more general setup we can allow
the block sizes to vary i.e. there may be p0 blocks with the
jth block having size dj and cn <

∑p0
j=1 dj < Cn.

C. Block Dependent Covariates in GWAS

In Genome Wide Association Studies (GWAS) one often
studies the association between phenotypes (Yi’s) and genetic
markers/single nucleotide polymorphism (SNP) Xij where i
denotes the ith individual and j ∈ {1, . . . , p}. The markers
Xij typically follow a dependence structure where a particular
SNP is dependent on SNPs of nearby loci, a phenomenon
called linkage disequilibrium. This phenomenon is taken into
account in the detection of causal SNPs and we refer the
readers to [73] and the references therein for a detailed
account.

While most measures of linkage disequilibrium is based on
correlation (see [56]), other measures of association has been
considered as well. For example, [74] describes a measure
of association in terms of Kullback-Leibler distance between
distributions. The same reference also points out that situations
of dependence may arise where the associated variables may
be uncorrelated despite being dependent and that correla-
tion is rarely useful beyond the case of Gaussian designs.
Furthermore in GWAS, the markers Xij typically take on
three different discrete values, encoding allele frequencies, and
therefore this application rarely encounters Gaussian designs.
These observations are perfectly in tandem with the general
model that we consider in this paper. To elucidate the occur-
rence of uncorrelated but dependent random variables with
discrete support we consider the following toy example:

X A B C
a1 1 0 0
a2 −1 0 0
a3 0 1 0
a4 0 −1 0
a5 0 0 1
a6 0 0 −1.

Let X be a random variable taking six distinct values
a1, . . . , a6 with equal probabilities. Further let the three ran-
dom variables take values according to the entries of the ith

row i.e. when X = a1 we have A = 1, B = 0, C = 0, and so
forth. It can be easily verified that the marginal distribution
of A,B,C are same and they have mean 0. Further their
covariance matrix is cI3 for some constant c, so that the
vector (A,B,C) can be easily scaled to obtain an isotropic
random vector. Further because of the underlying generation
mechanism, they are dependent. We note that this can be easily
generalized to d random variables from a table with 2d rows.

On the other hand, the other aspect of the dependence
structure arising in GWAS is the concept of neighborhood
dependence that tells us that a particular SNP depends only on
its neighbors. Of particular importance is the block structure
considered in [75], where there is linkage disequilibrium
if and only if two SNPs belong to the same block. Our
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block dependence structure in this paper thus encompasses
this critical GWAS example.In Subsection V-C, we provide
simulations on an example where the SNPs are generated from
a Hidden Markov model, which has been extensively utilized
within the GWAS community (cf. [76], [77]) to simulate and
impute genomic data.

After discussing our motivation and relevant examples,
we now proceed to present the preliminaries and assumptions
necessary for our main results.

III. PRELIMINARIES

A. Assumptions

Throughout we assume that we observe n i.i.d. samples
{Yi,Xi, 1 ≤ i ≤ n}. We will work in a high-dimensional
setup where the covariate dimension p is allowed to grow
with the sample size n. To make this rigorous, we consider
a sequence of problem instances {Yi,n,Xi,n, ξi,n, 1 ≤ i ≤
n, β0(n), β(n)}n≥1 and work under the setting of a linear
model

Yi,n = X T
i,nβ0(n) + ξi,n,

with Yi,n ∈ R,Xi,n ∈ Rp(n), and β0(n) ∈ Rp(n). We allow
p(n), n → ∞ with p(n)/n → κ ∈ (0,∞) and in the
sequel we will drop the dependence on n whenever it is clear
from the context. Further we let ξis be independent uniformly
sub-Gaussian random variables with variance σ2. Note they
do not need to arise from the same distribution. In a more
compact form the above model will be written as

Y = Xβ0 + ξ, (III.1)

where X ∈ Rn×p, Y, ξ ∈ Rn.
Our assumptions on the design X , the signal β0, and the

tuning parameter λ are as follows.
Assumption 1 (Assumptions on the Design): The rows of

the design X are i.i.d. random vectors each of which is
block dependent with dependence parameter d. We assume
that X = XΛ1/2 where the rows of X are centered and
isotropic i.e. if Xi denotes the i-th row of X then E[Xi] =
0, E[XijXik] = δjk. Further we assume that the entries have
bounded fourth moment (E|Xij |4 ≤ K) and the row vector Xi

is a sub-Gaussian random vector. Furthermore, we assume that
Λ is a diagonal matrix with the diagonal entries λi satisfying
c ≤ λi ≤ C for some positive constants c, C.

As mentioned in the remark at the end of Subsection II-B,
the dependence occurs in blocks and the block sizes should
be bounded by the dependence parameter d. In Section VII,
we establish that our universality holds as long as d =

o

((
n

logn

)1/5
)

. Regarding the uncorrelation assumption,

we note that the proofs rely on establishing the ℓ∞ and ℓ2 norm
bounds on the optimizers (see the proofs of Lemma VII.1. and
VII.2.), which in turn is highly dependent on the structure
of the penalty as well as the uncorrelation assumption in
Assumption 1. In particular, adding correlation renders the
penalty inseparable in which case our leave-d-out method fails.
Further, we demonstrate universality of the optimizers using
the convex Gaussian minmax theorem (CGMT) and subse-
quently analyzing a scalar optimization problem (see proof

of Lemma VII.3). Analysis of the same in the presence of
correlation, if possible, would necessitate further assumptions
and entirely different proof techniques, which is outside the
scope of this paper. Finally, the assumption E[X4

ij ] ≤ K
can be weakened to an assumption involving d, n and the
moments, but for simplicity, we will state our theorems under
this simplified assumption.

Assumption 2: The signal satisfies the bound βT0 Λβ0 ≤ C.
Let vi =

√
nλiβ0,i for 1 ≤ i ≤ p. Then we assume that

1
p

p∑
i=1

δλi,vi

W2==⇒ µ,

for some measure µ supported on R≥0×R. Further we assume
that ∥v∥∞ ≤ C.

Assumption 3: The tuning parameter λ satisfies λ ≥ λ0 for
a constant λ0 > 0.

We remark that we require this assumption only for the case
of the Lasso and is the analog of restricted strong convexity
type assumptions in the Lasso literature (see Section VII-A
for further details).

B. Choice of Penalty Function

As will be shown in Section VII, universality of both the
empirical risk and the estimation risk depends on establishing
apriori that the optimizers are guaranteed to lie in “nice”
sets. However establishing this property requires a case-by-
case analysis. In this paper, we consider the two most popular
choices of penalty used in the statistics literature—the Lasso
and the ridge—that can form prototypes for many other
popular examples, the ridge serving as a prototype for strong
convex penalties and the Lasso serving as a prototype in the
absence of strong convexity. Since we are able to handle these
prototypes, we believe our method can be extended to handle
other separable penalties.

Remark 3.1: Some comments on the scaling of the penal-
ties are also in order. In [47]) the entries of X are Op(n−1/2)
and f(β) = ∥β∥1/n or f(β) = ∥β∥22/2n respectively.
However in our case, the entries of X are Op(1). Writing
A = X/

√
n and µ =

√
nβ, equation (I.1) can be rewritten in

the form

R̂n(y,A, µ) =
1
2n

n∑
i=1

∥Yi −ATi µ∥2 + λf̄(µ), (III.2)

where f̄(µ) = ∥µ∥1/n or f̄(µ) = ∥µ∥22/2n and we recover
the setup in [47]. We have avoided the n−1/2 scaling in
the design matrix since it helps to state the assumptions in
a concise fashion and to borrow certain results from the
random matrix literature. In our setup we end up with the
non-standard scaling of the penalty i.e. f(β) = ∥β∥1/

√
n or

f(β) = ∥β∥22/2 respectively.

C. Fixed Point Equations for the Estimation Risk

Finally, our universality result states that the estimation risk
of regularized estimators under our setting is asymptotically
the same as that in a setting where the design has i.i.d. Gaus-
sian entries. Extensive prior work characterizes the risk of
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convex regularized estimators in the Gaussian case [3], [8],
[18]. In this characterization, a certain system of fixed point
equations plays a critical role. We review this system below
for convenience.

Let

ηk(z, λ) := argmin
x∈Rp

{1
2
∥z − x∥2 + λ

∥x∥kk
k

}
.

We will focus on two particular values of k in the above
expression of ηk(, ); k be taken as 2 when K = R and 1 when
K = L (i.e. ridge and Lasso respectively).

Now let µ0,i =
√
nλiβ0,i and ωi = λ

−1/2
i . Also define Qn

as the law of the 3-tuple of random variables (M,Ω, Z) ∼
( 1p

∑p
i=1 δµ0,i,ωi

) ⊗ N(0, 1). When the entries of the design
matrix are i.i.d. Gaussian, using convex Gaussian minmax
theorem (see Appendix for details) the optimum value in (I.2)
can be well approximated by minβ maxγ ψK(β, γ) where the
function ψK(β, γ) is defined as follows:

ψK(β, γ) =
(
σ2

γ
+ γ

)
β

2
− β2

2
+

1
n/p

EQn
min
w

{w
2β

2γ

− βZw +
λ

k

(
|Ω(w + µ0)|k − |µ0|k

)
}. (III.3)

The saddle point of the above equation is given by the fixed
point of the following system of equations:

(γK∗ )2 =σ2 +
p

n
EQn

[
ηk

(
M + γK∗ Z,

γK∗ λΩ
k

βK∗

)
−M

]2
, (III.4)

βK∗ =− γK∗ p

n
EQn

[
η′k

(
M + γK∗ Z,

γK∗ λΩ
k

βR∗

)]
+ γK∗ .

We note that under Assumptions 1 and 2 there will be a
unique solution of the fixed point equations (see proof of
Lemma 7.3 for details). Consistent with our notation, (βR∗ , γ

R
∗ )

will be the solution of the fixed point equations (III.4) for
ridge and (βL∗ , γ

L
∗ ) will be the corresponding solution for the

Lasso. Next we define “error” terms which are functions of
the solutions of the above equation system. Let g ∼ N(0, Ip).
Define the vectors φR∗ and φL∗ for the ridge and Lasso
problems in terms of their ith entries as follows

φR∗,i = η2

(
β0,i +

γR∗ ωigi√
n

,
γR∗ λω

2
i

βR∗

)
− β0,i, (III.5)

φL∗,i = η1

(
β0,i +

γL∗ ωigi√
n

,
γL∗ λω

2
i√

nβL∗

)
− β0,i, (III.6)

for i ∈ {1, . . . , p}. We note that (III.5) and (III.6) describes
the asymptotic behavior of the quantities β̂RG,i−β0,i and β̂LG,i−
β0,i respectively and will play a crucial role in the asymptotic
characterization of the estimation risk. We are now ready to
state the main results of our paper.

IV. MAIN RESULT

In this section we state the main results of our paper.
We consider the linear model (III.1) and seek to study uni-
versality properties of the optimum value of the empirical risk

and the estimation risk of the optimizer. In particular, we aim
to establish that

min
β
R̂n(Y,X , β) ≈ min

β
R̂n(Y,G, β)

∥β̂X − β0∥2 ≈ ∥β̂G − β0∥2, (IV.1)

where G = GΛ1/2, G a matrix with i.i.d. standard Gaussian
entries.

Recall that we have defined the shifted versions of the
optimizers as φ̂KX := β̂KX − β0. Before we state our main
theorems, we describe a set restricted to which our universality
result holds.

Tn := {φ : ∥φ∥∞ ≤ C

√
d log n
n

, ∥φ∥ ≤ C}.

Theorem 4.1: Suppose the design matrix X = XΛ1/2

satisfies Assumption 1 and β0 satisfies Assumption 2. Further
G = GΛ1/2, where G ∈ Rn×p contains i.i.d. standard
Gaussian entries, and that ψ is a bounded differentiable
function with bounded Lipschitz derivative. Then ∃γn = o(1)
such that for any subset Sn ⊂ Rp, we have

|E(ψ( min
φ∈Sn∩Tn

RR(φ,X )))−E(ψ( min
φ∈Sn∩Tn

RR(φ,G)))|

≤ γn

Further if we assume Assumption 3 in addition to
Assumptions 1-2, then we have

|E(ψ( min
φ∈Sn∩Tn

RL(φ,X )))−E(ψ( min
φ∈Sn∩Tn

RL(φ,G)))|

≤ γn.

In the next step we show that the Lasso and ridge optimizers
denoted by φ̂LX and φ̂RX lie in the subset Tn with high
probability. Thus the restriction over Tn can be easily lifted
and we have the following result.

Corollary 4.1: Assume the conditions of Theorem 4.1.
Then we have

|E(ψ(min
φ
RK(φ,X )))− E(ψ(min

φ
RK(φ,G)))| ≤ γn,

for some γn = o(1). In particular if RK(G) → ρ, then
RK(X ) → ρ as well.

Next we turn to characterizing the estimation risk of the
optimizers. The difficulty and the methods used to prove this
result is thoroughly discussed in Section VII. Finally, we have
our main result.

Theorem 4.2: Assume the conditions in Theorem 4.1. For
all Lipshitz functions ϱ : Rp → R and ϵ > 0 we have

P (|ϱ(φ̂KX)− ϱ(φ̂KG )| ≥ ϵ) ≤ εn, (IV.2)

for some εn → 0.
We will establish in the proof of Theorem 4.2 that both

ϱ(φ̂KX) and ϱ(φ̂KG ) concentrate around the common value
E[ϱ(φK∗ )] where φR∗ and φL∗ are defined in equations (III.5)
and (III.6) respectively. Thus by choosing a suitable ϱ, the
above theorem can naturally be specialized to yield the estima-
tion risk of the ridge and the Lasso in our dependent covariates
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setup. We obtain the following corollary for dependent sub-
Gaussian designs.

Corollary 4.2: Let γK∗ and βK∗ be fixed points of the
equation system (III.4). In the setup of Theorem 4.1, we have

∥β̂RX − β0∥2−EQ̄n

[
η2

(
M +

γR∗ ΩZ√
n

,
γR∗ λΩ

2

βR∗

)
−M

]2
P−→ 0,

∥β̂LX − β0∥2−EQ̄n

[
η1

(
M +

γL∗ ΩZ√
n

,
γL∗ λΩ

2

√
nβL∗

)
−M

]2
P−→ 0.

Here the expectations are taken with respect to the measure
Q̄n which is the law of the 3-tuple of random variables
(M,Ω, Z) ∼ ( 1p

∑p
i=1 δβ0,i,ωi

)⊗N(0, 1) where ωi = λ
−1/2
i .

Note that the equivalent results for estimation risk in the
independent Gaussian design have been obtained in [3] and
[20] for ridge and Lasso respectively and thus our result
generalizes the exact risk characterization to the dependent
sub-Gaussian case. We are now in position to compute the
estimation risks of the Lasso and the ridge in the penalized
regression models described in Section II. In the following
corollaries, we demonstrate these for the two nonlinear regres-
sion models we described.

Corollary 4.3: Let

Yi =
p0∑
j=1

h∗j (X
j
i ) + ϵi, i ∈ {1, . . . , n},

where X
j
i are i.i.d. Unif(0,1), and h∗j (t) =

∑d
k=1 θ

j
0kϕk(t).

Define θ = {θjk}
p0,d
j=1,k=1 and β0 = {θj0,k}

p0,d
j=1,k=1 and let

β0 satisfy Assumption 1 with Λ = Ip0d. Further define the
optimizers as follows

θ̂L =argmin
θ

1
2n

n∑
i=1

(Yi −
p0∑
j=1

d∑
k=1

θjkϕk(X
j
i ))

2

+
λ√
n

p0∑
j=1

d∑
k=1

|θjk|,

θ̂R =argmin
θ

1
2n

n∑
i=1

(Yi −
p0∑
j=1

d∑
k=1

θjkϕk(X
j
i ))

2

+
λ

2

p0∑
j=1

d∑
k=1

|θjk|
2.

Then denoting ĥLj (t) =
∑d
k=1 θ̂

j,L
k ϕk(t) and ĥRj (t) =∑d

k=1 θ̂
j,R
k ϕk(t) we have,

p0∑
j=1

∥ĥRj − h∗j∥2−EQ̃n

[
η1

(
M +

γR∗ Z√
n
,
γR∗ λ

βR∗

)
−M

]2
P−→ 0. (IV.3)

Further if Assumption 3 is satisfied we have
p0∑
j=1

∥ĥLj − h∗j∥2−EQ̃n

[
η2

(
M +

γL∗ Z√
n
,
γL∗ λ√
nβL∗

)
−M

]2

P−→ 0. (IV.4)

In the above two statements the expectations are taken with
respect to the measure Q̃n which is the law of the 2-tuple of
random variables (M,Z) ∼ ( 1p

∑p
i=1 δβ0,i

)⊗N(0, 1).
Corollary 4.4: Let

Yi =
p0∑
j=1

∫ 1

0

X
j
i (t)γ

j
0(t) + ϵi, i ∈ {1, . . . , n},

where X
j
i (t)s are independent, X

j
i (t) =

∑d
k=1 ζ

j
ikϕk(t),

and γj0(t) =
∑d
i=1 θ

j
0kϕk(t). Define θ = {θjk}

p0,d
j=1,k=1,

β0 = {θj0,k}
p0,d
j=1,k=1, V ar(ζjik) = λ(j−1)d+k, and Λ =

diag(λ1, . . . , λp0d). Let the vectors ζi = (ζjik)
p0,d
j=1,k=1 satisfy

Assumption 1. Further let β0 satisfy Assumption 2. Define the
optimizers as follows

θ̂L =argmin
θ

1
2n

n∑
i=1

(Yi −
p0∑
j=1

d∑
k=1

θjkζ
j
ik)

2

+
λ√
n

p∑
j=1

d∑
k=1

|θjk|,

θ̂R =argmin
θ

1
2n

n∑
i=1

(Yi −
p0∑
j=1

d∑
k=1

θjkζ
j
ik)

2

+
λ

2

p0∑
j=1

d∑
k=1

|θjk|
2.

Then denoting γ̂Lj (t) =
∑d
k=1 θ̂

j,L
k ϕk(t) and γ̂Rj (t) =∑d

k=1 θ̂
j,R
k ϕk(t) we have

p0∑
j=1

∥γ̂Rj − γ∗
j∥2−EQ̄n

[
η2

(
M +

γR∗ ΩZ√
n

,
γR∗ λΩ

2

βR∗

)
−M

]2 P−→ 0. (IV.5)

Further if Assumption 3 is satisfied we have

p0∑
j=1

∥γ̂Lj − γ∗
j∥2−EQ̄n

[
η1

(
M +

γL∗ ΩZ√
n

,
γL∗ λΩ

2

√
nβL∗

)
−M

]2 P−→ 0. (IV.6)

Here the expectations are taken with respect to the measure
Q̄n which is the law of the 3-tuple of random variables
(M,Ω, Z) ∼ ( 1p

∑p
i=1 δβ0,i,ωi)⊗N(0, 1) where ωi = λ

−1/2
i .

Remark 4.1: Corollaries 4.3 and 4.4 follows directly by
applying Corollary 4.2 to the additive and functional regression
models respectively. The simpler form of the risks in (IV.3)
and (IV.4) in comparison to (IV.5) and (IV.6) is due to the
fact the the rows in the former setup are isotropic random
vectors and hence Λ = Ω̃ = Ip0d. Similarly, in this simplified
setup the measure Q̄n appearing Corollary 4.2 simplifies to
Q̃n in (IV.3) and (IV.4).
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V. ILLUSTRATION

In this section, we demonstrate the efficacy of our result via
experiments. In particular, we consider the first two settings
in Section II and compare the risk of regularized estimators
in each model with that under i.i.d. Gaussian designs. Across
our simulations, we observe that universality kicks in for quite
moderate sample sizes, a reassuring observation that suggests
our current asymptotic abstraction captures reality reasonably
well. As in Section II we will denote p = p0d, i.e. there will
be p0 blocks each having size d.

A. Penalized Additive Regression Model

Recall the setup given in Example II.1,

Yi =
p0∑
j=1

h∗j (X
j
i ) + ϵi, hj(t) =

d∑
k=1

θjkϕk(t)

ϕ2l−1(t) =
√
2cos(2πlt), ϕ2l(t) =

√
2sin(2πlt)

for l = 1, . . . , d/2.

We set n = 200, p0 = 30, d = 10 so that (p0d)/n = 1.5.
For the ith row of the design matrix, we use the following
strategy: Generate i.i.d. {Xj

i}30j=1 such that Xj
i ∼ Unif(0, 1)

and construct the following

Xi =(ϕ1(X1
i ), . . . , ϕ10(X1

i ), . . . , ϕ1(X30
i ), . . .

. . . ϕ10(X30
i ))T .

We repeat this construction for n = 200 rows to create the
design matrix X and for the Gaussian problem, we construct
the 200×300 matrix G with i.i.d. Gaussian entries. We generate
the error entries ϵi, ϵ̄i so that they are i.i.d. standard normal.
Finally, we generate the signal β0 = {θj0,k}

p0,d
j=1,k=1 as β0,j =

n−1/2bj , where the b′js are i.i.d. Bernoulli random variables,
and subsequently, keep β0 fixed across multiple runs/iterations
of the simulation. For each iteration m (we will average over
50 iterations later), we generate data corresponding to our two
models under consideration as follows

Yi = X T
i β0 + ϵi, Y G

i = GTi β0 + ϵ̄i. (V.1)

We recall from (II.7) that in this model

p0∑
j=1

∥hj − ĥj∥2 = ∥β̂LX − β0∥2,

if the Lasso is used and ∥β̂RX − β0∥2 in the case of ridge
regression. In Figures (1a) and (1b), we plot the estimation
risks ∥β̂LX −β0∥2 and ∥β̂RX −β0∥2 averaged over 50 iterations
with red curves. We overlay the corresponding risks for the
Gaussian problem, ∥β̂LG − β0∥2 and ∥β̂RG − β0∥2, as black
dots. Observe the impeccable agreement of the risks under
both settings that clearly validates our universality results and
demonstrates its impressive efficacy in sample sizes as low as
a couple of hundred.

B. Penalized Functional Regression

Recall that in the setup given in Example II-B we have,

Yi =
p0∑
j=1

d∑
k=1

ζjikβ
j
k + ϵi,

where E[ζjik] = 0 E[ζjikζ
j
il] = δklλk. Further ζjik and ζmil

are independent if j ̸= m. We consider the case when
n = 500 and p0 = 30, and d = 10 i.e. we construct a
setup where each row has 30 blocks of size 10 so that so that
(p0d)/n = 0.6. The random variables across the block are
independent while the random variables within the blocks are
dependent. To construct dependent random variables within
a block, we generate 10 independent Rademacher random
variables and multiply them by a common random variable,
as defined below. We repeat this procedure for every block.
Let V be a random variable distributed as follows

P (V = 0) =
1
2
, P (V = −

√
2) =

1
4

P (V =
√
2) =

1
4
.

We generate i.i.d. rows Xi with j-th entry Xij distributed as
follows. Let {Uj}300j=1 and {Vj}30j=1 be two sets of independent
random variables with Uj’s distributed as i.i.d. Rademacher
and Vjs as i.i.d. random variables with the distribution same
as that of V . Now define Wj = UjV⌈ j

10 ⌉
for j ∈ {1, . . . , 300}.

Next we generate the diagonal matrix Λ with 30 identical
blocks: the diagonal elements of the first block λ

1/2
i , i ∈

1 . . . 10 are generated independently from Unif(1, 2) and all
other blocks are identical copies of the first block. It can
be easily verified that the random variables are pairwise
uncorrelated and the random variables within the blocks
are not independent. We generate the design matrix X as
X = XΛ1/2. For the Gaussian case, we generate a 500 ×
300 matrix G with i.i.d. Gaussian entries and then define
G = GΛ1/2. As in the previous subsection, we generate the
signal β0 = {θj0,k}

p0,d
j=1,k=1 as β0,j = n−1/2bj , where the

b′js are i.i.d. Bernoulli random variables, and subsequently,
keep β0 fixed across multiple runs/iterations of the simulation.
Finally, we generate the random variables Y and Y G following
the linear models in (V.1) (after adjusting for the dimension).

In the aforementioned setting, we plot the estimation risk
of the Lasso and the ridge as a function of λ. Figure (2a)
shows Lasso with the red curve being the case of the dependent
sub-Gaussian design and the black dots being the independent
Gaussian design. Figure (2b) shows the corresponding plot for
the ridge. In both cases, the risk curves match, demonstrating
the validity of our universality result and the fact that the
asymptotics kicks in for quite moderate sample size and
dimensions.

C. Regression With Genetic Covariates

In Section II-C we have described a toy model of genetic
covariates where the random variables within a block are
uncorrelated but dependent. In this section we give another
example where the covariates are generated from a hidden
Markov model (HMM). The model has been considered in [76]
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Fig. 1. Estimation risk in the penalized additive model (see Section II-A) averaged over 50 iterations with n = 200, p0 = 30, and d = 10. The red
curves correspond to the risk ∥βL

X −β0∥2 and ∥βR
X −β0∥2 for the Lasso and the ridge respectively, while the corresponding risks for the Gaussian problem

∥βL
G − β0∥2 and ∥βR

G − β0∥2 are overlaid as black dots.

Fig. 2. Estimation risk in the penalized functional regression model (see Section II-B) averaged over 50 iterations with n = 500, p0 = 30, and d = 10.
The red curves corresponds to the risk ∥βL

X − β0∥2 and ∥βR
X − β0∥2 for Lasso and risk respectively, while the corresponding risks for the Gaussian

∥βL
G − β0∥2 and ∥βR

G − β0∥2 are overlaid as black dots.

and also forms the basis of the fastPHASE algorithm (see
[77]). However, the covariates generated by this model will
be correlated and we have to decorrelate the design before
proceeding to show universality.

Recall that in GWAS the response Y is a quantitative
trait of interest, while the covariates contains the genotypic
information.In particular each row Xi of the design matrix X,
is an element of {0, 1, 2}p. Further, we assume block structure,
so that the covariates in the jth block form a d-dimensional
vector, specifically X

j
i ∈ {0, 1, 2}d. Now we describe the

HMM used to generate this random vector.
We consider a d-dimensional vector H = (H1, . . . ,Hd)

(called the vector of haplotypes) where Hl’s are Bernoulli
random variables. The Hls will be “generated” by Zl where
Zl form a Markov chain. Let Z = (Z1, . . . , Zd) denote
the Markov chain with Zl taking K distinct values and the

transition matrix at lth stage given by

Qhapl (k′|k) = P (Zl = k′|Zl−1 = k)

with k, k′ ∈ {1, . . . ,K}. Further the marginal distribution of
the first element Z1 is given by:

qhap1 (k) = α1,k

for k = {1, . . . ,K}. The HMM can be written compactly as
follows:

Z ∼MC(qhap1 , Qhap)

Hl|Z ∼ Hl|Zl ∼ fhapl (Hl|Zl)

for some distribution fhapl (.) called the emission distribution.
In [76], the authors further specify the transition matrix and

emission matrix in terms of some parameters. The transition
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matrix is given by

Qhapl (k′|k) =

{
e−rl + (1− e−rl)αl,k′ , k′ = k,

(1− e−rl)αl,k′ , k ̸= k′

and the emission distribution is parametrized by

fhapl (hl, zl, θ) =

{
1− θl,zl

, hl = 0,
θl,zl

, hl = 1

We refer the reader to Section V-A of [76] for the inter-
pretation of these quantities. Next the genotype vector of a
subject can be described as the element-wise sum of two
i.i.d. haplotypes. Since the haplotypes form an HMM, the
genotype vector also forms an HMM with the Markov chain
having bivariate states (corresponding to unordered pairs of
haplotype). The marginal distribution of the Markov chain,
transition matrix and the emission probabilities are given as
follows:

qgen1 ({ka, kb}) =

{
(α1,ka)

2, ka = kb

2α1,kaα1,kb
, ka ̸= kb

Qgenl ({k′a, k′b}|{ka, kb})

=


Qhapl (k′a|ka)Q

hap
l (k′b|kb)

+Qhapl (k′b|ka)Q
hap
l (k′a|kb) k′a ̸= k′b

Qhapl (k′a|ka)Q
hap
l (k′b|kb), otherwise

fgenl (xl; {ka, kb}, θ)

=


(1− θj,ka)(1− θj,kb

), xl = 0
θj,ka

(1− θj,kb
) + θj,kb

(1− θj,ka
), xl = 1

θj,ka
θj,kb

, xl = 2.

To simulate genetic covariate under a simple setup we let
K = 2 so that ka ∈ {0, 1}. Further, we are not interested in
estimating the parameters as in [76], so we fix the parameters
as follows:

αl,0 = 0.2, αl,1 = 0.8, ∀l,
e−rl = 0.5, ∀l,
θl,0 = 0.4, θl,1 = 0.5, ∀l.

The marginal distribution for the above choice of parameters
are given by

qgen({0, 0}) = 0.04, qgen({0, 1}) = 0.32,
qgen({1, 1}) = 0.64.

We also have the following transition matrix

Qgen =

{0, 0} {0, 1} {1, 1}
{0, 0} 0.36 0.48 0.16
{0, 1} 0.06 0.58 0.36
{1, 1} 0.01 0.18 0.81.

Finally the emission probabilities are given by

fgenl (0; {0, 0}) = 0.36, fgenl (1; {0, 0}) = 0.48,
fgenl (2; {0, 0}) = 0.16

fgenl (0; {0, 1}) = 0.3 fgenl (1; {0, 1}) = 0.5
fgenl (2; {0, 1}) = 0.2

fgenl (0; {1, 1}) = 0.25, fgenl (1; {1, 1}) = 0.5
fgenl (2; {1, 1}) = 0.25.

We set n = 400, p0 = 30, d = 10 so that (p0d)/n = 0.75.
For the ith row of the design matrix, we generate the data as
follows

Xi =(X̃(1)T
i , . . . , X̃

(30)T
i )T .

where

X̃
(j)
i = V−1/2(Xj

i − m), m = E[Xj
i ]

V = E[(Xj
i − m)(Xj

i − m)T ]

with each X
j
i = (Xj

i,l)
d
l=1 generated according to the HMM

described above. Further, for the purpose of simulation we
estimate the vector m and the matrix V from a separate sample
of this HMM. We repeat this construction for n = 400 rows
to create the design matrix X and for the Gaussian problem,
we construct the 400 × 300 matrix G with i.i.d. Gaussian
entries. We generate the error entries ϵi, ϵ̄i so that they
are i.i.d. standard normal. Finally, we generate the signal
β0 = {θj0,k}

p0,d
j=1,k=1 as β0,j = n−1/2bj , where the b′js

are i.i.d. Bernoulli random variables, and subsequently, keep
β0 fixed across multiple runs/iterations of the simulation. As in
the previous two examples we generate data corresponding to
our two models:

Yi = X T
i β0 + ϵi, Y G

i = GTi β0 + ϵ̄i. (V.2)

Figures (3a) and (3b), shows the estimation risks ∥β̂LX −
β0∥2 with red curves for Lasso and ridge respectively.
We overlay the corresponding risks for the Gaussian problem,
∥β̂LG − β0∥2 and ∥β̂RG − β0∥2, with black dots and the perfect
agreement of the risk curves showcases universality.

VI. RELATED LITERATURE

In this section, we provide a detailed discussion of existing
universality results in the literature, and situate our work in
this broader context. Universality results are pervasive in the
literature on random matrix theory. Over the past decade,
the exploration of universality concerning the choice of the
design matrix distribution has gained traction in the context of
high-dimensional linear models. In the context of the Lasso,
[57] established universality of the cost optimum, while for the
elastic net, [40] established universality of the estimation risk.
Similar results exist for random linear inverse problems ( [78],
[79]). Recently, [47] studied a broad spectrum of penalized
regression problems and established universality of the opti-
mum value of the empirical risk and the risk of regularized
estimators under i.i.d. designs. [45] established universality of
the optimizer as well as their risk under a broader class of
structured and/or semi-random covariate distributions.

Parallel universality results exist for approximate message
passing algorithms (cf. [39], [41], [46], [61]). Further, [42]
demonstrated equivalence between regression problems where
the rows of the design matrix arise from nonlinear transforms
of Gaussian features and design matrices with linearized
Gaussian features. Subsequently, [48] developed an extension
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Fig. 3. Estimation risk in the penalized regression with genetic covariates averaged over 50 iterations with n = 400, p0 = 30, and d = 10. The red curves
corresponds to the risk ∥βL

X − β0∥2 and ∥βR
X − β0∥2 for Lasso and risk respectively, while the corresponding risks for the Gaussian ∥βL

G − β0∥2 and
∥βR

G − β0∥2 are overlaid as black dots.

of this result to the neural tangent model and a linear trans-
formation of the i.i.d. model.

We note that in terms of dependent covariates under the
linear model framework, [48] is the most relevant to our
setting. Although the two-layer neural tangent model and the
random feature model presented there are intriguing examples
of dependence from a machine learning standpoint, for this
discussion, we focus on the setup outlined in [48, Section 3.3],
i.e., linear functions of independent entries. Notably, this
example involves rows of the form Σ1/2Zi, where the entries
of Zi are independent sub-Gaussian. In this article, we broaden
this understanding to encompass a different form of depen-
dence with block structure (see Section II) that prior work
fails to capture. As noted earlier, this block dependence arises
in various widely used statistical models, as we demonstrate
in Section II. We also note another limitation of [48] in the
context of estimation risk. The paper proves the universality
of the training error, which is the same as our optimum but
instead of estimation risk, discusses the universality of test
error. Although estimation risk can be obtained in their setting
by a similar argument, it requires some strong convexity
conditions for the penalty function. In our work, we overcome
this barrier. Leveraging methods from [47] in conjunction with
new proof ideas, we are able to address the case of the Lasso
where strong convexity does not hold.

Our paper also builds a bridge between the proportional
asymptotics literature and the nonlinear regression literature,
which has a long history. In particular, we study additive
models (see Section II) that were previously analyzed in
the high-dimensional setting with log(p) = o(n) (where p
quantifies the the number of component functions in the
additive model) along with sparsity assumptions (see [67])
on the number of active component functions. [67] (see [80],
[81], [82], [83] for similar models) considers both smoothness
and sparsity based penalties and also allows for weak sparsity.
We explore the additive models but under a high-dimensional
setting where p/n → κ (κ can be greater than 1), without

imposing sparsity assumptions. Furthermore, while the prior
literature was concerned with the rates of the estimation risk,
we characterize the exact behavior of the risk or rather the
exact constant that it converges to in our setting. A similar
setup arises while dealing with the functional regression
model, where we obtain results without any sparsity assump-
tion whatsoever on the underlying function class. Finally, our
paper considers a model from genomics where the covariates
may be dependent but uncorrelated (see [74]). We have
described a toy model (see [73], [76] for other models) in
Section II-C, which showcases how such structures might
arise and then showed that the model is amenable to our
universality analysis.

VII. PROOFS

Our universality proof relies on the following key observa-
tion: for showing (i) universality of the optimum value of the
empirical risk (Theorem 4.1) as well as ii) universality of the
estimation risk of regularized estimators (Corollary 4.2), one
requires to first establish that the estimators lie in some “nice”
set with high probability. After this is established, points (i)
and (ii) can be proved using separate techniques. For the
subsequent discussion, we will use the term universality of
the optimizer to mean (IV.2) in the statement of Theorem 4.2.
Before we delve into our proof, we provide a brief description
of our proof path below.

As a first step for points (i) and (ii), we require to prove that
the optimizer lies in a compact set whose ℓ2 norm is bounded
by a constant and ℓ∞ norm approaches 0 in the large n limit.
We prove these key results in Lemmas 7.1 and 7.2 respectively.
Subsequently for part (i), we establish a version of normal
approximation for linear combinations of dependent random
variables. For part (ii), we draw inspiration from the techniques
in [47]. That said, we emphasize that the techniques used
in [47] are heavily dependent on independence of the entries
of the design, a property that does not hold in our setting.
This raises additional technical challenges in our setting that
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we handle as we proceed. For part (ii), it suffices to prove
Theorem 4.2, once we have established the aforementioned
compactness property. For Theorem 4.2 in turn, we require
the compactness property, part (i), and a notion of separation
in the Gaussian model, which we name the Gordon gap.

As will be explained in the next section, the compactness
property is non-trivial to establish in the dependent sub-
Gaussian setup, and we use a novel leave-d-out argument to
solve the problem. In addition, while Stein’s method has been
used to show universality in several contexts, to the best of
our knowledge, the dependency neighbourhood technique that
we employ in this paper to show our normal approximation as
part of point (i) has never seen prior usage in the context of
regression models with dependent designs. Finally, the Gordon
gap is a technical tool that is only relevant to the independent
Gaussian design problem (see Section VII-C) and has been
used before in [47] and [84]. Nonetheless, the scaling factor
Λ, which is critical for covering our example in Section II-B,
poses additional challenges involving convergence of fixed
points of certain equations that we overcome via an equicon-
tinuity argument.

A. Compactness Property

As a first step, we prove that the optimizers φ̂KX := β̂KX −
β0 belong to the following set with probability at least 1−n−c

Tn := {φ ∈ Rp : ∥φ∥∞ ≤ C

√
d log n
n

, ∥φ∥ ≤ C}. (VII.1)

Since the ridge regression objective is strongly convex, the
ℓ2 bound ∥φ̂RX ∥ ≤ C follows trivially. For the Lasso the
analogous condition follows due to a restricted strong con-
vexity type property that we discuss next. In the traditional
theory for Lasso, in the setting of ultra-high dimensions
(p≫ n), it is customary to assume sparsity on the underlying
signal. This allows one to define the familiar and famous
restricted strong convexity condition (see [85] and references
cited therein). Using this, one can subsequently control the
ℓ2 norm of the Lasso solution. Since we refrain from explicitly
assuming sparsity assumptions on the signal, this strategy does
not directly translate to our setting. However, in our high-
dimensional regime, even when p > n, when the tuning
parameter is sufficiently large (Assumption 3, see also [47,
Lemma 6.3]), one can establish that the Lasso solution is
sparse (with sparsity proportional to the sample size) with high
probability. This implies that having control on the smallest
singular value of XS (matrix formed by restricting X to a
sparse subset) is sufficient for ensuring a restricted strong
convexity type property of the Lasso solution. This allows one
to bound the ℓ2 norm of the Lasso solution.

Establishing the ℓ∞ bound poses challenges since the leave-
one-out method as outlined in [47] fails in the presence of
dependence in the data. Instead we use a novel leave-d-out
method which essentially considers the following optimization
problem

φ̂(S) = argmin
φ∈Rp,φS=0

1
2n

∥Xφ− ξ∥2 + f(φ),

where S is a subset of 1, . . . , p of cardinality d. A detailed
analysis together with our block dependence assumption then
yields a suitable upper bound on ∥φ̂KX ,S∥, which in turn
provides the desired upper bound on ∥φ̂KX ∥∞. Such leave-d-out
arguments have been used in prior literature in [9], [20], and
[21] in other contexts, however, these works do not use this
for universality arguments. For convenience we will show a
scaled version of φ̂KX (which we call θ̂KX and is defined below)
belongs to Tn (see (VII.1)), from which it easily follows that
φ̂KX ∈ Tn. First we introduce some notations.

Recall the empirical risk minimization problem

R̂n(Y,X , β) =
1
2n

n∑
i=1

∥Yi −X T
i β∥2 + λf(β).

Since X is of the form XΛ1/2, we let ϑ = Λ1/2β. Then the
risk minimization problem can be rewritten as

R̂n(Y,X, ϑ) =
1
2n

n∑
i=1

∥Yi −XT
i ϑ∥2 + λf(Λ−1/2ϑ).

Since φ = β−β0, we define θ = ϑ−ϑ0 so that θ = Λ1/2φ. The
new parametrization is concisely presented in the following
display

ϑ = Λ1/2β, , ϑ0 = Λ1/2β0

θ = ϑ− ϑ0, Λ−1/2 = Ω̃. (VII.2)

For brevity, we will also denote the value of R̂n(Y,X, ϑ) on
using the variable θ as RK(X, θ) (with K=L or R depending
on whether ℓ1 or ℓ2 penalty is used), where we have suppressed
the dependence on ϑ0 (and hence Y ) and n. Finally, we define
the following optimizers

θ̂RX = argmin
θ∈Rp

1
2n

∥Xθ − ξ∥2 + λ

2
∥Ω̃(θ + ϑ0)∥2,

θ̂LX = argmin
θ∈Rp

1
2n

∥Xθ − ξ∥2 + λ√
n
∥Ω̃(θ + ϑ0)∥1.

The following lemmas proved in the appendix show that the
optimizers lie in the set Tn with high probability.

Lemma 7.1: Under Assumptions 1-3 we have

∥θ̂KX∥2 ≤ C

with probability at least 1−n−c for positive constants c and C.
Lemma 7.2: Under Assumptions 1-3 we have

∥θ̂KX∥∞ ≤ C

√
d log n
n

with probability at least 1−n−c for positive constants c and C.

B. Universality of the Optimum

We next describe our proof for the universality of the opti-
mum that corresponds to point (i) discussed in the beginning
of Section VII. We may divide this proof into three steps. The
first step replaces the minimum over the compact set with a
minimum over a discrete set, and shows that the approximation
error goes to zero. The second step involves approximating the
minimization over the discrete set by a smoothed minimum,
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and showing once again that the approximation error is neg-
ligible. The final step proves that this smoothed minimum is
universal, that is, its value is asymptotically the same if the
dependent design is replaced by an i.i.d. Gaussian design with
matching moments.

This proof strategy has been used in prior work (see [47,
Theorem 2.3] or [48, Theorem 1]). The universality of the
smoothed minimum is the crucial step and depends heavily
on the dependence/independence structure in the underlying
design matrix. It involves showing for any given set Sn we
have

sup
θ∈Tn∩Sn

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
| → 0 (VII.3)

for a suitable choice of test function ϕ, where Xi is a row
vector from the block dependent design and Gi is a row
vector from the independent Gaussian design. The arguments
showing this step differs in our case compared to prior work.
To establish such a pointwise normality condition, we use a
version of Stein’s method that involves dependency graphs
together with the fact that the optimizer lies in the compact
set Tn.

Heuristically the universality result holds because XT
i β̂

K is
a weighted sum of dependent sub-Gaussian random variables
that converges to a Gaussian random variable if the depen-
dence is “low” in a suitable sense. It can be easily observed
that the weighted sum may fail to converge if the weights
are chosen arbitrarily, for example if β̂K = (1, 0, . . . , 0),
convergence to a Gaussian cannot be expected. For this reason
we require the coordinates of β̂K to be small enough, which
justifies the ℓ∞ bound proved in Lemma 7.2.

Proof of Theorem 4.1:
For this proof, we will assume that Sn is a subset of Tn,

which we can assume without loss of generality.
Step 1: Discretization
Pick a δ net of the set Sn and call it Sn,δ . Let θ̂ =

argminθ∈Sn
R(θ,X) and θ̃ be a point in Sn,δ such that

∥θ̂ − θ̃∥ ≤ δ. For the purposes of this proof, we write θ̂KX
as θ̂ and RK(θ,X) as R(θ,X) since the same proof works
for both Lasso and ridge regression. We observe the following
chain of inequalities

| min
θ∈Sn,δ

R(θ,X)− min
θ∈Sn

R(θ,X)|

= min
θ∈Sn,δ

R(θ,X)− min
θ∈Sn

R(θ,X)

≤R(θ̃, X)−R(θ̂, X)

≤|R(θ̃, X)−R(θ̂, X)|

≤| 1
2n

(∥Xθ̃ − ξ∥2 − ∥Xθ − ξ∥2|+ |f(θ̃)− f(θ)|

≤ 1
2n

∥X(θ̄ − θ̃)∥2 + 1
n

∣∣∣(Xθ̄ − ξ)TX(θ̃ − θ̂)
∣∣∣

+ C1∥Ω̃(θ̃ − θ̂)∥

≤ 1
2n

∥X(θ̄ − θ̃)∥2 + 1
n
|(∥X∥∥θ̄∥+ ∥ξ∥)∥X∥∥θ̃ − θ̂)∥

+ C∥θ̃ − θ̂∥.

Noting that ∥X∥ ≤ C
√
n and ∥ξ∥ ≤ C

√
n with probability

at least 1− n−c and max{∥θ∥, ∥θ̃∥} ≤ C (since Sn and Sn,δ

are subsets of Tn) we conclude that

| min
θ∈Sn,δ

R(θ,X)− min
θ∈Sn

R(θ,X)| ≤ Cδ

with probability at least 1−n−c. For a bounded differentiable
function with bounded Lipschitz derivative we have

|E[ψ( min
θ∈Sn,δ

R(θ,X))]− E[ψ(min
θ∈Sn

R(θ,X))]|

≤C∥ψ′∥∞δ. (VII.4)

Step 2: Approximation by smoothed minimum

The smoothed minimum is defined as follows

fδ(α,X) = − 1
nα

log
∑
θ∈Sn,δ

exp (−nαR(θ,X))

with the following approximation error (cf. [48])

|fδ(α,X)− min
θ∈Sn,δ

R(θ,X)| ≤ C(δ)α−1.

Again using a Lipschitz function as in (VII.4), we obtain

|E[ψ(fδ(α,X))]− E[ψ( min
θ∈Sn,δ

R(θ,X)))]|

≤C∥ψ′∥∞α−1. (VII.5)

Step 3: Universality of the smoothed minimum

The universality of the smoothed minimum follows via the
interpolation path as shown in [48]. In particular one defines
matrices Ut where the rows are given by

Ut,i = sin(t)Xi + cos(t)Gi

and uses the relation

|E(ψ(fδ(α,X))− ψ(fδ(α,G)))|

=
2
π

∣∣∣∣∣E
∫ π/2

0

∂

∂t
(ψ(fδ(α,Ut))

∣∣∣∣∣ . (VII.6)

It can be shown that |E ∂
∂t (ψ(fδ(α,Ut))| → 0 once the

pointwise normality condition (see (VII.3)) is satisfied (see
[48, Lemma 4]), which we prove via Stein’s method. Thus
from (VII.4), (VII.5), and (VII.6), we conclude that

lim
n→∞

|E[ψ(min
θ∈Sn

R(θ,X))]− E[ψ(min
θ∈Sn

R(θ,G))]| → 0

by suitably choosing δ → 0, α → ∞, and n → ∞, once
we verify (VII.3). To show the latter, recall that Sn can be
assumed to a subset of Tn without loss of generality and hence
we aim to show

sup
θ∈Sn

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
| → 0.

We use the following relation

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
|

=|E
[
ϕ(νX⊤

i θ/ν)
]
− E [ϕ(νZ)] |,

where ν2 = ∥θ∥2 and Z ∼ N(0, 1). Define

ψ(x) = ex
2/2

∫ x

−∞
e−y

2/2(ϕ(νy)− E((ϕ(νZ)))dy,
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which satisfies the Stein’s identity

ψ′(x)− xψ(x) = ϕ(νx)− E(νZ),

and if ∥ϕ′(x)∥∞ ≤ B, then

max{ψ(x), ψ′(x), ψ′′(x)} ≤ 2νB ≤ C, (VII.7)

since ||θ|| ≤ C1 (for some constant C1) in our setting. Thus
it suffices to upper bound

E

[
ψ′

(
X⊤
i θ

ν

)
− X⊤

i θ

ν
ψ

(
X⊤
i θ

ν

)]
.

By using (VII.7), the block dependent structure (Defini-
tion 2.1), and [86, Theorem 3.6] we have

E

[
ψ′

(
X⊤
i θ

ν

)
− X⊤

i θ

ν
ψ

(
X⊤
i θ

ν

)]
≤Cd2ς3 + Cd3/2

√
ς4,

with

ς3 =
maxj E|Xij |3

∑p
j=1 |θ|3j

∥θ∥3
,

ς4 =
maxj E|Xij |4

∑p
j=1 |θ|4j

∥θ∥4
.

Now suppose maxj |θj | ≤ αn and ∥θ∥ > ϵ, then with ς =
max{maxj E|xij |3,maxj E|xij |4} we have

E

[
ψ′

(
X⊤
i θ

ν

)
− X⊤

i θ

ν
ψ

(
X⊤
i θ

ν

)]
≤d

2ςαn
ϵ

+
d3/2

√
ςαn

ϵ
. (VII.8)

Since θ ∈ Sn ⊂ Tn, αn → 0 and hence the RHS of (VII.8)
goes to 0 as n → ∞. On the other hand, when ∥θ∥ < ϵ,
we have

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
|

≤∥ϕ′∥∞
[
(E(X⊤

i θ)
2)1/2 + (E(G⊤

i θ)
2)1/2

]
≤ C1ϵ,

for some C1 since ∥θ∥ ≤ C for θ ∈ Tn. Thus we have

sup
θ∈Sn

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
|

≤ sup
{θ∈Sn}∩{∥θ∥≥ϵ}

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
|

+ sup
{θ∈Sn}∩{∥θ∥≤ϵ}

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
|

≤d
2ςαn
ϵ

+
d3/2

√
ςαn

ϵ
+ C1ϵ.

Now choose

ϵ =

√
Cd2ςαn + Cd3/2

√
ςαn

C1

so that

sup
θ∈Sn

|E
[
ϕ(X⊤

i θ)
]
− E

[
ϕ(G⊤

i θ)
]
|

≤2
√
C1(Cd2ςαn + Cd3/2

√
ςαn) → 0

as desired.

Remark: Note that in the proof we only require d2αn
converges to 0. So the result holds for growing d. In particular,
αn can be chosen as (d log n/n)1/2 and the proof works as
long as d5 log n/n → 0. However, we note that since the
tightness of the upper bounds given in Lemma 7.2 and (VII.8)
cannot be guaranteed in general, the maximum d beyond
which universality fails remains an interesting open question.

C. Universality of the Optimizer

We use the terms universality of the optimizer and universal-
ity of the estimation risk interchangeably. This is because the
proof of Theorem 4.2 shows the universality of the optimizer
and an application of Theorem 4.2 gives Corollary 4.2, which
deals with the universality of the estimation risk.

Our proof of this step builds upon [47]. The universality of
the optimizer is established in [47, Theorem 2.4] under two
conditions (called (O1) and (O2) in [47]) with the regression
setup considered in [47, Theorem 3.1]. We note that condition
(O1) mentioned in there is the same as the bound on the ℓ∞
norm of the optimizer, which we prove in Lemma 7.2 by our
leave-d-out method. Condition (O2) is the Gordon gap that
states the following: if there is a difference in the unrestricted
optimum and the optimum restricted to a particular set with
high probability, then the optimizer does not belong to that set
with high probability. In other words, for any pair of positive
constants ψK and z, the following holds

{ inf
θ∈Rp

RK(θ,G) ≤ ψK + z}

∩ { inf
θ∈Sn

RK(θ,G) ≥ ψK + 2z)} ⊂ {θ̂KG ∈ Scn}.

(VII.9)

We observe that the statement above concerns independent
Gaussian design only i.e. we do not need to establish such
a condition for the dependent sub-Gaussian design matrix.
Although it may seem nontrivial that the universality of
the optimizer follows from checking this condition for the
Gaussian case, we show that (see proof of Theorem 4.2)
the Gordon gap coupled with Theorem 4.1 (which shows
universality of the optimum value of the empirical risk for
all subsets of the nice compact set) readily yields the desired
universality of the optimizer. This proof strategy was also
utilized in [47] and [48]. Although our proof for the Gordon
gap builds upon [47, Theorems 3.4,3.8], the scaling matrix Λ
calls for a more nuanced analysis. In particular, Lemma 7.3
below plays a critical role in the proof of Theorem 4.2. The
scaling factor introduces challenges in establishing this lemma.
We overcome this by employing a nontrivial equicontinuity
argument (see Appendix A-C), a step not necessitated in the
case of [47].

Let ωi = Ω̃ii and µ0 =
√
nϑ0 where Ω̃ and ϑ are defined

in (VII.2). Recall the fixed point solution βK∗ , γ
K
∗ of the

equations (III.4) and define θK∗ = wK∗ /
√
n where

wK∗,i = ηk

(
µ0,i + γK∗ gi,

γK∗ λω
k
i

βK∗

)
− µ0,i

Authorized licensed use limited to: Harvard University SEAS. Downloaded on September 03,2025 at 01:19:59 UTC from IEEE Xplore.  Restrictions apply. 



8990 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 12, DECEMBER 2024

with k = 1 for K = R and k = 2 for K = L. Let us define
the set Sϵn as follows

Sϵn := {θ : |ϱ(θ)− E(ϱ(θK∗ ))| ≥ ϵ}. (VII.10)

Henceforth we will omit the ϵ and call it Sn since Theorem 4.2
is proved for a fixed ϵ). We have the following lemma.

Lemma 7.3: There exists positive constants ψR and ψL

(denoted by ψK with K = R for ridge and K = L for Lasso)
and z such that the following holds

P

(
inf
θ∈Rp

RK(θ̂, G) ≥ ψK + z

)
≤ δn

P

(
inf
θ∈Sn

RK(θ̂, G) ≤ ψK + 2z
)

≤ δn

for some δn → 0.
Remark 7.1: In the above lemma ψK = ψK(βK∗ , γ

K
∗ )

where the function ψK(., .) is given in (III.3) and the constants
βK∗ and γK∗ is given by the (III.4). Further z is constant which
depends only on ϵ- the same ϵ used to define the set Sϵn
in (VII.10).

Now we are ready to prove Theorem 4.2.
Proof of Theorem 4.2:
We start with formalizing the statement in (VII.9). We have

the following set of inequalities for suitable choices of γn, δn,
ϵn → 0.

P (θ̂KX ∈ Sn)
≤P (θ̂KX ∈ Sn ∩ Tn) + ϵn

≤P
(

inf
θ∈Tn

RK(θ,X) ≥ ψK + 3z
)

+ P

(
inf

θ∈Sn∩Tn

RK(θ,X) ≤ ψK + 6z
)
+ ϵn

≤P
(

inf
θ∈Tn

RK(θ,G) ≥ ψK + z

)
+ P

(
inf

θ∈Sn∩Tn

RK(θ,G) ≤ ψK + 2z
)
+ ϵn + 2γn

≤P
(
inf
θ
RK(θ,G) ≥ ψK + z

)
+ P

(
inf
θ∈Sn

RK(θ,G) ≤ ψK + 2z
)
+ 3ϵn + 2γn

≤2δn + 3ϵn + 2γn.

We note that the first and fourth inequality follows from
Lemmas 7.1 and 7.2. The second inequality follows from the
following inclusion{

{ inf
θ∈Tn

RK(θ,X) ≤ ψK + 3z}

∩ { inf
θ∈Sn∩Tn

RK(θ,X) ≥ ψK + 6z}
}

⊂ {θ̂KX ∈ (Sn ∩ Tn)c}.

The third inequality follows from Theorem 4.1 with a suitable
choice of test function, while the last inequality follows from
Lemma 7.3. Next we use (VII.2) to obtain our statements with

the old parameters. For φ, we use the fact that φ = Ω̃θ and
θ = w/

√
n to obtain

φK∗ = Ω̃
wK∗√
n

so that

φR∗,i = η2

(
β0,i +

γR∗ ωigi√
n

,
γR∗ λω

2
i

βR∗

)
− β0,i (VII.11)

φL∗,i = η1

(
β0,i +

γL∗ ωigi√
n

,
γL∗ λω

2
i√

nβL∗

)
− β0,i, (VII.12)

where we have used the fact that

η1(αx, αλ) = αη1(x, λ), η2(αx, λ) = αη2(x, λ).

Since φ̂KX = Ω̃θ̂KX , where the entries of Ω̃ are bounded, we can
easily redefine ϱ so that

P (|ϱ(φ̂KX)− E(ϱ(φK∗ ))| ≥ ϵ) ≤ 2δn + 2ϵn + 3γn.(VII.13)

Now we observe that although the above result is proved for
dependent sub-Gaussian designs, the latter subsumes the case
of independent Gaussian design and hence it trivially follows
that

P (|ϱ(φ̂KG )−E(ϱ(φK∗ ))|≥ϵ)≤2δn+3ϵn+2γn. (VII.14)

Combining (VII.13) and (VII.14), we obtain that

P (|ϱ(φ̂KX)− ϱ(φ̂KG )| ≥ 2ϵ) ≤ 4δn + 6ϵn + 4γn.

Defining 4δn + 6ϵn + 4γn as εn and replacing 2ϵ by ϵ we
observe that the desired claim is proved. □

We now have all ingredients in place for the proof of
Corollary 4.2.

Proof of Corollary 4.2: Choose ϱ as the function ∥.∥2.
Although this function is not Lipshitz in the entire domain
Rp it is Lipshitz in the bounded domain {φ : ∥φ∥ ≤ C}.
Since our optimizers have bounded ℓ2 norm with probability
at least 1− n−c, we work in the domain {φ : ∥φ∥ ≤ C} for
our purposes and use Theorem 4.2 to conclude

∥φ̂RX∥2−EQ̄n

[
η2

(
M +

γR∗ ΩZ√
n

,
γR∗ λΩ

2

βR∗

)
−M

]2
P−→ 0,

∥φ̂LX∥2−EQ̄n

[
η1

(
M +

γL∗ ΩZ√
n

,
γL∗ λΩ

2

√
nβL∗

)
−M

]2
P−→ 0.

Substituting φ̂KX = β̂KX − β0, we conclude our proof.

VIII. DISCUSSION

In this paper, we established universality results within
the framework of empirical risk minimization, demonstrating
that the optimal value of the regularized empirical risk and
estimation risk of regularized estimators converge to the same
value for block dependent sub-Gaussian designs, as in the
case of i.i.d. Gaussian designs. In sum, to the best of the
authors’ knowledge, our paper is the first in the literature
that handles dependence structures beyond correlation-based
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dependence or those allowed by right-rotationally-invariant
designs. Our examples from Section II demonstrate the impor-
tance of studying such general dependencies, providing the
first segue into nonlinear problems. Notably, this allows us to
characterize the (asymptotically) exact risk of estimators for
popular nonlinear regression models under high-dimensional
covariates. We conclude our manuscript with a couple of
directions for future work.

First, our results do not account for dependence captured by
an explicit covariance matrix. A logical extension of our work
would involve proving dependence when feature vectors take
the form Σ1/2Zi. Here, instead of Zi being a random vector
with independent sub-Gaussian entries, as considered in [48],
Zi is isotropic, and block dependent sub-Gaussian vectors.
We conjecture that under some regularity assumptions on the
covariance matrix Σ, the optimal value of the risk and the risk
of regularized estimators should be asymptotically the same as
that of the design with rows of the form Σ1/2Gi where the
entries of Gi are i.i.d. Gaussian. While proving universality
of the optimum in this scenario aligns with the approach
in [48], generalizing our leave-d-out method in presence of
a general Σ and subsequently proving universality of the
optimizer presents nontrivial challenges, which we defer to
future work.

Second, an intriguing avenue involves considering a more
general dependence pattern, where each entry of the feature
vector depends on only a small number of other entries,
without a block structure. Currently, the block structure is
pivotal in our proofs of ℓ∞ bounds via our leave-d-out method.
We view our current contribution as a stepping stone towards
investigating these other notions of dependence. The absence
of the block structure implies a stronger form of dependence,
necessitating new tools. We defer this to future investigation.

APPENDIX A
PROOF OF THE LEMMAS

First we state a concentration result which will be used in
proving the theorems.

A. Concentration Result

Lemma 1.1: Let X be an n × p matrix whose rows Xi

are independent sub-Gaussian isotropic random vectors in
Rn. Then for every t ≥ 0, with probability at least 1 −
2 exp(−cKt2) one has

√
n− CK

√
p− t ≤ smin(X) ≤smax(X)

≤
√
n+ CK

√
p+ t, (A.1)

where smin(X) and smax(X) are the smallest and largest
singular values of the matrix X . The constant s CK , cK depend
only on the sub-Gaussian norm K = maxi ∥Xi∥ψ2 of the
rows.

Proof: See [87]. □

B. Bounds on the Optimizers

Throughout this section we will work with Assumptions 1
and 3. Further we use the following modified assumption
instead of 2 to account for change in scale (see (VII.2))

Assumption 4: The signal satisfies the bound ∥ϑ0∥ ≤ C.
Let vi =

√
nϑ0,i for 1 ≤ i ≤ p. Then we assume that

1
p

p∑
i=1

δλi,vi

W2==⇒ µ.

Further we assume that ∥v∥∞ ≤ C.
Proof of lemma 7.1: Recall that we work under the pro-

portional asymptotic setup i.e. limn→∞ p/n = κ. For the
sake of clarity we will first deal with the setup with κ−1 >
C0 > CK for some C0 where CK is the constant appearing
in Lemma 1.1. We will later show that in the general setup
similar bounds can be achieved by suitably modifying the
tuning parameter λ.

Case 1: n/p→ κ−1 > C0 > C2
K

Ridge regression
Recall that Ω̃ = Λ−1/2. By the optimality of θ̂RX , it easily

follows that
1
2
∥Xθ̂RX − ξ∥2 + nλ

2
∥Ω̃(θ̂RX + ϑ0)∥2

≤1
2
∥ξ∥2 + nλ

2
∥Ω̃ϑ0∥2,

whence ∥Xθ̂RX∥2 ≤ C( 12∥ξ∥
2 + nλ

2 ∥Ω̃ϑ0∥2).
Using a lower bound on the singular value of X from

Lemma 1.1 we observe that the left-hand side of the last
inequality is lower bounded by cn∥θ̂RX∥2 with probability at
least 1 − n−c by choosing t = c1

√
log n (for suitable choice

of c1). Similarly using E[∥ξ∥2] ≤ Cn and sub-Gaussian
concentration inequality for the random vector ξ we easily
conclude that ∥θ̂RX∥ ≤ C with probability at least 1 − n−c.
Note that we have used ∥ϑ0∥2 ≤ C and that Ω̃ is a diagonal
matrix with bounded entries.

Lasso
We have an analogous bound for Lasso penalty. Indeed,

similar to the above argument we obtain

∥Xθ̂LX∥2 ≤ C

(
1
2
∥ξ∥2 + nλ√

n
∥Ω̃ϑ0∥1

)
.

Since entries of Ω̃ are bounded by some constant C and
∥ϑ0∥ ≤ C, we get ∥Ω̃ϑ∥1 ≤ C

√
p∥ϑ0∥ ≤ C

√
p. Using the

fact that ∥ξ∥ ≤ C
√
n with probability at least 1 − n−c we

obtain ∥Xθ̂LX∥2 ≤ Cn (we have used that (p/n)1/2 ≤ C) with
probability at least 1 − n−c. A lower bound on the singular
value of X from Lemma 1.1 then yields ∥θ̂LX∥ ≤ C.

Case 2: n/p→ κ−1 ≤ C2
K

Ridge regression
This is a relatively simpler case since we can directly

analyze the closed form expression of the ridge estimator
and use strong convexity. Indeed for the ridge estimator ϑ̂RX ,
we have

∥ϑ̂RX∥ =∥(XTX + nλΩ̃2)−1(XTXϑ0 +XT ξ)∥
≤(nλc)−1(∥XTX∥∥ϑ0∥+ ∥XT ∥∥ξ∥).

By lemma 1.1 we can upper bound ∥XTX∥ and ∥X∥ by
n and

√
n respectively. Since ∥ϑ0∥ is bounded by a constant

and ∥ξ∥ ≤ C
√
n with probability at least 1− n−c we obtain

∥ϑ̂RX∥ ≤ C with probability at least 1 − n−c which in turn
implies ∥θ̂RX∥ ≤ C with probability at least 1− n−c.
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Lasso
This case is more difficult because when the condition

n/p→ κ−1 > C2
K is not satisfied, the bound on the smallest

singular value (see Lemma 1.1) does not work. In fact, for
p > n the smallest singular value is zero. However, we can
follow the idea outlined in [47] - ensuring that λ is larger than
a certain value one can ensure that the optimizer is sparse
with the number of nonzero components a small fraction of
n. Restricting ourselves to such a set S, it is then enough to
give a lower bound for the smallest singular value of XS .

The following lemma shows that for large enough λ the
optimizer is sparse.

Lemma 1.2: For any c0 < 1 There exist a λ0 which depends
on c0, such that for λ ≥ λ0,the solution θ̂LX is (c0n) sparse
with probability at least 1−nc(λ,c0) where c(λ, c0) is a constant
depending on c0 and the tuning parameter λ.
We defer the proof of this lemma for the moment. Now we
can easily derive the ℓ2 bound for the Lasso case. By the
optimality of θ̂LX , it easily follows that

1
2
∥Xθ̂LX − ξ∥2 +

√
nλ

2
∥Ω̃(θ̂LX + ϑ0)∥1

≤1
2
∥ξ∥2 +

√
nλ

2
∥Ω̃ϑ0∥1.

We can rewrite the inequality using ϑ instead of θ as follows:

1
2
∥Xϑ̂LX − Y ∥2 +

√
nλ

2
∥Ω̃ϑ̂LX∥1

≤1
2
∥ξ∥2 +

√
nλ

2
∥Ω̃ϑ0∥1.

Rearranging the terms it is not difficult to observe that

1
2
∥Xϑ̂LX∥2 ≤ C

(
1
2
∥ξ∥2 +

√
nλ

2
∥Ω̃ϑ0∥1 + ∥Y ∥2

)
.

The right hand side is less than equal to n due to sub-
Gaussianity assumptions. Indeed ∥ξ∥2 ≤ Cn with high
probability and the same holds for the term ∥Xϑ0∥2 using
Lemma 1.1 and boundedness of ∥ϑ0∥. These two bounds can
be used to show that ∥Y ∥2 ≤ Cn with high probability. Also,
using the boundedness of the entries of Ω̃ and Cauchy-Schwarz
inequality we have

√
nλ
2 ∥Ω̃ϑ0∥1 ≤ C

√
np∥ϑ0∥ ≤ Cn. From

these bounds the claimed bound on the RHS follows. On the
other hand the LHS is greater than cn∥ϑ̂LX∥2 with high
probability by Lemma 1.2. Thus we obtain ∥ϑ̂LX∥ ≤ C for
some constant c with high probability. Since ∥ϑ0∥ ≤ C,
we obtain that ∥θ̂LX∥ ≤ C with high probability. □

Proof of Lemma 7.2:
Case 1: n/p→ ψ−1 > C0 > C2

K

Ridge Regression
Let A = X/

√
n, w =

√
nθ, ŵRA =

√
nθ̂RX . We also denote

µ0 =
√
nϑ0 and write ŵRA as ŵ for the sake of brevity.

Thus it is enough to show that ∥ŵ∥∞ ≤
√
d log n with high

probability. We consider the column-leave-d-out version of the
problem. Let S be a given subset of {1, . . . , p}.

ŵ(S) = argmin
w∈Rp,wS=0

1
2
∥Aw − ξ∥2 + λ

2
∥Ω̃(µ0 + w)∥2.

Since ŵ is the optimal solution we obtain the following set of
inequalities

0 ≤1
2
∥Aŵ(S) − ξ∥2 + λ

2
∥Ω̃(µ0 + ŵ(S))∥2

− 1
2
∥Aŵ − ξ∥2 − λ

2
∥Ω̃(µ0 + ŵ)∥2

=− 1
2
∥A(ŵ(S) − ŵ)∥2

+ ⟨A(ŵ(S) − ŵ), Aŵ(S) − ξ)⟩

+
λ

2
∥Ω̃(µ0 + ŵ(S))∥2 − λ

2
∥Ω̃(µ0 + ŵ)∥2.

We have the following decomposition

⟨A(ŵ(S) − ŵ), Aŵ(S) − ξ)⟩
=− ⟨ASŵS , (A−Sŵ

(S)
−S − ξ)⟩

+ ⟨A−S(ŵ
(S)
−S − ŵ−S), (A−Sŵ

(S)
−S − ξ)⟩

=− ⟨ASŵS , (A−Sŵ
(S)
−S − ξ)⟩

− λ⟨ŵ(S)
−S − ŵ−S , Ω̃2

−S(µ0,−S + ŵ
(S)
−S)⟩,

where the last equality uses the KKT condition
AT−S(A−Sŵ

(S) − ξ) = −λΩ̃2
−S(µ0,−S + ŵ

(S)
−S). Thus

we have

0 ≤− 1
2
∥A(ŵ(S) − ŵ)∥2 − ⟨ASŵS , (A−Sŵ

(S)
−S − ξ)⟩

− λ⟨ŵ(S)
−S − ŵ−S , Ω̃2

−S(µ0,−S + ŵ
(S)
−S)⟩

+
λ

2
∥Ω̃(µ0 + ŵ(S))∥2 − λ

2
∥Ω̃(µ0 + ŵ)∥2

≤− 1
2
∥A(ŵ(S) − ŵ)∥2 − ⟨ASŵS , (A−Sŵ

(S)
−S − ξ)⟩

+
λ

2
∥Ω̃Sµ0,S∥2 −

λ

2
∥Ω̃S(µ0,S + ŵS)∥2,

where the last inequality follows from the convexity of the
function ∥.∥2. Thus we obtain

1
2
∥A(ŵ(S) − ŵ)∥2 + λ

2
∥Ω̃SŵS∥2

≤∥ŵS∥(∥ATS (A−Sŵ
(S)
−S − ξ)∥+ λ∥Ω̃2

Sµ0,S∥).

From this relation, it easily follows that for some constant c

c∥ŵS∥ ≤2λ−1(∥ATS (A−Sŵ
(S)
−S − ξ)∥+ λ∥Ω̃2

Sµ0,S∥)

≤2λ−1(∥ATSA−Sŵ
(S)
−S∥+ ∥ATS ξ∥

+ λ∥Ω̃2
Sµ0,S∥). (A.2)

By the optimality of ŵ(S), we have

1
2
∥A−Sŵ

(S)
−S − ξ∥2 + λ

2
∥Ω̃(µ0 + ŵ

(S)
−S)∥

2

≤1
2
∥ξ∥2 + λ

2
∥Ω̃µ0∥2,

whence ∥A−Sŵ
(S)
−S∥2 ≤ C

(
1
2∥ξ∥

2 + λ
2 ∥Ω̃µ0∥2

)
. Since

∥ξ∥2 ≤ Cn with probability at least 1 − n−c and ∥Ω̃µ0∥2 ≤
Cn, we obtain ∥A−Sŵ

(S)
−S∥2 ≤ Cn with probability at least

1− n−c.
Now for a single coordinate s there exist a set S (with

|S| ≤ d) such that s ∈ S and the columns of AS and the
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columns of A−S are independent. Let i ∈ S. Using the facts
that the elements of Ai are independent sub-Gaussian and that
Ai and A−Sŵ

(S)
−S are independent, we have

∥ATSA−Sŵ
(S)
−S∥ ≤

√
dmax
i∈S

|ATi A−Sŵ
(S)
−S | ≤ C

√
d log n

(A.3)

holds with probability at least 1 − n−c conditioned on the
event ∥A−Sŵ

(S)
−S∥2 ≤ Cn which itself holds with probability

1− n−c.
Since the elements of Ai are i.i.d. and Ai and ξ are

independent,|ATi ξ| ≤ C
√
log n holds with probability at least

1 − n−c. Indeed conditioning on the event ∥ξ∥ ≤ C
√
n the

result follows from the sub-Gaussian concentration and the
event itself holds with probability at least 1− n−c. Similar to
the bounds obtained for ∥ATSA−Sŵ

(S)
−S∥ we obtain ∥ATS ξ∥ ≤

C
√
d log n with probability at least 1−n−c. Finally since the

entries of the signal µ0 are bounded (recall that the entries of
ϑ0 are of the order O(p−1/2) by Assumption 4), using (A.2)
we have the following inequality

|ŵs| ≤ ∥ŵS∥ ≤ C
√
d log n,

with probability at least 1− n−c.
Also this event holds uniformly in s since we can choose

c > 1 and use the union bound. Hence

∥ŵR∥∞ ≤ C
√
d log n,

with probability at least 1− n−c.
Lasso
Once again we start with the leave-d-out estimator. Let S

be a given subset of {1, . . . , p} and define:

ŵ(S) = argmin
w∈Rp,wS=0

1
2
∥Aw − ξ∥2 + λ∥Ω̃(µ0 + w)∥1.

The KKT condition is given by

AT−S(A−Sŵ
(S)
−S − ξ) + λΩ̃−Sv−S = 0,

where v−S is the subgradient of ∥.∥1 at Ω̃(µ0+ŵ(S)). We write
the risk R(Y,A, ϑ) as a function of w i.e. R(w) suppressing
the other variables. Denoting ŵ as the Lasso optimizer we
have

R(0, ŵ−S)

=
1
2
∥A−Sŵ−S − ξ∥2 + λ∥Ω̃(ŵ−S + µ0)∥1

=
1
2
∥A−S(ŵ−S − ŵ

(S)
−S)∥

2 +
1
2
∥A−Sŵ

(S)
−S − ξ∥2

+ ⟨A−S(ŵ−S − ŵ
(S)
−S), A−Sŵ

(S)
−S − ξ⟩

+ λ∥Ω̃(ŵ(S)
−S + µ0)∥1 + λ∥Ω̃(ŵ−S + µ0)∥1

− λ∥Ω̃(ŵ(S)
−S + µ0)∥1

=R(0, ŵ(S)
−S) +

1
2
∥A−S(ŵ−S − ŵ

(S)
−S)∥

2

+ ⟨A−S(ŵ−S − ŵ
(S)
−S), A−Sŵ

(S)
−S − ξ⟩

+ λ∥Ω̃(ŵ−S + µ0)∥1 − λ∥Ω̃(ŵ(S)
−S + µ0)∥1

=R(0, ŵ(S)
−S) +

1
2
∥A−S(ŵ−S − ŵ

(S)
−S)∥

2

− ⟨ŵ−S − ŵ
(S)
−S , λΩ̃−Sv−S⟩

+ λ∥Ω̃(ŵ−S + µ0)∥1 − λ∥Ω̃(ŵ(S)
−S + µ0)∥1

≥R(0, ŵ(S)
−S) +

1
2
∥A−S(ŵ−S − ŵ

(S)
−S)∥

2.

The fourth equality follows from the KKT condition and the
last inequality from the convexity of the function ∥.∥1. Define
f1(x) := R((x, ŵ−S)) and f2(x) := R((x, ŵ(S)

−S)). Then we
have shown

1
2
∥A−S(ŵ−S − ŵ

(S)
−S)∥

2

≤f1(0)− f2(0)
≤(f1(0)−min

x
f1(x))− (f2(0)−min

x
f2(x)). (A.4)

The last inequality follows from the fact

min
x
f1(x) = R(ŵ) ≤ min

x
R((x, ŵ(S)

−S)) = min
x
f2(x).

We expand f1(x) as follows:

f1(x)

=
1
2
∥ASx+A−Sŵ−S − ξ∥2 + λ∥Ω̃S(x+ µ0,S)∥1

+ λ∥Ω̃−S(ŵ−S + µ0,−S)∥1

=
1
2
∥A−Sŵ−S − ξ∥2 + 1

2
∥ASx∥2

+ ⟨ASx,A−Sŵ−S − ξ⟩
+ λ∥Ω̃S(x+ µ0,S)∥1 + λ∥Ω̃−S(ŵ−S + µ0,−S)∥1
+ λ∥Ω̃Sµ0,S∥1 − λ∥Ω̃Sµ0,S∥1

=f1(0) +
1
2
∥ASx∥2 + ⟨ASx,A−Sŵ−S − ξ⟩

+ λ∥Ω̃S(x+ µ0,S)∥1 − λ∥Ω̃Sµ0,S∥1.

Let y1 = A−Sŵ−S − ξ and y2 = A−Sŵ
(S)
−S − ξ. Also define

g(y) = min
x

1
2
∥ASx∥2 + ⟨ASx, y⟩+ λ∥Ω̃S(x+ µ0,S)∥1.

Then we observe that

f1(0)− f2(0)
≤(f1(0)−min

x
f1(x))− (f2(0)−min

x
f2(x))

=g(y2)− g(y1).

Further we define the following functions:

h(x) =
1
2
∥ASx∥2 + ⟨ASx, y⟩

b(x) = λ∥Ω̃S(x+ µ0,S)∥1.

Thus we have,

g(y) = min
x
h(x) + b(x)

= sup
x

−h∗(x)− b∗(−x),

where h∗(x) and g∗(x) are Fenchel duals of h(x) and g(x)
respectively and the last equality is obtained using Fenchel
duality theorem. We note that with probability at least 1−n−c
smin(AS) ≥ c and hence ATSAS is invertible and we have the
following lemma:
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Lemma 1.3: For the functions h(x) and b(x) defined above,
we have the following Fenchel duals:

h∗(x) =
1
2
(x−ATSy)

T (ATSAS)
−1(x−ATSy),

b∗(x) =

{
−⟨µ0,S , x⟩ if ∥Ω̃−1

S x∥∞ ≤ λ

∞ otherwise .
(A.5)

It follows that

g(y)

= sup
∥Ω̃−1

S x∥∞≤λ
−1
2
(x−ATSy)

T (ATSAS)
−1(x−ATSy)

− ⟨µ0,S , x⟩,

and consequently defining PS = AS(ATSAS)
−1ATS and

using (A.4) we obtain the following set of inequalities,

1
2
∥A−S(ŵ−S − ŵ

(S)
−S)∥

2

≤|g(y2)− g(y1)|
≤ sup

∥Ω̃−1
S x∥∞≤λ

|xT (ATSAS)−1ATS (y1 − y2)|

+
1
2
|yT1 PSy1 − yT2 PSy2|

≤ sup
∥Ω̃−1

S x∥∞≤λ
∥x∥∥(ATSAS)−1ATS (y1 − y2)∥

+
1
2
(y1 − y2)TPS(y1 − y2) + |yT2 PS(y1 − y2)|.

Recall that y1 − y2 = A−S(ŵ−S − ŵ
(S)
−S); hence we obtain

(y1 − y2)TPS(y1 − y2) = ∥PSA−S(ŵ−S − ŵ
(S)
−S)∥2. For

∥Ω̃−1
S x∥∞ ≤ λ we have the following inequality

∥x∥ ≤ ∥x∥∞
√
d ≤ C∥Ω̃−1

S x∥∞
√
d ≤ Cλ

√
d

and consequently we obtain,

1
2
∥P⊥

S A−S(ŵ−S − ŵ
(S)
−S)∥

2

≤Cλ
√
d∥(ATSAS)−1ATSA−S(ŵ−S − ŵ

(S)
−S)∥

+ ∥(A−Sŵ
(S)
−S − ξ)TPSA−S(ŵ−S − ŵ

(S)
−S)∥

≤Cλ
√
d∥(ATSAS)−1ATSA−S(ŵ−S − ŵ

(S)
−S)∥

+ ∥(A−Sŵ
(S)
−S − ξ)TAS(ATSAS)

−1ATSA−S(ŵ−S

− ŵ
(S)
−S)∥

≤(Cλ
√
d∥(ATSAS)−1∥∥ATS∥∥A−S∥

+ ∥AT−S∥∥AS∥∥(ATSAS)−1∥∥ATS (A−Sŵ
(S)
−S

− ξ)∥)∥ŵ−S − ŵ
(S)
−S∥.

By the same argument as equation (A.3) we have
∥ATSA−Sŵ

(S)
−S∥ ≤ C

√
d log n with probability at least 1−n−c

and by independence of AS and ξ, ∥ATS ξ∥ ≤ C
√
d log n with

probability at least 1 − n−c. Hence ∥ATS (A−Sŵ
(S)
−S − ξ)∥ ≤

C
√
d log n with probability at least 1 − n−c. By Lemma 1.1

the terms ∥AS∥, ∥A−S∥, ∥(ATSAS)−1∥ are bounded by some

constant C with probability at least 1 − n−c. Hence the
following holds
1
2
∥P⊥

S A−S(ŵ−S − ŵ
(S)
−S)∥

2 ≤ C
√
d log n∥ŵ−S − ŵ

(S)
−S)∥,

(A.6)

with probability at least 1− n−c. Now

P⊥
S (A−S(ŵ−S − ŵ

(S)
−S))

=AS(−(ATSAS)
−1ATSA−S(ŵ−S − ŵ

(S)
−S))

+A−S(ŵ−S − ŵ
(S)
−S) = Aw̄,

where

w̄T = ((−(ATSAS)
−1ATSA−S(ŵ−S − ŵ

(S)
−S))

T ,

(ŵ−S − ŵ
(S)
−S)

T ).

By Lemma 1.1 and the condition n/p > C2
K we have

∥Aw̄∥2 ≥ c∥w̄∥2 (for some c > 0). We also note that
∥w̄∥2 ≥ ∥ŵ−S − ŵ

(S)
−S∥2 and hence,

c∥ŵ−S − ŵ
(S)
−S∥

2 ≤ C
√
d log n∥ŵ−S − ŵ

(S)
−S)∥,

∥ŵ−S − ŵ
(S)
−S∥ ≤ c−1C

√
d log n. (A.7)

By the KKT condition

ATAw = AT ξ − λΩ̃v,

for subgradient v. Arguing that ∥AT ξ∥∞ and λ∥Ω̃v∥∞ are
bounded by C

√
log n with probability at least 1 − n−c we

obtain

∥(ATAŵ)S∥ = ∥ATSASŵS +ATSA−Sŵ−S∥
≤ C

√
d log n.

Rearranging terms and using triangle inequality then yields,

∥ATSASŵS∥ ≤ C(
√
d log p+ ∥ATSA−Sŵ−S∥).

Noting that ∥ATSAS∥ ≥ c holds with probability at least 1 −
n−c we have the following decomposition:

∥ŵS∥ ≤C(∥ATSA−Sŵ−S∥+
√
d log n)

≤C(∥ATSA−Sŵ
(S)
−S∥

+ ∥AS∥∥A−S∥∥ŵ−S − ŵ
(S)
−S∥

+
√
d log n).

The term ∥ATSA−Sŵ
(S)
−S∥ can be bounded by C

√
d log n by

the same argument as equation A.3. Also ∥AS∥, ∥A−S∥ are
bounded by some constant C with probability at least 1−n−c
by applying Lemma 1.1. These facts together with (A.7) yields

|ŵ|s ≤ ∥ŵS∥ ≤ C
√
d log n,

with probability at least 1−n−c and using a union bound we
obtain

∥ŵL∥∞ ≤ C
√
d log n,

with probability at least 1− n−c.
Case 2: n/p→ κ−1 ≤ C2

K

We note that for the ℓ∞ bound in the ridge regression the
lower bound of the singular value from Lemma 1.1 was not
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used, hence in this case the ℓ∞ bound proof is identical to the
one used in Case 1.

For the ℓ∞ in Lasso we note the lower bound on the singular
from Lemma 1.1 was only used to give lower bound to Aw̄
(see the equation after A.6). However in this case one can use
easily show that for λ ≥ λ0 ŵ−S− ŵ(S)

S and hence w̄ is 2c0n
sparse (see Lemma 1.2). The rest of the proof is same as the
Lasso case of Lemma 7.2. □

Proof of Lemma 1.2: This follows from the proof of Lemma
6.3 of [47] with certain modification due to the dependence.
For the sake of completeness we give the entire proof.

From the KKT condition we can write

ATi (Aŵ − ξ) + λ(Ω̃v)i = 0, (A.8)

with v be the subgradient of ∥.∥1 at Ω̃(ŵ+µ0). Let S+ be the
set such that for i ∈ S+, µ̂i = (ŵ + µ0)i > 0 (and similarly
define S−). We will show that both S+ and S− are bounded
by c0n with probability at least 1−n−c which ensures that the
Lasso solution is 2c0n sparse with probability at least 1−n−c.

Note that the KKT condition (A.8) can be used to show∑
i∈S+

z2i + λ2
∑
i∈S+

ω2
i − 2λ

∑
i∈S+

ziωi

≤∥Aŵ∥2∥AS+A
T
S+

∥,

c2λ2|S+| − 2λ
∑
i∈S+

ziωi

≤∥Aŵ∥2∥AS+A
T
S+

∥,

where z = AT ξ and we have used the lower bound on ωi.
Thus with probability at least 1 − n−c the following event
holds

E := {c2λ2|S+| ≤ 2λ|
∑
i∈S+

ziωi|+ Cn}.

We have used the fact that ∥Aŵ∥ ≤ C
√
n with prob-

ability at least 1 − n−c and ∥AS+A
T
S+

∥ ≤ C with the
same probability. If |S+| ≥ c0n, we have c2λ2|S+| ≤
2λ|

∑
i∈S+

ziωi| + (C/c0)|S+| so that if λ is chosen greater
than λ0 = (2C/c2c0)1/2, we have

c2λ2|S+|/2 ≤ 2λ|
∑
i∈S+

ziωi|.

To show that this event hold with vanishing probability we first
write

∑
i∈S+

ziωi = ξTAes where es is the vector whose jth

entry is ωj1{j ∈ S+}. We observe that (Aes)i is sub-Gaussian
with sub-Gaussian factor Cc2s/n where s = |S+|, since
A = X/

√
n and X has isotropic sub-Gaussian rows. Hence

conditioned on ξ the random variable ξTAes has sub-Gaussian
factor Cc2∥ξ∥2s/n since ξ is independent of A. We define
the event F := {∥ξ∥ ≤ C

√
n}. Since ∥ξ∥ ≤ C

√
n with

probability 1− n−c, for a given subset S of size s we have

P ({c2λ2s/2 ≤ 2λ|
∑
i∈S+

ziωi|} ∩ F )

≤ exp(−c4λ2(s/4)2/2Cs)

where we have simplified the constants. Finally we obtain,

P ({|S+| ≥ c0n} ∩ E ∩ F )

≤P ({λc2|S+|/4 ≤ |
∑
i∈S+

ziωi|} ∩ F ).

≤
p∑

s=c0n

∑
S:|S|=s

exp(−c4λ2(s/4)2/2Cs)

≤C exp(−Cc0λ2n),

where we have simplified all the constants except c0. We can
remove the conditioning on E and F since both holds with
probability at least 1− n−c.

Similar bounds hold for S− and we have shown (redefining
c0) that for λ ≥ λ0, the Lasso solution is c0n sparse with
probability at least 1− n−c. □

Proof of Lemma 1.3: We start with the Fenchel dual for the
function h,

h∗(x) = sup
z
⟨z, x⟩ − 1

2
∥ASz∥2 − ⟨ASz, y⟩.

It can be easily verified that the maximum is attained at z =
(ATSAS)

−1(x−ATSy) and plugging in the value we obtain

h∗(x) =
1
2
(x−ATSy)

T (ATSAS)
−1(x−ATSy).

To compute b∗(x) we start with defining the function b̄(x) =
λω|x+ y| for scalars x and y. Thus we have,

b̄∗(x) = sup
z
xz − λω|z + y|.

It can be easily observed that b̄∗(x) = ∞ unless |x| ≤ λω.
Further define the function

α(x, z) = xz − λω|z + y|.

If z ≥ −y, the function α(x, z) = z(x − λω) − λy attains
maximum value at z = −y as x−λω ≤ 0. Similarly if z ≤ −y,
α(x, z) = z(x+ λω) + λy attains maximum value at z = −y
as x+ λω ≥ 0. Hence

b̄∗(x) =

{
supz α(x, z) = −xy, if |x| ≤ λω

∞, otherwise .

Now we consider the function

b∗(x) = sup
z
⟨z, x⟩ − λ∥Ω̃S(z + µ0,S)∥1

and note that the optimization problem in the RHS is separable
in its arguments. Hence we have

b∗(x) =

{
−⟨µ0,S , x⟩, if |xi/ωi| ≤ λ for all i ∈ S

∞, otherwise ,

which was to be shown. □

C. Universality of the Optimizer

Proof of Lemma 7.3:
We only prove the result for the ridge case, since the

Lasso case follows by suitably modifying (to account for
the term Ω̃) the proof of Theorem 3.8 of [47] together with
the statements from [84]. Recall that G is the design matrix
with i.i.d. Gaussian entries. Denoting Ḡ = G/

√
n problem,

we consider the following functions:

r(w, u) =
1
n
uT Ḡw − 1

n
uT ξ − 1

2n
∥u∥2
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+
λ

2n
(∥Ω̃(w + µ0)∥2 − ∥Ω̃µ0∥2),

ℓ(w, u) =− 1
n−3/2

∥u∥gTw +
∥w∥hTu
n3/2

− 1
n
uT ξ

− 1
2n

∥u∥2 + λ

2n
(∥Ω̃(w + µ0)∥2 − ∥Ω̃µ0∥2),

where u ∈ Rn and h and g are independent random vectors
with distributions h ∼ N(0, In), g ∼ N(0, Ip) respec-
tively. We denote by R(w) = maxu h(w, u) and L(w) =
maxu ℓ(w, u) the ridge cost and the associated Gordon cost
respectively.

Note that using w =
√
nθ, R(w) = RK(θ,G) for K = R

and we work with the notation R(w) since the Gaussian
design and the ridge setup is clear from the context. Our
goal is to demonstrate that the optimal value of R(w) i.e.
minw R(w) is close to ψR. We will use CGMT to show
that minw R(w) is well approximated by minw L(w) and the
latter is close to the desired constant ψR (a constant that
we will define shortly). The proof proceeds by showing that
minw L(w) is well approximated by the value at saddle point
of a function ψn(β, γ), which is further approximated by the
value at saddle point of its non-stochastic version ψ(β, γ).
Denoting the saddle point of the latter by (β∗, γ∗), ψR will
be defined as ψ(β∗, γ∗). We start by defining ψn and ψ.

Define the function ψn(β, γ) as follows:
ψn(β, γ)

=
(
σ2

γ
+ γ

)
β

2
− β2

2

− 1
n/p

1
p

p∑
i=1

γλ2ω4
i

2(β + λω2
i γ)

(
µ0,i −

βgi
λω2

i

)2

. (A.9)

The above equation can be written compactly as

ψn(β, γ)

=
(
σ2

γ
+ γ

)
β

2
− β2

2

− 1
n/p

EPn

[
γλ2Ω4

2(β + λΩ2γ)

(
M − βΓ

λΩ2

)2
]
, (A.10)

where the expectation is taken with respect to the law Pn of
the 3-tuple of random variables (M,Ω,Γ) ∼ 1

p

∑p
i=1 δµi,ωi,gi

.
Also define the function ψ(β, γ) as follows:
ψ(β, γ)

=
(
σ2

γ
+ γ

)
β

2
− β2

2

− 1
n/p

EQn

[
γλ2Ω4

2(β + λΩ2γ)

(
M − βΓ

λΩ2

)2
]
, (A.11)

where the expectation is taken with respect to the law
Qn of the 3-tuple of random variables (M,Ω,Γ) ∼
( 1p

∑p
i=1 δµ0,i,ωi)⊗N(0, 1). Taking the derivates of the func-

tion ψn with respect to β and γ one obtains the following
fixed point equations for the saddle points:

γ2∗,n =σ2 +
1
n/p

EPn

[
η2

(
M + γ∗,nΓ;

γ∗,nλΩ2

β∗,n

)
−M

]2
, (A.12)

β∗,n =γ∗,n − 1
n/p

EPn

[
Γ.
(
η2

(
M + γ∗,nΓ;

γ∗,nλΩ2

β∗,n

)
−M

)]
. (A.13)

We can compare (A.12) and (A.13) to (III.4) and see that the
latter easily follows from the previous two by using Gaussian
integration by parts. Similarly from equation (A.11) we get
the fixed point equations for the limiting case as follows:

γ2∗ =σ2 +
1
n/p

EQn

[
η2

(
M + γ∗Γ;

γ∗λΩ2

β∗

)
−M

]2
,

(A.14)

β∗ =γ∗ −
1
n/p

EQn

[
Γ.
(
η2

(
M + γ∗Γ;

γ∗λΩ2

β∗

)
−M

)]
. (A.15)

It can be shown following the steps of Proposition 5.2 of [47]
that there exists a unique solution to the system formed
by (A.12) and (A.13). Further the solutions β∗,n and γ∗,n lie
in some compact subset of R+ bounded away from 0 with
probability at least 1−n−c. Similar results on the unicity and
compactness of the solutions β∗ and γ∗ can be shown as well.
Next we show that |β∗,n − β∗| and |γ∗,n − γ∗| converges to
0 with probability at least 1 − n−c. However because of the
matrix Ω this convergence does not follow easily from [47].
We use different techniques and prove the statement in a
separate lemma whose proof is technical and hence we defer
for the moment

Lemma 1.4: With probability at least 1− n−c, we have

|β∗,n − β∗| = O(ϵn) |γ∗,n − γ∗| = O(ϵn).

for some ϵn → 0.
The rest of the proof follows in the lines of [47]. Since
the modification involving the matrix Ω is routine we only
sketch the outline and omit detailed proof. One shows (see
[47, Lemma 5.2]) that with probability at least 1 − n−c the
following statements hold:

1) |ψn(β∗,n, γ∗,n)− ψ(β∗, γ∗)| = O(ϵn),
2) |minw L(w)−maxβ>0 minγ>0 ψn(β, γ)| = O(ϵn),
3) |minwH(w)− ψ(β∗, γ∗)| = O(ϵn).

Now for any Lipshitz function ϱ define the following set

Sn,ϵ(ϱ) = {w ∈ Rp : |ϱ(w/
√
n)− Eϱ(w∗/

√
n)| ≥ ϵ−1/2}.

Then it can be shown (see [47, Theorem 3.4] and its proof)
that the following statement holds:

P
(
min
w
R(w) ≥ ψ(β∗, γ∗) + ϵ

)
≤ Cn−c,

P

(
min

w∈Sn,ϵ(ϱ)
R(w) ≤ ψ(β∗, γ∗) +K−1ϵ

)
≤ Cn−c

for some K > 0. Recall that θ = w/
√
n, ψR = ψ(β∗, γ∗).

Then letting δn = Cn−c and choosing z suitably the above
inequalities imply that the statement of the Lemma 7.3 is true
if we can prove Lemma 1.4. □

Proof of Lemma 1.4:
First we adopt the method used in [58] to show that with

probability at least 1− n−c

∥(β∗,n, γ∗,n)− (β†, γ†)∥ = O(ϵn) (A.16)
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holds for some ϵn → 0 and for some constants β†, γ†. Let
us denote the joint law of the random variables (M̄, Ω̄, Z)
as P , where (M̄, Ω̄) has law µ (see Assumption 4) and Z is
independently distributed as N(0, 1). Note that by Assump-
tion 4 Pn

W2==⇒ P and Qn
W2==⇒ P . For notational convenience

we will define functions of a general 3-touple of random
variables (M,Ω,Γ) and depending on the context they will
be distributed as Pn, Qn or P .

Step:1 We write the optimizers as solutions of some func-
tions i.e. define

Fn(β, γ) =
1
n/p

[
η2

(
M + γΓ;

γλΩ2

β

)
−M

]2
+ σ2 − γ2, (A.17)

Gn(β, γ) =
1
n/p

[
Γ.

(
η2

(
M + γΓ;

γλΩ2

β

)
−M

)]
+ β − γ, (A.18)

F (β, γ) =κ
[
η2

(
M + γΓ;

γλΩ2

β

)
−M

]2
+ σ2 − γ2, (A.19)

G(β, γ) =κ
[
Γ.

(
η2

(
M + γΓ;

γλΩ2

β

)
−M

)]
+ β − γ. (A.20)

Note that (β∗,n, γ∗,n) are solutions of the equations
EPnFn(β, γ) and EPnGn(β, γ). We define (β†, γ†) as solu-
tions of the equation EPF (β, γ) and EPG(β, γ). It can be
shown along the lines of Lemma 5.2 of [47] that both solutions
are unique.

Step 2: We will show that the following uniform conver-
gence holds in some compact set C of R+×R+bounded away
from (0, 0):

lim
n→∞

sup
(γ,β)∈C

|EPnFn(β, γ)− EPF (β, γ)| = 0, (A.21)

lim
n→∞

sup
(γ,β)∈C

|EPnGn(β, γ)− EPG(β, γ)| = 0. (A.22)

We defer the proof for the moment.
Step 3: Since the optimizers in both the finite sample case

((β∗,n, γ∗,n)) and the limiting case ((β†, γ†)) lie in compact
sets with probability at least 1−n−c (see Lemma 5.2 of [47]),
we can choose C, so that the optimizers belong to C with
probability at least 1−n−c. Now let (β̃, γ̃) be a limit point of
the sequence (β∗,n, γ∗,n) then we prove that (β̃, γ̃) = (β†, γ†).

Indeed,

|EP (F (β̃, γ̃))|
≤|EP (F (β̃, γ̃))− EP (F (β∗,n, γ∗,n))|
+ |EPn

(Fn(β∗,n, γ∗,n))− EP (F (β∗,n, γ∗,n))|,

since EPn(Fn(β∗,n, γ∗,n)) = 0. Now from the continuity of
EP (F (., .)) we have

|EP (F (β̃, γ̃))− EP (F (β∗,n, γ∗,n))| → 0,

while from equation (A.21) we conclude that

|EPn(F (β∗,n, γ∗,n))− EP (F (β∗,n, γ∗,n))| → 0.

Thus EP (F (β̃, γ̃)) = 0 and similarly we can prove
EP (G(β̃, γ̃)) = 0. Since (β†, γ†) is the unique solution of
the set of equations EP (F (β, γ)) = 0 and EP (G(β, γ)) = 0,
we obtain (β̃, γ̃) = (β†, γ†). Noting that the optimizers
(β∗n, γ∗n) and (β†, γ†) lie in the compact set C with prob-
ability at least 1− n−c this proves that for some ϵn, we have
∥(β∗,n, γ∗,n) − (β†, γ†)∥ = O(ϵn) with probability at least
1− n−c.

Thus, to prove the lemma it is sufficient to prove (A.21)
and (A.22). Since p/n→ κ it is enough to prove

lim
n→∞

sup
(γ,β)∈C

|EPn
F (β, γ)− EPF (β, γ)| = 0.

By Arzela-Ascoli theorem the proof follows if we can show
the following statements:

1) Pointwise convergence: For a given (γ, β) in C,
limn→∞ |EPnF (β, γ)− EPF (β, γ)| = 0.

2) Equicontinuity: ∀ϵ, ∃δ such that if ∥(β, γ)− (β′, γ′)∥ <
δ,

sup
n

|EPnF (β, γ)− EPnF (β
′, γ′)| < ϵ.

Writing F (β, γ) as f(M,Γ,Ω), a function of M,Γ,Ω, one
observes that to show (1), the following result can be used:
Pn

W2==⇒ P implies |EPn
F (β, γ)−EPF (β, γ)| = 0, if one can

show sup(M,Γ,Ω)
f(M,Γ,Ω)
∥M,Γ,Ω∥2 <∞. Noting the form of F (β, γ)

it is enough to show that,

sup
(M,Γ,Ω)

[
η2

(
M + γΓ; γλΩ

2

β

)
−M

]2
∥M,Γ,Ω∥2

≤ sup
(M,Γ,Ω)

[
(−λΩ2M + βΓ)/(βγ−1 + λΩ2)

]2
∥M,Γ∥2

<∞.

Since Ω is bounded, the numerator is bounded by a quadratic
function of M and G and hence the claim is proved.

For the function G, we similarly have to show

sup
(M,Γ,Ω)

Γ(η2
(
M + γΓ; γ

2λΩ2

β

)
−M)

∥M,Γ,Ω∥2

≤ sup
(M,Γ,Ω)

Γ(−λΩ2M + βΓ)/(βγ−1 + λΩ2)
∥M,Γ∥2

<∞.

Again, the numerator is upper bounded by a quadratic function
of Γ and M is bounded; hence, the claim is proved.

To show (2) we observe that,

F (β, γ)− F (β′, γ′)

=
[
(−λΩ2M + βΓ)/(βγ−1 + λΩ2)

]2
−

[
(−λΩ2M + β′Γ)/(β′γ′−1 + λΩ2)

]2
+ γ

′2 − γ2

=(βγ−1 + λΩ2)−2(β′γ′−1 + λΩ2)−2
[
(β′γ′−1

+ λΩ2)2(−λΩ2M + βΓ)2 − (βγ−1

+ λΩ2)2(−λΩ2M + β′Γ)2
]

+ γ
′2 − γ2.
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Noting that β, β′, γ, γ′ lies in compact sets bounded away
from 0, we need to show that ∥(β, γ)− (β′, γ′)∥ < δ implies

|EPn [(β
′γ′−1 + λΩ2)2(−λΩ2M + βΓ)2

− (βγ−1 + λΩ2)2(−λΩ2M + β′Γ)2]| < ϵ. (A.23)

First, we show that

|EPn
[(β′γ′−1 + λΩ2)2((−λΩ2M + βΓ)2

− (−λΩ2M + β′Γ)2)]| < ϵ/2. (A.24)

Indeed since (β′γ′−1+λΩ2)2 is bounded by some constant C,
we consider the expression the following set of inequalities:

|EPn
[((−λΩ2M + βΓ)2 − (−λΩ2M + β′Γ)2)]|

≤EPn
[|β

′2 − β2|Γ2] + EPn
[2|β − β′|λΩ2MΓ]|

≤EPn [|β
′2 − β2|Γ2] + CEPn [|β − β′|λ(M2 + Γ2)]|.

Since both x2 and x are uniformly continuous functions in
the compact domain and Pn

W2==⇒ P implies that EPn
Γ2 and

EPn
(M2 +Γ2) is uniformly bounded we can choose δ small

enough so that equation (A.24) holds.
Next we show that

|EPn
[((β′γ′−1 + λΩ2)2

− (βγ−1 + λΩ2)2)(−λΩ2M + β′Γ)2)]| < ϵ/2.
(A.25)

Using the facts that Ω is bounded, βγ−1 and β2γ−2 are
uniformly continuous functions in the compact domain (the
domain also being bounded away from 0), we have ((β′γ′−1+
λΩ2)2 − (βγ−1 + λΩ2)2) < ε for sufficiently small δ.
Also, Pn

W2==⇒ P implies that EPn(−λΩ2M + β′Γ)2 is
uniformly bounded in n, so that choosing ε small enough,
equation (A.25) holds. Finally we use triangle inequality to
show (A.23) from (A.24) and (A.25). The equicontinuity of G
can be shown along similar lines; hence we omit the proof.

Step 4: A calculation analogous to the one shown above
proves that the following statements hold:

lim
n

sup
(γ,β)∈C

|EQn
Fn(β, γ)− EPF (β, γ)| = 0, (A.26)

lim
n

sup
(γ,β)∈C

|EQn
Gn(β, γ)− EPG(β, γ)| = 0. (A.27)

An argument similar to the one used in Step 3 can be used to
conclude that with probability at least 1− n−c the following
holds

∥(β∗, γ∗)− (β†, γ†)∥ = O(ϵn) (A.28)

Using equations (A.16) and (A.28) we conclude that the
desired result holds. □
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[38] L. Erdős, “Universality of Wigner random matrices: A survey of recent
results,” Russian Math. Surv., vol. 66, no. 3, pp. 507–626, Jun. 2011.

[39] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope
phase transitions and message passing algorithms,” Ann. Appl. Probab.,
vol. 25, no. 2, pp. 753–822, Apr. 2015.

[40] A. Montanari and P.-M. Nguyen, “Universality of the elastic net error,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2338–2342.

[41] W.-K. Chen and W.-K. Lam, “Universality of approximate message
passing algorithms,” Electron. J. Probab., vol. 26, pp. 1–44, Jan. 2021.

[42] H. Hu and Y. M. Lu, “Universality laws for high-dimensional learn-
ing with random features,” IEEE Trans. Inf. Theory, vol. 69, no. 3,
pp. 1932–1964, Mar. 2023.

[43] A. Panahi and B. Hassibi, “A universal analysis of large-scale regularized
least squares solutions,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017.

[44] F. Gerace, F. Krzakala, B. Loureiro, L. Stephan, and L. Zdeborová,
“Gaussian universality of perceptrons with random labels,” 2022,
arXiv:2205.13303.

[45] R. Dudeja, S. Sen, and Y. M. Lu, “Spectral universality in reg-
ularized linear regression with nearly deterministic sensing matri-
ces,” IEEE Trans. Inf. Theory, early access, Sep. 12, 2024, doi:
10.1109/TIT.2024.3458953.

[46] T. Wang, X. Zhong, and Z. Fan, “Universality of approximate message
passing algorithms and tensor networks,” 2022, arXiv:2206.13037.

[47] Q. Han and Y. Shen, “Universality of regularized regression estimators
in high dimensions,” Ann. Statist., vol. 51, no. 4, pp. 1799–1823,
Aug. 2023.

[48] A. Montanari and B. N. Saeed, “Universality of empirical risk min-
imization,” in Proc. 355th Conf. Learn. Theory, vol. 178, Jul. 2022,
pp. 4310–4312.

[49] A. Montanari, F. Ruan, B. Saeed, and Y. Sohn, “Universality of max-
margin classifiers,” 2023, arXiv:2310.00176.

[50] Q. Han and X. Xu, “The distribution of ridgeless least squares interpo-
lators,” 2023, arXiv:2307.02044.

[51] A. I. Mundo, J. R. Tipton, and T. J. Muldoon, “Generalized additive
models to analyze nonlinear trends in biomedical longitudinal data using
R: Beyond repeated measures ANOVA and linear mixed models,” Statist.
Med., vol. 41, no. 21, pp. 4266–4283, Sep. 2022. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9505

[52] G. Z. Heller, K. P. Robledo, and I. C. Marschner, “Distributional
regression in clinical trials: Treatment effects on parameters other than
the mean,” BMC Med. Res. Methodol., vol. 22, no. 1, Dec. 2022,
Art. no. 56.

[53] G. S. Marcillo et al., “Implementation of a generalized additive model
(GAM) for soybean maturity prediction in African environments,”
Agronomy, vol. 11, no. 6, p. 1043, May 2021. [Online]. Available:
https://www.mdpi.com/2073-4395/11/6/1043

[54] K. Ravindra, P. Rattan, S. Mor, and A. N. Aggarwal, “General-
ized additive models: Building evidence of air pollution, climate
change and human health,” Environ. Int., vol. 132, Nov. 2019,
Art. no. 104987. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0160412019309341

[55] J. S. Morris, “Functional regression,” Annu. Rev. Statist. Appl., vol. 2,
pp. 321–359, Apr. 2015.

[56] R. C. Lewontin, “On measures of gametic disequilibrium,” Genetics,
vol. 120, no. 3, pp. 849–852, Nov. 1988.

[57] S. B. Korada and A. Montanari, “Applications of the Lindeberg principle
in communications and statistical learning,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 2440–2450, Apr. 2011.

[58] A. Montanari, F. Ruan, Y. Sohn, and J. Yan, “The generalization error of
max-margin linear classifiers: Benign overfitting and high dimensional
asymptotics in the overparametrized regime,” 2019, arXiv:1911.01544.

[59] Z. Deng, A. Kammoun, and C. Thrampoulidis, “A model of double
descent for high-dimensional binary linear classification,” Inf. Inference,
J. IMA, vol. 11, no. 2, pp. 435–495, Jun. 2022.

[60] T. Liang, S. Sen, and P. Sur, “High-dimensional asymptotics of Langevin
dynamics in spiked matrix models,” Inf. Inference, J. IMA, vol. 12, no. 4,
pp. 2720–2752, Sep. 2023.

[61] R. Dudeja, Y. M. Lu, and S. Sen, “Universality of approximate message
passing with semirandom matrices,” Ann. Probab., vol. 51, no. 5,
pp. 1616–1683, Sep. 2023.

[62] D. Donoho and J. Tanner, “Observed universality of phase transitions in
high-dimensional geometry, with implications for modern data analysis
and signal processing,” Phil. Trans. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 367, no. 1906, pp. 4273–4293, Nov. 2009.

[63] H. Monajemi et al., “Deterministic matrices matching the compressed
sensing phase transitions of Gaussian random matrices,” Proc. Nat.
Acad. Sci. USA, vol. 110, no. 4, pp. 1181–1186, 2013.

[64] A. Abbara, A. Baker, F. Krzakala, and L. Zdeborová, “On the univer-
sality of noiseless linear estimation with respect to the measurement
matrix,” J. Phys. A, Math. Theor., vol. 53, no. 16, Apr. 2020,
Art. no. 164001.

[65] Y. Li and P. Sur, “Spectrum-aware debiasing: A modern inference
framework with applications to principal components regression,” 2023,
arXiv:2309.07810.

[66] C. J. Stone, “Additive regression and other nonparametric models,” Ann.
Statist., vol. 13, no. 2, pp. 689–705, Jun. 1985.

[67] Z. Tan and C.-H. Zhang, “Doubly penalized estimation in additive
regression with high-dimensional data,” Ann. Statist., vol. 47, no. 5,
pp. 2567–2600, Oct. 2019.

[68] A. B. Tsybakov, Introduction to Nonparametric Estimation (Springer
Series in Statistics). New York, NY, USA: Springer, 2009.

[69] P. J. Bickel, Y. Ritov, and A. B. Tsybakov, “Simultaneous analysis of
lasso and Dantzig selector,” Ann. Statist., vol. 37, no. 4, pp. 1705–1732,
Aug. 2009.

[70] P. T. Reiss, J. Goldsmith, H. L. Shang, and R. T. Ogden, “Meth-
ods for scalar-on-function regression,” Int. Stat. Rev., vol. 85, no. 2,
pp. 228–249, Aug. 2017.

[71] J. Goldsmith, J. Bobb, C. M. Crainiceanu, B. Caffo, and D. Reich,
“Penalized functional regression,” J. Comput. Graph. Statist., vol. 20,
no. 4, pp. 830–851, Dec. 2011.

[72] V. Koltchinskii and S. Minsker, “L1-penalization in functional lin-
ear regression with subgaussian design,” J. de l’École Polytechnique,
Mathématiques, vol. 1, pp. 269–330, Oct. 2014. [Online]. Available:
https://jep.centre-mersenne.org/articles/10.5802/jep.11/

[73] M. Sesia, S. Bates, E. Candès, J. Marchini, and C. Sabatti, “False dis-
covery rate control in genome-wide association studies with population
structure,” Proc. Nat. Acad. Sci. USA, vol. 118, no. 40, Oct. 2021,
Art. no. e2105841118.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on September 03,2025 at 01:19:59 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TIT.2024.3458953


9000 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 12, DECEMBER 2024

[74] D. Gianola, E. Manfredi, and H. Simianer, “On measures of association
among genetic variables,” Animal Genet., vol. 43, no. s1, pp. 19–35,
Jul. 2012.

[75] C. Pattaro, I. Ruczinski, D. M. Fallin, and G. Parmigiani, “Haplotype
block partitioning as a tool for dimensionality reduction in SNP associ-
ation studies,” BMC Genomics, vol. 9, no. 1, pp. 1–15, Dec. 2008.

[76] M. Sesia, C. Sabatti, and E. J. Candès, “Gene hunting with hidden
Markov model knockoffs,” Biometrika, vol. 106, no. 1, pp. 1–18,
Mar. 2019.

[77] P. Scheet and M. Stephens, “A fast and flexible statistical model for
large-scale population genotype data: Applications to inferring missing
genotypes and haplotypic phase,” Amer. J. Hum. Genet., vol. 78, no. 4,
pp. 629–644, Apr. 2006.

[78] E. Abbasi, F. Salehi, and B. Hassibi, “Universality in learning from
linear measurements,” in Advances in Neural Information Processing
Systems, vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Red Hook, NY, USA:
Curran Associates, 2019. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2019/file/dffbb6efd376d8dbb22cdf491e481
edc-Paper.pdf

[79] S. Oymak and J. A. Tropp, “Universality laws for randomized dimension
reduction, with applications,” Inf. Inference, J. IMA, vol. 7, no. 3,
pp. 337–446, Sep. 2018.

[80] L. Meier, S. van de Geer, and P. Bühlmann, “High-dimensional additive
modeling,” Ann. Statist., vol. 37, no. 6B, pp. 3779–3821, Dec. 2009.

[81] V. Koltchinskii and M. Yuan, “Sparsity in multiple kernel learning,” Ann.
Statist., vol. 38, no. 6, pp. 3660–3695, Dec. 2010.

[82] M. Yuan and D.-X. Zhou, “Minimax optimal rates of estimation
in high dimensional additive models,” Ann. Statist., vol. 44, no. 6,
pp. 2564–2593, Dec. 2016.

[83] G. Raskutti, M. J. Wainwright, and B. Yu, “Minimax-optimal rates for
sparse additive models over kernel classes via convex programming,”
J. Mach. Learn. Res., vol. 13, no. 2, pp. 389–427, 2012.

[84] L. Miolane and A. Montanari, “The distribution of the lasso: Uniform
control over sparse balls and adaptive parameter tuning,” Ann. Statist.,
vol. 49, no. 4, pp. 2313–2335, Aug. 2021.

[85] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, “A unified
framework for high-dimensional analysis of M -estimators with decom-
posable regularizers,” Stat. Sci., vol. 27, no. 4, pp. 538–557, Nov. 2012.

[86] N. Ross, “Fundamentals of Stein’s method,” Probab. Surv., vol. 8,
pp. 210–293, Oct. 2011.

[87] R. Vershynin, Introduction to the Non-asymptotic Analysis of Random
Matrices. Cambridge, U.K.: Cambridge Univ. Press, 2012, pp. 210–268.

Samriddha Lahiry received the Bachelor of Statistics (B.Stat.) and Master of
Statistics (M.Stat.) degrees from Indian Statistical Institute, Kolkata, India, in
2015 and 2017, respectively, and the Ph.D. degree in statistics from Cornell
University in 2022. He is currently a Visiting Fellow with the Department
of Statistics and Data Science, National University of Singapore, Singapore.
His research interests include high-dimensional statistics, exact asymptotics,
nonparametric estimation, and quantum statistical inference.

Pragya Sur received the Bachelor of Statistics (B.Stat.) and Master of
Statistics (M.Stat.) from Indian Statistical Institute, Kolkata, India, in 2012 and
2014, respectively, and the Ph.D. degree in statistics from Stanford University
in 2019. She is currently an Assistant Professor with the Department of
Statistics, Harvard University, Cambridge, MA, USA. Her research interests
include high-dimensional statistics, machine learning theory, learning under
heterogeneity, and distribution shifts. She was a recipient of several awards,
including NSF DMS 2113426, a William F. Milton Fund Award, a Dean’s
Competitive Fund for Promising Scholarship, and the Theodore W. Anderson
Theory of Statistics Dissertation Award.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on September 03,2025 at 01:19:59 UTC from IEEE Xplore.  Restrictions apply. 


